KR19980053471A - Tundish structure to ensure clean steel production during ladle-dundy time eccentric injection of the playing process - Google Patents
Tundish structure to ensure clean steel production during ladle-dundy time eccentric injection of the playing process Download PDFInfo
- Publication number
- KR19980053471A KR19980053471A KR1019960072577A KR19960072577A KR19980053471A KR 19980053471 A KR19980053471 A KR 19980053471A KR 1019960072577 A KR1019960072577 A KR 1019960072577A KR 19960072577 A KR19960072577 A KR 19960072577A KR 19980053471 A KR19980053471 A KR 19980053471A
- Authority
- KR
- South Korea
- Prior art keywords
- dam
- tundish
- molten steel
- ladle
- nozzle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/005—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
본 발명은 연주공정의 래들-턴디시간 편심주입시 청정강 제조를 보장하는 턴디시 구조에 관한 것으로서, 래들- 턴디시-양 주형으로 구성된 것으로 래들의 용강을 턴디시에 편심주입하는 연속주조기에 있어서, 턴디시의 구조는 쉬라우드 노즐 -침지노즐간의 거리가 먼측은 웨어- 댐으로 구성하며, 댐높이는 0.25-0.31H0으로 하고, 쉬라우드노즐-침지노즐간의 거리가 가까운 쪽은 댐-웨어- 댐으로 구성하고, 용강주입구에서 가장 먼 댐의 중앙하부에 잔탕배출용 구멍을 가짐을 특징으로 하는 연속주조기를 개시한다.The present invention relates to a tundish structure that guarantees clean steel production during ladle-tundish-time eccentric injection of a playing process, comprising a ladle-tundish-yang mold, in a continuous casting machine for eccentric injection of molten steel of a ladle. The structure of the tundish consists of weir-dam on the far side between the shroud nozzle and the immersion nozzle, and the height of the dam is 0.25-0.31H 0 , and the dam-ware on the side near the distance between the shroud nozzle and the immersion nozzle. Disclosed is a continuous casting machine comprising a dam, and having a hole for discharging residual water in the center lower portion of the dam furthest from the molten steel inlet.
Description
본 발명은 래들-턴디시-양 주형으로 구성된 연속주조 공정에서 래들에서 턴디시 용강주입시 편심위치에 주입시 발생하는 양 주형간의 주편품질차를 저감시키는 턴디시 구조에 관한 것이다.The present invention relates to a tundish structure for reducing slab quality difference between the two molds generated during injection into the eccentric position during the tundish molten steel injection in the ladle in a continuous casting process consisting of a ladle-tundish-bottle mold.
일반적으로 슬라브연주기(slab caster)는 도 1와 같이 래들(1)-턴디시(2)-주형(3)으로 구성된다. 래들내 용강(4)은 쉬라우드 노즐(5)을 통하여 턴디시로 주입되고 이후 양 주형으로 분배 되어 주형과 2차 냉각대(6)를 거치면서 냉각된다.In general, the slab caster is composed of a ladle (1)-tundish (2)-mold (3) as shown in FIG. The molten steel 4 in the ladle is injected into the tundish through the shroud nozzle 5 and then distributed to both molds and cooled while passing through the mold and the secondary cooling stand 6.
연속주조 공정의 턴디시는 래들(1)로 부터 주입된 용강을 양 주형으로 분배 해주고 응고층에 작용하는 철정압을 완화시켜 주고 용강중 개재물을 탕면쪽으로 부상시켜 개재물이 탕면의 슬랙(8)과 반응하여 용해,흡수되도록 하는 기능이 있다. 턴디시 내용강의 유동을 제어하기 위하여 여러 형태의 댐(9)과 웨어(10)가 사용되고 있다The tundish in the continuous casting process distributes the molten steel injected from the ladle (1) into both molds, relieves the iron static pressure acting on the solidification layer, and floats the inclusions in the molten steel toward the surface of the molten steel so that the inclusions react with the slag (8) of the water surface. It has a function to dissolve and absorb. Various types of dams 9 and weirs 10 are used to control the flow of tundish inner steel.
통상의 경우 도 1의(가) 와 같이 래들에는 콜렉터 노즐이 2개(11,12)로서 하나는 주입용, 나머지는 노즐의 개공 불가시 사용하는 비상개공용으로 사용하여 개공토록 하였다. 래들의 연속 주조시 각 히트(heat)마다 양노즐을 번갈아 가면서 주입용 및 비상개공용으로 사용하였다. 그러나 최근에는 제강기술의 발전과 함께 래들의 노즐 개공율이 향상됨에 따라 측노즐(11)를 패쇄하여 래들 수리를 간편화시키고 턴디시 카바의 용강주입구를 최소화시키고자 한쪽노즐만 사용하게 되었다. 따라서 턴디시내 용강의 주입위치(13)로 고정되어 연연주 히트(heat) 순서에 관계없이 주입위치-턴디시노즐간의 거리가 도면에서 X측은 멀고 Y측은 가깝게 되었다. 종전에는 용강을 X측과 Y측으로 번갈아 가면서 주입하여서 주형간 품질편차가 인지되지 않았으나 편심주입과 함께 주편의 품질도 결함의 종류에 따라 X측 혹은 Y측으로 치우치는 경향이 나타나게 되었다. 도 2에서 보는 바와같이 주편의 표면 개재물의 경우는 X측이, 내부개재물의 경우는 Y측이 발생율이 높다. 양 주형간 주편 품질의 문제가 발생하면 품질관리상 품질불균일 문제만 아니라 결함의 발생원이 한쪽 주형측으로 집중되므로 주편결함의 발생율도 높아지는 문제점이 야기된다.In general, as shown in FIG. 1A, the ladle has two collector nozzles (11, 12), one for injection, the other for emergency opening that is used when the nozzle cannot be opened. In the continuous casting of the ladle, both nozzles were alternately used for injection and emergency opening for each heat. However, in recent years, as the nozzle opening rate of the ladle increases with the development of steelmaking technology, only one nozzle is used to simplify the ladle repair by minimizing the ladle repair and minimize the molten steel inlet of the tundish cover. Accordingly, the distance between the injection position and the tundish nozzle was closer to the X side and the Y side closer to the injection position 13 of the molten steel in the tundish irrespective of the order of the heat cast. Previously, molten steel was injected alternately into the X and Y sides, but the quality deviation between molds was not recognized. However, the quality of casts with eccentric injection tended to be biased toward the X or Y side depending on the type of defect. As shown in Fig. 2, the occurrence rate of the X-side is high in the case of the surface inclusions of the cast steel, and Y-side in the case of the internal inclusions. When the quality of cast between two molds occurs, not only the quality non-uniformity problem in quality control but also the source of defects is concentrated on one side of the mold, which causes the problem of high cast defects.
턴디시내 용강의 온도와 유동상태를 보면, 중앙주입인 도 1의(나) 경우 주입된 용강은 웨어(10)를 지나 댐을 거쳐 양측의 각 주형으로 주입된다. 이경우 양측으로 용강의 온도분포와 유속분포가 동일한 상태가 된다. 그러나 쉬라우드 노즐의 용강 주입위치(13)가 편심화함에 따라 용강의 온도 및 유속분포가 비대칭화 한다. 턴디시내 침지노즐 상부의 용강온도를 조사해보면 도 3에서 보는 바와 같이 X측 대비 Y측이 용강온도가 높다. 또한 수치계산 결과도 유사한 경향을 나타낸다. 이는 용강 주입위치(13)-턴디시노즐(14)간 거리가 멀어 용강의 온도하락이 더욱 크기 때문이다.Looking at the temperature and flow state of the molten steel in the tundish, in the case of the central injection of Figure 1 (b) the injected molten steel is injected into each mold on both sides through the dam 10 through the weir 10. In this case, the temperature distribution and the flow velocity distribution of the molten steel are in the same state on both sides. However, as the molten steel injection position 13 of the shroud nozzle is eccentric, the temperature and flow rate distribution of the molten steel are asymmetric. Investigation of the molten steel temperature at the top of the immersion nozzle in the tundish as shown in Figure 3, the molten steel temperature is higher in the Y side than the X side. Numerical results also show similar trends. This is because the distance between the molten steel injection position 13 and the tundish nozzle 14 is far, so that the temperature drop of the molten steel is greater.
용강의 온도가 하락하면 도 4에서 보이는 바와 같이 침지노즐(14)에서 저온성 노즐막힘을 조장하여 주형내 탕면변동을 유발시키므로서 주형용제등(15)이 응고층에 쉽게 포집되게 하고 노즐막힘물질(17)등도 노즐벽면에서 이탈하여 응고층(16)에 포집되어 주편의 표면개재물이 된다.When the temperature of the molten steel decreases, as shown in FIG. 4, the immersion nozzle 14 promotes low temperature nozzle clogging, causing fluctuations in the mold surface, and thus, the mold solvent 15 is easily collected in the solidification layer and the nozzle clogging material. (17) and the like are also separated from the nozzle wall surface and collected in the solidification layer 16 to form the surface inclusions of the cast steel.
턴디시의 용강 주입위치에서 양 주형측으로 흐르는 용강의 턴디시내 체류시간를 조사하기 위하여 구리(cu)성분을 트래이서(treacer)로 투입하여 양 주형에서 용강을 연속채취하여 구리성분의 변화를 조사하므로서 용강체류시간을 조사하였고 그 결과는 도 5에서 보인다. X측에 비해 Y측이 최대체류시간이 짧은 것을 확인할 수 있었다. 따라서 Y측의 경우가 비금속개재물의 부상분리 가능성이 적음을 알 수 있으며, 이는 도 2에서 내부개재물의 경우 Y측이 발생율이 높은 사실과 잘 일치한다.In order to investigate the residence time of the molten steel flowing to both molds at the molten steel injection position of tundish, a copper component is introduced into the tracer, and the molten steel is continuously collected from both molds to investigate the change of copper components. The molten steel residence time was investigated and the result is shown in FIG. It was confirmed that the maximum stay time was shorter on the Y side than on the X side. Therefore, it can be seen that the Y side is less likely to float separation of the non-metallic inclusions, which is in good agreement with the fact that the Y side has a high incidence rate in the case of the internal inclusions in FIG. 2.
그러므로 본 발명의 목적은 래들-턴디시-양 주형으로 구성된 연속주조공정에서 래들의 용강을 턴디시에 편심주입하는 경우 발생하는 양 주형간의 품질편차를 최소화 하는 턴디시의 구조를 제공하는 것이다.It is therefore an object of the present invention to provide a structure of a tundish that minimizes the quality deviation between the two molds generated when eccentric injection of molten steel of the ladle in a continuous casting process consisting of a ladle-tundish-bottle mold.
이러한 본 발명의 목적은 래들- 턴디시-양 주형으로 구성된 것으로 래들의 용강을 턴디시에 편심주입하는 연속주조기에 있어서, 턴디시의 구조는 쉬라우드 노즐 침지노즐간의 거리가 먼측은 웨어 댐으로 구성하며, 댐높이는 0.25-0.31HO(Ho는 탕면높이)으로 하고, 쉬라우드노즐-침지노즐간의 거리가 가까운 쪽은 댐-웨어-댐으로 구성하고, 용강주입구에서 가장 먼 댐의 중앙하부에 잔탕배출용 구멍을 가짐을 특징으로 하는 연속주조기를 제공함으로써 달성된다.The object of the present invention is composed of a ladle-tundish-bottle mold, and in a continuous casting machine for eccentrically injecting molten steel of the ladle, the structure of the tundish is composed of a wear dam at a distance between the shroud nozzle immersion nozzles. The height of the dam is 0.25-0.31H O (H o is the height of the floor), and the side of the shroud nozzle-immersion nozzle is composed of dam-ware-dam, and is located at the center lower part of the dam farthest from the molten steel inlet. It is achieved by providing a continuous casting machine characterized by having a hole for discharging residual water.
도 1의 (가)도는 연주공정의 래들- 턴디시 주형간의 모식도에서 편심주입시 구조를 보이는 도면;Figure 1 (a) is a diagram showing the structure during eccentric injection in the schematic diagram between the ladle- tundish mold of the playing process;
도 1의 (나)는 연주 공정의 래들-턴디시 주형간의 모식도에서 중앙 주입시의 구조 를 보이는 도면;Figure 1 (b) is a view showing the structure during the central injection in the schematic diagram between the ladle-tundish mold of the playing process;
도 2는 편심주입시 턴디시의 양 주형간의 주편결함을 비교한 도면;2 is a view comparing the main defect between the two molds of the tundish at the time of eccentric injection;
도 3은 편심주입 턴디시의 양 주형간 용강온도 차이를 보이는 도면;3 is a view showing a difference in molten steel temperature between two molds of an eccentric injection tundish;
도 4는 주편내 결함형성 모식도;4 is a schematic diagram of defect formation in a cast steel;
도 5는 편심주입시 실제 용강체류시간을 보이는 도면;5 shows the actual molten steel retention time during eccentric injection;
도 6은 턴디시내 웨어와 댐의 위치를 보이는 도면;Figure 6 shows the location of the tundish weir and dam;
도 7은 수모델시험 결과 댐/웨어의 위치에 따른 체류시간비와 최대 체류시간을 보이는 도면;7 is a view showing the residence time ratio and the maximum residence time according to the position of the dam / ware as a result of the water model test;
도 8은 수모댈시험 결과 댐/웨어/댐의 위치에 따른 체류시간비와 최대 체류시간을 보이는 도면;8 is a view showing the residence time ratio and the maximum residence time according to the position of the dam / ware / dam as a result of the water modal test;
(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)
1: 래들2: 턴디시3:주형1: ladle 2: tundish 3: mold
4: 용강5: 쉬라우드 노즐6: 2차 냉각대4: molten steel 5: shroud nozzle 6: secondary cooling stand
7: 용강8: 슬랙9: 댐7: molten steel 8: slag 9: dam
10: 웨어11,12: 콜랙터노즐13: 용강 주입 위치10: wear 11, 12: collector nozzle 13: molten steel injection position
14: 침치 노즐15: 주형용제16: 응고층14: immersion nozzle 15: casting solvent 16: solidification layer
17: 노즐막힘물질17: nozzle clogging material
이하 첨부한 도면을 참고하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
도 7은 수모델 시험 결과로서 기존의 턴디시 댐과 웨어 조건하에서 댐과 웨어의 위치를 변경하면서 양 주형간 체류시간비와 최대 체류시간을 조사하였다.FIG. 7 shows the retention time ratio and maximum residence time between two molds while changing the position of dam and weir under the existing tundish dam and weir conditions as a water model test result.
수 모델의 쉬라우드 노즐에 Kcl 트레이서(tracer)를 투입하고 침적노즐에서 전기전도도측정기를 통하여 트레이서농도를 조사하므로서 양 X,Y측의 체류시간을 구하였고 이를 근거로 체류시간비(=Y측체류시간/X측체류시간)와 양측중 최대 체류시간의 큰 경우를 최대체류시간으로 간주 하였다. 여기서 Ho는 도 6에서 보이듯, 탕면높이를 말하고 Lo는 X측 턴디시 노즐과 Y측 턴디시 노즐 사이의 거리를 말한다.Kcl tracer was inserted into the shroud nozzle of several models and the residence time of both X and Y sides was obtained by investigating tracer concentration through the conductivity meter in the deposition nozzle. Time / X side stay time) and the maximum residence time of both sides were considered as the maximum stay time. Where H o is to say, bath surface height as shown in FIG. 6 L o is defined as the distance between the X-side and Y-side tundish nozzle tundish nozzle.
기존의 경우 도표의 제일 좌측에서 보듯이 체류시간비가 0.675로서 X측이 체류시간이 길며 상기의 실측결과와도 잘 일치한다. Y측 체류시간을 증가시키기 위하여 Y측 댐과 웨어를 이동시켰다. Y측 댐을 이동시킨 결과 체류시간비는 증가하여 0.82-0.79LC에서 1수준에 접근하였다. Y측 웨어를 이동시킨 결과 양측의 체류시간비의 편차는 오히려 증가하는 문제점을 초래 하였다. 반대로 X측의 댐을 침지노즐측으로 이동시켜 X측체류시간을 짧게하였으며 이때는 0.08LC- 0.06LC일 때 1 수준에 근접하였다. 도 7의 경우는 모든 경우에 최대체류시간이 1.11이하로서 기존조건보다 낮았다.In the case of the existing case, as shown in the far left of the chart, the residence time ratio is 0.675, and the residence time on the X side is long, which is in good agreement with the above results. The dam and weir on the Y side were moved to increase the residence time on the Y side. As a result of moving the dam on the Y side, the residence time ratio increased to approach level 1 at 0.82-0.79L C. As a result of moving the Y side weir, the deviation of the residence time ratio on both sides resulted in an increase. On the contrary, the X-side stay time was shortened by moving the dam on the X side to the immersion nozzle side, which was close to 1 level at 0.08L C -0.06L C. In the case of Figure 7, the maximum residence time in all cases was 1.11 or less, which was lower than the existing conditions.
도 8은 도 7의 수모델에서 Y측에 용강 체류시간을 증가시키기 위해서 턴디시8 is a tundish to increase the molten steel residence time on the Y side in the male model of FIG.
의 탕류부족으로 하부댐을 설치하고 다음에 웨어를, 마지막으로 다시 하부댐을 설치하여 X측의 댐의 높이와 위치를 이동시키고 Y측의 하부댐에 잔탕배출용 구멍을 뚫어 시험을 행하였다. 이 경우 도 7의 경우보다 최대체류시간이 높아 개재물의 부상제거능력이 훨씬 우수함을 알 수 있다. X측 댐의 높이를 0.23HO에서 0.34HO까지 변화시킨 경우 0.25-0.31HO사이에서 체류시간비도 1에 접근하고 체류시간도 1,2로 긴 상태를 유지하였다. 반면에 0.23HO에서 댐의 위치를 0.05LO에서 0.25LO까지 증가시킴에 따라 체류시간비는 1.4에서 0.9까지 감소하며 0.20-0.25LO에서 체류시간비가 1에 접근하나 이 경우 댐과 웨어간에 용강이 유출될만한 공간이 없기 때문에 실용적이지 못하다. 마지막으로 턴디시의 용강 배제시 잔류용강을 최소화하기 위해서는 댐의 하부에 배출구멍을 뚫었다. X측의 댐의 경우 중앙바닥에 잔탕배출구가 뚫려 있고 Y측 댐들에 있어서 배출구멍이 둘다 있는 경우, 첫 번째댐에 구멍이 뚫린 경우와 두 번째 댐에 구멍이 뚫린 경우를 대상으로 용강체류시간을 조사 하였다. 그 결과 두 번째 댐의 구멍을 뚫은 경우가 체류시간비 1을 만족하고 최대체류시간도 가장 길어 개재물의 부상분리에 가장 유리하였다.The lower dam was installed due to lack of hot water, and then the ware was installed, and the lower dam was finally installed again. The height and position of the dam on the X side were moved, and the test was performed by drilling a residual water discharge hole in the lower dam on the Y side. In this case, it can be seen that the maximum stay time is higher than that of FIG. If for changing the height of the X-side dam to 0.34H 0.23H O in O was access to the non-retention time 1-42 0.25-0.31H O and retention time also maintain the long state to the second. On the other hand, reduction in the residence time by increasing the location of the dam up to 0.25L O from 0.05L O ratio from 1.4 to 0.9 0.23H O and access to the residence time in the ratio of 1 0.20-0.25L O if one dam and Wear It is not practical because there is no space for the molten steel to flow out. Finally, in order to minimize the residual molten steel when excluding tungsten molten steel, drain holes were drilled in the lower part of the dam. For the dam on the X side, the molten steel discharge time is defined in the case where the residual water outlet is drilled in the center bottom and both discharge holes are provided in the Y side dams, when the hole is drilled in the first dam and when the hole is drilled in the second dam. Investigated. As a result, the case of the second dam was drilled, which satisfies the residence time ratio 1 and the longest stay time, which was most advantageous for the separation of the inclusions.
이상의 예를 종합하면 편심주입 턴디시 양 주형간 품질편차를 최소화하기 위해서는 쉬라우드노즐 -침지노즐간 거리가 먼 측은 웨어-댐으로 구성되고 댐높이는 0.25-0.3HO이며, 거리가 가까운 쪽은 댐-웨어-댐으로 구성되며 침지노즐에서 가장 가까운 댐의 중앙 하부에 잔탕배출용 구멍을 뚫은 턴디시를 사용하면 양측으로의 용강 체류시간 편차를 최소화하고 체류시간을 극대화하므로써 턴디시에서 용강중 개재물의 부상 분리율을 극대화 시킬수 있다.In summary, in order to minimize the quality deviation between two molds in eccentric injection tundish, the distance between shroud nozzle and immersion nozzle is composed of ware-dam and the height of dam is 0.25-0.3H O , -It consists of a wear-dam, and the tundish with the drainage hole drilled in the center lower part of the dam closest to the immersion nozzle is used to minimize the variation in the residence time of molten steel on both sides and to maximize the residence time, thereby causing the injuries of molten steel in tundish. The separation rate can be maximized.
본 발명에 의하여 용강 체류시간 편차를 최소화하고 체류시간을 극대화하므로써 턴디시에서 용강중 개재물의 부상 분리율을 극대화 시킬수 있음은 물론 편심주입 턴디시 양 주형간 품질편차를 최소화 하는 효과가 있다.According to the present invention, it is possible to maximize the separation rate of the inclusions in the molten steel in the tundish by minimizing the variation in the residence time of the molten steel and maximizing the residence time, as well as minimizing the quality deviation between the eccentric injection tundish molds.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960072577A KR100379604B1 (en) | 1996-12-26 | 1996-12-26 | Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960072577A KR100379604B1 (en) | 1996-12-26 | 1996-12-26 | Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980053471A true KR19980053471A (en) | 1998-09-25 |
KR100379604B1 KR100379604B1 (en) | 2003-07-10 |
Family
ID=37496590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960072577A KR100379604B1 (en) | 1996-12-26 | 1996-12-26 | Structure of tundish for guaranteeing manufacture of clean steel during eccentric injection between ladle and tundish in continuous casting process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100379604B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190066330A (en) * | 2017-12-05 | 2019-06-13 | 주식회사 포스코 | Continuous casting method and apparatus |
KR20190142094A (en) * | 2018-06-15 | 2019-12-26 | 주식회사 포스코 | Nozzle, apparatus of casting and method thereof |
CN111448012A (en) * | 2017-12-11 | 2020-07-24 | 株式会社Posco | Molten material processing apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5717357A (en) * | 1980-07-04 | 1982-01-29 | Sumitomo Metal Ind Ltd | Manufacturing lead free-cutting steel |
JPS59141353A (en) * | 1983-02-02 | 1984-08-14 | Aikoo Kk | Tundish for casting steel |
JPH03198954A (en) * | 1989-12-28 | 1991-08-30 | Harima Ceramic Co Ltd | Refractory for adsorbing and removing inclusion in molten steel |
JP3093890B2 (en) * | 1992-10-05 | 2000-10-03 | 日新製鋼株式会社 | Continuous pouring method and apparatus in which mixing of nonmetallic inclusions is suppressed |
-
1996
- 1996-12-26 KR KR1019960072577A patent/KR100379604B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190066330A (en) * | 2017-12-05 | 2019-06-13 | 주식회사 포스코 | Continuous casting method and apparatus |
CN111448012A (en) * | 2017-12-11 | 2020-07-24 | 株式会社Posco | Molten material processing apparatus |
KR20190142094A (en) * | 2018-06-15 | 2019-12-26 | 주식회사 포스코 | Nozzle, apparatus of casting and method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100379604B1 (en) | 2003-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100357049C (en) | Electromagnetic eddy flow downspout | |
KR19980053471A (en) | Tundish structure to ensure clean steel production during ladle-dundy time eccentric injection of the playing process | |
KR100406424B1 (en) | Submerged entry nozzle which is prevented from clogging in continuous casting | |
KR101322395B1 (en) | Tundish | |
KR20030044589A (en) | Tundish dam for guiding molten iron | |
KR20100035821A (en) | Tundish | |
KR100379603B1 (en) | Continuous casting method in tundish with sliding gate control method | |
KR100211757B1 (en) | Mold structure | |
KR100530101B1 (en) | Dam for Suppression of Vortex in Ingot Steel | |
KR100946659B1 (en) | Submerged entry nozzle for continuous casting | |
KR100395113B1 (en) | Device for preventing scum entrapment in twin roll strip casting machine | |
KR100815446B1 (en) | Submerged entry nozzle for reducing nozzle clogging | |
KR100530102B1 (en) | Molten steel flow distributing pad for the continuous casting tundish | |
KR102033642B1 (en) | Processing apparatus for molten material | |
CN105689698A (en) | Braking-type submerged nozzle for beam blank continuous casting | |
JP3470537B2 (en) | Inclusion removal method in tundish for continuous casting | |
JP2005028376A (en) | Tundish for continuously casting steel | |
JPH04238658A (en) | Immersion nozzle for continuous casting | |
KR101053275B1 (en) | Dipping nozzle for thin cast continuous casting device and thin cast continuous casting method using same | |
JPS5935856A (en) | Continuous casting mold | |
JPS6343752A (en) | Molten metal vessel providing weir | |
KR950007172B1 (en) | Ingot steel pouring nozzle and method of flux control | |
JP3039821B2 (en) | Immersion nozzle for continuous casting and method of pouring molten steel | |
JPH0866751A (en) | Continuous casting method and immersion nozzle | |
JPH02197356A (en) | Method and apparatus for continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120320 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20130325 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |