KR100296475B1 - 다중광섬유케이블시험장치및방법 - Google Patents

다중광섬유케이블시험장치및방법 Download PDF

Info

Publication number
KR100296475B1
KR100296475B1 KR1019970039985A KR19970039985A KR100296475B1 KR 100296475 B1 KR100296475 B1 KR 100296475B1 KR 1019970039985 A KR1019970039985 A KR 1019970039985A KR 19970039985 A KR19970039985 A KR 19970039985A KR 100296475 B1 KR100296475 B1 KR 100296475B1
Authority
KR
South Korea
Prior art keywords
optical
optical fiber
test
cable
port
Prior art date
Application number
KR1019970039985A
Other languages
English (en)
Other versions
KR19980063415A (ko
Inventor
웨인 에이. 배링거
케시머 엠. 드쿠사티스
Original Assignee
포만 제프리 엘
인터내셔널 비지네스 머신즈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포만 제프리 엘, 인터내셔널 비지네스 머신즈 코포레이션 filed Critical 포만 제프리 엘
Publication of KR19980063415A publication Critical patent/KR19980063415A/ko
Application granted granted Critical
Publication of KR100296475B1 publication Critical patent/KR100296475B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3136Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR for testing of multiple fibers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명은 피시험용 케이블의 일측 단부가 접속되는(plugged) 복수의 테스트 스테이션(이하 '시험 측점(測點)(test station)'이라 함)을 구비하는 다중-광섬유케이블(multi-fiber optical cable)을 시험하는 장치를 개시한다. 일부 시험 측점에는 어레이 커넥터(array connector)가 부착된다. 광학적 시간 영역 반사계(optical time domain reflectometer : OTDR) 유닛의 광 입력/출력 포트는 광 스위치를 통하여 시험 측점 각각에 접속되는데, 광 스위치는 광 입력/출력 포트와 단지 하나의 시험 측정을 동시에 연결한다. 각 시험 측점 내에서, 광 스위치로부터 출력되는 신호는 분리기(splitter)에 의해 복수의 광 경로로 분할되고, 이 분리기는 이들 광경로로부터 출력되는 신호를 광 스위치를 통해 OTDR로 복귀시킨다. 각 시험 측점내의 다양한 광 경로가 그 길이를 변경시킬 수 있는 광섬유 점퍼를 포함하므로, OTDR로부터 출력되는 단일 시험 펄스는 피시험용 케이블 내의 복수의 경계면으로부터 펄스열(a train of pulses)로 다시 반사된다.

Description

다중 광섬유 케이블 시험 장치 및 방법
본 발명은 광섬유 케이블(fiber-optic cable)을 시험하는 장치에 관한 것으로, 특히 복수의 개별 섬유를 포함하는 케이블의 시험을 용이하게 하는 장치에 관한 것이다.
다중 광섬유 케이블(multi-fiber optical cable)은 한쪽 단부에서 다른 쪽 단부로 묶음(bundle)의 형태로 연장하는 복수의 개별 유리 섬유(glass fiber)로 구성되어 있다. 이들 섬유의 각각은 독립적인 방식으로 통신 신호 또는 복수의 다중화된 신호를 전송하도록 사용될 수 있다. 각 단부에서, 섬유의 묶음은 어레이 커녁터(array connector) 또는 복수의 개별 커넥터(discrete connector)에서 끝난다. 예를 들면, 케이블 내에 12개의 광섬유가 있으면, 이들 광섬유는 한 줄로 12개 섬유 말단을 갖는 어레이에서 끝날 수 있거나 또는 이들 광섬유는 12개의 개별 커넥터에서 끝날 수 있다. 실제로는, 이러한 종류의 케이블은 한쪽 단부에 어레이 커넥터를, 다른 쪽 단부에 12개의 개별 커넥터를 가질 수 있다. 본 명세서에서는 12개 광섬유 또는 광 경로(光路)(light path)를 갖는 것과 같이 다양한 다중 섬유 케이블이 도시되지만, 이 개수가 단지 예시를 위하여 사용되는 것임을 이해할 수 있다. 본 발명은 다양한 수의 섬유를 갖는 케이블을 시험하도록 용이하게 적용된다.
다중 광섬유 케이블에 있어서, (각각의 하나의 섬유를 따르는) 각 신호 경로의 시험은 각 단부에서의 커넥터에 대한 삽입 손실(insertion loss) 및 복귀 손실(return loss) 측정 모두를 요구한다. 이들 측정은 양 커넥터 단부에 대하여 유일한 셋업이 반복되어야 하는 두 가지 별도 시험을 요구한다. 가장 일반적인 벌크(bulk) 광섬유 케이블 물질로 제조된 점퍼(jumper)에 대한 종래의 복귀 손실 측정은 일반적으로 커넥터 끝면(endface)에 인덱스 정합 겔(index-matching gel)을 도포한 후, 후속적으로 제거하는 어렵고 시간 소모적인 동작을 요구한다. 그러한 다중 섬유 케이블의 시험을 단일 섬유 케이블의 시험과 비교할 때, 신호 경로마다 개별 시험을 적용하여야 하므로, 이러한 문제들은 확실히 번거로운 일이다.
종래의 삽입 및 복귀 손실 측정 기술은 점퍼당 대략 3분 또는 4분이 걸리고 오류를 범하기 쉽다. 이러한 측정을 고속화하고, 자동화를 통해 에러 및 조작자의 숙련도에 의존하는 것을 줄이며, 물리적 접촉 형태 및 커넥터 스타일의 변경을 용이하게 하는 방법이 요구된다. 다중 광섬유 케이블 시험의 적용에 있어서, 시험 장치에 의해 발생되는 신호가 케이블 내의 각 섬유를 따라 진행하게 하고 또한 개별 신호 경로를 따라 복귀하는 여러 신호를 식별하는 방법이 특히 요구된다.
Barringer 등의 미국 특허 제 5,530,546호는 4개의 인덱싱 플러그보드 시험측점(indexing plugboard station)을 포함하는 광섬유 점퍼 케이블을 시험하는 시험 측점을 기재하고 있다. 하나의 시험용 케이블은 통상 2개의 플러그보드(plug board) 시험 측점 사이로 연장하도록 부착된다. 각 플러그보드 시험 측점은 시험되는 케이블의 단부에서 사용될 수 있는 3가지 종류의 커넥터에 대응하는 3열의 플러그 위치를 포함한다. 플러그 위치의 상위 행 및 중간 행은 사용될 수 있는 접촉타입(PC 또는 APC)에 대응한다. 인덱싱 메커니즘은 중간 행 내의 하나의 플러그 위치와 플러그보드 시험 측점에서 연장하는 기준 케이블(reference cable)이 정합하도록 제공된다. 기준 점퍼는 시험되는 케이블이 중간 행에 접속되면 플러그 위치의 하위 행에 장착(dock)되고, 시험되는 케이블이 상위 행에 접속되면 중간 행에 플러그를 꽂아 접속되는 상위 행으로부터 연장한다. 플러그 보드 시험 측점의 각각으로부터 연장하는 기준 케이블은 중간 행 프러그 보드 위치 중에 하나와 접촉하거나 접촉이 해제되어, 순차적인 시험을 용이하게 한다. 이들 플러그보드 시험 측점 중 두 개로부터의 기준 케이블은 광 스위치를 거쳐 광학적 시간 영역 반사계(optical time domain reflectometer : OTDR)에 접속되고, 나머지 2개의 기준 케이블은 그들의 원단(far end)에서 커넥터에 단순히 접속된다. 컴퓨터는 플러그보드 시험 측점 인덱싱을 제어하여, 기준 케이블이 바람직한 순서로 연결되게 한다. 그러나, 상기 Barringer 등에게 부여된 특허는 하나의 광섬유 케이블의 시험만을 목표로 하고 있을 뿐, 다중 섬유 케이블과 연관된 특별한 문제는 목표로 하지 않는다.
Lebduska에 의한 미국 특허 제 4,309,105호는 광섬유 케이블의 광 전송 레벨과 기지의(known) 수납 케이블의 광 전송 레벨을 비교함으로써 광섬유 케이블을 시험하는 장치를 기재하고 있다. 시험 과정의 안정성은 가변 측정 전원(variable, calibrated power source)을 사용함으로써 달성된다. 이 방법의 정확성은 공통 광원에서의 광을 그 장치의 일부를 형성하는 케이블과 피시험용 광섬유 케이블 양쪽에 동시에 결합시킴으로써 달성된다. 이 구성은 광원 및 장치 검출기의 진폭 드리프트(amplitude drift)가 광 출력의 순차적인 상대적 측정의 유효성에 영향을 주는 것을 억제한다. Lebduska는 시험의 타입이 그들의 정확도를 보증하는 수단과 함께 기술될 때 동일한 콘택트 타입 및 커넥터 스타일을 갖는 복수의 케이블을 시험하는 경우의 시험 처리 속도 문제를 제기하고 있지만, 다중 광섬유 케이블을 시험하는 문제는 제기하지 않았다.
So 등에게 부여된 미국 특허 제 5,179,420호는 광 신호가 피시험용(被 test)광섬유 경로에 결합되고 광섬유 경로로부터 후방 산란되고 반사된 광이 검출되고 사용되어 광 경로(光路)의 손실 거리 특징(loss-distance characteristics)이 결정되는 광학적 시간 영역 반사계(OTDR)를 기재하고 있다. 제어 유닛은 광원을 구성하는 반도체 레이저의 온도를 가변시킴으로써 광 신호의 파장을 가변시키므로, 복수의 상이한 파장에 대한 손실 거리 특징이 결정되고 표시되어 광섬유 경로의 모든 파장 의존 손실이 표시된다. 그러한 손실은 광 경로에서 공간적으로 밀접한 불연속과 관련된 형태상의 간섭에 기인할 수 있다. 따라서, So 등은 OTDR의 사용 방법 및 OTDR에 대하여 특정한 개선을 논의하고 있지만, 다중 광섬유 케이블의 시험 문제는 제기하지 않았다.
Maycock에게 부여된 미국 특허 제 5,093,568호는 광섬유 케이블의 폴트(fault)를 계속 감시하고, 그 후 케이블 내의 폴트의 자동 위치 탐색이 가능한 감시 시스템을 기재하고 있다. 이 시스템에서, 광 신호는 출력 신호로서 발생되어 광섬유 케이블의 제1 단부에 접속되고 제2 단부로 전송된다. 그 후 이 신호가 광섬유 케이블을 통해 복귀하여 케이블의 제1 단부에서 복귀 신호가 제공된다. 제1 단부의 비교기는 출력 신호와 복귀 신호를 비교하여 대응하는 차이 데이터를 제공한다. OTDR은 광섬유 케이블을 따른 신호 손실의 위치를 검출하고, 데이터 처리시스템은 대응하는 차이 데이터로부터 신호 손실의 위치를 결정한다. 하나의 광학적 시간 영역 반사계는 복수의 광섬유 케이블을 감시하기 위해 사용될 수 있다. Maycock은 피시험용 케이블을 선택하는 OTDR 스위치를 사용함으로써 복수의 광섬유 케이블을 시험하는 필요성을 제기하고 있다. Maycock의 장치는 연속 감시를 위해 복수의 광섬유 케이블에 통상 영구적으로 부착된다. 개별 다중 섬유 케이블을 시험하기 위해 케이블 내의 다양한 섬유를 동시에 신속하게 시험할 수 있는 수단이 요구된다.
본 발명의 일 특징에 따르면, 다중 광섬유 케이블 내의 광섬유에 광학적으로 각각 접속되는 복수의 광섬유 점퍼를 포함하고, 다중 광섬유 케이블의 근단에서 등거리의 0위치에 다중 광섬유 케이블 내의 복수의 광섬유를 따라 개별적으로 배치된 복수의 경계면으로부터의 단일 광 시험 펄스의 반사 펄스를 식별하는 장치가 제공된다. 상기 단일 광 펄스는 각 광섬유 점퍼를 따라 다중 광섬유 케이블 내의 광섬유로 향한다. 상기 경계면으로부터의 반사광은 길이가 다양한 광섬유 점퍼의 각각을 따라 복귀하므로, 각 반사광이 각 광섬유 점퍼를 따라 복귀할 때, 변동된 차이를 측정할 수 있도록 제공된다.
도 1은 본 발명에 따라 구성된 다중 광섬유 케이블 시험 장치의 개략도.
도 2는 개별 커넥터 시험 특점과 인접하는 어레이 커넥터 시험 측점을 도시한 것으로, 도 1의 시험 장치의 부분 평면도.
도 3은 도 2의 선 Ⅲ-Ⅲ을 따라 취한 도 2의 개별 커넥터 시험 측점의 종단면도.
도 4는 측정 처리 중에, 도 1의 장치 내의 OTDR 유닛에서의 신호를 그래프로 도시한 도면.
도 5는 다중 광섬유 케이블의 시험 중에 도 1의 장치 내의 OTDR 유닛에서의 신호를 그래프로 도시한 도면.
도 6은 각 단부에 APC 커넥터를 갖는 다중 광섬유 케이블을 시험하도록 구성된 도 1의 시험 장치를 도시한 부분 개략도.
도 7은 한쪽 단부에 APC 커넥터를 구비하고 다른 쪽 단부에 PC 커넥터를 구비하는 다중 광섬유 케이블을 시험하도록 구성된 도 1의 시험 장치의 부분 개략도.
<도면의 주요부분에 대한 부호의 설명>
10 : 개별 커넥터 시험 측점
12 : 어레이 커넥터 시험 측점
14 : 제1 케이블
16 : 어레이 커넥터
18 : 제2 케이블
20 : 개별 커넥터
22 : OTDR 유닛
23 : 광 스위치
54 : 분리기
도 1은 본 발명에 따라 구성된 다중 광섬유 케이블 시험 장치의 개략도이다. 이 장치는 복수의 개별 커넥터 시험 측점(10) 및 복수의 어레이 커넥터 시험 측점(12)을 제공한다. 각각의 피시험용 케이블은 그의 단부 커넥터가 접속되는 2개의 커넥터 시험 측점 사이로 연장하도록 이 장치에 접속되고, 상기 커넥터 시험 측점(들)의 타입(들)은 케이블의 2개의 단부에서의 커넥터 타입(들)에 따른다. 도 1의 예에서, 장치는 각 단부에 어레이 커넥터(16)를 갖는 제1 케이블(14) 및 한쪽 단부에 어레이 커넥터(16)를 갖고 다른 쪽 단부에 개별 커넥터(20)를 갖는 제2 케이블을 시험하도록 구성된다. 각 케이블(14 및 16)은 단일 모드 또는 다중 모드 타입일 수 있다.
이 장치는 하나의 OTDR(optical time domain reflectometer) 유닛(22)을 포함하고, 이 유닛은 시험 처리 중에 사용되는 광 펄스를 발생하고, 피시험용 케이블 및 커넥터에서 후방으로 반사된 펄스를 수신하여 평가한다(receive and evaluate). 시험 펄스 및 그의 반사 펄스 모두는 OTDR 유닛(22)의 입력/출력 포트를 구성하는 하나의 광섬유(22a)를 따라 진행한다. 하나의 시험 동작을 실행하는 과정 동안, OTDR 유닛(22)은 하나의 펄스를 방출하는데, 이 펄스는 광 스위치(23)의 입력이 된다. 이 스위치는 10개의 출력을 갖고, 이것은 또 각 시험 측점(10 및 12)의 입력이 된다. 광 스위치(23)는 OTDR 유닛(22)으로부터의 각 펄스가 케이블(14 또는 18) 등의 피시험용 케이블이 부착되는 시험 측점(12) 중 하나로만 향하게 한다.
이 펄스가 향하는 시험 측점(10 또는 12) 내에서, 이 펄스의 에너지는 피시험용 케이블 내의 개별 섬유의 각각을 향하여 진행하는 광 경로 중에서 등분할 된다. 이들 각각의 광 경로 내에서, 이 펄스는 시험 측점(10 및 12)과 피시험용 케이블 사이에 접속이 이루어지는 방식에 의해 결정되는 경계면에서 벗어나서 반사된다. 각각의 그러한 펄스의 반사 펄스는 복귀 신호를 형성하고, 이 신호는 광 스위치(23)를 거쳐 OTDR 유닛(22)으로 전송된다. 전형적인 피시험용 다중 광섬유 케이블 내에서, 각 섬유의 길이가 동일하므로, 모든 섬유를 통해 진행하고 각 커넥터 경계면에 반사되는 단일 펄스는 만일 그들이 결합되어 있으면 서로 식별할 수 있는 복수의 펄스로서 동시에 복귀된다. 따라서, 각 시험 측점(10 또는 12) 내에서, 개별 케이블 섬유로의 각각의 광 경로의 일부를 형성하는 각 점퍼는 다른 길이를 갖게 되므로, 이들 복귀 신호가 OTDR 유닛(22)에 도달하는 시간은 떨어져서 전개됨으로써, 다양한 복귀 신호를 식별하는 것이 가능하게 된다. OTDR 유닛(22) 내에서, 이들 복귀 신호는 피시험용 케이블 내의 각 섬유와 관련된 광 경로 및 커넥터의 다양한 파라미터를 산출하도록 사용된다.
시험 처리는 컴퓨터 시스템(24)의 사용을 통해서도 제어되고, 이 시스템은 표시 유닛(26) 상에 결과를 표시하고, 키보드(28)를 통해 제공되는 조작자 입력에 응답한다. 컴퓨터 시스템(24)에 필요한 동작을 실행하는 프로그램은 하나 이상의 플로피 디스크(32)를 통해 입력으로서 제공되어, 컴퓨터 시스템 내에서 실행된다. 컴퓨터 시스템(24)은 컴퓨터 시스템(24) 내에서 어댑터 카드(도시하지 않음)의 출력 포트로부터 연장하는 케이블(36)을 통하여 OTDR 유닛(22) 및 DIDO(Digital In, Digital Out) 유닛(34)에 접속된다. 이 인터페이스는 예를 들면 PAMUX라는 이름으로 캘리포니아 Temecula의 OPTO 22로부터 구입할 수 있는 소프트웨어 및 어댑터 카드를 사용하여 달성될 수 있다.
도 1의 장치 내의 시험 성능은 케이블(14 및 18) 등의 피시험용 케이블을 시험 측점(10 및 12)에 부착하는 다양한 케이블 커넥터의 순차적인 연결 및 분리를 요구한다. 이들 커넥터를 연결하고 분리하기 위해 필요한 동작은 시험 측점(10 및 12) 내의 공기 슬라이더(pneumatic slider)를 통해 자동적으로 실행된다. 이들 공기 슬라이더의 각각은 도 2 및 도 3에 따라 다음에 설명되고, DIDO 유닛(34)의 출력에 전기적으로 접속되는 솔레노이드 밸브(36)에 의해 조작된다.
도 2는 어레이 커넥터 시험 측점(10) 및 개별 커넥터 시험 측점(12)을 특별히 도시한 것으로, 본 발명에 따라 형성된 시험 장치의 부분 평면도이다. 도 3은 개별 커넥터 시험 측점(12)을 통하여 도 2의 절개선 Ⅲ-Ⅲ을 따라 절개된 종단면도이다.
이하, 개별 커넥터 시험 측점(12)의 구성 및 사용을 도 2 및 도 3에 도시된 구성 요소를 참조하여 고려한다. 이 시험 측점(12)은 케이블(18)의 본체(41)에서 연장하는 "접속용 구리줄(pigtail)"(40)의 단부에 복수의 개별 커넥터(20)를 갖는 케이블에 부착되도록 구성된다. 각 접속용 구리줄(40)은 케이블(18)을 통하여 독립 광 경로 중 하나를 형성하는 하나의 광섬유를 포함한다. 특정 케이블(18)의 시험 중에, 개별 커넥터(20)는 복수의 짝을 이루는 정면 커넥터(44)와 일직선을 이루어 탑재 바(mounting bar)(42) 내에 부착된다. 도 2 및 도 3의 예에서, 이들 어레이는 한 줄로 12개의 커넥터(44)를 포함한다. 각 커넥터(44)는 단일 광섬유 점퍼(48)를 거쳐 중간 커넥터(47)에 접속된다. 중간 커넥터(47)는 중간판(50)을 따라 연장한다. 배후 광섬유 점퍼(52)는 각 중간 커넥터(47)와 분리기(54) 사이에 차례로 연장된다.
도 1 내지 도 3에 있어서, 광 스위치(23)에서 단일 입력선(56)을 따른 입력펄스를 수신하는 분리기(54)는 이들 펄스의 파워를 12개 배후 점퍼(52) 사이에서 균일하고 정확하게 분할한다. 하나의 시험은 OTDR 유닛(22)에서의 하나의 펄스로 시작하지만, 12개 복귀 펄스가 발생되고, 이 12개 광 경로의 각각으로부터의 하나의 복귀 펄스가 피시험용 케이블(18)로 향한다. 시험 처리 중에, OTDR 유닛(22)은 각 광 경로의 복귀 펄스의 레벨을 측정하여, 피시험용 케이블과 관련된 파라미터의 값을 결정하기 위한 순차 산출에 사용되는 데이터를 제공한다. 각 광 경로에 대한 파라미터를 산출하기 위해, 순차적으로 이루어진 몇 개의 측정값이 비교된다. 이들 평가는 개별 광 경로에서 복귀한 펄스를 식별하는 능력에 의해서만 이루어질 수 있다. 이 능력을 제공하기 위해, 배후 점퍼 케이블(52)의 길이는 증가되도록 가변된다. 점퍼 케이블 내의 광의 속도로, OTDR 유닛(22)으로부터의 각 펄스가 배후 점퍼 케이블(52)을 따라 OTDR 유닛(22)으로 다시 순차 진행해야 하므로, 단일 개별 커넥터 시험 측점(12) 내에서 이들 케이블(52)의 길이를 증가 가변시키는 것은 그러한 펄스가 12개 광 경로를 따라 복귀할 때에 미리 결정된 변동을 일으킨다.
도 1에 있어서, 모든 시험은 OTDR 유닛(22)에서의 펄스의 사용을 통해 달성된다. 여러 시험 측점(10 및 12) 중에서, 그곳에 부착된 피시험용 케이블 중에서의 제1 레벨의 분배는 OTDR 유닛(22)의 출력을 하나의 시험 측점(10 및 12) 내의 점퍼 케이블(52)의 길이 변동에 의해 도입된 시간차에 의해 OTDR 유닛(22)으로 다시 반사된 펄스를 식별할 수 있다. 이러한 하나의 케이블의 광 경로에 대하여 얻어진 결과를 식별하는 방법은 한번의 동작으로 그러한 광 경로의 모든 시험을 가능하게 하는 특별한 이점을 갖는다.
도 3에 있어서, 개별 커넥터(20)는 한 쌍의 공기 슬라이더(60 및 62)에 의해, 대응하는 정면 커넥터(44)와 연결되고, 그곳에서 분리된다. 하부 슬라이더(62)는 약 25 밀리미터의 비교적 긴 이동 거리를 가지므로, 커넥터(44)의 단부를 청소하기에 적합한 거리에 걸쳐 정면 커넥터(44)에서 클림핑 블록(42)을 분리하기 위해 사용될 수 있다. 상부 슬라이더(60)는 약 1 밀리미터의 비교적 짧은 이동 거리를 가지므로, 시험 처리 중에 커넥터(20 및 44)를 신속히 연결하고 분리하기 위해 사용될 수 있다. 이들 공기 슬라이더(60 및 62)는 본 명세서에서 공통의 참조번호를 사용하여 식별되는 유사한 부품을 사용하여 형성되는 복수의 특징을 갖는다. 이 타입의 슬라이더는 "Ball Slide Equipped with Pneumatic Cylinder Type LSC"의 이름으로 일본 도쿄의 THK사에서 구입할 수 있다.
각 공기 슬라이더(60 및 62)는 블록(68) 내에서 슬라이더 챔버(66)에서 이동하는 피스톤(64) 등의 본 명세서에서 공통의 참조 번호를 사용하여 식별되는 복수의 유사한 구성 요소를 포함한다. 각 블록(68)은 베이스 채널(70)에 부착되고, 각 피스톤(64)은 슬라이딩 채널(72)에 부착된다. 하부 슬라이더(62)의 베이스 채널(70)은 시험 장치의 베이스 플레이트(73)에 부착된다. 압축 공기가 제1 호스(74)에 의해 각 슬라이더 챔버(66)의 제1 단부에 공급되어, 화살표(76)의 방향으로 피스톤을 움직이게 한다. 압축 공기가 제2 호스(80)(도 2에 도시함)에 접속된 덕트(duct; 78)를 거쳐 각 실린더 챔버(66)의 대향 단부에 공급된다. 공기는 솔레노이드 밸브(36)(도 1에 도시함)를 거쳐 이들 호스(74 및 80)로 향하고, 이들은 공기가 압력 하에서 다른 호스로 공급될 때 각 호스(74 및 80)가 대기 중으로 배기되도록 배열되는 것이 바람직하다.
도 2에 있어서, 공기 슬라이더(60 및 62) 중 하나 또는 이들 모두에는 전기 스위칭 어셈블리(82)가 부가적으로 제공될 수 있고, 이 어셈블리는 슬라이딩 채널(72)에서 바깥쪽으로 연장하는 탭(88)에 고정되어 있는 축(86) 상에 조정 가능하게 탑재된 한 쌍의 액추에이터(84)를 포함한다. 이들 액추에이터(84)의 각각은 슬라이딩 채널이 그의 운동의 끝에 가까워질 때 스위치(90)를 조작하여, 채널(72) 위치의 전기적 표시를 제공한다.
개별 커넥터(20 및 44)에는 대향하는 짝이 되는 커넥터 내의 광섬유가 서로 직선 방향이 되고 적절한 접촉력이 이들 광섬유 사이에 유지되는 것을 보장하기 위해 좁은 간격에서 동작할 수 있는 정렬 연결 특징(alignment and engagement feature)이 제공된다. 이들 정렬 연결 특징은 서로 짝이 되는 커넥터 사이의 비교적 큰 불일치(mis-alignment)는 보상하지 않지만, 복수의 커넥터는 각각의 측면 상의 강성 구조물(rigid structure)에 충분히 탑재될 수 있다.
도 2에 있어서, 각 어레이 커넥터 시험 측점(10)에 있어서, 개별 커넥터 시험 측점(12)의 정면 커넥터(44) 및 개별 광섬유 점퍼(48)는 케이블 어레이 커넥터(16)에 대한 짝이 되는 접속을 제공하도록 구성된 정면 어레이 커넥터(92)로 치환된다. 복수의 섬유 광 라인(94)은 정면 어레이 커넥터(92)로부터 연장되어 중간 커넥터(47) 및 배후 섬유 광 점퍼(52)를 거쳐 분리기(54)의 출력에 개별 접속된다. 각 섬유 광 라인(94)은 어레이 커넥터(16 및 92)가 연결될 때 정면 어레이 커넥터(92)를 거쳐 피시험용 케이블로 향하는 독립 광 경로 중 하나를 형성하는 하나의 광섬유를 포함한다.
케이블 어레이 커넥터(16)는 탑재 브래킷(96)에 의해 상부 슬라이더(60)의 슬라이딩 채널(72)에 부착되고, 이것은 또 하부 슬라이더(62)의 최상부에 탑재되므로, 케이블 어레이 커넥터(16)는 개별 커넥터 시험 측점(12)의 개별 커넥터(20)에 관하여 이미 설명한 방식으로 화살표(76)의 방향 및 반대 방향으로 움직인다.
도 2 및 도 3에 있어서, 시험 과정 중 여러 광 경로 내에서 반사된 광 신호를 식별하기 위해, 각 시험 측점(10 및 12)의 배후 점퍼(52)는 길이가 증가 가변된다. 따라서, 하나의 펄스가 OTDR 유닛(22)(도 1에 도시함)에 의해 방출된 후, 그 펄스의 반사 펄스는 많은 점퍼(52)를 따라 양방향으로 그 펄스에 의해 진행된 시간의 차이만큼 증가 가변된 시간에 OTDR 유닛으로 복귀한다.
도 4 및 도 5는 다중 섬유 케이블 시험 처리 중 OTDR 유닛(22)으로부터 전송될 때의 광의 시험 펄스의 전송 펄스 및 OTDR 유닛으로 복귀할 때 이 펄스의 반사펄스를 그래프로 도시하고 있다.
이하, 다중 섬유 케이블(18)을 시험하는 처리를 도 1, 도 2, 도 4 및 도 5를 참조하여 설명한다. 이 처리에 있어서, 시험은 케이블의 근단 커넥터 및 원단 커넥터에서 발생한다. 이 예에서, 근단 커넥터는 어레이 커넥터(16)로 가정하고, 원단 커넥터는 개별 커넥터(20)로 가정한다. 이러한 가정은 임의이므로, 각 단부에 어레이 커넥터를 갖는 다중 섬유 케이블 또는 각 단부에 개별 커넥터를 갖는 다중 섬유 케이블을 동일한 방식으로 시험할 수 있다.
첫 번째 일련의 시험은 OTDR 유닛(22)을 피시험용 케이블(18)이 부착되어 있는 어레이 커넥터 시험 측점(10)에 접속하는 광 스위치(23)에 의해 발생하므로, 측정은 케이블의 근단 접속부에서 이루어진다. 이러한 일련의 시험 중, 원단 시험 측점(12)의 상부 슬라이더(60)의 슬라이딩 채널(72)은 화살표(76)의 반대 방향으로 움직여서 원단 커넥터(20)가 분리된다. 도 4에 그래프로 도시되어 있는 첫 번째 시험에서, 근단 시험 측점(10)의 상부 슬라이더(60)의 슬라이딩 채널(72)이 또한 화살표(76) 반대 방향으로 움직여서 원단 커넥터(16)도 분리되므로, 각 펄스(102)는 근단 정면 커넥터(92) 내에서 광섬유 단부의 반사 펄스이므로 OTDR 유닛(22)에 의해 방출된 광 펄스(100)는 반사되어 첫 번째 일련의 12개 펄스(102)로서 OTDR 유닛으로 복귀한다. 이들 펄스(102)는 어레이 커넥터 시험 측점(10) 내에서 인접하는 중간 광섬유 점퍼(52)의 길이 차에 의해 결정되는 시간만큼 간격이 떨어져 있다. 이 시험이 케이블(18) 없이 시험 장치를 실제로 측정하지만, 정면 커넥터(92)에서 광섬유의 단부면 상의 마모 및 먼지 퇴적으로 인한 변화가 자동적으로 추적되도록, 새로운 케이블(18)을 시험할 때마다 반복하는 것이 바람직하다.
OTDR 유닛(22)은 시험 펄스(100)의 방출에 이어서, 도 4 및 도 5에 브래킷(bracket; 104)으로 나타낸 제한적이지만 조정 가능한 시간 기간 동안 펄스를 받고 분석하는 능력을 갖는다. 이러한 시험 처리 부분 중, 이 시간 기간은 모든 12개 펄스(102)를 포함하도록 조정된다.
도 1, 도 2 및 도 5를 계속 참조하면, 도 5는 피시험용 케이블(18)의 근단이 접속된 시험 측점(10)과 OTDR 유닛(22)의 출력을 접속하는 광 스위치(23)에 의해 실행되는 두 번째 및 세 번째 처리 중 OTDR 유닛(22)(도 1에 도시함)에 의해 하나의 펄스(100)의 방출에 이어서 발생하는 반사 펄스를 그래프로 도시하고 있다. 이들 시험은 짝이 되는 정면 커넥터(92)와 연결되는 근단 케이블 커넥터(16)에 의해 모두 실행되지만, 원단 케이블 커넥터(20)는 짝이 되는 정면 플레이트 커넥터(47)에서 분리된다. 이들 시험의 각각에 있어서, 원단 커넥터(20)는 이들 커넥터가 다른 광섬유에 접속되지 않으므로 비교적 강한 반사 펄스(106)를 발생하는 반면, 근단 정면 커넥터(92)는 그것이 기계적 압력에 의해 근단 케이블 커넥터(96) 내의 섬유에 접속되므로 비교적 약한 반사 펄스(108)를 발생한다. 이러한 방식의 접속은 광 펄스 내의 에너지의 주된 부분이 반사되는 대신 투과되게 한다. 제1 군의 펄스(108)와 제2 군의 펄스(106) 사이의 지연은 방출된 펄스(100)가 피시험용 케이블(18)의 전체 길이에 걸쳐 이동하는 시간 및 그의 반사 펄스가 케이블(18)을 거쳐 복귀하는 시간에서 구해진다.
두 번째 시험에서, OTDR 유닛(22)이 분석을 위해 펄스를 수신할 수 있는 기간은 브래킷(bracket; 110)으로 표시되는 시간으로 조정됨으로써, 케이블(18)의 근단의 경계면으로부터 반사된 12개 펄스(108)가 분석을 위해 수신될 수 있다. 세 번째 시험에서, 상기 기간은 브래킷(112)으로 표시되는 대체 시간(alternate time)으로 조정됨으로써, 케이블(18)의 원단의 경계면에서 반사된 12개 펄스(106)가 분석을 위해 수신될 수 있다.
이들 3개의 시험이 완료되고 나서, 광 스위치(23)는 OTDR 유닛(22)과 근단 시험 측점(이 예에서는 어레이 커넥터 시험 측점(10)) 사이의 접속을 끝내고 OTDR 유닛(22)을 원단 시험 측점(이 예에서는 개별 커넥터 시험 측점(12))과 접속하도록 조작된다. 다음에, 상술한 3개의 시험이 반복되어, 시험 펄스 및 반사 펄스가 원단 시험 측점(12)을 거쳐 전달된다. 이들 시험 모두는 어레이 커넥터(16)가 화살표(76)의 방향과 반대 방향으로 부착된 상부 슬라이더(60)의 이동에 의해 근간 접속이 분리되는 것에 의해 완료된다. 이들 시험 중 첫 번째는 클림핑 바(42)가 부착된 상부 슬라이더(60)의 이동을 통해, 원단 시험 측점(12)에서의 장치 측정을 허용한다. 다음에, 두 번째 시험은 클림핑 바(clamping bar; 42)가 부착된 상부 슬라이더(60)의 이동에 의해 원단 접속이 연결되는 것에 의해 완료된다. 이들 3개의 시험은 도 4 및 도 5에 도시한 결과를 발생하여, 반사 펄스가 분석을 위해 수신되는 시간이 이들 도면을 참조하여 상술한 바와 같이 조정된다.
피시험용 케이블(18)을 통한 각 광 경로의 전송 특성을 나타내는 실제 파라미터는 상술한 측정으로부터 산출된다. 개별 측정은 어떠한 순서(예를 들면, 세 번째 시험을 두 번째 시험 전에 실행함)로도 이루어질 수 있지만, 상이한 광 경로에서 반사된 광을 사용하는 특정이 그러한 파라미터 산출을 위해 결합되지 않아야 한다는 것은 매우 중요하다. 하나의 시험 펄스(100)의 반사 펄스로서 OTDR 유닛(22)으로 복귀하는 신호를 식별하는 본 명세서에 기재된 방법은 그러한 식별을 달성하는 신회성 있고 반복 가능한 방법을 제공함에 있어 매우 유리하다.
이상은 접속 경계면에서 광섬유의 단부를 연마하여 광섬유의 축에 수직으로 연장하는 면을 형성하는 PC(physical contact) 커넥터를 시험하는 구성 및 처리를 설명하였다. 또 다른 방법으로, 피시험용 케이블은 하나의 단부 또는 양 단부에 APC(angle physical contact) 커넥터를 가질 수 있다. APC 커넥터에 있어서, 광섬유는 연마되어 광섬유의 축에 비스듬한 각도로 연장하는 면을 형성한다. APC 커넥터는 PC 커넥터와 비교할 때 전송 특성이 일반적으로 더 좋다는 이점을 갖는다. 그러나, APC 커넥터는 상술한 바와 같은 시험 동작 중에 접속 해제 및 접속될 때 일정하거나 또는 신뢰성 있는 결과를 보여주지 못하는 결점을 갖는다. 따라서, APC 커넥터를 갖는 다중 섬유 케이블이 시험될 때, APC 커넥터는 시험 장치와 짝을 이루도록 하나의 단부에 PC 커넥터를 갖고 또한 피시험용 케이블과 짝을 이루도록 다른 단부에 APC 커넥터를 갖는 기준 점퍼를 사용하여 시험 장치에 접속된다. 분리 및 재접속의 시험 처리는 기준 점퍼의 커넥터와 시험 장치 사이에서 실행된다.
따라서, 도 6은 한쪽 단부에서 가까운 쪽(near side)에 있는 APC 어레이 커넥터(118)를, 다른 쪽 단부에서 먼 쪽(far side)에 있는 APC 커넥터(119)를 갖는 다중 섬유 케이블(116)을 시험하도록 구성된 도 1의 시험 장치의 부분 개략도이다. 이 케이블(116)은 한쪽 단부에 APC 어레이 커넥터(124)를, 다른 쪽 단부에 PC 어레이 커넥터(126)를 갖는 가까운 쪽 기주 ㄴ점퍼(122)에 의해 가까운 쪽 시험 측점(120)에 접속된다. 피시험용 케이블(116)은 한쪽 단부에 APC 어레이 커넥터(130)를 그리고 다른 쪽 단부에 PC 어레이 커넥터(132)를 갖는 먼 쪽 기준 점퍼(128)에 의해 먼 쪽 시험 측점(127)에 접속된다. 이 예에서, 시험 측점(120 및 127) 양자는 도 1의 장치에서 어레이 커넥터 시험 측점(10)이다. 여기서는 시험 처리의 설명이 용이하게 되도록 명칭 및 참조 번호가 변경된다.
도 1 및 도 6을 참조하면, 각 다중 섬유 케이블(116)이 시험된 후, 측정 시험이 기준 점퍼(122 및 128)에 대하여 실행된다. 이들 시험은 외부 케이블을 접속하지 않고 가까운 쪽 시험 측점(120) 내에서 반사 펄스를 측정함으로써 시작된다. 광 스위치(23)는 가까운 쪽 시험 측점(120)을 OTDR 유닛(22)에 접속한다. 다음에, 기준 점퍼(122 및 128)는 그들의 APC 커넥터(124 및 130)에 의해 서로 접속되고, PC 커넥터(126)에 의해 가까운 쪽 시험 측점(120)에 그리고 PC 커넥터(132)에 의해 먼 쪽 시험 측점(127)에 접속된다.
다중 섬유 케이블(116)을 시험하기 위해, 케이블 커넥터(118 및 119)는 케이블(116)이 도 6에 도시한 바와 같이 기준 점퍼(122 및 128) 사이를 연장하도록 접속된다. 첫 번째 일련의 시험은 먼 쪽 시험 측점(127)에서 분리된 먼 쪽 기준 점퍼(128)의 PC 커넥터(132) 및 광 스위치(23)에 의해 가까운 쪽 시험 측점(120)에 접속된 OTDR 유닛(22)에 의해 실행된다. 이들 첫 번째 시험에서, 가까운 쪽 기준점퍼(122)의 PC 커넥터(126)도 분리되므로, 가까운 쪽 시험 측점(120)의 특성을 검사할 수 있다. 이들 두 번째 시허에서, 가까운 쪽 기준 점퍼(122)는 가까운 쪽 시험 측점(120)과 연결된다. OTDR 유닛(22)은 시험 펄스가 방출된 후, 먼 쪽 기준점퍼 커넥터(132)의 경계면에서 반사된 펄스가 저장되고 분석되도록 조정된다. 다음에, 이 시험은 하측 기준 커넥터 점퍼(119 및 130)의 경계면에서반사된 펄스가 저장되고 분석되도록 OTDR 유닛(22)을 조정하여 반복된다.
다음 일련의 시험은 가까운 쪽 시험 측점(120)에서 가까운 쪽 기준 점퍼(122)의 PC 커넥터(126)를 분리하고, 먼 쪽 시험 측점(127)과 연결을 유지하고 있는 먼 쪽 커넥터(132) 및 광 스위치(23)를 거쳐 먼 쪽 시험 측점(127)에 OTDR 유닛(22)을 접속함으로써 실행된다. 이들 첫 번째 시험에 있어서, OTDR 유닛(22)은 시험 펄스가 방출된 후 가까운 쪽 점퍼 커넥터(126)의 경계면에서 반사된 펄스가 저장되고 분석되어 기준 정보가 얻어지도록 조정된다. 이들 두 번째 시험에서, OTDR 유닛(22)은 시험 펄스가 방출된 후 가까운 쪽 커넥터(118 및 124)의 경계면에서 반사된 펄스가 저장되고 분석되도록 조정된다.
도 7은 한쪽 단부에 APC 어레이 커넥터(119)를 그리고 다른 쪽 단부에 PC 커넥터(136)를 갖는 케이블(134)을 시험하도록 구성된 도 1의 시험 장치의 부분 개략도이다. 이 시험 장치는 먼 쪽 기준 점퍼(128)가 사용되는 것을 제외하고는 도 6에 도시한 바와 같이 구성된다. PC 커넥터(136)를 갖는 피시험용 케이블(134)의 다른 쪽 단부는 가까운 쪽 시험 측점(120)에 직접 접속된다.
도 1 및 도 7을 참조하면, 도 7의 구성에 의한 첫 번째 일련의 시험은 먼 쪽 시험 측점(127)에서 분리된 먼 쪽 기준 점퍼 커넥터(132) 및 광 스위치(23)를 거쳐 가까운 쪽 시험 측점(120)에 접속된 OTDR 유닛(22)에 의해 실행된다. 시험 장치에 관한 참조 정보를 발생하는 이들 첫 번째 시험은 가까운 쪽 케이블 커넥터(136)를 가까운 쪽 시험 측점(120)에서 분리함으로써 실행되므로, 케이블 커넥터(136)가 순차 연결되는 가까운 쪽 시험 측점(120) 내의 커넥터의 반사 특성을 결정할 수 있다. 이 일련의 시험의 나머지 두 가지 시험은 케이블 커넥터(136)를 가까운 쪽 시험 측점(120)에 연결함으로써 실행된다. 이들 첫 번째 시험에서, OTDR 유닛(22)은 가까운 쪽 케이블 커넥터(136)와 가까운 쪽 시험 측점(120) 사이의 경계면에서 반사된 펄스를 저장하고 분석하도록 조정된다. 이들 두 번째 시험에서, OTDR 유닛(22)은 분리된 먼 쪽 점퍼 커넥터(132)에 있어서 경계면에서 반사된 펄스를 저장하고 분석하도록 조정된다.
다음 일련의 시험은 스위치(23)를 거쳐 OTDR 유닛(22)에 접속되는 먼 쪽 시험측점(127)과 먼 쪽 기준 점퍼 커넥터를 연결하고 가까운 쪽 케이블 커넥터(136)를 가까운 쪽 시험 측점(120)에서 분리함으로서 실행된다. 이들 첫 번째 시험에서, OTDR 유닛(22)은 분리된 케이블 커넥터(136)의 경계면에서 반사된 펄스를 저장하고 분석하도록 조정된다. 이들 두 번째 시험에서, OTDR 유닛(22)은 APC 커넥터(119 및 130)의 경계면에서 반사된 펄스를 저장하고 분석하도록 조정된다.
도 6 및 도 7을 참조하여 설명된 개별 시험 각각에서는 길이가 증가하도록 가변하는 섬유 광 점퍼(52)를 사용하여, 개별 섬유 경계면으로의 다양한 광 경로로 부터의 반사 펄스를 식별하는 도 2를 참조하여 이미 설명한 능력이 사용된다. 피시험용 케이블이 어레이 커넥터를 갖는 경우에 대하여 설명하였지만, 이들 케이블 및 그들에 부착되는 기준 점퍼는 한쪽 또는 양쪽 단부에 개별 커넥터를 용이하게 가질 수 있다.
본 발명의 다중 광섬유 케이블 시험 방법 및 장치는 다중 광섬유 케이블 내의 광섬유에 광학적으로 각각 접속되는 복수의 광섬유 점퍼를 포함하고, 다중 광섬유 케이블의 근단에서 같은 거리의 위치에 다중 광섬유 케이블 내의 복수의 광섬유를 따라 개별적으로 배치된 복수의 경계면으로부터의 단일 광 시험 펄스의 반사 펄스를 식별함으로써, 반사 펄스가 각 광섬유 점퍼를 따라 복귀할 때, 변동된 차이를 측정할 수 있도록 제공된다.
상기에서, 본 발명을 특정한 바람직한 실시예에 따라 구체적으로 설명하였지만, 당업자라면 수정 및 변경을 가할 수 있을 것이다. 따라서, 첨부된 특허청구범위는 본 발명의 정신 및 범위 내에 해당하는 모든 수정 및 변경을 포함하도록 작성되었다.

Claims (16)

  1. 다중 광섬유 케이블(multi-fiber optical cable) 내의 복수의 광섬유를 따라 상기 케이블의 근단(near end)으로부터 등거리 위치에 개별적으로 배치된 복수의 경계면에서 반사된 단일 광 시험 펄스(single light test pulse)를 식별하는 장치에 있어서,
    a) 상기 단일 광 시험 펄스를 발생하는 장치가 부착되는 제1 ㅗ트(port);
    b) 상기 다중 광섬유의 근단이 부착되는 제2 포트;
    c) 상기 제1 포트 및 제2 포트 사이의 광 신호 경로를 따라 각각 연장되는 복수의 광섬유 점퍼(optical fiber jumper)- 여기서 복수의 광섬유 점퍼는 상기 제2 포트에서 상기 다중 광섬유 케이블 내의 상기 복수의 광섬유 중 하나의 광섬유에 광적으로 연결됨-
    를 포함하며,
    상기 단일 광 시험 펄스는 상기 복수의 광섬유 점퍼 각각을 따라 상기 다중 광섬유 케이블 내의 복수의 광섬유 중 하나의 광섬유로 향하고,
    상기 복수의 경계면 중 하나의 경계면에서 반사된 펄스는 각각 상기 광섬유 점퍼를 따라 복귀되며,
    상기 광섬유 점퍼는 각각의 상기 반사 펄스가 각각의 상기 광섬유 점퍼를 따라 복귀될 때 변동된 차이(varied difference)를 측정할 수 있도록 다양한 길이를 갖는 장치.
  2. 제1항에 있어서,
    상기 광섬유 점퍼는 공통 증가 거리(common incremental distance)만큼 길이가 가변되어 상기 반사 펄스가 공통 증가 시간(common incremental time)만큰 개별적으로 이격된 펄스열로서 복귀되는 장치.
  3. 다중 광섬유 케이블 내에 복수의 평행한 광 경로를 형성하는 광섬유의 경계면의 특성을 결정하는 장치에 있어서,
    a) 제1 광 포트(optical port)를 거쳐 전송되는 광 시험 신호를 발생하는 펄스 발생 수단;
    b) 상기 제1 광 포트 및 제1 복수의 분리기 인터페이스(splitter interface)에 광 결합되는 제1 분리기- 여기서 제1 분리기는 상기 제1 복수의 분리기 인터페이스 중에서 상기 펄스 발생 수단으로부터의 광 신호를 분할하고, 상기 분리기는 상기 제1 복수의 분리기 인터페이스 각각으로부터의 광 신호를 상기 제1 광 포트로 향하게 함- ;
    c) 상기 제1 분리기에서 상기 제1 광 포트로 전달된 신호를 나타내는 데이터를 기록하는 신호 기록 수단 ; 및
    d) 제1 복수의 광섬유 점퍼- 여기서 제1 복수의 광섬유 점퍼 내의 각 점퍼는 상기 다중 광섬유 케이블의 제1 단부에서 상기 제1 복수의 분리기 인터페이스 내의 하나의 분리기 인터페이스와 상기 다중 광섬유 케이블의 상기 복수의 평행한 광 경로 내의 하나의 평행한 광 경로를 접속하는 광 경로의 일부를 형성하고, 상기 제1 복수의 광섬유 점퍼 각각은 상기 시험 신호의 반사 신호가 상기 다중 광섬유 케이블 내의 상기 평행한 광 경로의 경계면에서 상기 제1 광 포트를 통하여 복귀할 때 변동된 차이를 측정할 수 있도록 길이가 가변됨-
    를 포함하는 장치.
  4. 제3항에 있어서,
    제1 복수의 광섬유 내의 상기 광섬유 점퍼가 공통 증가 거리만큼 길이가 가변되어 상기 시험 신호의 반사 신호가 공통 증가 시간만큼 개별적으로 이격된 일련의 신호로서 복귀되는 장치.
  5. 제3항에 있어서,
    a) 상기 제1 광 포트와 제2 광 포트를 접속하는 제1 상태(first state) 및 상기 제1 광 포트와 제3 광 포트를 접속하는 제2 상태(second state)에서 동작 가능하고, 상기 제2 광 포트를 거쳐 상기 제1 분리기에 접속되는 광 스위칭 수단;
    b) 상기 제3 광 포트 및 제2 복수의 분리기 인터페이스에 광 결합된 제2 분리기- 여기서 제2 분리기는 상기 제2 복수의 분리기 인터페이스 중에서 상기 펄스 발생 수단으로부터의 광 신호를 분할하고, 상기 제2 분리기는 상기 복수의 분리기 인터페이스 각각으로부터의 광 신호를 상기 제3 광 포트로 향하게 함- ; 및
    c) 제2 복수의 광섬유 점퍼- 여기서 상기 제2 복수의 광섬유 점퍼 각각은 상기 다중 광섬유 케이블의 제2 단부에서 상기 제2 복수의 분리기 인터페이스 내의 하나의 분리기 인터페이스 내의 하나의 분리기 인터페이스를 상기 다중 광섬유 케이블의 상기 복수의 평행한 광 경로 내의 하나의 평행한 광 경로와 접속하는 광 경로의 일부를 형성하고, 상기 제2 복수의 광섬유 점퍼 각각은 상기 시험 신호의 반사 신호가 상기 다중 광섬유 케이블 내의 상기 평행한 광 경로의 경계면에서 상기 제2 광 포트를 거쳐 복귀될 때 변동된 차이를 측정할 수 있도록 길이가 개별적으로 가변됨-
    를 추가로 포함하는 장치.
  6. 제5항에 있어서,
    상기 제1 복수의 광섬유 점퍼 각각은 공통 증가 거리만큼 길이가 가변되어 상기 시험 신호의 상기 반사 신호가 상기 제1 상태에 있는 상기 스위칭 수단에 의해 공통 증가 시간만큼 개별적으로 이격된 일련의 신호로서 상기 제1 광 포트로 복귀하며,
    상기 제2 복수의 광섬유 점퍼 각각은 상기 공통 증가 거리만큼 길이가 가변되어 상기 시험 신호의 상기 반사 신호가 상기 제2 상태인 상기 스위칭 수단에 의해 공통 증가 시간만큼 개별적으로 이격된 일련의 신호로서 상기 제1 광 포트로 복귀하는
    장치.
  7. 제5항에 있어서,
    a) 제1 신호에 응답하여 동작하고 상기 제1 복수의 광섬유 점프 각각과 상기 다중 광섬유 케이블의 상기 제1 단부 사이의 광 접속을 접속 및 분리(connecting and disconnecting)하는 제1 접속 수단; 및
    b) 제2 신호에 응답하여 동작하고 상기 제2 복수의 광섬유 각각과 상기 다중 광섬유 케이블의 상기 제2 단부 사이의 광 접속을 접속 및 분리하는 제2 접속 수단
    을 추가로 포함하는 장치.
  8. 제7항에 있어서,
    복수의 시험 동작을 실행하기 위해 미리 결정된 순서에 따라 상기 광 스위칭 수단, 상기 제1 접속 수단, 및 상기 제2 접속 수단을 조작하는 컨트롤러를 추가로 포함하는 장치.
  9. 제8항에 있어서,
    a) 상기 다중 광섬유 케이블의 복수의 광섬유 각각을 상기 제1 단부에서 상기 제1 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 제1 복수의 개별 커넥터; 및
    b) 상기 다중 광섬유 케이블의 복수의 광섬유 각각을 상기 제2 단부에서 상기 제2 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 제2 어레이 커넥터
    를 추가로 포함하는 장치.
  10. 제8항에 있어서,
    a) 상기 다중 광섬유 케이블의 상기 복수의 광섬유 각각을 상기 제1 단부에서 상기 제1 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 제1 어레이 커넥터; 및
    b) 상기 다중 광섬유 케이블의 상기 복수의 광섬유 각각을 상기 제2 단부에서 상기 제2 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 복수의 개별 커넥터(discrete connector)
    를 추가로 포함하는 장치.
  11. 제8항에 있어서,
    a) 상기 다중 광섬유 케이블의 복수의 광섬유 각각을 상기 제1 단부에서 상기 제1 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 제1 복수의 개별 커넥터; 및
    b) 상기 다중 광섬유 케이블의 복수의 광섬유 각각을 상기 제2 단부에서 상기 제2 복수의 광섬유 점퍼 각각을 통해 연장하는 복수의 광 경로에 접속하는 제2 복수의 개별 커넥터
    를 추가로 포함하는 장치.
  12. 제8항에 있어서,
    a) 상기 장치는 말단부(distal end)에서 상기 다중 광섬유 케이블의 복수의 광섬유 각각에 상기 제1 단부에서 접속하는 APC 커넥터, 및 가장 가까운 단부(proximal end)에서 상기 제1 복수의 광섬유 점퍼 각각을 통해 연장하는 광 경로에 접속하는 PC 커넥터를 갖는 기준 점퍼 케이블(reference jumper cable)을 추가로 포함하고,
    b) 상기 제1 접속 수단은 가장 가까운 단부에서 상기 기준 단부를 접속 및 분리하는
    장치.
  13. 다중 광섬유 케이블 내의 복수의 광섬유를 따라 상기 케이블의 근단(near end)에서 등거리 위치에 개별적으로 배치된 경계면의 특성을 결정하는 방법에 있어서,
    a) 근단에서 상기 다중 광섬유 케이블의 상기 복수의 광섬유 각각에 접속되는 복수의 광섬유 점퍼를 거쳐 제1 포트에서 광 펄스를 송출하는 단계;
    b) 각 상기 경계면에서 상기 광 펄스의 상기 제1 포트에서의 반사 펄스- 여기서 반사 펄스는 복수의 광섬유 점퍼 각각을 통해 이동하고, 상기 복수의 광섬유 점퍼 각각은 각 상기 반사 펄스가 수신될 때 변동된 차이를 측정할 수 있도록 다양한 길이를 가짐- 를 수신하는 단계; 및
    c) 각 상기 반사 펄스가 수신될 때 그 강도에 대응하는 값을 저장하는 단계를 포함하는 방법.
  14. 제13항에 있어서,
    상기 광섬유 점퍼는 공통 증가 거리만큼 길이가 가변되어 상기 반사 펄스가 공통 증가 시간만큼 개별적으로 이격된 펄스열로서 복귀되는 방법.
  15. 복수의 평행한 광 경로 내에서 제1 및 제2 복수의 경계면 각각의 특성을 결정하는 방법으로서, 상기 제1 복수의 경계면 각각이 근단으로부터 제1 거리에 상기 복수의 광 경로 중의 하나의 광 경로에 위치하고, 상기 제2 복수의 경계면 각각은 상기 근단에서 제2 거리에 상기 복수의 광 경로 중의 하나의 광 경로에 위치하는 방법에 있어서,
    a) 상기 근단에서 상기 복수의 광 경로 중 하나의 광 경로에 각각 광 접속되는 다수의 광섬유 점퍼를 거쳐 제1 포트에서 제1 광 펄스를 송출하는 단계;
    b) 상기 제1 복수의 경계면 각각에서 상기 제1 광 펄스의 상기 제1 포트에서의 반사 펄스- 여기서 각각의 반사 펄스는 상기 복수의 광섬유 점퍼 중의 하나의 광섬유 점퍼를 통해 이동하고, 상기 광섬유 점퍼는 각 상기 반사펄스가 수신될 때 변동된 차이를 측정할 수 있도록 다양한 길이를 가짐- 를 수신하는 단계;
    c) 상기 제1 복수의 경계면 각각에서 반사된 각 상기 반사 펄스의 값을 저장하는 단계;
    d) 상기 복수의 광섬유 점퍼를 거쳐 상기 제1 포트에서 제2 광 펄스를 송출하는 단계;
    e) 상기 제2 복수의 경계면 각각에서 상기 제2 광 펄스의 상기 제1 포트에서의 반사 펄스- 여기서 각각의 반사 펄스는 상기 복수의 광섬유 절퍼 중의 하나의 광섬유 점퍼를 통해 이동함- 를 수신하는 단계; 및
    f) 상기 제2 복수의 경계면 각각에서 상기 반사 펄스 각각의 값을 저장하는 단계를 포함하는 방법.
  16. 제13항에 있어서,
    상기 광섬유 점퍼가 공통 증가 거리만큼 길이가 가변되어, 상기 제1 및 제2 복수의 경계면에서의 반사 펄스가 공통 증가 시간만큼 개별적으로 이격된 펄스열로서 복귀되는 방법.
KR1019970039985A 1996-12-04 1997-08-21 다중광섬유케이블시험장치및방법 KR100296475B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8/772,055 1996-12-04
US08/772,055 US5767957A (en) 1996-12-04 1996-12-04 Testing an optical cable having multiple fibers by the application of a light pulse to all fibers through optical jumpers of incrementally varying lengths
US08/772055 1996-12-04

Publications (2)

Publication Number Publication Date
KR19980063415A KR19980063415A (ko) 1998-10-07
KR100296475B1 true KR100296475B1 (ko) 2001-10-26

Family

ID=25093771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970039985A KR100296475B1 (ko) 1996-12-04 1997-08-21 다중광섬유케이블시험장치및방법

Country Status (4)

Country Link
US (1) US5767957A (ko)
EP (1) EP0846943A3 (ko)
JP (1) JPH10185761A (ko)
KR (1) KR100296475B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002725B1 (ko) 2018-05-08 2019-10-01 에스팩 주식회사 중심국 터미널를 중심으로 루프 네트워크로 형성된 수동광가입자망 네트워크의 리모트노드 인식 구조

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915055A (en) * 1997-06-30 1999-06-22 Siecor Corporation Method and apparatus for connectorizing fiber optic cable
KR100308923B1 (ko) * 1999-10-15 2001-09-26 서평원 광섬유의 분산특성 시험장치
WO2001061317A1 (en) * 2000-02-17 2001-08-23 Ots Llc Apparatus for optical cable testing
US6766115B1 (en) 2000-08-22 2004-07-20 Agilent Technologies, Inc. Multiport optical component testing using a single optical receiver
JP4115387B2 (ja) * 2001-07-05 2008-07-09 古河電気工業株式会社 光モジュールの検査方法と検査装置
KR20030035197A (ko) * 2001-10-30 2003-05-09 엘지전선 주식회사 기가비트 이더넷 시스템에서 다중모드 광섬유의 전송거리측정방법
US6798946B2 (en) 2001-12-14 2004-09-28 Molex Incorporated Method to deskew parallel optical links
US6621563B2 (en) 2002-01-18 2003-09-16 International Business Machines Corporation Apparatus and method for in-situ vibration testing of fiber optic cables and connectors
WO2005100943A1 (en) * 2004-04-16 2005-10-27 Agilent Technologies, Inc. Visual inspection of optical elements
US8711341B2 (en) * 2005-07-14 2014-04-29 Afl Telecommunications Llc Using sets of OTDR receive fibers with different lengths of marker events to verify optical fiber connectivity
US7388657B2 (en) * 2005-08-22 2008-06-17 Tyco Telecommunications (Us) Inc. System and method for monitoring an optical communication system
KR100796313B1 (ko) * 2006-04-21 2008-01-21 재단법인서울대학교산학협력재단 광선로 계측기 및 광선로 계측 방법
US20080291432A1 (en) * 2007-04-26 2008-11-27 Christopher Horvath System and method for monitoring the coupling efficiency of a fiber-optic surgical system
JP5596022B2 (ja) * 2008-05-29 2014-09-24 パンドウィット・コーポレーション 光ファイバケーブルコネクタ内の光ファイバの接合部分における終端品質を検証する方法及び装置
CN101556207B (zh) * 2009-04-30 2011-09-14 浙江大学 光波导器件批量自动测试的装置
US8593621B2 (en) * 2010-04-30 2013-11-26 International Business Machines Corporation Testing an optical fiber connection
DE102010049780A1 (de) * 2010-10-29 2012-05-03 Lios Technology Gmbh Verfahren zur Erfassung eines Schaltzustands eines optischen Faserschaltermittels einer faseroptischen Messvorrichtung und faseroptische Messvorrichtung
US8692984B2 (en) * 2012-01-31 2014-04-08 Fluke Corporation Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
WO2013181197A1 (en) * 2012-05-29 2013-12-05 Collier Michelle System and method for identifying fiber sequence in a multi-fiber optical cable
WO2014070511A1 (en) 2012-10-29 2014-05-08 Adc Telecommunications, Inc. System for testing passive optical lines
US9513189B2 (en) * 2012-11-08 2016-12-06 Ofs Fitel, Llc Device and method to measure the DMD and other parameters of a multicore optical fiber
CN106079909A (zh) * 2016-07-06 2016-11-09 无锡宏纳科技有限公司 可同时标记多根光纤的光纤内线缆打标机
KR102624704B1 (ko) * 2016-11-23 2024-01-12 진한 린 멀티-모드 파이버를 시뮬레이션하는 방법
KR101944072B1 (ko) * 2017-02-27 2019-01-30 (주)지씨아이 Led 집광모듈을 이용한 유휴 광코아 감시 장치
KR102230292B1 (ko) * 2017-04-07 2021-03-19 재단법인대구경북과학기술원 광신호 복구 시스템
CN110113225A (zh) * 2019-03-29 2019-08-09 武汉市纵享联合科技有限公司 一种网络测试实训仪
US10996138B2 (en) * 2019-08-30 2021-05-04 Viavi Solutions Inc. Parallel optics based optical time domain reflectometer acquisition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309105A (en) * 1980-03-03 1982-01-05 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for testing performance of fiber optic cable components and assemblies
FR2597986B1 (fr) * 1986-04-28 1990-09-21 Foucault Marc Dispositif a coupleur optique, pour calibrer ou etalonner un reflectometre, systeme d'echometrie et procedes de caracterisation d'un coupleur et de mesure d'attenuations utilisant ce dispositif
GB8828408D0 (en) * 1988-12-06 1989-01-05 British Telecomm Loss detector
US5093568A (en) * 1990-12-14 1992-03-03 John Maycock Monitoring system for fiber optic cables utilizing an OTDR for detection of signal loss and automatic location of faults in the cable
US5179420A (en) * 1991-06-07 1993-01-12 Bell Canada Optical time domain reflectometer using a tunable optical source
JP3107315B2 (ja) * 1991-06-14 2000-11-06 株式会社日立製作所 光導波路の製造方法
JP3211453B2 (ja) * 1993-01-29 2001-09-25 安藤電気株式会社 光分岐を含む光線路の減衰量測定方法
US5461693A (en) * 1994-07-14 1995-10-24 At&T Ipm Corp. Optical fiber distribution frame with fiber testing
US5530546A (en) * 1995-06-26 1996-06-25 International Business Machines Corporation Method and apparatus for testing fiber optic jumpers
FR2751746B1 (fr) * 1996-07-24 1998-10-23 Boitel Michel Procede et dispositif de mesure par reflectometrie pour connexion de fibre optique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102002725B1 (ko) 2018-05-08 2019-10-01 에스팩 주식회사 중심국 터미널를 중심으로 루프 네트워크로 형성된 수동광가입자망 네트워크의 리모트노드 인식 구조

Also Published As

Publication number Publication date
US5767957A (en) 1998-06-16
EP0846943A3 (en) 1999-04-21
KR19980063415A (ko) 1998-10-07
EP0846943A2 (en) 1998-06-10
JPH10185761A (ja) 1998-07-14

Similar Documents

Publication Publication Date Title
KR100296475B1 (ko) 다중광섬유케이블시험장치및방법
AU2018264068B2 (en) Method and system for multi-fiber cable testing
US7373069B2 (en) Fiber optic tester
US10072972B2 (en) Non-contact methods of measuring insertion loss in optical fiber connectors
EP2623948B1 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
US6177985B1 (en) Apparatus and method for testing optical fiber system components
EP3622264A2 (en) Non-contact insertion loss measurement systems and methods for optical fiber cable assemblies
US5530546A (en) Method and apparatus for testing fiber optic jumpers
US11215528B2 (en) Multiple front-end device based high speed optical time domain reflectometer acquisition
US7060966B2 (en) Fiber optic tester
US11841289B2 (en) Polarity receive module
CA2316348A1 (en) Method of and system for characterization of fiber optic connections in situ
US6057918A (en) Laser testing probe
US20220091342A1 (en) Arrayed visual inspectors for fiber connectors and adapters
US20210255058A1 (en) Devices and methods of testing optical systems
JP3042594B2 (ja) 光線路保守システム
US20210255401A1 (en) Devices and methods of testing optical systems
US11808660B2 (en) Multiple front-end device based high speed optical time domain reflectometer acquisition
JP7290635B2 (ja) 検査システム
JP3129868B2 (ja) 光スイッチ及び光スイッチング方法
JPS63284447A (ja) 光線路の特性評価試験方法
JPH0299908A (ja) 光ファイバの切替接続スイッチ
JPH1123417A (ja) 光ファイバ線路監視システム
Bissett Automated Optical Fiber Connector End-Face Analysis
CN113933023A (zh) 一种mpo光纤的功率测量和通断检测设备及其方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee