KR100253284B1 - Cell structure of semiconductor memory - Google Patents

Cell structure of semiconductor memory Download PDF

Info

Publication number
KR100253284B1
KR100253284B1 KR1019970015307A KR19970015307A KR100253284B1 KR 100253284 B1 KR100253284 B1 KR 100253284B1 KR 1019970015307 A KR1019970015307 A KR 1019970015307A KR 19970015307 A KR19970015307 A KR 19970015307A KR 100253284 B1 KR100253284 B1 KR 100253284B1
Authority
KR
South Korea
Prior art keywords
line
bit
nmos transistor
signal
cell structure
Prior art date
Application number
KR1019970015307A
Other languages
Korean (ko)
Other versions
KR19980077959A (en
Inventor
전용원
손장섭
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019970015307A priority Critical patent/KR100253284B1/en
Publication of KR19980077959A publication Critical patent/KR19980077959A/en
Application granted granted Critical
Publication of KR100253284B1 publication Critical patent/KR100253284B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE: A cell structure is provided to improve the reading data speed by increasing the amount of charge to be stored at a cell and reducing the number of reproducing operation. CONSTITUTION: The cell structure is composed of the first and second NMOS transistors(NM1,NM2) and the first and second capacitors(C1,C2). The first NMOS transistor and capacitor are in series connected between bit lines and receive a signal of the first word line via the gate of the first NMOS transistor. The second NMOS transistor and capacitor are in series connected between bit lines and receive a signal of the second word line via the gate of the second NMOS transistor.

Description

반도체 메모리의 셀 구조.Cell structure of semiconductor memory.

본 발명은 반도체 메모리의 셀 구조에 관한 것으로, 특히 셀에 저장되는 차지(CHARGE)량을 크게 함으로써, 그 차지량이 누설되는 시간을 줄이기에 적당하도록 한 반도체 메모리의 셀 구조에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell structure of a semiconductor memory, and more particularly, to a cell structure of a semiconductor memory in which the amount of charge stored in a cell is increased so as to reduce the time for which the amount of charge is leaked.

종래 반도체 메모리의 셀 구조를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, a cell structure of a conventional semiconductor memory will be described in detail with reference to the accompanying drawings.

도1은 종래 반도체 메모리의 한 개 셀의 구조를 도시한 도로서, 이에 도시한 바와같이 제1워드라인(WL1)의 신호를 게이트에 인가받고, 비트라인(BL)과 직류전압(Vcp) 사이에 직렬접속된 엔모스트랜지스터(NM1) 및 제1커패시터(C1)와, 제2워드라인(WL2)의 신호를 게이트에 인가받고, 비트바라인(BLBAR)과 직류전압(Vcp) 사이에 직렬접속된 엔모스트랜지스터(NM2) 및 제2커패시터(C2)로 구성되며, 센스증폭기(10)가 상기 비트라인(BL)과 비트바라인(BLBAR) 사이에 접속된다. 상기한 바와같이 구성된 셀이 배열되어 반도체 메모리의 셀 구조를 형성한다.FIG. 1 is a diagram illustrating a structure of one cell of a conventional semiconductor memory. As shown in FIG. 1, a signal of a first word line WL1 is applied to a gate, and is formed between a bit line BL and a DC voltage Vcp. The NMOS transistor NM1 and the first capacitor C1 and the signal of the second word line WL2 are connected to the gate in series and connected in series between the bitbar line BLBAR and the DC voltage Vcp. The NMOS transistor NM2 and the second capacitor C2 are connected to each other, and a sense amplifier 10 is connected between the bit line BL and the bit bar line BLBAR. The cells configured as described above are arranged to form the cell structure of the semiconductor memory.

이하, 종래 셀 구조의 동작을 도1과 도2를 참조하여, 쓰기(WRITING)와 읽기(READING)동작으로 나누어 설명한다.Hereinafter, the operation of the conventional cell structure will be described with reference to FIGS. 1 and 2 by dividing into writing and reading operations.

도2는 종래 반도체 메모리의 셀 구조에서, 워드, 비트, 비트바라인에 인가되는 전압의 파형도로서, 이에 도시한 바와같이 먼저, 쓰기동작에서는 비트라인(BL)에 신호(Vcc)가 인가되고, 비트바라인(BLBAR)에 신호(0)가 인가되어 센스증폭기(10)에서 증폭되고, 제1워드라인(WL1)의 고전위신호를 게이트에 인가받아 턴온된 엔모스트랜지스터(NM1)를 통해 상기 센스증폭기(10)에서 증폭된 신호가 제1커패시터(C1)에 충전된다.FIG. 2 is a waveform diagram of a voltage applied to a word, a bit, and a bit bar line in a cell structure of a conventional semiconductor memory. As shown in the drawing, first, a signal Vcc is applied to a bit line BL in a write operation. The signal 0 is applied to the bit bar line BLBAR to be amplified by the sense amplifier 10, and the high potential signal of the first word line WL1 is applied to the gate through the turned-on MOS transistor NM1. The signal amplified by the sense amplifier 10 is charged in the first capacitor C1.

이후, 상기 제1워드라인(WL1)의 저전위신호가 게이트에 인가되어 상기 엔모스트랜지스터(NM1)를 턴오프 시킨 다음, 상기 비트라인(BL)과 비트바라인(BLBAR)의 신호를 각각

Figure kpo00001
로 인가한다.Subsequently, the low potential signal of the first word line WL1 is applied to the gate to turn off the NMOS transistor NM1, and then the signals of the bit line BL and the bit bar line BLBAR are respectively applied.
Figure kpo00001
Is applied.

따라서, 제1노드(N1)의 전압은 쓰기데이터가 고전위일 경우는 상기 센스증폭기(10)의 최대출력(Vcc)이고, 상기 쓰기데이터가 저전위일 경우는 상기 센스증폭기(10)의 최소출력(0)이며, 상기 제1워드라인(WL1), 비트라인(BL), 그리고 비트바라인(BLBAR)에 각각 인가되는 신호의 파형은 도2에 도시한 바와같다.Accordingly, the voltage of the first node N1 is the maximum output Vcc of the sense amplifier 10 when the write data is at high potential, and the minimum output of the sense amplifier 10 when the write data is at low potential. A waveform of a signal applied to the first word line WL1, the bit line BL, and the bit bar line BLBAR is (0), as shown in FIG. 2.

그리고, 읽기동작에서는 상기 제1워드라인(WL1)을 통해 엔모스트랜지스터(NM1)의 게이트에 고전위가 인가되어 상기 엔모스트랜지스터(NM1)를 턴온시키면, 비트라인(BL)에 상기 쓰기동작에서 제1노드(N1)에 쓰기데이터가 고전위일 경우는 전압(Vcc)이 인가되고, 저전위일 경우는 전압(0)이 인가된다.In the read operation, when a high potential is applied to the gate of the NMOS transistor NM1 through the first word line WL1 to turn on the NMOS transistor NM1, the write operation may be performed on the bit line BL. The voltage Vcc is applied when the write data is high potential to the first node N1, and the voltage 0 is applied when the write data is low potential.

이후, 상기 제1,제2워드라인(WL1),(WL2)을 통해 엔모스트랜지스터(NM1),(NM2)의 게이트에 저전위가 인가되어 상기 엔모스트랜지스터(NM1),(NM2)를 턴오프시킨 다음, 상기 센스증폭기(10)를 동작시켜 비트라인(BL) 및 비트바라인(BLBAR)에 인가된 전압이 증폭되어 출력된다.Thereafter, a low potential is applied to the gates of the NMOS transistors NM1 and NM2 through the first and second word lines WL1 and WL2 to turn the NMOS transistors NM2 and NM2. After turning off, the sense amplifier 10 is operated to amplify and output a voltage applied to the bit line BL and the bit bar line BLBAR.

그러나, 상기한 바와같이 구성 및 동작되는 종래 반도체 메모리의 셀 구조는 쓰기동작에서 고전위 데이터가 저장되면 누설에 의해 그 데이터가 손상되게 되는데 이것을 방지하기 위해서는 재생(REFRESH)동작을 자주해야 하는 문제점이 있었다.However, in the cell structure of a conventional semiconductor memory constructed and operated as described above, when high potential data is stored in a write operation, the data is damaged due to leakage. In order to prevent this, there is a problem in that a replay operation must be frequently performed. there was.

본 발명은 상기한 바와같은 문제점을 해결하기 위하여 창안한 것으로, 본 발명의 목적은 셀에 저장되는 데이터의 차지량을 증가시킬 수 있는 셀 구조의 제공에 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a cell structure that can increase the amount of data stored in the cell.

본 발명의 다른 목적은 읽기동작에서 출력되는 데이터의 차지량을 증가시켜 용이하게 데이터를 읽을 수 있는 셀 구조의 제공에 있다.Another object of the present invention is to provide a cell structure in which data can be easily read by increasing the amount of data output in a read operation.

본 발명의 또 다른 목적은 셀에 저장되는 데이터의 차지량을 증가시켜 재생동작의 횟수를 줄일 수 있는 셀 구조의 제공에 있다.Another object of the present invention is to provide a cell structure which can reduce the number of reproducing operations by increasing the amount of data stored in a cell.

도1은 종래 반도체 메모리의 한 개 셀의 구조를 도시한 도.1 is a diagram showing the structure of one cell of a conventional semiconductor memory.

도2는 도1에 있어서, 워드, 비트, 비트바라인에 인가되는 전압의 파형도.FIG. 2 is a waveform diagram of voltages applied to words, bits, and bit bar lines in FIG.

도3은 본 발명에 의한 반도체 메모리의 한 개 셀의 구조를 도시한 도.3 is a diagram showing the structure of one cell of the semiconductor memory according to the present invention;

도4a, 도4b는 도3에 있어서, 쓰기동작에서 워드, 비트, 비트바라인에 인가되는 전압 및 셀에 충전되는 차지의 파형도.4A and 4B are waveform diagrams of a voltage applied to a word, a bit, a bit bar line, and a charge charged to a cell in a write operation in Fig. 3;

도5a, 도5b는 도3에 있어서, 읽기동작에서 셀에 인가되는 워드라인과 비트라인 및 셀에 충전되는 차지의 파형도.5A and 5B are waveform diagrams of word lines and bit lines applied to cells in a read operation and charges charged to cells in Fig. 3;

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 센스증폭기 C1,C2 : 제1,제2커패시터10: sense amplifiers C1, C2: first and second capacitors

WL1,WL2 : 제1,제2워드라인 BL : 비트라인WL1, WL2: first and second word lines BL: bit lines

BLBAR:비트바라인BLBAR: Bit Barline

상기한 바와같은 목적은 반도체 메모리의 셀 구조에 있어서, 제1워드라인의 신호를 게이트에 인가받고, 비트라인과 비트바라인 사이에 직렬접속된 제1엔모스트랜지스터 및 제1커패시터와, 제2워드라인의 신호를 게이트에 인가받고, 상기 비트바라인과 비트라인 사이에 직렬접속된 제2엔모스트랜지스터 및 제2커패시터로 구성함으로써 달성되는 것으로, 본 발명에 의한 반도체 메모리의 셀 구조를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.As described above, in a cell structure of a semiconductor memory, a first NMOS transistor and a first capacitor connected to a bit line and a bit bar line in series with a signal of a first word line are applied to a gate; It is achieved by applying a signal of a word line to a gate and comprising a second NMOS transistor and a second capacitor connected in series between the bit bar line and the bit line, and attaching the cell structure of the semiconductor memory according to the present invention. When described in detail with reference to the drawings as follows.

도3은 본 발명에 의한 반도체 메모리의 한 개 셀의 구조를 도시한 도로서, 이에 도시한 바와같이 제1워드라인(WL1)의 신호를 게이트에 인가받고, 비트라인(BL)과 비트바라인(BLBAR) 사이에 직렬접속된 엔모스트랜지스터(NM1) 및 제1커패시터(C1)와, 제2워드라인(WL2)의 신호를 게이트에 인가받고, 상기 비트바라인(BLBAR)과 비트라인(BL) 사이에 직렬접속된 엔모스트랜지스터(NM2) 및 제2커패시터(C2)로 구성되며, 센스증폭기(10)가 상기 비트라인(BL)과 비트바라인(BLBAR)에 접속된다.3 is a diagram illustrating a structure of one cell of a semiconductor memory according to an embodiment of the present invention. As shown therein, a signal of a first word line WL1 is applied to a gate, and a bit line BL and a bit bar line are shown. Signals of the NMOS transistor NM1 and the first capacitor C1 and the second word line WL2 connected in series between the BLBARs are applied to the gates, and the bit bar lines BLBAR and bit lines BL are applied. The NMOS transistor NM2 and the second capacitor C2 are connected in series, and a sense amplifier 10 is connected to the bit line BL and the bit bar line BLBAR.

이와같이 구성된 셀이 배열되어 메모리의 셀 구조를 형성한다. 이하, 상기한 바와같이 구성된 셀 구조의 동작을 도3, 도4, 및 도5를 참조하고, 제1워드라인(WL1)에서 신호가 인가될 때의 쓰기와 읽기동작으로 한정하여 설명한다.The cells thus constructed are arranged to form the cell structure of the memory. Hereinafter, the operation of the cell structure configured as described above will be described with reference to FIGS. 3, 4, and 5 and limited to write and read operations when a signal is applied from the first word line WL1.

도4a, 도4b는 본 발명에 의한 반도체 메모리의 셀 구조에서 쓰기동작시에 고전위데이터 또는 저전위데이터가 인가될 때 워드, 비트, 비트바라인 및 셀차지의 파형도이고, 도5a, 도5b는 읽기동작에서 상기 고전위데이터 또는 저전위데이터에 따른 워드라인, 비트라인 및 셀차지의 파형도로서, 이에 도시한 바와같이 먼저, 쓰기동작에서는 비트라인(BL)에 신호(Vcc)가 인가되고, 비트바라인(BLBAR)에 신호(0)가 인가되어 센스증폭기(10)에서 증폭되고, 제1워드라인(WL1)의 고전위신호를 게이트에 인가받아 턴온된 엔모스트랜지스터(NM1)를 통해 상기 센스증폭기(10)에서 증폭된 신호가 제1커패시터(C1)에 충전된다. 이후, 상기 제1워드라인(WL1)의 저전위신호가 게이트에 인가되어 상기 엔모스트랜지스터(NM1)를 턴오프시킨 다음, 상기 비트라인(BL)과 비트바라인(BLBAR)의 신호를 각각

Figure kpo00002
로 인가한다.4A and 4B are waveform diagrams of words, bits, bit bar lines and cell charges when high potential data or low potential data is applied during a write operation in the cell structure of the semiconductor memory according to the present invention. 5b is a waveform diagram of a word line, a bit line, and a cell charge according to the high potential data or the low potential data in a read operation. As shown in the drawing, first, a signal Vcc is applied to the bit line BL in a write operation. When the signal 0 is applied to the bit bar line BLBAR, the signal is amplified by the sense amplifier 10, and the high MOS signal of the first word line WL1 is applied to the gate to turn on the turned on NMOS transistor NM1. The signal amplified by the sense amplifier 10 is charged in the first capacitor (C1) through. Subsequently, the low potential signal of the first word line WL1 is applied to a gate to turn off the NMOS transistor NM1, and then the signals of the bit line BL and the bit bar line BLBAR are respectively applied.
Figure kpo00002
Is applied.

따라서, 쓰기데이터가 고전위일 경우 제1노드(N1)의 전압은 Vcc +

Figure kpo00003
가 되고, 상기 쓰기데이터가 저전위일 경우는
Figure kpo00004
가 된다.Therefore, when the write data is high potential, the voltage of the first node N1 is Vcc +
Figure kpo00003
If the write data is low potential
Figure kpo00004
Becomes

그리고, 읽기동작에서는 제1워드라인(WL1)을 통해 엔모스트랜지스터(NM1)의 게이트에 고전위가 인가되어 상기 엔모스트랜지스터(NM1)를 턴온시킨 다음, 상기 센스증폭기(10)를 동작시켜 비트라인(BL) 및 비트바라인(BLBAR)에 인가된 전압이 증폭되어 출력된다.In the read operation, the high potential is applied to the gate of the NMOS transistor NM1 through the first word line WL1 to turn on the NMOS transistor NM1, and then operate the sense amplifier 10 to operate the bit. Voltages applied to the line BL and the bit bar line BLBAR are amplified and output.

이하, 읽기동작에서 각각의 파형에 대해 조금더 상세히 설명한다.Hereinafter, each waveform in the read operation will be described in more detail.

상기 제1워드라인(WL1)을 통해 엔모스트랜지스터(NM1)의 게이트에 고전위가 인가되어 상기 엔모스트랜지스터(NM1)를 턴온시키면, 상기 쓰기동작에서 쓰기데이터가 고전위일 경우 비트라인(BL)은

Figure kpo00005
에 소정의 전압(
Figure kpo00006
)이 더해진
Figure kpo00007
이 인가되고, 비트바라인(BLBAR)은
Figure kpo00008
가 유지되며, 이때 제1노드(N1)에 충전된 전압(SN1)은 Vcc +
Figure kpo00009
에서
Figure kpo00010
가 되고, 상기 쓰기데이터가 저전위일 경우는 비트라인(BL)에
Figure kpo00011
가 인가되고, 비트바라인(BLBAR)은
Figure kpo00012
가 유지되며, 이때 제1노드(N1)에 충전된 신호(SN1)는
Figure kpo00013
에서
Figure kpo00014
가 된다.When the high potential is applied to the gate of the NMOS transistor NM1 through the first word line WL1 to turn on the NMOS transistor NM1, when the write data has the high potential in the write operation, the bit line BL is turned on. silver
Figure kpo00005
At a given voltage (
Figure kpo00006
) Added
Figure kpo00007
Is applied, the bit bar line (BLBAR)
Figure kpo00008
Is maintained, wherein the voltage SN1 charged in the first node N1 is Vcc +
Figure kpo00009
in
Figure kpo00010
If the write data is at low potential, the bit line BL
Figure kpo00011
Is applied, the bit bar line (BLBAR) is
Figure kpo00012
Is maintained, and the signal SN1 charged in the first node N1 is
Figure kpo00013
in
Figure kpo00014
Becomes

이후, 상기 제1워드라인(WL1)을 통해 엔모스트랜지스터(NM1)의 게이트에 저전위가 인가되어 상기 엔모스트랜지스터(NM1)를 턴오프시킨 다음, 센스증폭기(10)를 구동시키는 구동신호(SAEN)가 Vcc로 되어 상기 센스증폭기(10)를 구동시키면, 상기 쓰기데이터가 고전위일 경우는 비트라인(BL)의 전압이 Vcc가 되고, 비트바라인(BLBAR)의 전압이 0이 되며, 상기 제1노드(N1)에 충전된 신호(SN1)는

Figure kpo00015
를 유지하고, 쓰기데이터가 저전위일 경우는 비트라인(BL)의 전압이 0이 되고, 비트바라인(BLBAR)의 전압이 Vcc가 되며, 상기 제1노드(N1)에 충전된 신호(SN1)는
Figure kpo00016
를 유지한다.Subsequently, a low potential is applied to the gate of the NMOS transistor NM1 through the first word line WL1 to turn off the NMOS transistor NM1, and then to drive the sense amplifier 10. When SAEN is set to Vcc to drive the sense amplifier 10, when the write data is at high potential, the voltage of the bit line BL becomes Vcc, and the voltage of the bit bar line BLBAR becomes 0. The signal SN1 charged in the first node N1 is
Figure kpo00015
If the write data is at low potential, the voltage of the bit line BL becomes 0, the voltage of the bit bar line BLBAR becomes Vcc, and the signal SN1 charged in the first node N1. )
Figure kpo00016
Keep it.

상기한 바와같이 본 발명에 의한 반도체 메모리의 셀 구조는 그 셀에 충전되는 차지량을 크게하여 읽기동작이 용이한 효과와, 재생동작의 횟수를 줄임으로써, 쓰기 및 읽기동작의 수행속도를 증가시킬 수 있는 효과가 있다.As described above, the cell structure of the semiconductor memory according to the present invention increases the charge amount charged in the cell, thereby making the read operation easier and reducing the number of reproducing operations, thereby increasing the speed of the write and read operations. It can be effective.

Claims (1)

제1워드라인의 신호를 게이트에 인가받고, 비트라인과 비트바라인 사이에 직렬접속된 제1엔모스트랜지스터 및 제1커패시터와, 제2워드라인의 신호를 게이트에 인가받고, 비트바라인과 비트라인 사이에 직렬접속된 제2엔모스트랜지스터 및 제2커패시터로 구성하여 된 것을 특징으로 하는 반도체 메모리의 셀 구조.A signal of the first word line is applied to the gate, a first NMOS transistor and a first capacitor connected in series between the bit line and the bit bar line, and a signal of the second word line is applied to the gate, A cell structure of a semiconductor memory, comprising a second NMOS transistor and a second capacitor connected in series between bit lines.
KR1019970015307A 1997-04-24 1997-04-24 Cell structure of semiconductor memory KR100253284B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970015307A KR100253284B1 (en) 1997-04-24 1997-04-24 Cell structure of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970015307A KR100253284B1 (en) 1997-04-24 1997-04-24 Cell structure of semiconductor memory

Publications (2)

Publication Number Publication Date
KR19980077959A KR19980077959A (en) 1998-11-16
KR100253284B1 true KR100253284B1 (en) 2000-04-15

Family

ID=19503762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970015307A KR100253284B1 (en) 1997-04-24 1997-04-24 Cell structure of semiconductor memory

Country Status (1)

Country Link
KR (1) KR100253284B1 (en)

Also Published As

Publication number Publication date
KR19980077959A (en) 1998-11-16

Similar Documents

Publication Publication Date Title
JP3856424B2 (en) Semiconductor memory device
KR100314491B1 (en) A semiconductor memory device
US5220527A (en) Dynamic type semiconductor memory device
US4606010A (en) Dynamic memory device
JP2000339973A (en) Ferroectric memory and semiconductor memory
KR970023375A (en) Data holding circuit
US5517446A (en) Nonvolatile semiconductor memory device and method for driving the same
JP2001084799A (en) Semiconductor memory
KR20000048350A (en) Sense amplifier circuit, memory device using the circuit and method for reading the memory device
JP2002157876A (en) Semiconductor device
JP3953461B2 (en) Integrated circuit memory
US5323345A (en) Semiconductor memory device having read/write circuitry
KR100275107B1 (en) A Ferroelectric Memory device and driving method thereof
JPS62202397A (en) Semiconductor storage device
KR910004733B1 (en) Semiconductor memory device having data bus reset circuit
US5757711A (en) Amplifier circuit and complementary amplifier circuit with limiting function for output lower limit
KR19980087084A (en) Semiconductor memory device
KR0132006B1 (en) Semiconductor memory device
KR960012048B1 (en) Data amplification device of semiconductor memory device
KR100564418B1 (en) DRAM negative word line voltage supply circuit
KR100253284B1 (en) Cell structure of semiconductor memory
JP2828530B2 (en) Non-volatile storage device
KR100316521B1 (en) Over drive circuit for semiconductor memory
KR0145859B1 (en) Semiconductor memory device with a column selection means of compressed voltage
KR0143028B1 (en) Sense amp circuit

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080102

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee