KR100248328B1 - Method of fabricating semiconductor acceleration sensor - Google Patents

Method of fabricating semiconductor acceleration sensor Download PDF

Info

Publication number
KR100248328B1
KR100248328B1 KR1019970049208A KR19970049208A KR100248328B1 KR 100248328 B1 KR100248328 B1 KR 100248328B1 KR 1019970049208 A KR1019970049208 A KR 1019970049208A KR 19970049208 A KR19970049208 A KR 19970049208A KR 100248328 B1 KR100248328 B1 KR 100248328B1
Authority
KR
South Korea
Prior art keywords
wafer
sog
acceleration sensor
manufacturing
coating
Prior art date
Application number
KR1019970049208A
Other languages
Korean (ko)
Other versions
KR19990026893A (en
Inventor
백승호
Original Assignee
오상수
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계주식회사 filed Critical 오상수
Priority to KR1019970049208A priority Critical patent/KR100248328B1/en
Publication of KR19990026893A publication Critical patent/KR19990026893A/en
Application granted granted Critical
Publication of KR100248328B1 publication Critical patent/KR100248328B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)

Abstract

본 발명은 반도체 가속도 센서의 제조방법에 관한 것으로, 그 목적은 웨이퍼의 뒷면에 SOG를 매립하여 이의 평탄화작업을 용이하게 하는 것이다.The present invention relates to a method for manufacturing a semiconductor acceleration sensor, the object of which is to embed the SOG on the back of the wafer to facilitate its flattening operation.

본 발명에 따른 반도체 가속도 센서의 제조방법은 감광막(50)의 코팅작업시 웨이퍼(10)의 뒷면에 매스(12)를 구성하기 위한 단차부(11)가 형성되어 웨이퍼(10)의 진공이 곤란해지는데, 웨이퍼(10)의 뒷면에 SOG(30,Spin-On-Glass)를 매립하여 평탄하게 하였다. 따라서 진공이 쉬워지고 이로 인한 감광막(50)의 코팅작업이 용이하게 되며, 아울러 사진식각공정을 거쳐 패턴(20a)이 완성된 후 SOG(30)의 제거가 완벽하게 이루어져 웨이퍼(10)의 오염이 방지되는 이점이 있다.In the method of manufacturing a semiconductor accelerometer according to the present invention, a step 11 is formed on the back surface of the wafer 10 during the coating operation of the photosensitive film 50, so that vacuum of the wafer 10 is difficult. In this case, SOG (30, Spin-On-Glass) is embedded in the back surface of the wafer 10 to be flat. Therefore, the vacuum becomes easy and the coating of the photoresist film 50 is thereby facilitated, and after the pattern 20a is completed through the photolithography process, the SOG 30 is completely removed and contamination of the wafer 10 is achieved. There is an advantage to be avoided.

Description

반도체 가속도 센서의 제조방법Manufacturing Method of Semiconductor Acceleration Sensor

본 발명은 반도체 가속도센서의 제조방법에 관한 것으로, 더욱 상세하게는 실리콘 산화막위에 감광막을 코팅하는 제조과정에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor acceleration sensor, and more particularly, to a manufacturing process of coating a photosensitive film on a silicon oxide film.

일반적으로 사용되는 반도체 가속도센서는 도 1에 도시한 바와 같이, 웨이퍼(1)에 소정의 반도체 제조공정을 거쳐 가속도에 의해 저항값이 변하는 압저항체(1c)가 구성되고, 전기적 도선의 역할을 하는 금속층, 가속도를 힘으로 변환하여 빔에 전달하는 매스(1b) 등으로 이루어져 있다.In the semiconductor accelerometer generally used, as shown in FIG. 1, a piezoresistor 1c whose resistance is changed by acceleration through a predetermined semiconductor manufacturing process is formed on the wafer 1, and serves as an electrical conductor. It consists of a metal layer, a mass 1b for converting the acceleration into a force and transmitting it to the beam.

도 1은 이러한 구조를 갖는 종래 반도체 가속도센서의 제조방법중에서 사진식각공정을 위해 감광막을 코팅하는 과정을 공정순으로 도시한 개략적인 블록도이다.FIG. 1 is a schematic block diagram illustrating a process of coating a photosensitive film for a photolithography process in a method of manufacturing a conventional semiconductor acceleration sensor having such a structure.

실리콘 산화막(2)이 성장되어 있는 웨이퍼(1)에 감광막(5)을 코팅하는 과정은 이에 도시한 바와 같이 먼저, 단차부(1a)가 형성된 웨이퍼(1)의 뒷면에 테이핑(3)처리를 하고, 이를 Spin Coater의 진공 척(4,vacuum chuck)에 올려놓는다. 이 때, 웨이퍼(1)의 뒷면에는 약 200㎛ 깊이로 식각, 단차부(1a)가 형성됨으로써 매스(1b,Mass)가 구성되어 있는데, 웨이퍼(1) 뒷면을 테이핑(3)처리 하는 것은 이를 평탄화하여 진공 척(4)에서 웨이퍼(1)의 진공을 잡기 위한 것이다.The process of coating the photosensitive film 5 on the wafer 1 on which the silicon oxide film 2 is grown is performed by first taping 3 on the back surface of the wafer 1 on which the stepped portion 1a is formed. And put it on the vacuum chuck (4, vacuum chuck) of the spin coater. At this time, the back surface of the wafer 1 is formed by etching and stepped portions 1a to a depth of about 200 μm, thereby forming masses 1b and mass. It is for flattening and holding the vacuum of the wafer 1 in the vacuum chuck 4.

계속하여 진공을 확인하고 실리콘 산화막(2) 위에 감광막(5,PR)을 도포한다. 그리고 사진식각공정이 끝난 후 웨이퍼(1)의 뒷면에 부착되어 있는 테이프(3)를 제거한다. 웨이퍼(3)의 뒷면에는 테이프(3)의 찌꺼기(3a)가 잔존하기 때문에, 이를 아세톤, 메탄올, D I water에서 세척하여 제거한다.Subsequently, the vacuum is checked and the photosensitive films 5 and PR are applied onto the silicon oxide film 2. After the photolithography process is finished, the tape 3 attached to the back side of the wafer 1 is removed. Since the residue 3a of the tape 3 remains on the back side of the wafer 3, it is removed by washing with acetone, methanol, and DI water.

그러나 이러한 감광막(5) 코팅과정은 매스(1b)를 형성하기 위해 단차부(1a)가 높은 웨이퍼(1)를 Spin Coater의 진공 척(4)에서 웨이퍼(1)의 진공을 잡기 위해서 웨이퍼(1)의 뒷면을 테이핑(3)처리하는데, 감광막(5)을 도포한 후에 테이프(3)의 찌꺼기(3a)를 제거해야 하는 공정이 더 필요하게 된다.However, the coating process of the photoresist film 5 is performed to hold the wafer 1 having the high stepped portion 1a to form the mass 1b, and to hold the wafer 1 in the vacuum chuck 4 of the spin coater. In order to process the backing (3) of the back side), a process of removing the residue 3a of the tape 3 after applying the photosensitive film 5 is required.

또한 웨이퍼(1)의 뒷면을 세척한다고 하여 테이프(3)의 찌꺼기(3a)가 완전히 제거되지 않기 때문에 웨이퍼(1)의 오염을 유발하며, 이후의 공정 진행에 차질을 가져오는 문제점이 있다.In addition, washing the back side of the wafer 1 causes the contamination of the wafer 1 because the residue 3a of the tape 3 is not completely removed, and there is a problem of causing a problem in the subsequent process.

본 발명은 이러한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 감광막의 코팅작업시 웨이퍼의 뒷면에 매스를 구성하기 위한 단차부가 형성되어 웨이퍼의 진공이 곤란해지는데 웨이퍼의 뒷면에 SOG(spin-on-glass)를 매립하여 평탄하게 함으로써, 진공이 쉬워지고 이로 인한 감광막의 코팅작업을 용이하게 하는 반도체 가속도센서의 제조방법을 제공하는 것이다.The present invention is to solve this problem, an object of the present invention is to form a step for forming a mass on the back of the wafer during the coating operation of the photosensitive film is difficult to vacuum the wafer is SOG (spin-on on the back of the wafer) It is to provide a method of manufacturing a semiconductor accelerometer sensor by embedding and flattening the glass (flat-glass), thereby facilitating vacuum and thereby facilitating the coating of the photosensitive film.

도 1은 일반적인 반도체 가속도 센서를 보인 평면도이다.1 is a plan view showing a general semiconductor acceleration sensor.

도 2는 가속도 센서의 제조방법 중에서 종래 감광막 코팅과정을 개략적으로 보인 블록도이다.Figure 2 is a block diagram schematically showing a conventional photosensitive film coating process of the manufacturing method of the acceleration sensor.

도 3은 가속도 센서의 제조방법 중에서 본 발명에 따른 감광막 코팅과정을 개략적으로 보인 블록도이다.3 is a block diagram schematically illustrating a photoresist coating process according to the present invention in a method of manufacturing an acceleration sensor.

*도면의 주요부분에 대한 부호설명** Description of Signs of Main Parts of Drawings *

10..웨이퍼 11..단차부 12..매스10. Wafer 11. Step 12. Mass

20..실리콘 산화막 20a..패턴 30..SOG20.Silicone oxide 20a.Pattern 30.SOG

40..진공 척 50..감광막40. Vacuum chuck 50. Photosensitive film

이러한 목적을 달성하기 위한 본 발명은, 뒷면에 소정깊이의 단차부가 형성되어 매스가 이루어지며 앞면에 실리콘 산화막이 형성된 웨이퍼를 이용한 반도체 가속도센서의 제조방법에 있어서, 웨이퍼의 뒷면을 평탄하게 하도록 단차부에 SOG(Spin-On-Glass)를 매립하는 단계, 실리콘 산화막 위에 감광막을 코팅하는 단계, 사진 공정을 거쳐 패턴을 형성한 후 단차부에 매립되어 있는 SOG를 제거하는 단계를 구비하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor acceleration sensor using a wafer in which a stepped portion having a predetermined depth is formed on a rear surface of a mass and a silicon oxide film is formed on the front surface, so as to flatten the rear surface of a wafer And embedding spin-on-glass (SOG) in the film, coating a photoresist film on the silicon oxide film, and removing the SOG embedded in the stepped portion after forming a pattern through a photographic process. .

이하, 본 발명에 따른 하나의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명한다. 도 3은 반도체 가속도센서의 제조방법 중에서 사진식각공정을 위한 본 발명에 따른 감광막 코팅과정만을 공정순으로 도시한 블록도이다.Hereinafter, one preferred embodiment according to the present invention will be described in detail with reference to the accompanying drawings. 3 is a block diagram illustrating only a photoresist coating process according to an embodiment of the present invention for a photolithography process in a method of manufacturing a semiconductor acceleration sensor.

실리콘 산화막(20)이 성장되어 있는 웨이퍼(10)에 감광막(50)을 코팅하는 과정은 이에 도시한 바와 같이 먼저, 단차부(11)가 형성된 웨이퍼(10)의 뒷면에 SOG(30,Spin-On-Glass)를 매립하고, 상온에서 1-2시간 정도 경화시킨다(단계A).The process of coating the photoresist film 50 on the wafer 10 on which the silicon oxide film 20 is grown is first performed by SOG (30, Spin-) on the back surface of the wafer 10 on which the stepped portion 11 is formed. On-Glass) is embedded and cured at room temperature for 1-2 hours (step A).

웨이퍼(10)의 뒷면에는 습식용액을 이용한 비등방성 에칭(Anisotropic etching)을 통해 약 200㎛ 깊이를 갖는 단차부(11)의 형성으로 매스(12)가 구성됨으로써, 이의 뒷면은 평활하지 않다. 따라서 단차부(11)에 스포이드를 통해 SOG(30)를 매립하여 웨이퍼(10)의 뒷면을 평활하게 하고, 이를 상온에서 1-2시간 경화(Curing)함으로써 웨이퍼(10)와 후술하는 Spin Coater의 진공 척(40,Vacuum Chuck)사이에서 진공을 확실하게 할 수 있다.The back surface of the wafer 10 is formed by forming a stepped portion 11 having a depth of about 200 μm through anisotropic etching using a wet solution, whereby the back surface thereof is not smooth. Therefore, the SOG 30 is embedded in the stepped portion 11 through the eyedropper to smooth the back surface of the wafer 10, and harden it at room temperature for 1-2 hours to process the wafer 10 and the spin coater described later. The vacuum can be ensured between the vacuum chucks 40 and the vacuum chuck.

SOG(30)가 경화된 상태에서 웨이퍼(10)를 진공 척(40,Vacuum Chuck)에 올려놓고(단계B), 진공을 확인한 후 실리콘 산화막(20) 위에 감광막(50,PR)을 도포시킨다(단계C). 이 때, 본 발명의 특징적인 것으로 웨이퍼(10)의 뒷면은 SOG(30)를 매립하여 평탄하게 이루어져 있기 때문에 웨이퍼(10)와 진공 척(40,Vacuum Chuck)사이에서는 진공이 확실하게 이루어 진다.In the state where SOG 30 is cured, the wafer 10 is placed on a vacuum chuck 40 (Vacuum Chuck) (step B), and after checking the vacuum, the photoresist film 50, PR is coated on the silicon oxide film 20 ( Step C). At this time, the characteristic of the present invention is that the back surface of the wafer 10 is made of the SOG 30 is made flat, so that the vacuum between the wafer 10 and the vacuum chuck (40, Vacuum Chuck) is surely made.

그리고, 사진식각공정(photolithography)을 거치고 원하는 패턴(20a)을 형성한 후, 매립되어 있는 SOG(30)를 제거한다(단계D). 단계 D는 일종의 세정단계로서 SOG(30)를 아세톤, 메탄올, D I water에서 순차적으로 제거한다. 상온에서 경화된 SOG(30)는 아세톤에 쉽게 용애되기 때문에 찌꺼기 등이 잔존하지 않고 웨이퍼(10)의 뒷면에서 완벽하게 제거된다.After the photolithography process to form the desired pattern 20a, the embedded SOG 30 is removed (step D). Step D is a type of cleaning step that sequentially removes SOG 30 from acetone, methanol, and D I water. Since SOG 30 hardened at room temperature is easily dissolved in acetone, residues and the like are completely removed from the back surface of the wafer 10 without remaining residues.

이와 같이 매스(12) 구성을 위해 단차부(11)가 형성된 웨이퍼(10)의 뒷면에 SOG(30)를 매립하여 평탄하게 구성하고, 감광막(50)을 코팅 사진식각공정과 패턴(20a)을 형성하는 일련의 공정을 진행함으로써, 사진식각공정의 오염과 공정의 복잡성을 해결할 수 있다. 즉, 패턴(20a) 형성이 완료된 후 웨이퍼(10)의 뒷면에 매립되어 있는 SOG(30)를 제거해야 하는데, 앞에서 설명한 바와 같이 경화된 SOG(30)는 아세톤에 아주 잘 용해되어 제거되기 때문에 웨이퍼(10)가 오염되는 것이 방지된다.As such, the SOG 30 is buried in the back surface of the wafer 10 having the stepped portion 11 formed thereon to form the mass 12, and the photosensitive film 50 is coated with the photolithography process and the pattern 20a. By performing a series of processes to form, it is possible to solve the contamination of the photolithography process and the complexity of the process. That is, after the formation of the pattern 20a is completed, the SOG 30 embedded in the back surface of the wafer 10 should be removed. As described above, the hardened SOG 30 is dissolved in acetone and removed very well. Contamination of 10 is prevented.

이러한 일련의 공정을 거쳐 완성된 가속도 센서를 물체에 장착하면 물체의 가속도가 센서에 전달되고, 가속도에 비례하여 센서의 매스(12)가 움직이게 된다. 이 때, 매스(12)를 지지하고 있는 빔이 휘게 됨으로써, 빔에 응력이 발생되고 빔 위에 있는 압저항체(도 1참조,1c)의 저항값이 변화된다. 따라서 이러한 압저항체(1c)의 저항값 변화를 감지함으로써 물체의 가속도를 감지하게 된다.When the acceleration sensor completed through this series of processes is mounted on the object, the acceleration of the object is transmitted to the sensor, and the mass 12 of the sensor moves in proportion to the acceleration. At this time, the beam supporting the mass 12 is bent, so that stress is generated in the beam and the resistance value of the piezoresistor (see FIG. 1, 1c) on the beam is changed. Therefore, the acceleration of the object is detected by detecting the change in the resistance value of the piezoresistor 1c.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 반도체 가속도 센서의 제조방법은 감광막의 코팅작업시 웨이퍼의 뒷면에 매스를 구성하기 위한 단차가 형성되어 웨이퍼의 진공이 곤란해지는데, 웨이퍼의 뒷면에 SOG(spin-on-glass)를 매립하여 평탄하게 하였다. 따라서 진공이 쉬워지고 이로 인한 감광막의 코팅작업이 용이하게 되며, 아울러 사진식각공정을 거쳐 패턴이 완성된 후 SOG의 제거가 완벽하게 이루어져 웨이퍼의 오염이 방지되는 이점이 있다.As described in detail above, in the method of manufacturing a semiconductor acceleration sensor according to the present invention, a step for forming a mass is formed on the back side of the wafer during coating of the photosensitive film, so that vacuum of the wafer becomes difficult. spin-on-glass) was embedded and flattened. Therefore, the vacuum is easy and the coating of the photoresist film is thereby facilitated, and the SOG is completely removed after the pattern is completed through the photolithography process, thereby preventing contamination of the wafer.

Claims (2)

뒷면에 소정깊이의 단차부가 형성되어 매스가 이루어지며 앞면에 실리콘 산화막이 형성된 웨이퍼를 이용한 반도체 가속도센서의 제조방법에 있어서,In the manufacturing method of a semiconductor acceleration sensor using a wafer having a stepped portion of a predetermined depth is formed on the back surface and the silicon oxide film formed on the front surface, 상기 웨이퍼의 뒷면을 평탄하게 하도록 상기 단차부에 SOG(Spin-On-Glass)를 매립하는 단계, 상기 실리콘 산화막 위에 감광막을 코팅하는 단계, 사진 공정을 거쳐 패턴을 형성한 후 상기 단차부에 매립되어 있는 SOG를 제거하는 단계를 구비하는 것을 특징으로 하는 반도체 가속도센서의 제조방법.Embedding spin-on-glass (SOG) in the stepped portion so as to planarize the back side of the wafer, coating a photoresist film on the silicon oxide film, and forming a pattern through a photographic process and then buried in the stepped portion The method of manufacturing a semiconductor acceleration sensor comprising the step of removing the SOG. 제 1항에 있어서, 상기 SOG를 매립하는 단계 이후에 이것을 상온에서 1-2시간 경화하는 단계를 더 포함하는 것을 특징으로 하는 반도체 가속도센서의 제조방법.The method of claim 1, further comprising curing the SOG at room temperature for 1-2 hours after the step of embedding the SOG.
KR1019970049208A 1997-09-26 1997-09-26 Method of fabricating semiconductor acceleration sensor KR100248328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970049208A KR100248328B1 (en) 1997-09-26 1997-09-26 Method of fabricating semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970049208A KR100248328B1 (en) 1997-09-26 1997-09-26 Method of fabricating semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
KR19990026893A KR19990026893A (en) 1999-04-15
KR100248328B1 true KR100248328B1 (en) 2000-03-15

Family

ID=19521789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970049208A KR100248328B1 (en) 1997-09-26 1997-09-26 Method of fabricating semiconductor acceleration sensor

Country Status (1)

Country Link
KR (1) KR100248328B1 (en)

Also Published As

Publication number Publication date
KR19990026893A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
US5240878A (en) Method for forming patterned films on a substrate
US4672023A (en) Method for planarizing wafers
US3962004A (en) Pattern definition in an organic layer
US5907791A (en) Method of making semiconductor devices by patterning a wafer having a non-planar surface
KR100248328B1 (en) Method of fabricating semiconductor acceleration sensor
JP2597396B2 (en) Method of forming pattern of silicone rubber film
US5043236A (en) Process for determining the focussing of a photolithographic apparatus
JPH0458167B2 (en)
JP2995749B2 (en) Semiconductor device
KR100505414B1 (en) method for forming align key
KR910006544B1 (en) Process for forming contact hole
KR900004967B1 (en) Etching method of semiconductor
JP3225676B2 (en) Method for manufacturing semiconductor device
JPH0269934A (en) Manufacture of semiconductor device
KR100301800B1 (en) Method for fabricating micro nozzle
JP3725416B2 (en) Method for forming metal wiring of semiconductor device
JP2570493B2 (en) Method for manufacturing semiconductor device
KR0156148B1 (en) Fabrication method of semiconductor device
KR930006133B1 (en) M.o.s. contact hole forming method
KR0156104B1 (en) Reference wafer fabricating method for measuring step coverage of semiconductor metal thin film
JPH0582510A (en) Manufacture of protective film for semiconductor device
KR19980048845A (en) Pattern formation method of semiconductor device
KR100209729B1 (en) Forming method of bonding pad line
JPS6232617A (en) Semiconductor device and its manufacture
JPH0818066A (en) Manufacture of semiconductor acceleration sensor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021224

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee