KR100316030B1 - Method for forming Al wire of semiconductor device - Google Patents

Method for forming Al wire of semiconductor device Download PDF

Info

Publication number
KR100316030B1
KR100316030B1 KR1019970078028A KR19970078028A KR100316030B1 KR 100316030 B1 KR100316030 B1 KR 100316030B1 KR 1019970078028 A KR1019970078028 A KR 1019970078028A KR 19970078028 A KR19970078028 A KR 19970078028A KR 100316030 B1 KR100316030 B1 KR 100316030B1
Authority
KR
South Korea
Prior art keywords
film
forming
titanium
aluminum
aluminum alloy
Prior art date
Application number
KR1019970078028A
Other languages
Korean (ko)
Other versions
KR19990057949A (en
Inventor
정중택
김훈상
엄용택
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019970078028A priority Critical patent/KR100316030B1/en
Publication of KR19990057949A publication Critical patent/KR19990057949A/en
Application granted granted Critical
Publication of KR100316030B1 publication Critical patent/KR100316030B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for forming an aluminum line in a semiconductor device is provided to be capable of preventing generation of etch residues due to silicon nodule. CONSTITUTION: The first titanium film(21) as a barrier metal is formed on a silicon substrate(20). An aluminum alloy(22) made of Al-Si-Cu is formed on the first Ti film(21). The second titanium film(23) is formed on the aluminum alloy. After forming an anti-reflective coating(24) on the resultant structure, the first and second AlTi3 film(21',23') are formed at interfaces between the first and second titanium film(21,23) and the aluminum alloy(22), respectively by annealing in the temperature of 400-500°C. An aluminum line is then formed by patterning the second titanium film, the second AlTi3 film, the aluminum alloy, the first AlTi3 film and the first titanium film.

Description

반도체 장치의 알루미늄 배선 형성 방법{Method for forming Al wire of semiconductor device}Method for forming Al wire of semiconductor device

본 발명은 일반적으로 반도체 장치의 금속 배선 형성 방법에 관한 것으로 특히, 알루미늄막 내에 첨가된 실리콘으로 인한 식각잔여물의 생성을 억제할 수 있는 반도체 장치의 알루미늄 배선 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for forming metal wirings in a semiconductor device, and more particularly, to a method for forming aluminum wirings in a semiconductor device capable of suppressing generation of etch residues due to silicon added in an aluminum film.

금속화(metalization)는 반도체 장치에서 각 소자들을 작은 저항으로 연결시키는 것으로 칩(chip)과 패키지(package) 내부 회로를 연결하기 위한 접촉부를 만드는 공정이다. 금속화로 사용되어야 할 금속의 요건으로는 실리콘산화막(SiO2), 실리콘(Si) 등의 박막에 대하여 접착이 우수해야 하며 온도 및 스트레스(stress)에 대한 저항이 있어야 한다. 전기적으로는 옴콘택(Ohmic Contact) 저항이 작아야 하며, 실리콘과도 반응하여 내부 회로 소자들과 옴콘택 특성이 좋아야 하고 전도성이 높아야 한다. 이러한 조건을 만족하는 금속을 이용하여 금속화를 실시하였을 경우 부식 및 산화 그리고 전자이동 (electron migration), 스트레스 마이그레이션(stress migration)으로 인한 금속선의 단락에 대한 강한 내성을 가져야 한다.Metallization is the process of connecting each device with a small resistance in a semiconductor device to make contacts for connecting the chip and internal circuitry in the package. As metal requirements to be used for metallization, adhesion to thin films such as silicon oxide (SiO 2 ) and silicon (Si) should be excellent and should be resistant to temperature and stress. Electrically, ohmic contact resistance should be small, and it should also react with silicon to have good internal circuit elements and ohmic contact characteristics and high conductivity. When metallization is carried out using metals satisfying these conditions, it must have strong resistance to short circuit of metal wires due to corrosion, oxidation, electron migration and stress migration.

알루미늄은 실리콘(Si``), 실리콘산화막(SiO_2``) 등에 대한 접착력이 우수하고, 과도핑(Heavily Doping)된 n^+``, p^+`` 실리콘과 옴콘택 특성이 좋으며, 비저항 값이 2.7μΩ·㎝ 정도로 낮고, 값이 다른 귀금속에 비해 싸다는 특성으로 인해 반도체 재료의 금속 배선 재료로서 가장 널리 사용되는 재료이다.Aluminum has excellent adhesion to silicon (Si``) and silicon oxide film (SiO_2``), and has good ohmic contact properties with heavily doped n ^ + ``, p ^ + `` silicon and resistivity. It is a material that is most widely used as a metal wiring material of a semiconductor material because of its low value of about 2.7 µΩ · cm and its low value compared to other precious metals.

그러나, 디램(DRAM)을 비롯한 범용의 반도체 소자가 고집적화되어 감에 따라 금속 배선의 선폭이 가늘어져 전자가 알루미늄 배선을 통해 이동할 때 전자와 알루미늄 이온이 충돌하여 금속 배선의 단선이 일어나기 쉽다. 일반적으로 스퍼터링(sputtering) 방법으로 증착되는 알루미늄막은 힐락(hillock)이나 디스로케이션(dislocation) 같은 결함을 갖고 있어서 전자이동 등으로 인하여 전기적 특성을 저하시키고 있다.However, as general-purpose semiconductor devices such as DRAMs are highly integrated, the line width of the metal wiring becomes thinner, and electrons and aluminum ions collide with each other when electrons move through the aluminum wiring, thereby easily causing disconnection of the metal wiring. In general, an aluminum film deposited by a sputtering method has defects such as hillock or dislocation, thereby deteriorating electrical characteristics due to electron migration.

또한, 통상적으로 알루미늄-합금 증착 후, 400 내지 450 ℃의 온도 범위에서 실시하는 열처리(annealing) 과정 동안에 실리콘 기판과 알루미늄막의 접합면에서 실리콘이 알루미늄막으로 비균일적으로 확산(diffusion)된다. 결과적으로 실리콘이 소모되어 접합 면적이 작아지고, 비균일적으로 확산된 실리콘의 빈자리를 채우기 위하여 실리콘 기판으로 침투된 알루미늄막이 스파이크(spike) 모양을 형성한다. 상기와 같은 과정에서 형성된 스파이크 부분에 고전계가 걸려 접합이 깨지는 현상이 발생하는데 이는 누설 전류의 증가를 가져와 특성 저하를 유발한다.In addition, silicon is non-uniformly diffused into the aluminum film at the bonding surface of the silicon substrate and the aluminum film during an annealing process which is typically performed at a temperature range of 400 to 450 ° C. after aluminum-alloy deposition. As a result, silicon is consumed and the junction area is reduced, and the aluminum film penetrated into the silicon substrate forms a spike shape to fill in the voids of the non-uniformly diffused silicon. A phenomenon in which the junction is broken due to a high electric field is applied to the spike portion formed in the above process, which leads to an increase in leakage current, leading to deterioration of characteristics.

상기와 같은 문제점을 해결하기 위해 종래에는 알루미늄에 실리콘을 첨가하여 실리콘이 과포화된 알루미늄막을 증착하는 방법, 실리콘 기판 위에 알루미늄 전극을 부착시키는 방법 및 알루미늄과 실리콘 기판 사이에 장벽으로 되는 금속을 삽입 방법 등이 종래에 사용되고 있다. 이 장벽 역할을 하는 금속은 실리콘과 낮은 접촉 저항을 형성하며, 알루미늄과 반응하지 않아야 하는데, TiN과 같은 금속은 550 ℃, 30분의 열처리에는 안정하다는 것이 알려져 있다.In order to solve the above problems, a method of depositing an aluminum film supersaturated with silicon by adding silicon to aluminum, a method of attaching an aluminum electrode on a silicon substrate, and a method of inserting a metal as a barrier between the aluminum and silicon substrates, etc. This is conventionally used. Metals acting as a barrier form a low contact resistance with silicon and should not react with aluminum. Metals such as TiN are known to be stable to heat treatment at 550 ° C. for 30 minutes.

첨부된 도1과 도2a 및 도2b를 참조하여, 접합 스파이킹(junction spiking) 및 전자이동(electron migration)을 방지하기 위해 알루미늄에 1 %의 Si 및 0.5 %의 구리를 용해시킨 Al-Si-Cu 합금을 이용하는 경우의 문제점을 살펴본다.Referring to FIGS. 1, 2A, and 2B, Al-Si- in which 1% of Si and 0.5% of copper is dissolved in aluminum to prevent junction spiking and electron migration. The problem when using Cu alloy is examined.

도1에 도시한 바와 같이 실리콘 기판(10) 상부에 Ti 또는 Ti/TiN으로 장벽금속막(11)을 증착한다. 상기 장벽금속막(11) 중에서 Ti는 실리콘 기판에 형성된 접합(도시하지 않음)과 반응하여 TiSi2를 형성함으로써 콘택 저항을 낮추는 역할을 한다. 이어서, 실리콘 기판의 실리콘이 알루미늄막으로 확산되는 것을 방지하기 위하여 Al-Si-Cu로 이루어지는 알루미늄막(12)을 형성하고 TiN막으로 반사방지막(13)을 형성한 후, 식각방지막으로 감광막 패턴(15)을 형성한다.As shown in FIG. 1, the barrier metal film 11 is deposited on the silicon substrate 10 by Ti or Ti / TiN. Among the barrier metal films 11, Ti reacts with a junction (not shown) formed on a silicon substrate to form TiSi 2 to lower contact resistance. Subsequently, in order to prevent the silicon of the silicon substrate from diffusing into the aluminum film, an aluminum film 12 made of Al-Si-Cu is formed, and an antireflection film 13 is formed of a TiN film. 15).

다음으로, 소정의 전도막 패턴을 형성하기 위한 식각 공정을 실시하여 반사방지막(13) 및 알루미늄막(12)을 선택적으로 제거한다.Next, an anti-reflection film 13 and an aluminum film 12 are selectively removed by performing an etching process for forming a predetermined conductive film pattern.

전술한 바와 같이 이루어지는 종래 기술은 알루미늄막 내에 과포화된 실리콘이 국부적으로 석출되어 실리콘 결정이 존재하게 되는데, 이것이 금속막 식각시 방해 물질로 작용한다.According to the prior art made as described above, the supersaturated silicon is locally precipitated in the aluminum film so that the silicon crystal is present, which acts as an interference material when the metal film is etched.

도2a 및 도2b는 각각 상기와 같이 이루어지는 종래 기술에 따른 알루미늄막 식각 결과를 보이는 평면 및 단면의 SEM 사진으로, 알루미늄 합금막(21) 패턴을 형성하기 위한 식각 과정에서 실리콘 결정으로 인하여 소정 부위의 알루미늄막이 완전하게 제거되지 않고 혹(nodule)(22)이 만들어져 브릿지(bridge)를 유발하게 된다.2A and 2B are SEM images of a plane and a cross-sectional view showing an aluminum film etching result according to the prior art, respectively, as described above. FIG. 2A and FIG. 2B show a predetermined area due to silicon crystals during the etching process for forming the aluminum alloy layer 21 pattern. The aluminum film is not completely removed and a nodule 22 is made, causing a bridge.

상기와 같은 문제점을 해결하기 위한 본 발명은 실리콘이 용해된 알루미늄 합금막 형성 방법에 있어서, 알루미늄 합금막에 석출된 실리콘 결정에 의한 식각잔여물의 생성을 방지할 수 있는 반도체 장치의 알루미늄 배선 형성 방법을 제공하는데 그 목적이 있다.The present invention for solving the above problems is an aluminum alloy film forming method in which silicon is dissolved, an aluminum wiring forming method of a semiconductor device capable of preventing the formation of etching residues by silicon crystals deposited on the aluminum alloy film. The purpose is to provide.

도1은 종래 기술에 따른 반도체 장치의 알루미늄 배선 형성 공정 단면도.1 is a cross-sectional view of an aluminum wiring formation process of a semiconductor device according to the prior art.

도2a 및 도2b는 종래 기술에 따른 반도체 장치의 알루미늄 금속 배선 형성 결과를 나타내는 SEM 사진.2A and 2B are SEM photographs showing the results of aluminum metal wiring formation of a semiconductor device according to the prior art;

도3은 본 발명의 일실시예에 따른 반도체 장치의 알루미늄 배선 형성 공정 단면도.Figure 3 is a cross-sectional view of the aluminum wiring formation process of the semiconductor device according to one embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

30: 반도체 기판 31: 장벽금속막30: semiconductor substrate 31: barrier metal film

32: 알루미늄 합금막 33: Ti막32: aluminum alloy film 33: Ti film

34: 반사방지막 35: 감광막 패턴34: antireflection film 35: photoresist pattern

31', 33': AlTi331 ', 33': AlTi 3 membrane

상기와 같은 목적을 달성하기 위한 본 발명은, 반도체 기판 상에 제1 티타늄(Ti)막을 형성하는 제1 단계; 상기 제1 티타늄막 상에 실리콘(Si)이 첨가된 알루미늄 합금막을 형성하는 제2 단계; 상기 알루미늄 합금막 상에 제2 티타늄막을 형성하는 제3 단계; 상기 제3 단계가 완료된 반도체 기판에 열을 가하여, 상기 제1 티타늄막과 상기 알루미늄 합금막의 계면에 제1 AlTi3막을 형성하고, 상기 알루미늄 합금막과 상기 제2 티타늄막의 계면에 제2 AlTi3막을 형성하는 제4 단계; 및 상기 제2 티타늄막, 상기 제2 AlTi3막, 상기 알루미늄 합금막, 상기 제1 AlTi3막 및 상기 제1 티타늄막을 선택적으로 식각하여 패턴을 형성하는 제5 단계를 포함하는 반도체 장치의 알루미늄 배선 형성 방법을 제공한다.The present invention for achieving the above object, a first step of forming a first titanium (Ti) film on a semiconductor substrate; A second step of forming an aluminum alloy film to which silicon (Si) is added on the first titanium film; A third step of forming a second titanium film on the aluminum alloy film; Heat is applied to the semiconductor substrate where the third step is completed to form a first AlTi 3 film at the interface between the first titanium film and the aluminum alloy film, and a second AlTi 3 film at the interface between the aluminum alloy film and the second titanium film. Forming a fourth step; And a fifth step of forming a pattern by selectively etching the second titanium film, the second AlTi 3 film, the aluminum alloy film, the first AlTi 3 film, and the first titanium film. It provides a formation method.

또한 상기 목적을 달성하기 위한 본 발명은, 반도체 기판 상에 제1 티타늄(Ti)막을 형성하는 제1 단계; 상기 제1 티타늄막 상에 실리콘(Si)이 첨가된 알루미늄 합금막을 형성하는 제2 단계; 상기 알루미늄 합금막 상에 제2 티타늄막을 형성하고, 상기 제2 티타늄막 상에 반사방지막을 형성하는 제3 단계; 상기 제3 단계가 완료된 반도체 기판에 열을 가하여, 상기 제1 티타늄막과 상기 알루미늄 합금막의 계면에 제1 AlTi3막을 형성하고, 상기 알루미늄 합금막과 상기 제2 티타늄막의계면에 제2 AlTi3막을 형성하는 제4 단계; 및 상기 반사방지막, 상기 제2 티타늄막, 상기 제2 AlTi3막, 상기 알루미늄 합금막, 상기 제1 AlTi3막 및 상기 제1 티타늄막을 선택적으로 식각하여 패턴을 형성하는 제5 단계를 포함하는 반도체 장치의 알루미늄 배선 형성 방법을 제공한다.In addition, the present invention for achieving the above object, a first step of forming a first titanium (Ti) film on a semiconductor substrate; A second step of forming an aluminum alloy film to which silicon (Si) is added on the first titanium film; Forming a second titanium film on the aluminum alloy film, and forming an anti-reflection film on the second titanium film; Heat is applied to the semiconductor substrate where the third step is completed to form a first AlTi 3 film at an interface between the first titanium film and the aluminum alloy film, and to form a second AlTi 3 film on the interface between the aluminum alloy film and the second titanium film. Forming a fourth step; And a fifth step of forming a pattern by selectively etching the anti-reflection film, the second titanium film, the second AlTi 3 film, the aluminum alloy film, the first AlTi 3 film, and the first titanium film. A method of forming aluminum wiring in a device is provided.

알루미늄막의 실리콘 용해도는 1% 미만인데 비하여 AlTi3막의 실리콘 용해도는 약 15% 정도이다. AlTi3막은 약간의 열공정으로 알루미늄과 실리콘의 경계면에서 형성된다. 본 발명은 알루미늄막 아래층에 장벽금속막으로 Ti막을 형성하고 알루미늄막 위층의 반사방지막으로 Ti/TiN을 형성하여 Ti/Al/Ti의 적층 구조를 형성하고 열처리하여 알루미늄과 Ti막 계면에 AlTi3막을 형성하는 것을 특징으로 한다.The silicon solubility of the aluminum film is less than 1%, whereas the silicon solubility of the AlTi 3 film is about 15%. AlTi 3 films are formed at the interface between aluminum and silicon with a slight thermal process. In the present invention, a Ti film is formed as a barrier metal film under the aluminum film, and Ti / TiN is formed as an anti-reflection film over the aluminum film to form a laminated structure of Ti / Al / Ti and heat treated to form an AlTi 3 film at the interface between the aluminum and Ti films. It is characterized by forming.

이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention.

도3에 도시한 바와 같이 실리콘 기판(30) 상부에 Ti 또는 TiN으로 장벽금속막(31)을 형성하고, 장벽금속막(31) 상에 Al-Si-Cu로 이루어지는 알루미늄막(32)을 차례로 형성한다. 다음으로, 상기 알루미늄막(32) 상에 50 Å 내지 300 Å 두께의 Ti막을 형성(33)한다, 이어서, TiN막으로 반사방지막(34)을 형성한 후, 400 ℃ 내지 500 ℃의 온도 범위에서 열처리(annealing) 공정을 실시하여 상기 알루미늄막과 Ti막의 경계면에 AlTi3막(21', 23')을 형성한다. 이어서, 소정의 전도막 패턴을 형성하기 위하여 식각방지막으로 역할하는 감광막 패턴(35)을 형성하고 식각 공정을 실시한다.As shown in FIG. 3, the barrier metal film 31 is formed on the silicon substrate 30 by Ti or TiN, and the aluminum film 32 made of Al-Si-Cu is sequentially formed on the barrier metal film 31. Form. Next, a Ti film having a thickness of 50 kPa to 300 kPa is formed 33 on the aluminum film 32, and then an antireflection film 34 is formed of a TiN film, and then in a temperature range of 400 ° C to 500 ° C. An annealing process is performed to form AlTi 3 films 21 'and 23' on the interface between the aluminum film and the Ti film. Subsequently, in order to form a predetermined conductive film pattern, a photosensitive film pattern 35 serving as an etching prevention film is formed and an etching process is performed.

상기 열처리 공정은 상기 반사방지막(34)을 형성하기 이전에 실시될 수도 있다. 또한, 상기 반사방지막(34)막을 400 ℃ 이상의 온도에서 형성하여 별도의 열처리 공정을 실시하지 않고 알루미늄막과 Ti막의 경계면에 AlTi3막(21', 23')을 형성하기도 한다.The heat treatment process may be performed before forming the anti-reflection film 34. In addition, the anti-reflection film 34 may be formed at a temperature of 400 ° C. or higher to form AlTi 3 films 21 ′ and 23 ′ at the interface between the aluminum film and the Ti film without performing a separate heat treatment process.

상기와 같이 알루미늄막 아래 및 위층에 형성된 AlTi3막으로 알루미늄막 내에 과포화되어 있는 실리콘이 이동한다. 따라서, 실리콘의 석출로 인한 실리콘 결정 생성을 억제할 수 있어 실리콘 결정으로 인한 식각잔여물의 생성을 방지할 수 있다.As described above, the silicon supersaturated in the aluminum film moves to the AlTi 3 film formed below and above the aluminum film. Therefore, it is possible to suppress the generation of silicon crystals due to the precipitation of silicon, it is possible to prevent the formation of etching residues due to the silicon crystals.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the technical field of the present invention without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같이 이루어지는 본 발명은 알루미늄막의 아래 및 위층에 얇은 Ti막을 형성하고 열처리함으로써 알루미늄막 내부의 과포화된 실리콘 원자를 막 외부로 추출시킬 수 있어서, 실리콘 석출로 인한 실리콘 혹(silicon nodule)이 발생하는 현상을 억제할 수 있어서 식각 잔류물의 생성을 방지할 수 있다. 따라서, 금속 브릿지 형성으로 인한 수율 저하를 억제할 수 있으며, 금속 배선간의 간격을 줄일 수있어 소자의 고집적화에 기여할 수 있다.According to the present invention, a thin Ti film is formed below and over the aluminum film and heat-treated to extract supersaturated silicon atoms inside the aluminum film to the outside of the film, thereby generating silicon nodules due to silicon precipitation. The phenomenon can be suppressed to prevent the formation of etching residues. Therefore, a decrease in yield due to the formation of metal bridges can be suppressed, and the spacing between metal wires can be reduced, contributing to high integration of the device.

Claims (7)

반도체 기판 상에 제1 티타늄(Ti)막을 형성하는 제1 단계;A first step of forming a first titanium (Ti) film on a semiconductor substrate; 상기 제1 티타늄막 상에 실리콘(Si)이 첨가된 알루미늄 합금막을 형성하는 제2 단계;A second step of forming an aluminum alloy film to which silicon (Si) is added on the first titanium film; 상기 알루미늄 합금막 상에 제2 티타늄막을 형성하는 제3 단계;A third step of forming a second titanium film on the aluminum alloy film; 상기 제3 단계가 완료된 반도체 기판에 열을 가하여, 상기 제1 티타늄막과 상기 알루미늄 합금막의 계면에 제1 AlTi3막을 형성하고, 상기 알루미늄 합금막과 상기 제2 티타늄막의 계면에 제2 AlTi3막을 형성하는 제4 단계; 및Heat is applied to the semiconductor substrate where the third step is completed to form a first AlTi 3 film at the interface between the first titanium film and the aluminum alloy film, and a second AlTi 3 film at the interface between the aluminum alloy film and the second titanium film. Forming a fourth step; And 상기 제2 티타늄막, 상기 제2 AlTi3막, 상기 알루미늄 합금막, 상기 제1 AlTi3막 및 상기 제1 티타늄막을 선택적으로 식각하여 패턴을 형성하는 제5 단계A fifth step of forming a pattern by selectively etching the second titanium film, the second AlTi 3 film, the aluminum alloy film, the first AlTi 3 film, and the first titanium film 를 포함하는 반도체 장치의 알루미늄 배선 형성 방법.Aluminum wiring forming method of a semiconductor device comprising a. 반도체 기판 상에 제1 티타늄(Ti)막을 형성하는 제1 단계;A first step of forming a first titanium (Ti) film on a semiconductor substrate; 상기 제1 티타늄막 상에 실리콘(Si)이 첨가된 알루미늄 합금막을 형성하는 제2 단계;A second step of forming an aluminum alloy film to which silicon (Si) is added on the first titanium film; 상기 알루미늄 합금막 상에 제2 티타늄막을 형성하고, 상기 제2 티타늄막 상에 반사방지막을 형성하는 제3 단계;Forming a second titanium film on the aluminum alloy film, and forming an anti-reflection film on the second titanium film; 상기 제3 단계가 완료된 반도체 기판에 열을 가하여, 상기 제1 티타늄막과 상기 알루미늄 합금막의 계면에 제1 AlTi3막을 형성하고, 상기 알루미늄 합금막과 상기 제2 티타늄막의 계면에 제2 AlTi3막을 형성하는 제4 단계; 및Heat is applied to the semiconductor substrate where the third step is completed to form a first AlTi 3 film at the interface between the first titanium film and the aluminum alloy film, and a second AlTi 3 film at the interface between the aluminum alloy film and the second titanium film. Forming a fourth step; And 상기 반사방지막, 상기 제2 티타늄막, 상기 제2 AlTi3막, 상기 알루미늄 합금막, 상기 제1 AlTi3막 및 상기 제1 티타늄막을 선택적으로 식각하여 패턴을 형성하는 제5 단계A fifth step of forming a pattern by selectively etching the antireflection film, the second titanium film, the second AlTi 3 film, the aluminum alloy film, the first AlTi 3 film, and the first titanium film 를 포함하는 반도체 장치의 알루미늄 배선 형성 방법.Aluminum wiring forming method of a semiconductor device comprising a. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제4 단계는,The fourth step, 400 내지 500 ℃의 온도 범위에서 실시하는 것을 특징으로 하는 반도체 장치의 알루미늄 배선 형성 방법.The aluminum wiring formation method of a semiconductor device characterized by the above-mentioned. 제 3 항에 있어서,The method of claim 3, wherein 상기 제2 티타늄막을 50 Å 내지 300 Å 두께로 형성하는 것을 특징으로 하는 반도체 장치의 알루미늄 배선 형성 방법.And forming the second titanium film at a thickness of 50 kV to 300 kV. 제 2 항에 있어서,The method of claim 2, 상기 반사방지막을 티타늄질화막(TiN)으로 형성하는 것을 특징으로 하는 반도체 장치의 알루미늄 배선 형성 방법.The anti-reflection film is formed of a titanium nitride film (TiN). 제 2 항 또는 제 5 항에 있어서,The method according to claim 2 or 5, 상기 반사방지막을 400 ℃ 보다 낮지 않은 온도에서 형성하여, 상기 제4 단계 및 상기 제5 단계를 동시에 실시하는 것을 특징으로 하는 반도체 장치의 알루미늄 배선 형성 방법.And forming said antireflection film at a temperature not lower than 400 [deg.] C. and simultaneously carrying out the fourth step and the fifth step. 제 1 항에 있어서,The method of claim 1, 상기 제4 단계 후,After the fourth step, 상기 제2 티타늄막 상에 반사방지막을 형성하는 제6 단계를 더 포함하고,A sixth step of forming an anti-reflection film on the second titanium film; 상기 제5 단계에서,In the fifth step, 상기 반사방지막, 상기 제2 티타늄막, 상기 제2 AlTi3막, 상기 알루미늄 합금막, 상기 제1 AlTi3막 및 상기 제1 티타늄막을 선택적으로 식각하여 패턴을 형성하는 것을 특징으로 하는 반도체 장치의 알루미늄 배선 형성 방법.Wherein the antireflection film, the second titanium film, the second AlTi 3 film, the aluminum alloy film, the first AlTi 3 film, and the first titanium film are selectively etched to form a pattern. Wiring formation method.
KR1019970078028A 1997-12-30 1997-12-30 Method for forming Al wire of semiconductor device KR100316030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970078028A KR100316030B1 (en) 1997-12-30 1997-12-30 Method for forming Al wire of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970078028A KR100316030B1 (en) 1997-12-30 1997-12-30 Method for forming Al wire of semiconductor device

Publications (2)

Publication Number Publication Date
KR19990057949A KR19990057949A (en) 1999-07-15
KR100316030B1 true KR100316030B1 (en) 2002-02-19

Family

ID=37531646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970078028A KR100316030B1 (en) 1997-12-30 1997-12-30 Method for forming Al wire of semiconductor device

Country Status (1)

Country Link
KR (1) KR100316030B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322305B2 (en) * 1999-02-25 2002-09-09 日本電気株式会社 Method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115829A (en) * 1995-10-17 1997-05-02 Nissan Motor Co Ltd Semiconductor device with aluminium wiring part and method of manufacturing
JPH09289212A (en) * 1996-04-19 1997-11-04 Ricoh Co Ltd Laminated wiring of semiconductor device and its fabrication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115829A (en) * 1995-10-17 1997-05-02 Nissan Motor Co Ltd Semiconductor device with aluminium wiring part and method of manufacturing
JPH09289212A (en) * 1996-04-19 1997-11-04 Ricoh Co Ltd Laminated wiring of semiconductor device and its fabrication method

Also Published As

Publication number Publication date
KR19990057949A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
JP2552159B2 (en) Semiconductor device and manufacturing method thereof
JPS63205951A (en) Stable low resistance contact
US7560369B2 (en) Method of forming metal line in semiconductor device
KR100595330B1 (en) Method for forming metal line of semiconductor device
KR100316030B1 (en) Method for forming Al wire of semiconductor device
KR100701673B1 (en) METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
KR100265993B1 (en) Method of forming metal line of semicondcutor device
JPH05234935A (en) Semiconductor device and its manufacture
KR950005259B1 (en) Fabricating method of semiconductor device
KR100203303B1 (en) Method of forming metal interconnection of semiconductor device
KR0121870B1 (en) Metal contact structure & formation method
KR100369352B1 (en) Semiconductor device and manufacturing method thereof
KR100470923B1 (en) Metal wiring formation method of semiconductor device
KR100256252B1 (en) Method of metal wiring in semiconductor device
KR100296708B1 (en) Method for making integrated circuit metal line structure
KR19980053692A (en) Metal wiring formation method of semiconductor device
KR100415095B1 (en) Method for manufacturing semiconductor device
KR100259098B1 (en) Method for forming metal line of semiconductor device
KR100268899B1 (en) Method for forming metal line of semiconductor device the same
KR100247645B1 (en) Method for forming metal interconnection layer of semiconductor device
KR960002062B1 (en) Metalization method of semiconductor device
KR100197665B1 (en) Forming method for metal wiring in semiconductor device
KR970004771B1 (en) Method of forming the metal wiring on the semiconductor device
KR100236093B1 (en) Structure of metal interconnector of semiconductor device and method of fabricating the same
KR100219058B1 (en) Process for forming metal interconnector of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee