KR100416741B1 - Rear locally sintered silicon solar cell - Google Patents

Rear locally sintered silicon solar cell Download PDF

Info

Publication number
KR100416741B1
KR100416741B1 KR1019970011787A KR19970011787A KR100416741B1 KR 100416741 B1 KR100416741 B1 KR 100416741B1 KR 1019970011787 A KR1019970011787 A KR 1019970011787A KR 19970011787 A KR19970011787 A KR 19970011787A KR 100416741 B1 KR100416741 B1 KR 100416741B1
Authority
KR
South Korea
Prior art keywords
substrate
silicon
semiconductor layer
conductive metal
titanium oxide
Prior art date
Application number
KR1019970011787A
Other languages
Korean (ko)
Other versions
KR19980075546A (en
Inventor
조영현
우도 에봉 아바시프레케
이수홍
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019970011787A priority Critical patent/KR100416741B1/en
Publication of KR19980075546A publication Critical patent/KR19980075546A/en
Application granted granted Critical
Publication of KR100416741B1 publication Critical patent/KR100416741B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A rear locally sintered silicon solar cell is provided to omit a conventional oxidation process and eliminate the necessity of expensive equipment like an oxidation furnace by simultaneously forming a titanium oxide layer and a silicon oxide layer on the front and rear surfaces of a silicon substrate. CONSTITUTION: A p-type silicon substrate(21) is prepared. An n¬+ semiconductor layer(24), a SiO2 layer(22') and a TiO2 layer(23') are sequentially formed on the front surface of the substrate having a pyramid structure. A plurality of line-type front surface electrodes(25) are formed of a conductive metal, formed in parallel with the front surface of the substrate and separated from each other by a predetermined interval. An n¬++ semiconductor layer(26) is formed under the front surface electrode. A rear surface electrode(29) is formed on the planarized rear surface of the substrate, composed of a silicon oxide layer, a titanium oxide layer and a conductive metal. A locally diffused p¬+ semiconductor layer(27) is diffused to the inside of the rear surface of the silicon substrate. A conductive metal layer(28) is formed in a predetermined region between the titanium oxide layer and the rear surface electrode on the rear surface of the silicon substrate.

Description

후면 부분소결형 실리콘 태양전지Rear Part Sintered Silicon Solar Cell

본 발명은 후면 부분소결형 실리콘 태양전지에 관한 것으로서, 상세하기로는 실리콘 기판 전면 및 후면에 산화티타늄막과, 기판 후면에 부분확산 p+ 반도체층을 각각 형성하는 동시에, 통상적인 함몰전극형 실리콘 태양전지와 구별되는 전면전극을 형성함으로써 제조비용이 절감되고 에너지 변환효율이 우수한 산화티타늄 비활성화 에미터 절연막을 갖는 후면 부분소결형 실리콘 태양전지(TiO2passivated Emitter, rear Locally Sintered silicon solar cell: TELS)에 관한 것이다.The present invention relates to a backside partially sintered silicon solar cell, and in detail, a titanium oxide film on the front and back of the silicon substrate, and partially diffused p on the back of the substrate.+brother By forming a semiconductor layer and forming a front electrode which is distinct from a conventional recessed electrode type silicon solar cell, a rear part sintered type silicon solar cell having a titanium oxide deactivated emitter insulating film having low manufacturing cost and excellent energy conversion efficiency ( TiO2passivated Emitter, rear Locally Sintered silicon solar cell (TELS).

태양전지는 반도체의 광기전력을 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체의 접합 부분 (pn 접합부)에 빛이 들어오면 빛에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)이 발생한다.The solar cell uses photovoltaic power of a semiconductor and is made by combining a p-type semiconductor and an n-type semiconductor. When light enters the junction (pn junction) of the p-type semiconductor and the n-type semiconductor, negative charges (electrons) and positive charges (holes) are generated in the semiconductors by the light energy.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 P형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the P-type semiconductor side by the internal electric field, and are collected at both electrode portions. Connecting these two electrodes with wires allows the current to flow and can be used as power from the outside.

태양전지는 전극의 형태에 따라 스크린 프린팅형 태양전지(Screen Printing Solar Cell: SPSC)와 함몰전극형 태양전지(Buried Contact Solar Cell: BCSC)로 구분할 수 있다. 여기에서 SPSC는 일반적으로 제조하기가 쉽지만 에너지 변환효율이 작은 편이다.Solar cells can be classified into screen printing solar cells (SPSCs) and buried contact solar cells (BCSCs) according to the shape of the electrodes. Here, the SPSC is generally easy to manufacture, but the energy conversion efficiency is small.

한편, BCSC는 SPSC와 거의 동일한 제조원가로 제조할 수 있고, SPSC보다 에너지 변환효율이 높은 편이다.On the other hand, BCSC can be manufactured at almost the same manufacturing cost as SPSC, and energy conversion efficiency is higher than that of SPSC.

도 1에는 일반적인 BCSC의 단면구조를 나타낸 도면이다.1 is a view showing a cross-sectional structure of a typical BCSC.

이를 참조하면, p형 실리콘 기판 (11) 상부에 n+형 반도체층 (12)과 산화막으로서 산화규소막 (13)이 순차적으로 형성되어 있고, 상기 기판내로 깊게 파인 홈에 전면전극 (17)이 형성되어 있다.Referring to this, the n + type semiconductor layer 12 and the silicon oxide film 13 are sequentially formed as an oxide film on the p-type silicon substrate 11, and the front electrode 17 is formed in a groove deep into the substrate. Formed.

실리콘 기판 (11) 후면에는 p+형 반도체층 (15)과 후면전극 (16)이 순차적으로 형성되어 있다.The p + type semiconductor layer 15 and the back electrode 16 are sequentially formed on the back surface of the silicon substrate 11.

그런데, 상기한 바와 같은 구조를 갖는 BCSC는 다음과 같은 문제점을 갖고 있다.By the way, BCSC having the structure as described above has the following problems.

첫째, 실리콘 기판 전면 및 후면상의 산화규소막을 형성하기 위해서는 고가의 산화로(oxidation furnace)가 구비되어야 하며 장시간의 고온 산화공정을 거쳐야 한다. 또한 이러한 산화공정에서 통상적으로 수소가스를 사용하므로 제조공정상 위험성이 내포되어 있다.First, in order to form a silicon oxide film on the front and back of the silicon substrate, an expensive oxidation furnace must be provided and a long time high temperature oxidation process is required. In addition, since hydrogen gas is commonly used in such an oxidation process, there is a risk in manufacturing process.

둘째, 전면전극을 형성하기 위해서는 실리콘 기판 전면내에 깊은 홈을 형성해야 하는데, 이러한 홈 형성과정에서 레이저 스크라이버(laser scriber) 등과 같은 고가의 장비가 필요할 뿐만 아니라 제조시간이 많이 소요된다.Second, in order to form the front electrode, deep grooves must be formed in the entire surface of the silicon substrate. In addition, expensive equipment such as a laser scriber, etc. are required in the process of forming the grooves, and manufacturing time is required.

셋째, 피라미드 구조가 형성된 실리콘 기판 후면상에 산화막 및 후면전극을 순차적으로 형성하므로 전위결함(dislocation defect)이 비교적 큰 편이고, 실리콘 기판 후면에 알루미늄층을 형성함으로써 얻어지는 후면반사효과가 낮다.Third, since the oxide film and the rear electrode are sequentially formed on the back surface of the silicon substrate on which the pyramid structure is formed, dislocation defects are relatively large, and the back reflection effect obtained by forming the aluminum layer on the back surface of the silicon substrate is low.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 종래의 산화과정대신 산화티타늄의 분무증착공정을 실시하여 실리콘 기판 전면과 후면에 산화티타늄막을 각각 형성하고, 기판 후면에 부분확산 에미터층을 형성하는 동시에, 통상적인 함몰전극형 실리콘 태양전지와 다른 전면전극을 형성함으로써 절감된 제조비용으로 에너지 변환효율이 우수한 산화티타늄 비활성화 에미터 절연막을 갖는 후면 부분소결형 실리콘 태양전지를 제공하는 것이다.The technical problem to be achieved by the present invention is to solve the above problems by performing a spray deposition process of titanium oxide instead of the conventional oxidation process to form a titanium oxide film on the front and back of the silicon substrate, respectively, and to form a partially diffused emitter layer on the back of the substrate At the same time, it is to provide a backside partial sintered silicon solar cell having a titanium oxide deactivated emitter insulating film having excellent energy conversion efficiency at a reduced manufacturing cost by forming a front electrode different from a conventional recessed electrode type silicon solar cell.

도 1은 통상적인 함몰전극형 실리콘 태양전지의 단면구조를 나타낸 도면이고,1 is a view showing a cross-sectional structure of a conventional recessed electrode type silicon solar cell,

도 2는 본 발명에 따른 후면 부분소결형 실리콘 태양전지의 단면구조를 나타낸 도면이다.2 is a view showing a cross-sectional structure of a backside partially sintered silicon solar cell according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

11, 21... p형 실리콘 기판12, 24... n+형 반도체층11, 21 ... p-type silicon substrate 12, 24 ... n + type semiconductor layer

13, 22, 22'... 산화규소(SiO2)막15... p+형 반도체층13, 22, 22 '... silicon oxide (SiO 2 ) film 15 ... p + type semiconductor layer

16, 29... 후면전극 17... 전면전극16, 29 ... rear electrode 17 ... front electrode

23, 23'... 산화티탄(TiO2)막 25... 라인형 전면전극23, 23 '... titanium oxide (TiO 2 ) film 25 ... line type front electrode

26... n++형 반도체층27... 부분확산 p+형 반도체층26 ... n ++ type semiconductor layer 27 ... partially diffused p + type semiconductor layer

28... 전도성 금속층28 ... conductive metal layer

본 발명의 과제는 p형 실리콘기판; 피라미드 구조가 형성된 기판 전면에 순차적으로 형성되어 있는 n+형 반도체층, 산화규소(SiO2)막 및 산화티타늄(TiO2)막; 상기 기판 전면상에 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극; 전면전극 하부에 형성된 n++형 반도체층; 평탄화된 기판 후면에 순차적으로 형성되어 있는 산화규소막, 산화티탄막 및 전도성 금속으로 된 후면전극; 상기 실리콘 기판 후면 내부로 확산되어 형성된 부분확산 p+ 반도체층; 및 실리콘 기판 후면의 산화티탄막과 후면전극사이의 소정영역에 형성된 전도성 금속층을 포함하는 것을 특징으로 하는 후면 부분소결형 실리콘 태양전지에 의하여 이루어진다.An object of the present invention is a p-type silicon substrate; N sequentially formed on the entire surface of the substrate on which the pyramid structure is formed+Semiconductor layer, silicon oxide (SiO2Film and titanium oxide (TiO)2)membrane; A plurality of line type front electrodes formed on the front surface of the substrate to be equally spaced apart at predetermined intervals and made of a conductive metal; N formed under the front electrode++Type semiconductor layer; A back electrode made of a silicon oxide film, a titanium oxide film and a conductive metal sequentially formed on the back surface of the planarized substrate; Partial diffusion p formed by diffusion into the back surface of the silicon+brother A semiconductor layer; And a conductive metal layer formed in a predetermined region between the titanium oxide film on the back surface of the silicon substrate and the back electrode.

상기 전도성 금속은 니켈(Ni), 구리(Cu), 알루미늄(Al), 은(Ag), 팔라듐(Pd), 티타늄(Ti) 및 그 산화물중에서 선택된다.The conductive metal is selected from nickel (Ni), copper (Cu), aluminum (Al), silver (Ag), palladium (Pd), titanium (Ti) and oxides thereof.

상기 부분확산 p+ 반도체층은 알루미늄(Al)으로 이루어지는 것이 바람직한데, 그 이유는 알루미늄 대신 다른 p형 불순물, 예로써 보론(B)을 확산하는 경우에는 고가의 확산장비가 반드시 필요하기 때문에 제조비용이 상승되기 때문이다.The partial diffusion p+brother It is preferable that the semiconductor layer is made of aluminum (Al), because in the case of diffusing other p-type impurities such as boron (B) instead of aluminum, expensive diffusion equipment is necessary, which increases manufacturing costs. .

이하, 도 2를 참조하여, 본 발명에 따른 후면 부분소결형 실리콘 태양전지를 설명하기로 한다.Hereinafter, with reference to FIG. 2, a backside partial sintered silicon solar cell according to the present invention will be described.

랜덤 피라미드(random pyramid) 구조가 형성된 p형 실리콘 기판 (21) 전면 상부에는 n+ 반도체층 (24), 산화규소막 (22'), 산화티타늄막 (23')이 순차적으로 형성되어 있다.N on the front surface of the p-type silicon substrate 21 on which the random pyramid structure is formed.+brother The semiconductor layer 24, the silicon oxide film 22 ', and the titanium oxide film 23' are sequentially formed.

상기 산화규소막 (22')과 산화티타늄막 (23')은 실리콘 기판 전면에 티타늄과 산소를 함유한 화합물을 골고루 분무증착한 후 경화시키면 순차적으로 형성된다. 이 때 티타늄과 산소를 함유한 화합물로는 테트라이소프로필 티타네이트(tetraisopropyl titanate), 티타늄 테트라클로라이드(titanium tetrachloride) 등이 이용될 수 있다. 여기에서 산화티타늄막과 산화규소막의 두께는 증착조건 등의 실험조건에 따라 변화되는데, 산화규소막이 산화티타늄보다 그 두께가 얇게 형성되는 것이 일반적이다.The silicon oxide film 22 'and the titanium oxide film 23' are sequentially formed by spray deposition of a compound containing titanium and oxygen on the entire surface of the silicon substrate, followed by spray deposition. In this case, as the compound containing titanium and oxygen, tetraisopropyl titanate, titanium tetrachloride, or the like may be used. Here, the thickness of the titanium oxide film and the silicon oxide film is changed depending on the experimental conditions such as deposition conditions, the silicon oxide film is generally formed thinner than the titanium oxide.

상기 실리콘 기판 (21) 전면상에는 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극 (25)이 형성되어 있다. 이러한 전면전극 (25)은 pn 접합 실리콘 기판 내부에서 생성된 전류를 모아서 외부 단자와 접촉하는 역할을 하며, 선택적 도금이 가능한 무전해 도금방법이나 전기도금방법으로 전도성 금속을 도금함으로써 형성된다. 특히, 상기 전도성 금속으로서 구리(Cu)를 도금하는 경우에는 무전해 도금방법을 사용하고, 전도성 금속으로서 은(Ag)을 도금하는 경우에는 전기도금법을 사용하는 것이 바람직하다. 이 때 구리나 은을 도금하기 이전에, 이러한 금속 도금층과 피도물의 밀착력을 향상시키기 위한 중간층으로서 니켈(Ni) 도금층을 먼저 형성하는 것이 바람직하다.The front surface of the silicon substrate 21 is formed to be equally spaced apart at predetermined intervals, and a plurality of line type front electrode 25 made of a conductive metal is formed. The front electrode 25 collects current generated in the pn junction silicon substrate and contacts the external terminal, and is formed by plating a conductive metal by an electroless plating method or an electroplating method capable of selective plating. In particular, when plating copper (Cu) as the conductive metal, an electroless plating method is used, and when plating silver (Ag) as the conductive metal, an electroplating method is preferably used. At this time, before plating copper or silver, it is preferable to first form a nickel (Ni) plating layer as an intermediate | middle layer for improving the adhesive force of this metal plating layer and a to-be-coated object.

그리고 복수개의 라인형 전면전극 (25)과 실리콘 기판 (21)간의 전기적 접촉저항을 줄이기 위한 n++형반도체층 (26)이 도 2에 도시된 바와 같이 형성되어 있다.An n ++ type semiconductor layer 26 for reducing the electrical contact resistance between the plurality of line type front electrodes 25 and the silicon substrate 21 is formed as shown in FIG.

평탄화된 실리콘 기판 (21) 후면에는 산화규소막 (22), 산화티타늄막 (23) 및 후면전극인 알루미늄층 (29)이 차례로 형성되어 있다. 이 실리콘 기판 (21) 후면내에는 금속 마스크를 이용한 알루미늄의 부분 확산으로 얻어진 부분확산 p+ 반도체층 (27)이 형성되어 있다.A silicon oxide film 22, a titanium oxide film 23, and an aluminum layer 29, which is a back electrode, are sequentially formed on the back surface of the planarized silicon substrate 21. The partial diffusion p obtained by partial diffusion of aluminum using a metal mask in the back surface of this silicon substrate 21.+brother The semiconductor layer 27 is formed.

그리고, 산화티타늄 (23)과 후면전극 (29)사이의 소정영역에는 전도성 금속층 (28)이 형성되어 있다. 이 전도성 금속층은 상기 전면전극 (25)의 형성과정에서 동시에 제조된다.A conductive metal layer 28 is formed in a predetermined region between the titanium oxide 23 and the back electrode 29. This conductive metal layer is simultaneously produced during the formation of the front electrode 25.

상기한 바와 같은 구조를 갖는 본 발명의 실리콘 태양전지에서는, 실리콘 기판의 전면과 후면에 형성된 산화티타늄막은 반사방지, 절연 및 보호막으로서의 역할을 동시에 하는 동시에 확산공정시 마스크로서도 작용한다. 그리고 평탄화된 실리콘 기판 후면에 부분확산 P+형반도체층을 형성하여 기판 후면에서의 전위결함이 감소되는 동시에 소수 전하 캐리어들의 재결합이 줄어들어 에너지 변환효율이 향상된다. 또한, 전면전극 형성시, 종래와 같이 기판내로 깊게 홈을 형성하지 않고, 산화막 형성시 고온의 산화공정을 거치지 않아도 되므로 레이저 장비나 산화로 등과 같은 고가의 장비가 불필요하므로 제조시간과 비용을 매우 절감할 수 있다.In the silicon solar cell of the present invention having the structure as described above, the titanium oxide film formed on the front and rear surfaces of the silicon substrate simultaneously acts as an antireflection, insulation and protective film and also acts as a mask during the diffusion process. In addition, a partial diffusion P + type semiconductor layer is formed on the backside of the planarized silicon substrate, thereby reducing potential defects on the backside of the substrate and reducing recombination of minority charge carriers, thereby improving energy conversion efficiency. In addition, when the front electrode is formed, grooves are not deeply formed into the substrate as in the prior art, and high-temperature oxidation processes are not required when forming the oxide film, so expensive equipment such as laser equipment or an oxidation furnace is unnecessary, thus greatly reducing manufacturing time and cost. can do.

본 발명에 따르면, 다음과 같은 효과를 갖는다.According to the present invention, the following effects are obtained.

첫째, 산화티타늄막의 분무증착공정을 이용함으로써 실리콘 기판 전면 및 후면상에 산화티타늄과 산화규소막을 동시에 형성할 수 있다. 이렇게 형성된 2중막은 반사방지막, 절연막 및 보호막 역할을 동시에 수행한다. 따라서 종래의 산화공정을 생략할 수 있어서 제조공정이 단순화됨으로써 제조시간이 줄어들 뿐만 아니라 산화로(oxidation furnace) 등과 같은 고가의 장비가 불필요하게 됨으로써 제조비용이 절감된다.First, by using a spray deposition process of a titanium oxide film, it is possible to simultaneously form a titanium oxide and a silicon oxide film on the front and back of the silicon substrate. The double film thus formed simultaneously serves as an antireflection film, an insulating film, and a protective film. Therefore, the conventional oxidation process can be omitted, thereby simplifying the manufacturing process, thereby reducing manufacturing time and reducing manufacturing costs by eliminating the need for expensive equipment such as an oxidation furnace.

둘째, 통상적인 함몰전극형 실리콘 태양전지와는 달리 전면전극 형성시 기판내부로 깊게 파인 홈을 별도로 제조하지 않아도 되므로 레이저 스크라이버 등과 같은 고가의 장비가 불필요하고 제조소요시간이 절감된다.Second, unlike conventional recessed electrode type silicon solar cells, expensive grooves, such as laser scribers, are unnecessary and manufacturing time is not required because the grooves do not need to be manufactured deeply into the substrate when the front electrode is formed.

셋째, 평탄화된 실리콘 기판 후면에 부분확산 p+형 반도체층을 형성함으로써 실리콘 기판 후면에서의 캐리어들의 재결합과 전위결함을 감소시킴으로써 전지의 개방전압이 향상된다. 그 결과, 에너지 변환효율이 향상된다.Third, the open voltage of the battery is improved by reducing the recombination and potential defects of carriers in the back of the silicon substrate by forming a partially diffused p + type semiconductor layer on the back of the planarized silicon substrate. As a result, the energy conversion efficiency is improved.

넷째, 부분확산 p+형 반도체층 형성시, 종래에는 번거로운 사진식각공정을 사용하는 반면, 본 발명에서는 금속 마스크(metal mask)을 이용한 진공증착법을 이용하므로 제조하기가 용이하고 제조시간을 절감할 수 있다.Fourth, in the formation of the partially-diffused p + type semiconductor layer, a conventional photolithography process is used, whereas the present invention uses a vacuum deposition method using a metal mask, which is easy to manufacture and saves manufacturing time. have.

Claims (3)

p형 실리콘기판;p-type silicon substrate; 피라미드 구조가 형성된 기판 전면에 순차적으로 형성되어 있는 n+형 반도체층, 산화규소(SiO2)막 및 산화티타늄(TiO2)막;An n + -type semiconductor layer, a silicon oxide (SiO 2 ) film and a titanium oxide (TiO 2 ) film sequentially formed on the entire surface of the substrate on which the pyramid structure is formed; 상기 기판 전면상에 소정간격으로 평형하게 이격되도록 형성되어 있고, 전도성 금속으로 된 복수개의 라인형 전면전극;A plurality of line type front electrodes formed on the front surface of the substrate to be equally spaced apart at predetermined intervals and made of a conductive metal; 전면전극 하부에 형성된 n++형 반도체층;An n ++ type semiconductor layer formed under the front electrode; 평탄화된 기판 후면에 순차적으로 형성되어 있는 산화규소막, 산화티탄막 및 전도성 금속으로 된 후면전극;A back electrode made of a silicon oxide film, a titanium oxide film and a conductive metal sequentially formed on the back surface of the planarized substrate; 상기 실리콘 기판 후면 내부로 확산되어 형성된 부분확산 p+ 반도체층; 및Partial diffusion p formed by diffusion into the back surface of the silicon+brother A semiconductor layer; And 실리콘 기판 후면의 산화티탄막과 후면전극사이의 소정영역에 형성된 전도성 금속층을 포함하는 것을 특징으로 하는 후면 부분소결형 실리콘 태양전지.A backside partially sintered silicon solar cell comprising a conductive metal layer formed in a predetermined region between a titanium oxide film on a back surface of a silicon substrate and a back electrode. 제1항에 있어서, 상기 전도성 금속이 니켈(Ni), 구리(Cu), 알루미늄(Al), 은(Ag), 팔라듐(Pd), 티타늄(Ti) 및 그 산화물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 후면 부분소결형 실리콘 태양전지.The method of claim 1, wherein the conductive metal is selected from the group consisting of nickel (Ni), copper (Cu), aluminum (Al), silver (Ag), palladium (Pd), titanium (Ti) and oxides thereof. Rear part sintered silicon solar cell. 제1항에 있어서, 상기 부분확산 p+ 반도체층이 알루미늄으로 이루어지는 것을 특징으로 하는 후면 부분소결형 실리콘 태양전지.The method of claim 1, wherein the partial diffusion p+brother A backside partially sintered silicon solar cell, wherein the semiconductor layer is made of aluminum.
KR1019970011787A 1997-03-31 1997-03-31 Rear locally sintered silicon solar cell KR100416741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970011787A KR100416741B1 (en) 1997-03-31 1997-03-31 Rear locally sintered silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970011787A KR100416741B1 (en) 1997-03-31 1997-03-31 Rear locally sintered silicon solar cell

Publications (2)

Publication Number Publication Date
KR19980075546A KR19980075546A (en) 1998-11-16
KR100416741B1 true KR100416741B1 (en) 2004-05-17

Family

ID=37319105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970011787A KR100416741B1 (en) 1997-03-31 1997-03-31 Rear locally sintered silicon solar cell

Country Status (1)

Country Link
KR (1) KR100416741B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013972A3 (en) * 2008-08-01 2010-06-03 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR101276888B1 (en) 2010-08-25 2013-06-19 엘지전자 주식회사 Solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900369A (en) * 1985-10-11 1990-02-13 Nukem Gmbh Solar cell
JPH07221333A (en) * 1994-01-28 1995-08-18 Sharp Corp Manufacture of solar battery
JPH0878709A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Solar battery
KR980002281A (en) * 1996-06-05 1998-03-30 서순화 High-strength toothed steel and its manufacturing method
KR19980017427A (en) * 1996-08-30 1998-06-05 김광호 Solar cell and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900369A (en) * 1985-10-11 1990-02-13 Nukem Gmbh Solar cell
JPH07221333A (en) * 1994-01-28 1995-08-18 Sharp Corp Manufacture of solar battery
JPH0878709A (en) * 1994-09-06 1996-03-22 Hitachi Ltd Solar battery
KR980002281A (en) * 1996-06-05 1998-03-30 서순화 High-strength toothed steel and its manufacturing method
KR19980017427A (en) * 1996-08-30 1998-06-05 김광호 Solar cell and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013972A3 (en) * 2008-08-01 2010-06-03 Lg Electronics Inc. Solar cell and method for manufacturing the same
US8759140B2 (en) 2008-08-01 2014-06-24 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR101276888B1 (en) 2010-08-25 2013-06-19 엘지전자 주식회사 Solar cell

Also Published As

Publication number Publication date
KR19980075546A (en) 1998-11-16

Similar Documents

Publication Publication Date Title
JP5459957B2 (en) Method for contact separation of conductive layer on back contact solar cell and solar cell
US20060060238A1 (en) Process and fabrication methods for emitter wrap through back contact solar cells
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
KR20020059187A (en) solar cell and method for manufacturing the same
EP2071632B1 (en) Thin-film solar cell and process for its manufacture
KR20070004671A (en) Contact fabrication of emitter wrap-through back contact silicon solar cells
CN108666386B (en) P-type back contact solar cell and preparation method thereof
KR101597532B1 (en) The Manufacturing Method of Back Contact Solar Cells
KR100416740B1 (en) Method for fabricating rear locally sintered silicon solar cell
KR100416741B1 (en) Rear locally sintered silicon solar cell
CN217881531U (en) P type solar cell, cell module and photovoltaic system
EP1826825A1 (en) Solar cell structure comprising rear contacts and current collection by means of transistor effect and production method thereof
CN115084299A (en) P-type solar cell, manufacturing method thereof, cell module and photovoltaic system
KR100378343B1 (en) Backside recess electrode type solar cell
KR20140049624A (en) Solar cell and method for fabricating the same
KR100366350B1 (en) Solar cell and method for manufacturing the same
KR100403803B1 (en) NPRIL(n-p and rear inversion layer) bifacial solar cell and method for manufacturing the same
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR100374808B1 (en) Buried contact solar cell
KR100374809B1 (en) Method for manufacturing buried contact solar cell
KR100416739B1 (en) Method for fabricating silicon solar cell
KR100397596B1 (en) Buried contact solar cell and manufacturing method thereof
KR100351066B1 (en) Method for fabricating solar cell of depressed electrode shape
KR100322709B1 (en) Self-voltage applying solar cell and module using the same
KR100374810B1 (en) Preparation method of buried contact solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee