KR100374809B1 - Method for manufacturing buried contact solar cell - Google Patents

Method for manufacturing buried contact solar cell Download PDF

Info

Publication number
KR100374809B1
KR100374809B1 KR1019960034723A KR19960034723A KR100374809B1 KR 100374809 B1 KR100374809 B1 KR 100374809B1 KR 1019960034723 A KR1019960034723 A KR 1019960034723A KR 19960034723 A KR19960034723 A KR 19960034723A KR 100374809 B1 KR100374809 B1 KR 100374809B1
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
electrode
forming
oxide film
titanium
Prior art date
Application number
KR1019960034723A
Other languages
Korean (ko)
Other versions
KR19980015420A (en
Inventor
조영현
김동섭
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019960034723A priority Critical patent/KR100374809B1/en
Priority to KR2019970029272U priority patent/KR19980024754U/en
Publication of KR19980015420A publication Critical patent/KR19980015420A/en
Application granted granted Critical
Publication of KR100374809B1 publication Critical patent/KR100374809B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A method for manufacturing a BCSC(Buried Contact Solar Cell) is provided to improve energy conversion efficiency by forming a locally diffused p+ semiconductor layer on the back surface of a substrate. CONSTITUTION: A silicon oxide layer(28) and a titanium oxide layer(29) are sequentially formed on the back surface of a p-type semiconductor substrate(21). A pyramid structure is formed on the front surface of the substrate. An n+ semiconductor layer(22) is formed on the substrate by diffusing n-type impurities. A silicon oxide layer(23) and a titanium oxide layer(27) are sequentially formed on the resultant structure. A groove is formed on the resultant structure. By diffusing n-type impurities into the groove, an n++ layer is formed. By depositing and annealing aluminum on the back surface of the substrate, a locally diffused p+ semiconductor layer(30) is formed. By plating a conductive layer in the groove, a front electrode(24) is formed. A back electrode(26) is formed by plating a conductive layer into the back surface of the substrate.

Description

함몰전극형 태양전지의 제조방법Method of manufacturing recessed electrode type solar cell

본 발명은 함몰전극형 태양전지의 제조방법에 관한 것으로서, 상세하기로는, 반도체 기판 후면에서의 전위결함과 캐리어 재결합이 감소됨으로써 에너지 변환 효율이 개선된 함몰전극형 태양전지를 저렴한 비용으로 용이하게 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a recessed electrode type solar cell, and more particularly, to easily manufacture a recessed electrode type solar cell having improved energy conversion efficiency by reducing potential defects and carrier recombination at the rear surface of a semiconductor substrate. It is about how to.

태양전지는 반도체의 광 기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체가 접한 부분(pn 접합부)에 빛이 들어오면, 빛 에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)가 발생한다.The solar cell uses the photovoltaic effect of the semiconductor and is made by combining a p-type semiconductor and an n-type semiconductor. When light enters a portion (pn junction) where the p-type semiconductor and the n-type semiconductor come into contact with each other, negative charges (electrons) and positive charges (holes) are generated within the semiconductor by the light energy.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 p형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the p-type semiconductor side by the internal electric field, and are collected at both electrode portions. Connecting these two electrodes with wires allows the current to flow and can be used as power from the outside.

태양전지는 전극의 형태에 따라 스크린 프린팅형 태양전지(Screen Printing Solar Cell: SPSC)와 함몰전극형 태양전지(Buried Contact Solar Cell: BCSC)로 구분할 수 있다.Solar cells can be classified into screen printing solar cells (SPSCs) and buried contact solar cells (BCSCs) according to the shape of the electrodes.

전극 형성시 스크린 프린팅법을 사용하는 SPSC는 일반적으로 제조하기가 용이하지만 변환효율이 낮은 편이다. 한편, BCSC는 SPSC와 거의 동일한 제조원가로 제조할 수 있는 동시에 변환효율이 보다 높은 편이다. 따라서 BCSC 전지가 미래의 상업적인 태양전지의 주류를 이루데 될 것이다.SPSC, which uses screen printing for forming electrodes, is generally easy to manufacture but has low conversion efficiency. On the other hand, BCSC can be manufactured at almost the same manufacturing cost as SPSC and at the same time, the conversion efficiency is higher. BCSC cells will thus become the mainstream of future commercial solar cells.

도 1은 종래의 BCSC의 구조를 나타낸 도면이고, 이를 제조하는 방법은 다음과 같다.1 is a view showing the structure of a conventional BCSC, a method of manufacturing the same as follows.

먼저 p형 반도체 기판 (11)에 텍스처링을 실시하여 기판 전면과 후면에 피라미드 구조를 형성한다. 상기 반도체 기판 (11) 전면에 인을 주입하여 n+ 반도체층 (12)을 형성한 다음, 산화공정을 실시하여 반도체 기판 전면과 후면에 산화막 (13) 및 (15)을 형성한다. 산화막으로서 통상적으로 산화규소막 (13)을 주로 이용한다. 이어서 상기 반도체 기판 전면내로 홈을 깊게 스크라이빙한 다음, 이 홈내로 전면전극 (14)를 형성한다.First, the p-type semiconductor substrate 11 is textured to form pyramid structures on the front and rear surfaces of the substrate. Phosphorus is implanted into the entire surface of the semiconductor substrate 11 to form an n + semiconductor layer 12, and then an oxidation process is performed to form oxide films 13 and 15 on the front and rear surfaces of the semiconductor substrate. Usually, the silicon oxide film 13 is mainly used as an oxide film. Subsequently, a groove is deeply scribed into the entire surface of the semiconductor substrate, and then the front electrode 14 is formed into the groove.

반도체 기판 (11) 후면의 산화막 상부에는 전도성 금속을 도금하여 후면전극 (16)을 형성한다.A conductive metal is plated on the oxide film on the rear surface of the semiconductor substrate 11 to form the rear electrode 16.

BCSC는 상기 방법으로부터 알 수 있듯이 산화막인 산화규소막을 형성하기 위한 산화공정을 반드시 거치게 되는데, 이 공정에는 고가의 장비가 필요할 뿐만 아니라 장시간이 소요된다. 또한 텍스처링된 반도체 기판 후면의 산화막 상부에 알루미늄을 확산, 소결하는 경우, 전위결함(dislocation defect)이 매우 큰 편이며, 이 때 형성된 알루미늄층으로 인한 후면 반사 효과는 거의 없다.As can be seen from the above method, BCSC necessarily undergoes an oxidation process for forming a silicon oxide film, which is an oxide film, which requires expensive equipment and takes a long time. In addition, when aluminum is diffused and sintered on the oxide layer on the back surface of the textured semiconductor substrate, dislocation defects are very large, and there is little back reflection effect due to the formed aluminum layer.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 반도체 기판 후면에서의 전위결함과 캐리어 재결합이 감소되어 전지의 변환효율이 향상된 함몰전극형 태양전지를 저렴한 비용으로 용이하게 제조하는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a method of easily manufacturing a recessed electrode solar cell having improved conversion efficiency by reducing potential defects and carrier recombination at the rear surface of a semiconductor substrate by solving the above problems. .

도 1은 통상적인 함몰전극형 태양전지의 단면 구조를 나타낸 도면이고,1 is a view showing a cross-sectional structure of a conventional recessed electrode solar cell,

도 2는 본 발명에 따른 함몰전극형 태양전지의 단면 구조를 나타낸 도면이다.2 is a view showing a cross-sectional structure of the recessed electrode solar cell according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

11, 21. p형 반도체 기판11, 21.p-type semiconductor substrate

12, 22. n+ 반도체층12, 22.n + semiconductor layer

13, 15, 23, 28. 산화규소막(SiO2)13, 15, 23, 28. Silicon oxide film (SiO2)

14, 24. 전면전극14, 24.Front electrode

16, 26. 후면전극16, 26.Rear electrode

27, 29. 산화티탄막(TiO2)27, 29. Titanium oxide film (TiO2)

30. 부분확산 p+ 반도체층30. Partially Diffused p + Semiconductor Layer

상기 과제를 이루기 위하여 본 발명에서는 p형 반도체 기판 후면에 티탄과 산소를 함유한 화합물을 분무증착하여 산화규소막과 산화티탄막을 형성하는 단계; 반도체 기판 전면에 피라미드 구조를 형성하는 단계; 반도체 기판 전면에 n형 불순물을 확산시켜 n+ 반도체층을 형성하는 단계; 반도체 기판 전면의 전극 형성 영역을 제외한 나머지 영역에 티탄과 산소를 함유한 화합물을 분무증착하여 산화규소막과 산화티탄막을 형성하는 단계; 상기 반도체 기판 전면의 전극 형성 영역에 홈을 형성한 다음, 이 홈내로 n형 불순물을 확산시켜 n++ 반도체층을 형성하는 단계; 상기 반도체 기판 후면에 금속 마스크를 이용하여 알루미늄을 증착, 소결하여 부분확산 p+ 반도체층을 형성하는 단계; 상기 반도체 기판 전면의 홈에 전도성 금속을 도금하여 전면전극을 형성하는 단계; 상기 반도체 기판 후면에 전도성 금속을 도금하여 후면전극을 형성하는 단계; 어닐링을 실시하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of forming a silicon oxide film and a titanium oxide film by spray-depositing a compound containing titanium and oxygen on the back of the p-type semiconductor substrate; Forming a pyramid structure on the entire surface of the semiconductor substrate; Forming an n + semiconductor layer by diffusing n-type impurities on the entire surface of the semiconductor substrate; Forming a silicon oxide film and a titanium oxide film by spray-depositing a compound containing titanium and oxygen in the remaining regions except for the electrode formation region on the front surface of the semiconductor substrate; Forming a groove in an electrode formation region on the front surface of the semiconductor substrate and then diffusing n-type impurities into the groove to form an n ++ semiconductor layer; Depositing and sintering aluminum using a metal mask on the back surface of the semiconductor substrate to form a partially spreading p + semiconductor layer; Forming a front electrode by plating a conductive metal in a groove on the front surface of the semiconductor substrate; Forming a back electrode by plating a conductive metal on a back surface of the semiconductor substrate; It provides a method of manufacturing a recessed electrode type solar cell comprising the step of performing annealing.

상기 전도성 금속은 니켈, 구리, 은, 알루미늄, 아연, 인듐, 티타늄, 팔라듐 및 그 산화물중에서 선택된 적어도 하나이다.The conductive metal is at least one selected from nickel, copper, silver, aluminum, zinc, indium, titanium, palladium and oxides thereof.

이하, 도 2를 참조하여 본 발명에 따른 함몰전극형 태양전지의 제조방법을 설명하기로 한다.Hereinafter, a method of manufacturing a recessed electrode solar cell according to the present invention will be described with reference to FIG. 2.

먼저, p형 반도체 기판 (21) 후면에 티탄과 산소를 함유한 화합물 예를 들어 티타늄테트라클로라이드, 테트라이소프로필티타나이트 등을 분무증착시킨다. 이러한 분무증착으로 반도체 기판 후면에 산화규소막 (28)과 산화티탄막 (29)이 순차적으로 형성된다. 여기에서 상기 산화규소막 (28)과 산화티탄막 (29)의 두께는 분무증착시 실험조건에 따라 변화된다.First, a compound containing titanium and oxygen such as titanium tetrachloride, tetraisopropyl titanite, etc. is spray-deposited on the back surface of the p-type semiconductor substrate 21. By the spray deposition, a silicon oxide film 28 and a titanium oxide film 29 are sequentially formed on the back surface of the semiconductor substrate. Here, the thicknesses of the silicon oxide film 28 and the titanium oxide film 29 are changed depending on the experimental conditions during spray deposition.

이어서, 후면에 산화티탄막이 형성된 반도체 기판 (21)을 수산화나트륨 용액을 이용한 화학적 에칭으로 반도체 기판 (21) 전면에만 피라미드 구조를 형성한다. 그 후 반도체 기판 (21) 전면에 n형 불순물인 인(P)을 확산시켜 n+ 반도체층 (22)을 형성한다.Subsequently, the pyramid structure is formed only on the entire surface of the semiconductor substrate 21 by chemical etching using a sodium hydroxide solution. Thereafter, phosphorus (P), an n-type impurity, is diffused on the entire surface of the semiconductor substrate 21 to form the n + semiconductor layer 22.

그 후, 금속 마스크를 이용하여 전극 형성 영역을 제외한 나머지 영역에 티탄과 산소 함유 화합물을 분무증착하여 반도체 기판 전면에 산화규소막 (23)과 산화티탄막 (27)을 형성시킨다. 이 때 전극 형성 영역은 후속공정에서 식각액을 이용한 화학에칭으로 선택적으로 식각된다. 이 전극 형성 영역에 홈을 만든 다음, 전극과 반도체 기판과의 전기 접촉 저항을 줄이기 위하여 이 홈내로 n형 불순물인 인을 깊게 확산시켜 n++ 반도체층을 형성한다.Thereafter, titanium and oxygen-containing compounds are spray-deposited in the remaining regions other than the electrode formation region using a metal mask to form the silicon oxide film 23 and the titanium oxide film 27 on the entire surface of the semiconductor substrate. In this case, the electrode formation region is selectively etched by chemical etching using an etchant in a subsequent process. A groove is made in this electrode formation region, and then, in order to reduce the electrical contact resistance between the electrode and the semiconductor substrate, phosphorus as an n-type impurity is deeply diffused into the groove to form an n ++ semiconductor layer.

상기 반도체 기판 (21) 후면에 금속 마스크를 이용하여 알루미늄을 증착시킨다. 이후, 소결하면 알루미늄이 산화규소막 (28)과 산화티탄막 (29)내로 침투하여 부분확산 p+ 반도체층 (30)을 형성한다.Aluminum is deposited on the back surface of the semiconductor substrate 21 using a metal mask. Subsequently, when sintered, aluminum penetrates into the silicon oxide film 28 and the titanium oxide film 29 to form a partially diffused p + semiconductor layer 30.

반도체 기판 (21) 전면내의 홈에 전도성 금속을 도금하여 전면전극 (24)을 형성한다. 이 때 사용가능한 전도성 금속으로는 니켈, 구리, 은, 알루미늄, 아연, 인듐, 티타늄, 팔라듐 및 그 산화물 등이 있다. 그 중에서도 니켈, 구리 및 은을 순차적으로 무전해 도금하여 전극을 형성하는 것이 바람직하다. 여기에서 니켈 도금은 반도체 기판과 구리의 접합력을 향상시키는 역할을 한다.The front electrode 24 is formed by plating a conductive metal into a groove in the front surface of the semiconductor substrate 21. At this time, conductive metals that can be used include nickel, copper, silver, aluminum, zinc, indium, titanium, palladium and oxides thereof. Especially, it is preferable to form an electrode by electroless-plating nickel, copper, and silver sequentially. Nickel plating serves to improve the bonding strength of the semiconductor substrate and copper.

반도체 기판 (21) 후면에 전도성 금속인 알루미늄을 진공증착하여 후면전극 (26)을 형성한다. 이러한 후면전극 (26)의 형성으로 반도체 기판 후면에서의 반사효과를 얻을 수 있다.The back electrode 26 is formed by vacuum depositing aluminum, which is a conductive metal, on the back surface of the semiconductor substrate 21. The formation of the back electrode 26 can provide a reflection effect on the back surface of the semiconductor substrate.

그 후, 반도체 기판 후면에 형성된 부분확산 p+ 반도체층과 알루미늄으로 이루어진 전극층간의 계면을 안정화시키기 위하여 어닐링을 실시한다. 이러한 어닐링에는 4% 수소/아르곤 혼합가스를 이용한다.Thereafter, annealing is performed to stabilize the interface between the partially-diffused p + semiconductor layer formed on the rear surface of the semiconductor substrate and the electrode layer made of aluminum. 4% hydrogen / argon mixed gas is used for this annealing.

상기 방법에서 알 수 있는 바와 같이, 본 발명의 함몰전극형 태양전지는 종래의 함몰전극형 태양전지와는 달리 반도체 기판 전면의 산화막 형성을 위한 별도의 산화공정이 불필요하다. 또한 형성된 산화티탄막을 불순물 주입시 확산 마스크로 이용할 수 있을 뿐만 아니라, 반도체 기판 전면에만 텍스처링을 하는 경우와 전면전극 형성 영역에 홈을 형성하는 경우 식각 마스크로 이용할 수 있다. 그 결과 전지 제조 비용 및 시간을 절감할 수 있다.As can be seen from the above method, the recessed electrode solar cell of the present invention does not require a separate oxidation process for forming an oxide film on the entire surface of the semiconductor substrate, unlike the conventional recessed electrode solar cell. In addition, the formed titanium oxide film may be used as a diffusion mask when implanting impurities, and may be used as an etching mask when texturing only the entire surface of a semiconductor substrate and when grooves are formed in the front electrode formation region. As a result, battery manufacturing cost and time can be saved.

본 발명에 따르면, 평탄화된 반도체 기판 후면에 부분확산 p+ 반도체층을 형성함으로써 후면에서의 캐리어들의 재결합과 전위결함을 감소시킬 뿐만 아니라, 후면 반사효과로 인하여 태양전지의 변환효율을 향상시킬 수 있다.According to the present invention, by forming a partially-diffused p + semiconductor layer on the rear surface of the planarized semiconductor substrate, not only the recombination of the carriers at the rear surface and potential defects are reduced, but also the conversion efficiency of the solar cell can be improved due to the rear reflection effect.

Claims (3)

p형 반도체 기판 후면에 티탄과 산소를 함유한 화합물을 분무증착하여 산화규소막과 산화티탄막을 형성하는 단계;spray-depositing a compound containing titanium and oxygen on the back surface of the p-type semiconductor substrate to form a silicon oxide film and a titanium oxide film; 반도체 기판 전면에 피라미드 구조를 형성하는 단계;Forming a pyramid structure on the entire surface of the semiconductor substrate; 반도체 기판 전면에 n형 불순물을 확산시켜 n+ 반도체층을 형성하는 단계;Forming an n + semiconductor layer by diffusing n-type impurities on the entire surface of the semiconductor substrate; 반도체 기판 전면의 전극 형성 영역을 제외한 나머지 영역에 티탄과 산소를 함유한 화합물을 분무증착하여 산화규소막과 산화티탄막을 형성하는 단계;Forming a silicon oxide film and a titanium oxide film by spray-depositing a compound containing titanium and oxygen in the remaining regions except for the electrode formation region on the front surface of the semiconductor substrate; 상기 반도체 기판 전면의 전극 형성 영역에 홈을 형성한 다음, 이 홈내로 n형 불순물을 확산시켜 n++ 반도체층을 형성하는 단계;Forming a groove in an electrode formation region on the front surface of the semiconductor substrate, and then diffusing n-type impurities into the groove to form an n ++ semiconductor layer; 상기 반도체 기판 후면에 금속 마스크를 이용하여 알루미늄을 증착, 소결하여 부분확산 p+ 반도체층을 형성하는 단계;Depositing and sintering aluminum using a metal mask on the back surface of the semiconductor substrate to form a partially spreading p + semiconductor layer; 상기 반도체 기판 전면의 홈에 전도성 금속을 도금하여 전면전극을 형성하는 단계;Forming a front electrode by plating a conductive metal in a groove on the front surface of the semiconductor substrate; 상기 반도체 기판 후면에 전도성 금속을 도금하여 후면전극을 형성하는 단계;Forming a back electrode by plating a conductive metal on a back surface of the semiconductor substrate; 어닐링을 실시하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.A method of manufacturing a recessed electrode type solar cell, comprising the step of annealing. 제1항에 있어서, 상기 티탄과 산소 함유 화합물이 테트라이소프로필 티타나이트 및 티타늄 테트라클로라이드로 이루어진 군중에서 선택되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the titanium and oxygen-containing compound are selected from the group consisting of tetraisopropyl titanite and titanium tetrachloride. 제1항에 있어서, 상기 전도성 금속이 니켈, 구리, 은, 티타늄, 팔라듐, 주석, 아연, 인듐 및 그 산화물로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 태양전지의 제조방법.The method of claim 1, wherein the conductive metal is at least one selected from the group consisting of nickel, copper, silver, titanium, palladium, tin, zinc, indium, and oxides thereof.
KR1019960034723A 1996-08-21 1996-08-21 Method for manufacturing buried contact solar cell KR100374809B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019960034723A KR100374809B1 (en) 1996-08-21 1996-08-21 Method for manufacturing buried contact solar cell
KR2019970029272U KR19980024754U (en) 1996-08-21 1997-10-21 Original Holder for Computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960034723A KR100374809B1 (en) 1996-08-21 1996-08-21 Method for manufacturing buried contact solar cell

Publications (2)

Publication Number Publication Date
KR19980015420A KR19980015420A (en) 1998-05-25
KR100374809B1 true KR100374809B1 (en) 2003-07-18

Family

ID=37416810

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019960034723A KR100374809B1 (en) 1996-08-21 1996-08-21 Method for manufacturing buried contact solar cell
KR2019970029272U KR19980024754U (en) 1996-08-21 1997-10-21 Original Holder for Computer

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR2019970029272U KR19980024754U (en) 1996-08-21 1997-10-21 Original Holder for Computer

Country Status (1)

Country Link
KR (2) KR100374809B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446597B1 (en) * 1997-05-12 2005-06-07 삼성전자주식회사 Method of manufacturing recessed electrode type solar cell

Also Published As

Publication number Publication date
KR19980024754U (en) 1998-07-25
KR19980015420A (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR101110951B1 (en) Contact fabrication of emitter wrap-through back contact silicon solar cells
US5258077A (en) High efficiency silicon solar cells and method of fabrication
JP2008512858A (en) Manufacturing process and manufacturing method of emitter wrap through back contact solar cell
KR20020059187A (en) solar cell and method for manufacturing the same
KR20110042083A (en) Crystalline silicon pv cell with selective emitter produced with low temperature precision etch back and passivation process
US5882435A (en) Process for the metal coating of solar cells made of crystalline silicon
KR100416740B1 (en) Method for fabricating rear locally sintered silicon solar cell
US4401840A (en) Semicrystalline solar cell
KR101370225B1 (en) Method of preparing solar cell and solar cell prepared by the same
KR100374809B1 (en) Method for manufacturing buried contact solar cell
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR100995654B1 (en) Solar cell and method for manufacturing the same
KR100403803B1 (en) NPRIL(n-p and rear inversion layer) bifacial solar cell and method for manufacturing the same
KR100378343B1 (en) Backside recess electrode type solar cell
KR20140049624A (en) Solar cell and method for fabricating the same
KR100374808B1 (en) Buried contact solar cell
KR100366350B1 (en) Solar cell and method for manufacturing the same
KR100416741B1 (en) Rear locally sintered silicon solar cell
KR20030088665A (en) High efficient solar cell and fabrication method thereof
KR100397596B1 (en) Buried contact solar cell and manufacturing method thereof
KR100416739B1 (en) Method for fabricating silicon solar cell
KR100322709B1 (en) Self-voltage applying solar cell and module using the same
KR100374811B1 (en) Process for preparing buried contact solar cell
KR100351066B1 (en) Method for fabricating solar cell of depressed electrode shape
KR100322734B1 (en) Method for fabricating buried contact solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100216

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee