KR100365766B1 - Ferroelectric Memory Manufacturing Method - Google Patents

Ferroelectric Memory Manufacturing Method Download PDF

Info

Publication number
KR100365766B1
KR100365766B1 KR10-1998-0045276A KR19980045276A KR100365766B1 KR 100365766 B1 KR100365766 B1 KR 100365766B1 KR 19980045276 A KR19980045276 A KR 19980045276A KR 100365766 B1 KR100365766 B1 KR 100365766B1
Authority
KR
South Korea
Prior art keywords
film
forming
wiring
transistor
capacitor
Prior art date
Application number
KR10-1998-0045276A
Other languages
Korean (ko)
Other versions
KR20000027360A (en
Inventor
백용구
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-1998-0045276A priority Critical patent/KR100365766B1/en
Priority to US09/428,626 priority patent/US6200821B1/en
Priority to JP11307687A priority patent/JP2000138352A/en
Publication of KR20000027360A publication Critical patent/KR20000027360A/en
Application granted granted Critical
Publication of KR100365766B1 publication Critical patent/KR100365766B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7687Thin films associated with contacts of capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체 기술에 관한 것으로, 특히 강유전체 메모리(FeRAM) 제조방법에 관한 것이며, 강유전체 메모리 제조 공정 중 강유전체 캐패시터와 트랜지스터의 연결(interconnectoin) 을 위한 배선 형성시 배선 재료의 층덮힘을 확보하고, 배선 재료와 상부 전극과의 오믹 콘택(ohmic contact)을 제공하고, 캐패시터 특성의 열화를 방지하는 강유전체 메모리 제조방법을 제공하고자 한다. 본 발명은 FeRAM의 강유전체 캐패시터와 트랜지스터의 연결을 위한 배선 형성시, 캐패시터의 상부 전극 콘택은 장벽 금속에 의하며, 트랜지스터의 접합층에서는 폴리실리콘(또는 실리사이드)을 통해 콘택이 이루어지도록 하는 기술이다. 본 발명은 이를 통해 캐패시터 상부 전극과 오믹 콘택(ohmic contact)을 제공하고, 실리콘(Si)의 확산에 따른 캐패시터의 특성의 열화를 방지할 수 있으며, 트랜지스터의 접합층 콘택에서 접합층에 도핑된 도펀트를 폴리실리콘막에 도핑시켜 사용할 경우, 후속 공정시 폴리실리콘막 내에 도핑된 도펀트가 접합층으로 확산되어 콘택홀 형성시의 과도 식각에 따른 접합층 깊이의 감소, 콘택홀 형성시의 오정렬 등에 따른 접합 누설전류 문제를 보상할 수 있다. 또한 실리콘질화막(Si3N4) 등의 산화 방지막으로 배선을 캐핑(capping)함으로써 배선의 직접적인 산화를 방지할 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor technology, and more particularly, to a method of manufacturing a ferroelectric memory (FeRAM), and to secure a layer covering of a wiring material when forming a wiring for interconnecting a ferroelectric capacitor and a transistor during a process of manufacturing a ferroelectric memory. A method of fabricating a ferroelectric memory that provides ohmic contact between a material and an upper electrode and prevents deterioration of capacitor characteristics. According to the present invention, when forming a wiring for connecting a ferroelectric capacitor of a FeRAM and a transistor, the upper electrode contact of the capacitor is made of a barrier metal, and a contact is made through polysilicon (or silicide) in the junction layer of the transistor. The present invention provides an ohmic contact with the capacitor upper electrode, can prevent deterioration of the characteristics of the capacitor due to the diffusion of silicon (Si), dopants doped in the junction layer in the junction layer contact of the transistor Is doped into the polysilicon film, the dopant doped in the polysilicon film diffuses into the bonding layer in a subsequent process, resulting in a decrease in the depth of the bonding layer due to excessive etching during contact hole formation, misalignment during contact hole formation, and the like. The leakage current problem can be compensated for. In addition, it is possible to prevent the direct oxidation of the wiring by capping the wiring with an oxidation prevention film such as silicon nitride film (Si 3 N 4 ).

Description

강유전체 메모리 제조방법Ferroelectric Memory Manufacturing Method

본 발명은 반도체 기술에 관한 것으로, 특히 강유전체 메모리(ferroelectric random access memory, FeRAM) 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor technology, and more particularly to a method of manufacturing ferroelectric random access memory (FeRAM).

FeRAM은 계속되는 전원의 공급 없이도 정보를 저장할 수 있는 비휘발성 메모리로서, 차세대 메모리 소자로서 개발이 진행되고 있다.FeRAM is a nonvolatile memory capable of storing information without continuous supply of power, and is being developed as a next-generation memory device.

종래의 FeRAM 소자 제조 공정 과정에서 데이터를 저장하는 캐패시터(capacitor)와 데이터의 입/출력을 스위칭하는 트랜지스터(transistor)를 연결시키기 위한 배선 재료로서 주로 알루미늄(aluminum), 질화티타늄(TiN) 등의 금속을 사용하고 있다. 이처럼 금속 재료를 사용하는 기존의 배선 방법은 600。C 이상으로 진행되는 후속 고온 공정에서 배선이 녹거나, 전기 전도 특성을 잃어버리는 열화 현상을 일으키는 문제점이 있으며, 또한, 스퍼터링(sputtering)법을 사용하여 상기의 배선 재료를 성막하기 때문에 고집적화에 따른 패턴(pattern)의 미세화 및 콘택홀(contact hole)의 단차비(aspect ratio) 증가에 의해 층덮힘성이 열악해지는 문제점을 내포하고 있다.As a wiring material for connecting a capacitor for storing data and a transistor for switching input / output of data in a conventional FeRAM device manufacturing process, a metal such as aluminum and titanium nitride (TiN) is mainly used. I'm using. As such, the conventional wiring method using a metal material has a problem of causing a deterioration phenomenon in which the wiring melts or loses the electric conduction characteristics in a subsequent high temperature process that is performed at 600 ° C or more, and also uses a sputtering method. In order to form the above wiring material, there is a problem in that the layer covering property is deteriorated due to the miniaturization of the pattern due to the high integration and the increase in the aspect ratio of the contact hole.

그리고, 트랜지스터의 접합층과의 콘택시 오정렬(mis-alignment)이 발생할 경우, 또는 집적도의 증가에 따라 인접한 반대 부호의 접합층과의 거리가 가까워짐에 따라 접합 누설전류(junction leakage)가 증가하는 문제점이 있다. 이를 극복하기 위해서는 플러그 이온주입(plug implantation) 및 어닐(anneal) 공정 등 별도의 공정이 추가적으로 요구된다.In addition, when a mis-alignment occurs in contact with the junction layer of the transistor or as the integration distance increases, the junction leakage current increases as the distance between the adjacent opposite junction layers is increased. There is this. To overcome this, additional processes such as plug implantation and annealing are additionally required.

반면 반도체 메모리 소자의 배선 재료로서 널리 사용되고 있는 폴리실리콘을 캐패시터와 트랜지스터의 연결에 사용할 경우, 캐패시터의 전극 재료인 백금(Pt)과 쉽게 백금실리사이드를 형성하여 전극의 베리어 특성을 저하시킴으로써 캐패시터 특성을 열화시키거나, 폴리실리콘 실리콘(Si) 성분이 강유전체 박막까지 확산하여 강유전 물질의 강유전 특성을 열화시키는 문제가 있어 적용이 어려웠다.On the other hand, when polysilicon, which is widely used as a wiring material for semiconductor memory devices, is used to connect capacitors and transistors, it deteriorates capacitor characteristics by easily forming platinum silicide with platinum (Pt), which is an electrode material of capacitors, to lower barrier properties of electrodes. In addition, the polysilicon silicon (Si) component diffuses into the ferroelectric thin film, thereby deteriorating the ferroelectric properties of the ferroelectric material.

본 발명은 강유전체 메모리 제조 공정 중 강유전체 캐패시터와 트랜지스터의 연결을 위한 배선 형성시 배선 재료의 층덮힘을 확보하고, 배선 재료와 상부 전극과의 오믹 콘택을 제공하고, 캐패시터 특성의 열화를 방지하는 강유전체 메모리 제조방법을 제공하고자 한다.The present invention provides a ferroelectric memory for securing a layer covering of a wiring material when forming a wiring for connecting a ferroelectric capacitor and a transistor during the ferroelectric memory manufacturing process, providing an ohmic contact between the wiring material and the upper electrode, and preventing deterioration of the capacitor characteristics. To provide a manufacturing method.

도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 강유전체 메모리(FeRAM)의 배선 공정도.1A through 1E are schematic diagrams illustrating a wiring diagram of a ferroelectric memory (FeRAM) according to an exemplary embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

20 : TiN막 21 : 폴리실리콘막20 TiN film 21 Polysilicon film

22 : 실리콘질화막22 silicon nitride film

상기의 기술적 과제를 달성하기 위하여 본 발명으로부터 제공되는 특징적인 강유전체 메모리 제조방법은 트랜지스터 및 강유전체 캐패시터가 형성된 전체구조 상부에 층간절연막을 형성하는 단계; 상기 층간절연막을 관통하여 상기 강유전체 캐패시터의 상부 전극을 노출시키는 제1 개구부를 형성하는 단계; 상기 제1 개구부가 형성된 전체구조 상부에 장벽 금속막을 형성하는 단계; 상기 장벽 금속막 및 상기 층간절연막을 선택 식각하여 상기 트랜지스터의 접합층을 노출시키는 제2 개구부를 형성하는 단계; 상기 제2 개구부가 형성된 전체구조 상부에 도핑된 폴리실리콘막을 형성하는 단계; 및 상기 폴리실리콘막 및 상기 장벽 금속막을 선택 식각하여 상기 트랜지스터 및 상기 강유전체 캐패시터의 연결을 위한 배선을 패터닝하는 단계를 포함하여 이루어진다.In order to achieve the above technical problem, a characteristic ferroelectric memory manufacturing method provided by the present invention includes forming an interlayer insulating film on an entire structure in which a transistor and a ferroelectric capacitor are formed; Forming a first opening penetrating the interlayer insulating film to expose an upper electrode of the ferroelectric capacitor; Forming a barrier metal film on the entire structure in which the first opening is formed; Selectively etching the barrier metal layer and the interlayer dielectric layer to form a second opening exposing the junction layer of the transistor; Forming a doped polysilicon film on the entire structure of the second opening; And selectively etching the polysilicon film and the barrier metal film to pattern a wiring for connecting the transistor and the ferroelectric capacitor.

본 발명은 FeRAM의 강유전체 캐패시터와 트랜지스터의 연결을 위한 배선 형성시, 캐패시터의 상부 전극 콘택은 장벽 금속에 의하며, 트랜지스터의 접합층에서는 폴리실리콘(또는 실리사이드)을 통해 콘택이 이루어지도록 하는 기술이다. 본 발명은 이를 통해 캐패시터 상부 전극과 오믹 콘택을 제공하고, 실리콘(Si)의 확산에 따른 캐패시터의 특성의 열화를 방지할 수 있으며, 트랜지스터의 접합층 콘택에서 접합층에 도핑된 도펀트를 폴리실리콘막에 도핑시켜 사용할 경우, 후속 공정시 폴리실리콘막 내에 도핑된 도펀트가 접합층으로 확산되어 콘택홀 형성시의 과도 식각에 따른 접합층 깊이의 감소, 콘택홀 형성시의 오정렬 등에 따른 접합 누설전류 문제를 보상할 수 있다. 또한 실리콘질화막(Si3N4) 등의 산화 방지막으로 배선을 캐핑(capping)함으로써 배선의 직접적인 산화를 방지할 수 있다.According to the present invention, when forming a wiring for connecting a ferroelectric capacitor of a FeRAM and a transistor, the upper electrode contact of the capacitor is made of a barrier metal, and a contact is made through polysilicon (or silicide) in the junction layer of the transistor. The present invention provides an ohmic contact with the capacitor upper electrode, and prevents the deterioration of the characteristics of the capacitor due to the diffusion of silicon (Si), and the polysilicon film is a dopant doped to the junction layer in the junction layer contact of the transistor In the case of doping at, the dopant doped in the polysilicon film diffuses into the bonding layer in the subsequent process, which reduces the junction leakage current problem due to the decrease of the depth of the bonding layer due to the excessive etching during the contact hole formation and the misalignment during the contact hole formation. You can compensate. In addition, it is possible to prevent the direct oxidation of the wiring by capping the wiring with an oxidation prevention film such as silicon nitride film (Si 3 N 4 ).

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 본 발명의 바람직한 실시예를 소개한다.Hereinafter, preferred embodiments of the present invention will be introduced so that those skilled in the art may easily implement the present invention.

첨부된 도면 도 1a 내지 도 1e는 본 발명의 일 실시예에 따른 강유전체 메모리(FeRAM)의 배선 공정을 도시한 것으로, 이하 이를 참조하여 그 공정을 설명하기로 한다.1A to 1E illustrate a wiring process of a ferroelectric memory (FeRAM) according to an embodiment of the present invention, which will be described below with reference to this.

우선, 도 1a는 필드 산화막(11)이 형성된 실리콘 기판(10) 상에 FeRAM 셀을 구성하는 기본적인 소자인 트랜지스터와 캐패시터가 형성하고, 그 전체구조 상부에 층간절연막(19)을 형성한 후, 이를 선택 식각하여 스토리지 노드 즉, 캐패시터 상부 전극인 백금(Pt)막(18)을 노출시키는 캐패시터 콘택홀이 형성한 단면을 나타낸 것이다. 도면 부호 '12'는 접합층, '13'은 게이트, '14'는 비트라인, '15'는 층간절연막, '16'은 캐패시터 하부 전극(셀 플레이트, 백금막), '17'은 강유전체 박막을 각각 나타낸 것이다.First, FIG. 1A illustrates that a transistor and a capacitor, which are basic elements of a FeRAM cell, are formed on a silicon substrate 10 having a field oxide film 11 formed thereon, and an interlayer insulating film 19 is formed on an entire structure thereof. A cross-section formed by a capacitor contact hole that selectively exposes the storage node, that is, the platinum (Pt) film 18, which is a capacitor upper electrode, is shown. '12' is a bonding layer, '13' is a gate, '14' is a bit line, '15' is an interlayer insulating film, '16' is a capacitor lower electrode (cell plate, platinum film), and '17' is a ferroelectric thin film. Will be shown respectively.

다음으로, 도 1b에 도시된 바와 같이 전체구조 상부에 장벽 금속막으로서 100∼2000Å 두께의 TiN막(20)을 형성한다. 이때, TiN막(20)을 대신하여 Ti, W, Ta, TaN 등의 장벽 금속막을 사용할 수도 있다.Next, as shown in FIG. 1B, a TiN film 20 having a thickness of 100 to 2000 micrometers is formed on the entire structure as a barrier metal film. In this case, a barrier metal film such as Ti, W, Ta, TaN, or the like may be used instead of the TiN film 20.

계속하여, 도 1c에 도시된 바와 같이 층간절연막(19, 15)을 선택 식각하여 접합층(12)을 노출시키는 콘택홀을 형성하고, 전체구조 상부에 배선 재료인 폴리실리콘막(21)을 1000∼3000Å 두께로 증착한다. 이때, 폴리실리콘막(21)은 인-시츄(in-situ) 도핑법, 이온주입법, 도펀트 소스 확산법 등에 의해 인(P), 붕소(B), 비소(As) 등의 도펀트를 도핑시켜 사용하며, 전기 전도도 특성을 더욱 향상시키기 위하여 텅스텐실리사이드, 티타늄실리사이드, 탄탄륨실리사이드 등의 실리사이드막으로 변환시켜 사용할 수 있으며, 실리사이드를 사용하되 폴리실리콘/실리사이드의 폴리사이드 적층 구조로 사용할 수도 있다.Subsequently, as shown in FIG. 1C, the interlayer insulating films 19 and 15 are selectively etched to form contact holes for exposing the bonding layer 12, and the polysilicon film 21 as a wiring material is formed on the entire structure. It is deposited to a thickness of -3000 kPa. In this case, the polysilicon film 21 is used by doping dopants such as phosphorus (P), boron (B), arsenic (As), etc. by in-situ doping, ion implantation, dopant source diffusion, or the like. In order to further improve the electrical conductivity, it may be used by converting to silicide films such as tungsten silicide, titanium silicide, tantalum silicide, and the like, and may be used as a polyside laminate structure of polysilicon / silicide using silicide.

이어서, 도 1d에 도시된 바와 같이 배선 형성을 위한 마스크 공정을 실시하고, 폴리실리콘막(21) 및 TiN막(20)을 차례로 선택 식각하여 강유전체 캐패시터와 트랜지스터의 연결을 위한 배선을 형성한다.Subsequently, as shown in FIG. 1D, a mask process for forming wiring is performed, and the polysilicon film 21 and the TiN film 20 are selectively etched in order to form wiring for connecting the ferroelectric capacitor and the transistor.

계속하여, 도 1e에 도시된 바와 같이 후속 고온 공정시 외부의 산소와 TiN막(20)이 산화 반응을 일으켜 열화되는 것을 방지하기 위하여 전체구조 상부에 실리콘질화막(22)을 증착한다.Subsequently, as illustrated in FIG. 1E, a silicon nitride film 22 is deposited on the entire structure to prevent the oxygen and the TiN film 20 from being oxidized and degraded during the subsequent high temperature process.

이후, 전체구조 상부에 BPSG막을 증착하고, BPSG 플로우를 실시하여 평탄화를 이룬 다음, 금속배선 공정을 진행한다. 이때, 상기와 같은 공정을 진행하면 BPSG 플로우 공정시의 온도를 800℃ 이상으로 진행하여도 장벽 금속이 고온 공정에 의해 산화되는 것을 방지할 수 있어 후속 금속배선 공정을 안정화할 수 있다.Thereafter, a BPSG film is deposited on the entire structure, the BPSG flow is performed to planarize, and then the metallization process is performed. In this case, the above process can prevent the barrier metal from being oxidized by the high temperature process even if the temperature of the BPSG flow process is higher than 800 ° C., thereby stabilizing the subsequent metallization process.

전술한 본 발명은 강유전체 캐패시터와 트랜지스터의 연결을 위한 배선 형성시의 충덮힘 특성을 개선하고, 캐패시터 특성을 향상시키는 효과가 있다. 또한, 상기 배선 공정의 안정화를 통해 후속 층간절연막의 평탄화가 용이하여 후속 금속배선 공정을 안정화할 수 있다.The present invention described above has the effect of improving the filling property when forming the wiring for connecting the ferroelectric capacitor and the transistor and improving the capacitor characteristic. In addition, through the stabilization of the wiring process it is easy to planarize the subsequent interlayer insulating film can be stabilized the subsequent metal wiring process.

Claims (10)

트랜지스터 및 강유전체 캐패시터가 형성된 전체구조 상부에 층간절연막을 형성하는 단계;Forming an interlayer insulating film over the entire structure where the transistor and the ferroelectric capacitor are formed; 상기 층간절연막을 관통하여 상기 강유전체 캐패시터의 상부 전극을 노출시키는 제1 개구부를 형성하는 단계;Forming a first opening penetrating the interlayer insulating film to expose an upper electrode of the ferroelectric capacitor; 상기 제1 개구부가 형성된 전체구조 상부에 장벽 금속막을 형성하는 단계;Forming a barrier metal film on the entire structure in which the first opening is formed; 상기 장벽 금속막 및 상기 층간절연막을 선택 식각하여 상기 트랜지스터의 접합층을 노출시키는 제2 개구부를 형성하는 단계;Selectively etching the barrier metal layer and the interlayer dielectric layer to form a second opening exposing the junction layer of the transistor; 상기 제2 개구부가 형성된 전체구조 상부에 도핑된 폴리실리콘막을 형성하는 단계; 및Forming a doped polysilicon film on the entire structure of the second opening; And 상기 폴리실리콘막 및 상기 장벽 금속막을 선택 식각하여 상기 트랜지스터 및 상기 강유전체 캐패시터의 연결을 위한 배선을 패터닝하는 단계Selectively etching the polysilicon layer and the barrier metal layer to pattern a wiring for connecting the transistor and the ferroelectric capacitor 를 포함하여 이루어진 강유전체 메모리 제조방법.Ferroelectric memory manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 폴리실리콘막의 일부 또는 전체 두께를 실리사이드화하는 단계를 더 포함하여 이루어진 강유전체 메모리 제조방법.And silicifying a part or the entire thickness of the polysilicon film. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 배선이 형성된 전체구조 상부에 산화 방지 절연막을 형성하는 단계를 더 포함하여 이루어진 강유전체 메모리 제조방법.And forming an anti-oxidation insulating layer on the entire structure on which the wiring is formed. 제 3 항에 있어서,The method of claim 3, wherein 상기 산화 방지 절연막 상부에 평탄화 절연막을 형성하는 단계를 더 포함하여 이루어진 강유전체 메모리 제조방법.And forming a planarization insulating film on the anti-oxidation insulating film. 제 4 항에 있어서,The method of claim 4, wherein 상기 평탄화 절연막을 형성하는 단계가,Forming the planarization insulating film, 상기 산화 방지 절연막 상부에 BPSG막을 형성하는 단계와,Forming a BPSG film on the anti-oxidation insulating film; 적어도 800℃의 고온에서 상기 BPSG막을 플로우시키는 단계를 더 포함하여 이루어진 강유전체 메모리 제조방법.And flowing the BPSG film at a high temperature of at least 800 ° C. 제 1 항에 있어서,The method of claim 1, 상기 장벽 금속막이 TiN, Ti, W, Ta, TaN막 중 적어도 어느 하나를 포함하여 이루어진 것을 특징으로 하는 강유전체 메모리 제조방법.The barrier metal film comprises at least one of a TiN, Ti, W, Ta, TaN film manufacturing method of the ferroelectric memory. 제 1 항 또는 제 6 항에 있어서,The method according to claim 1 or 6, 상기 폴리실리콘막의 두께가 1000 내지 3000Å인 것을 특징으로 하는 강유전체 메모리 제조방법.The thickness of the polysilicon film is 1000 to 3000Å, ferroelectric memory manufacturing method characterized in that. 제 1 항 또는 제 6 항에 있어서,The method according to claim 1 or 6, 상기 장벽 금속막의 두께가 100 내지 2000Å인 것을 특징으로 하는 강유전체 메모리 제조방법.And the thickness of the barrier metal film is 100 to 2000 micrometers. 제 1 항에 있어서,The method of claim 1, 상기 폴리실리콘막이 상기 트랜지스터의 접합층에 도핑된 도펀트와 같은 타입의 도펀트로 도핑된 것을 특징으로 하는 강유전체 메모리 제조방법.And the polysilicon film is doped with a dopant of the same type as the dopant doped in the junction layer of the transistor. 제 2 항에 있어서,The method of claim 2, 상기 폴리실리콘막의 일부 또는 전체 두께를 실리사이드화하는 단계가,Silicifying a part or the entire thickness of the polysilicon film, 상기 폴리실리콘막 상에 고융점 금속막을 형성하는 단계와,Forming a high melting point metal film on the polysilicon film; 열처리를 실시하여 상기 폴리실리콘막의 일부 또는 전체 두께를 실리사이드화하는 단계를 포함하여 이루어진 강유전체 메모리 제조방법.And performing a heat treatment to silicide a part or the entire thickness of the polysilicon film.
KR10-1998-0045276A 1998-10-28 1998-10-28 Ferroelectric Memory Manufacturing Method KR100365766B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-1998-0045276A KR100365766B1 (en) 1998-10-28 1998-10-28 Ferroelectric Memory Manufacturing Method
US09/428,626 US6200821B1 (en) 1998-10-28 1999-10-27 Method for fabricating ferroelectric random access memory device
JP11307687A JP2000138352A (en) 1998-10-28 1999-10-28 Manufacture of ferroelectric memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0045276A KR100365766B1 (en) 1998-10-28 1998-10-28 Ferroelectric Memory Manufacturing Method

Publications (2)

Publication Number Publication Date
KR20000027360A KR20000027360A (en) 2000-05-15
KR100365766B1 true KR100365766B1 (en) 2003-03-17

Family

ID=19555693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0045276A KR100365766B1 (en) 1998-10-28 1998-10-28 Ferroelectric Memory Manufacturing Method

Country Status (3)

Country Link
US (1) US6200821B1 (en)
JP (1) JP2000138352A (en)
KR (1) KR100365766B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343287B1 (en) * 1999-09-21 2002-07-15 윤종용 Method for fabricating a high density ferroelectric memory device
KR100349689B1 (en) * 1999-12-28 2002-08-22 주식회사 하이닉스반도체 Method for manufacturing ferroelectric memory device
KR20010109610A (en) * 2000-05-31 2001-12-12 박종섭 A method for forming ferroelectric capacitor in semiconductor device
KR100599432B1 (en) * 2000-06-30 2006-07-14 주식회사 하이닉스반도체 Method for forming metal wire of FeRAM
JP4025829B2 (en) * 2000-09-18 2007-12-26 富士通株式会社 Semiconductor device and manufacturing method thereof
JP2002100740A (en) * 2000-09-21 2002-04-05 Oki Electric Ind Co Ltd Semiconductor memory device and method of manufacturing the same
JP2002289796A (en) * 2001-03-26 2002-10-04 Nec Corp Method for manufacturing semiconductor device
JP2004134611A (en) * 2002-10-11 2004-04-30 Toshiba Corp Semiconductor device and its fabricating method
US8471263B2 (en) * 2003-06-24 2013-06-25 Sang-Yun Lee Information storage system which includes a bonded semiconductor structure
KR100531462B1 (en) * 2003-06-30 2005-11-28 주식회사 하이닉스반도체 Method for fabricating ferroelectric random access memory with merged-top electrode-plateline capacitor
JP2005116756A (en) * 2003-10-07 2005-04-28 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2006041182A (en) * 2004-07-27 2006-02-09 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4778765B2 (en) * 2005-10-07 2011-09-21 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185220B2 (en) 1990-09-28 2001-07-09 セイコーエプソン株式会社 Semiconductor device
US5119154A (en) 1990-12-03 1992-06-02 Micron Technology, Inc. Ferroelectric capacitor and method for forming local interconnect
US5273927A (en) 1990-12-03 1993-12-28 Micron Technology, Inc. Method of making a ferroelectric capacitor and forming local interconnect
EP0516031A1 (en) 1991-05-29 1992-12-02 Ramtron International Corporation Stacked ferroelectric memory cell and method
US5372971A (en) * 1991-10-02 1994-12-13 Hyundai Electronics Industries Co. Ltd. Method for forming via hole in multiple metal layers of semiconductor device
US5216572A (en) * 1992-03-19 1993-06-01 Ramtron International Corporation Structure and method for increasing the dielectric constant of integrated ferroelectric capacitors
US5350705A (en) 1992-08-25 1994-09-27 National Semiconductor Corporation Ferroelectric memory cell arrangement having a split capacitor plate structure
JP2875733B2 (en) 1994-02-15 1999-03-31 松下電子工業株式会社 Method for manufacturing semiconductor device
JP3368726B2 (en) 1995-08-07 2003-01-20 ヤマハ株式会社 Semiconductor memory device and manufacturing method thereof
JPH09167796A (en) 1995-12-15 1997-06-24 Sony Corp Ferroelectric storage device
KR100207459B1 (en) 1996-02-21 1999-07-15 윤종용 High dielectronic memory device and its fabrication method
US5716875A (en) * 1996-03-01 1998-02-10 Motorola, Inc. Method for making a ferroelectric device
US5838605A (en) 1996-03-20 1998-11-17 Ramtron International Corporation Iridium oxide local interconnect
KR100243286B1 (en) * 1997-03-05 2000-03-02 윤종용 Method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
US6200821B1 (en) 2001-03-13
KR20000027360A (en) 2000-05-15
JP2000138352A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
US6710387B2 (en) Semiconductor device and method for fabricating the same
US7398595B2 (en) Method for forming a storage cell capacitor compatible with high dielectric constant materials
US6900492B2 (en) Integrated circuit device with P-type gate memory cell having pedestal contact plug and peripheral circuit
US6603203B2 (en) Semiconductor device having capacitive element structure and multilevel interconnection structure and method of fabricating the same
JPH1174473A (en) Highly integrated storage element and manufacture thereof
KR100365766B1 (en) Ferroelectric Memory Manufacturing Method
KR20030008991A (en) Ferroelectric memory device and method of fabricating the same
JPH06151736A (en) Semiconductor integrated circuit device and manufacture thereof
KR19990077754A (en) Semiconductor device having metal silicide film and manufacturing method thereof
KR100247479B1 (en) Large integrated memory element and manufacturing method thererof
KR19990041029A (en) Highly integrated memory device and its manufacturing method
KR20030019273A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100415539B1 (en) Method for fabricating semiconductor device
KR100351451B1 (en) Method for forming capacitor of memory device
KR940007070B1 (en) Planerizing method and semiconductor device thereby
KR100414228B1 (en) Memory device with pt/w plug and method for fabricating the same
KR20000043055A (en) Method for creating bit line of semiconductor device
KR100403355B1 (en) Method for manufacturing semiconductor device
KR20010105885A (en) Semiconductor fabrication method capable of preventing misalign between bottom electrode and storage node contact and oxidation of diffusion barrier layer
KR100322839B1 (en) Method of fabricating capacitor of semiconductor device
KR20040008047A (en) Method for fabrication of semiconductor device
KR20020052455A (en) Manufacturing method for semiconductor device
KR20000042481A (en) Method for fabricating capacitor of semiconductor device
KR20020065244A (en) method for improving the resisting oxidation property of local interconnector
KR19990057944A (en) Manufacturing method of high dielectric capacitor of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111121

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee