KR100190472B1 - 발열적으로 제조된 이산화규소를 기본으로 하는 입상체, 이의 제조방법 및 이의 용도(Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof) - Google Patents

발열적으로 제조된 이산화규소를 기본으로 하는 입상체, 이의 제조방법 및 이의 용도(Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof) Download PDF

Info

Publication number
KR100190472B1
KR100190472B1 KR1019960002501A KR19960002501A KR100190472B1 KR 100190472 B1 KR100190472 B1 KR 100190472B1 KR 1019960002501 A KR1019960002501 A KR 1019960002501A KR 19960002501 A KR19960002501 A KR 19960002501A KR 100190472 B1 KR100190472 B1 KR 100190472B1
Authority
KR
South Korea
Prior art keywords
silicon dioxide
producing
correction
granules
water
Prior art date
Application number
KR1019960002501A
Other languages
English (en)
Other versions
KR960031342A (ko
Inventor
델러 클라우스
크라우제 헬름프리트
마이어 위르겐
케르너 디터
Original Assignee
볼커 버그달
데구사 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼커 버그달, 데구사 악티엔게젤샤프트 filed Critical 볼커 버그달
Publication of KR960031342A publication Critical patent/KR960031342A/ko
Application granted granted Critical
Publication of KR100190472B1 publication Critical patent/KR100190472B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3027Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3036Agglomeration, granulation, pelleting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 이산화규소를 기본으로 하며 하기 특성을 가진 입상체에 관한 것이다.
평균 입자 크기 : 10 내지 120㎛
BET 표면적 : 40 내지 400㎡/g
공극 용적 : 0.5 내지 2.5 ml/g
공극 크기 분포 : 총 공극 용적의 5% 미만은 직경이 5nm 미만인 공극으로 존재하며, 나머지는 중공극 및 거대공극으로 존재한다.
pH 값 : 3.6 내지 8.5
탭 밀도 : 220 내지 700g/l
상기 입상체는 이산화규소를 수중에 분산시키고, 이를 분무건조한 후, 임의로 가열하고/하거나 실란화하여 제조한다.
상기 입상체는 촉매 지지체로서 사용된다.

Description

열분해적으로 제조된 이산화규소를 기재로 하는 입상체, 이의 제조방법 및 이의 용도
제 1 도는 실시예 1 내지 4에서 수득한 이산화규소 지지체의 입자 크기 분포도이다.
제 2 도는 실시예 5 내지 8에서 수득한 이산화규소 지지체의 입자 크기 분포도이다.
제 3 도는 실시예 9 내지 11에서 수득한 이산화규소 지지체의 입자 크기 분포도이다.
제 4 도는 실시예 12 내지 14에서 수득한 이산화규소 지지체의 입자 크기 분포도이다.
본 발명은 발열적으로 제조된 이산화규소를 기재로 하는 입상체, 이의 제조방법 및 촉매 지지체로서의 이의 용도에 관한 것이다.
고온 가수분해 또는 화염 가수분해에 의해 SiCl4로부터 열분해법 실리카 또는 이산화규소를 제조하는 것은 공지되어 있다[참조 : Ullmanns Enzyklopadie der technischen Chemie, 4th Edition, Volume 21, page 464(1982)].
열분해법 이산화규소는 극도로 미세한 입자, 고 비표면(BET), 고순도, 구형의 입자형태 및 기공의 부재가 특징이다. 이러한 특성때문에, 열분해적으로 제조된 이산화규소는 촉매용 지지체로서 주목을 받고 있다. [참조 : Dr. Koth et al., Chem. Ing. Techn. 52, 628(1980)]. 상기 적용을 위해 열분해적으로 제조된 이산화규소를 기계적 수단, 예를 들면, 타블레트 성형기(tabletting machine)로 성형시킨다.
또한, 분무 건조를 이용하여 열분해적으로 제조된 이산화규소를 분무된 입상체로 성형시켜, 소결된 세라믹 재료용 출발원료를 수득하는 것 또한 공지되어 있다(참조: DE-A 36 11 449).
전기 아아크(electric arc)속에서 열분해적으로 제조된 이산화규소는 분무건조에 의해 분무된 입상체로 성형시킬 수 있고, 이를 흡수매질 또는 촉매 지지체로써 사용할 수 있음이 또한 공지되어 있다(참조: DE-A 12 09 108).
열분해적으로 제조된 이산화규소에 겔 방법을 적용시키고 계속해서 분무 건조에 의해 입상체를 성형시키는 것 역시 공지되어 있다. 이 입상체는, 산화크롬으로 피복된 후, 에틸렌의 중합에 사용된다(참조: EP-A 0 050 902, US-A 4,386,016).
더우기, 올레핀의 촉매적 중합반응을 위한 촉매 지지체로서 침강 이산화규소를 사용하는 것도 공지되어 있다(참조: WO91/09881).
열분해적으로 제조된 이산화규소의 공지되어 있는 분무된 입상체능 예를 들면 폴리에틸렌의 제조시 촉매 지지체로서 사용하기에 가장 적합하지는 않다는 단점을 지닌다.
따라서, 본 발명의 목적은 폴리에틸렌의 제조시 촉매 지지체로서 사용될 수 있는 열분해적으로 제조된 이산화규소의 분무된 입상체를 개발하는 것이다.
본 발명은 열분해적으로 제조된 이산화규소를 기재로 하며 다음과 같은 물리화학적 특성을 지니는 입상체를 제공한다:
평균 입자 크기 : 10 내지 120㎛
BET 표면적 : 40 내지 400㎡/g
기공 용적 : 0.5 내지 2.5ml/g
기공크기 분포 : 총 공극 용적의 5% 미만은 직경이 5nm 미만인 기공으로 존재하며, 나머지는 중기공 및 대기공으로서 존재한다.
pH 값 : 3.6 내지 8.5
탭 밀도 : 220 내지 700g/l
본 발명에 따른 입상 재료는 열분해적으로 제조한 이산화규소를 수중에 분산시키고, 이를 분무 건조시킨 후 수득한 입상체를 150 내지 1,100℃의 온도에서 1 내지 8시간 동안 가열시킴으로써 제조할 수 있다.
본 발명은 또한 열분해적으로 제조된 이산화규소를 기재로 하며 다음과 같은 물리화학적 특성을 지닌 입상체를 제공한다:
평균 입자 크기 : 10 내지 120㎛
BET 표면적 : 40 내지 400㎡/g
기공 용적 : 0.5 내지 2.5ml/g
기공크기 분포 : 총 공극 용적의 5% 미만은 직경이 5nm 미만인 기공으로 존재하며, 나머지는 중기공 및 대기공으로서 존재한다.
pH 값 : 3.6 내지 8.5
탭 밀도 : 220 내지 700g/l
본 발명에 따른 입상 재료는 열분해적으로 제조한 이산화규소를 수중에 분산시키고, 이를 분무 건조한 후 수득된 입상체를 실란화하여 제조할 수 있다. 할로실란, 알콕시실란, 실라잔 및/또는 실록산을 실란화 반응에 사용할 수 있다.
특히 다음 물질이 할로실란으로서 사용될 수 있다 :
X3Si(CnH2n+1) 유형의 할로오가노실란(여기서, X는 Cl 또는 Br이고, n은 1 내지 20이다)
X2(R')Si(CnH2n+1) 유형은 할로오가노실란(여기서, X는 Cl 또는 Br이고, R'는 알킬이며, n은 1 내지 20이다)
X2(R')2Si(CnH2n+1) 유형의 할로오가노실란(여기서, X는 Cl 또는 Br이고, R'는 알킬이며, n은 1 내지 20이다)
X3Si(CH2)m-R' 유형의 할로오가노실란(여기서, X는 Cl 또는 Br이고, m은 0.1 내지 20이며, R'는 알킬,아릴(예:-C6H5),
(R)X2Si(CH2)m-R' 유형의 할로오가노실란(여기서, X는 Cl 또는 Br이고, R은 알킬이며, m은 0.1 내지 20이고, R'는 알킬,아릴(예:-C6H5),
(R2) X Si(CH2)m-R' 유형의 할로오가노실란(여기서, X는 Cl 또는 Br이고, R은 알킬이며, m은 0.1 내지 20이고, R'는 알킬,아릴(예:-C6H5),
특히 다음 물질이 알콕시실란으로서 사용될 수 있다:
(RO)3Si(CnH2n+1) 유형의 오가노실란(여기서,R은 알킬이고, n은 1 내지 20이다)
R'x (RO)y Si(CnH2n+1) 유형의 오가노실란(여기서, R은 알킬이고, R'은 알킬이며, n은 1 내지 20이고, x+y는 3이며, x는 1 또는 2이고, y는 1 또는 2이다)
(RO)3Si(CH2)m-R' 유형의 오가노실란(여기서, R은 알킬이고, m은 0.1 내지 20이며, R'는 알킬, 아릴(예:-C6H5),
(R'')XROySi(CH2)m-R' 유형의 오가노실란(여기서, R''은 알킬이고, x+y는 2이며, x는 1 또는 2이고, y는 1 또는 2이며, R'는 알킬, 아릴(예:-C6H5),
바람직하게는 실란 Si 108[(CH3O)3-Si-C8H17], 트리메톡시옥틸실란이 실란화제로서 사용된다.
특히 다음 물질이 실라잔으로서 사용될 수 있다:
유형의 실라잔 및 예를 들면, 헥사메틸디실라잔(여기서, R은 알킬이고, R'는 알킬 또는 비닐이다).
특히 다음 물질이 실록산으로서 사용될 수 있다:
D3,D4,D5 유형의 사이클릭 폴리실록산(예; D4는 옥타메틸 사이클로 테트라실록산이다)
다음 유형의 폴리실록산 또는 실리콘 오일
상기식에서,
m은 0,1,2,3,......∞이고,
n은 0,1,2,3,.......∞이며,
u는 0,1,2,3,.......∞이고,
Y는 CH3, H, CnH2n+1(여기서, n은 1 내지 20이다),
R은 알킬, 아릴, (CH2)n - NH2또는 H이고,
R'은 알킬, 아릴, (CH2)n - NH2또는 H이며,
R''은 알킬, 아릴, (CH2)n - NH2또는 H이고,
R'''은 알킬, 아릴, (CH2)n - NH2또는 H이다.
본 발명은 또한 열분해적으로 제조한 이산화규소를 기재로하며 다음 물리화학적 특성을 지닌 입상체를 제공한다:
평균 입자 크기 : 10 내지 120㎛
BET 표면적 : 40 내지 400㎡/g
기공 용적 : 0.5 내지 2.5ml/g
기공크기 분포 : 총 공극 용적의 5% 미만은 직경이 5nm 미만인 기공으로 존재하며, 나머지는 중기공 및 대기공으로서 존재한다.
탄소 함량 : 03. 내지 15.0중량%
pH 값 : 3.6 내지 8.5
탭 밀도 : 220 내지 700g/l
본 발명에 따른 입상 재료는 바람직하게는 중기공 및 대기공을 지니며, 중기공의 용적은 총 기공 용적의 10 내지 80%를 구성한다.
본 발명에 따른 입상재료의 탄소 함량은 0.3 내지 15.0중량%일 수 있다.
본 발명에 따른 입상재료의 입자 크기 분포는 8㎛ 보다 큰 것이 80용적%이며 96㎛ 보다 적은 것도 80용적%이다.
본 발명의 바람직한 양태에서, 5㎛ 보다 작은 기공의 비율은 총 기공 용적에 대해 최대 5%일 수 있다.
본 발명의 입상재료는 열분해적으로 제조된 이산화규소를 수중에 분산시키고, 이를 분무 건조한 후 수득된 입상체를 150 내지 1,100℃의 온도에서 1 내지 8시간 동안 가열한 다음, 이를 실란화하여 제조할 수 있다. 위에서 기술한 동일한 할로실란, 알콕시란란, 실라잔 및/또는 실록산이 실란화반응에 사용될 수 있다.
본 발명은 또한 열분해적으로는 제조한 이산화규소, 바람직하게는 화염 가수분해에 의해 사염화규소로부터 제조한 이산화규소를 물에 분산시키고, 이를 분무 건조시킨 후, 수득된 입상체를 임의로 150 내지 1,100℃의 온도에서 1 내지 8시간 동안 가열하고/하거나 실란화시킴을 특징으로 하는, 열분해적으로 제조된 이산화규소를 기재로 하는 입상체의 제조방법을 제공한다.
수중 분산액에서 이산화규소의 농도는 5 내지 25중량%일 수 있다.
분무 건조는 200 내지 600℃의 온도에서 수행할 수 있다. 디스크 분무기(disk atomizer) 또는 노즐 분무기(nozzle atomizer)가 이 목적에 사용될 수 있다.
입상체의 가열은 고정상[예: 체임버 킬른(chamber kiln)] 내 및 이동상(예: 회전식 건조기)내 모두에서 수행할 수 있다.
실란화반응을 위해서 기술한 바와 동일한 할로실란, 알콕시실란, 실라잔 및/또는 실록산을 이용하여 수행할 수 있으며, 이를 위해 예를 들면, 에탄올과 같은 유기 용매에 실란화제를 임의로 용해시킬 수 있다.
바람직하게는 실란 Si 108[(CH3O)3-Si-C8H17], 트리메톡시옥틸실란이 실란화제로서 사용된다.
입상재료를 실란화제와 함께 분무한 후 이 혼합물을 1시간 내지 6시간에 걸쳐 105 내지 400℃의 온도에서 가열처리함으로써 실란화반응을 수행할 수 있다.
다른 방법으로는, 입상재료를 증기상태의 실란화제로 처리한 후 이 혼합물을 0.5 내지 6 시간에 걸쳐 200 내지 800℃의 온도에서 가열처리함으로써 입상체의 실란화반응을 수행할 수 있다.
열처리는 예를 들어 질소와 같은 보호가스하에서 수행할 수 있다.
가열 믹서 및 분무설비가 장착된 건조기내에서 연속식 또는 회분식으로 실란화반응을 수행할 수 있다. 적합한 장치의 예는 플로우쉐어(ploughshare)믹서, 디스크 건조기 또는 유동상 건조기이다.
비표면, 입자 크기 분포, 기공 용적, 탭 밀도, 실란올 그룹 농도, 기공 분포 및 pH 값과 같은, 입상체의 물리화학적 변수는 분무, 가열 및 실란화반응 동안에 출발원료 및 조건을 변화시킴으로서 정의된 한계내에서 변화시킬 수 있다.
발명에 따른 입상체는 중합반응용 촉매를 제조하기 위한 촉매지지체, 특히 폴리에틸렌 제조용 촉매를 제조하기 위한 촉매 지지체로서 사용될 수 있다.
이것은 순도가 높고, 열 안정성이 높으며, 실란올 그룹 농도가 낮고, 형태에 있어서 소구형인 1차 입자이며 총 기공 용적중의 직경이 5nm 미만인 기공이 5% 미만으로 존재한다는 잇점이 있다.
더욱이 본 발명은 촉매 지지체로서, 특히 중합반응용 촉매의 제조를 위한 입상체의 용도를 제공한다. 본 발명의 바람직한 양태에서, 본 발명에 따른 입상체는 폴리에틸렌 제조용 촉매용 제조하기 위한 촉매 지지체로서 사용될 수 있다.
(실시예)
사용되는 열분해적으로 제조된 이산화규소는 다음 물리화학적 특성을 지니는 이산화규소이다.
1) DIN 66131에 의한 평가
2) DIN ISO 787/XI, JIS K 5101/18(스크립되지 않음)에 의한 평가
3) DIN ISO 787/II, ASTM D 280, JIS K 5101/21에 의한 평가
4) DIN 55921, ASTM D 1208, JIS K 5101/23에 의한 평가
5) DIN ISO 787/IX, ASTM D 1208, JIS K 5101/24에 의한 평가
6) DIN ISO 787/XVII, JIS K 5101/20에 의한 평가
7) 105℃ 에서 2시간 동안 건조된 물질
8) 1000℃에서 2시간 동안 소성된 물질
9) 특수 방습 포장
10) 물:에탈올 1:1
11) 점화시 손실물의 성분중 HCl의 함량
이산화규소를 제조하기 위하여, 액상 규소 화합물을 수소와 공기로 이루어진 옥시하이드로겐 화염속으로 분무한다. 대부분의 경우에 사염화규소를 사용한다. 수소-산소 반응 동안에 형성된 물의 작용으로 상기 물질은 이산화규소 및 염산으로 가수분해된다. 화염을 통과한 후 이산화규소는 1차 에어로실 입자 및 1차 에어로실 응집물이 응집되는 소위 응고 영역으로 들어간다. 이러한 단계에서 일종의 에어로졸로서 존재하는 생성물을 사이클론(cyclone)내에서 공존하는 가스상의 물질로부터 분리하고 습윤 가열된 공기로 후처리한다.
이러한 공정에 의해 잔여 염산함량이 0.025%로 저하될 수 있다. 상기 공정 말기에 수득한 이산화규소의 부피밀도가 약 15g/ℓ에 지나지 않으므로, 연속적인 진공 압축에 의해 약 50g/ℓ 이상의 탭 밀도를 달성할 수 있다.
예를 들어, 화염 온도, 수소와 산소의 비율, 사염화규소의 양, 화염내에서의 체류시간 또는 응집경로의 길이와 같은 반응조건으로 이산화규소의 입자 크기를 변화시킬 수 있다.
BET 표면적은 DIN 66 131에 따라 질소를 이용하여 측정한다.
기공 용적은 소기공, 중기공 및 대기공 용적의 합으로부터 계산한다. 소기공 및 중기공은 N2등온선을 기록하고 BET, 드보어 및 바레트(de Boer and Barrett), 조이너 및 할렌다(Joyner and Halenda)의 방법에 의해 이 값을 평가하여 측정한다. D가 30nm 보다 큰 기공은 Hg 포로시메트리법(porosimetry method)으로 측정한다. 대기공을 측정하기 위해, 샘플을 건조 오븐안에서 15시간 동안 100℃로 건조시키고 진공상태의 실온에서 탈기시킨다.
소기공 및 중기공을 측정하기 위해서는, 샘플을 건조오븐안에서 15시간 동안 100℃로 건조시키고 진공상태에서 한 시간 동안 200℃로 탈기시킨다.
실란올 그룹 농도를 리튬 알라네이트 방법으로 측정한다. 여기에서 SiOH-그룹은 LiAℓH4와 반응하며 이 반응 동안에 생성된 수소량은 압력으로부터 측정한다.
(측정원리)
4구 플라스크내로 입상재료를 칭량하면서 도입한다. 상기 플라스크를 진공으로 하고 오일욕을 150℃까지 가열한다. 플라스크 내부의 온도(내부 온도계로 조절됨)를 오일욕의 온도와 함께 약 130℃까지 승온시킨다. 예비처리 동안에 압력을 압력 측정 장치 PI2(레이볼드에서 구입한 TM210, 측정범위 103내지 10-3mbar)를 이용하여 기록한다. 물의 탈착을 압력 측정으로부터 모니터할 수 있다. 예비처리 말기(말기온도에서 30분)에 10-2mbar 미만의 압력을 달성하여야 한다.
예비처리 완료후에, 스톱 밸브를 폐쇄하여 진공상태의 플라스크를 진공 유니트로부터 분리하고 정상온도로 복귀시킨다. 실제 측정은 적하 깔때기를 통하여 플라스크내로 유입되는 LiAℓH4용액의 측정량 및 생성된 수소로부터 측정되는 압력의 증가를 기초로 한다. 플라스크 용적을 알고 있다면, H2의 양은 이상 기체 법칙으로부터 계산할 수 있다. 압력은 측정범위가 0 내지 1bar인 디지탈측정기(PI2)(MKS Instruments PR-2000)를 이용하여 기록한다.
압력측정을 방해하는 쉽게 휘발되는 성분을 제거하기 위하여, 실험을 수행하기 전에 사용된 LiAℓH4용액(디에틸렌 글리콜 디메틸 에테르중 2% LiAℓH4)를 탈기시킨다. 상기 목적을 위하여 적하깔때기속의 용액위의 압력을 제2 진공펌프로 증기압(22℃에서 3.7mbar)까지 강하시켜, 액체가 비등하도록 한다. 용액이 충분히 탈기되었는지를 시험하기 위해 샘플없이 블랭크 측정을 한다. 수소 압력을 측정하는데 있어서는, 용매의 증기압을 이용하여 보정한다.
(설명)
우선 리터로 용량을 측정하는, 그라운드-유리 스토퍼(ground-glass stopper)를 장착한 적하 깔때기의 용적을 측정함으로써 장치를 보정한다. 스톱 밸브를 비롯한 모든 연결부를 포함하는 반응 플라스크의 용적을 다음 실험으로 수득한다:
대기압에서 공기로 충전된 적하깔때기를 진공 플라스크에 부착시킨다. 두 용적사이의 압력 보충은 적하깔때기의 마개를 열어서 수행한다. 설정된 압력은 디지털 측정 장치에 의해 나타난다. 반응 용기의 용적을 질량 평균으로부터 수득한다. 현재의 장치로 243.8ml와 동등한 용적 VR을 수득한다.
형성된 수소의 몰수를 다음의 식에서 수득한다:
P는 반응 플라스크내에서의 압력 증가이다. 이 값을 용매의 증기압(22℃에서 3.7mbar)에 상응하는 양으로 보정한다. 22°와는 크게 다른 실온에서 증기압을 증기압 표로부터 수득한다. 200 내지 800mbar 의 P 값을 수득할 수 있도록, 칭량한 샘플을 선택하는 것이 유용하다. 이 경우에 온도변화로 인한 증기압의 작은 변화는 결과에 거의 어떠한 영향도 미치지 않는다.
반응 용기의 용적을 도입된 고체물질의 용적 및 용액의 용적을 공제하여 보정한다. 고체물질의 용적은 칭량한 부분과 밀도로부터 수득되며 용액의 용적은 적하깔때기로부터 판독된다.
마직막으로 실란을 그룹의 밀도를 다음 식으로부터 수득한다.
NL: 로슈미트(Lohschmidt) 수
F : 칭량한 고체물질의 표면
샘플을 다음과 같이 처리한다:
1시간 동안 120℃ 및 0.2mbar 에서 가열; 60℃로 냉각; LiAℓH4의 첨가; 10분후, 발생한 압력차이를 판독.
입자 크기 분포를 레이저 광학적 입자 크기 분석기 실라스 그래눌라메트르 715(Cilas Granulametre)로 측정한다.
탭 용적을 ASTM D 4164-88에 따라 측정한다.
장치 : DIN 53194에 따른, 엔겔스만사의 탭 용적계 STA V 2003,
섹션 5.2. b-f
측정실린더 250ml, 매 2ml의 눈금 간격
최대 오차범위 ± 0.1g인 천칭
절차 :
탭 용적계의 계수기를 1000 스트로크로 설정한다.
측정 실린더의 무게를 측정한다.
입상재료를 250ml 표시까지 측정실린더안에 넣는다.
샘플의 무게를 기록한다.(± 0.1g)
측정 실린더를 용적계에 넣고 장치를 켠다.
탭의 종료 : 장치는 자동적으로 1000 스트로크후에 꺼진다.
탭 용적을 1ml의 정확도로 판독한다.
(계산)
E : 입상재료의 칭량 부분(g)
V : 판정되는 용적(ml)
W : 물 함량(중량%; Specification POOl에 따라 측정)
pH값은, 물:에탄올 1:1의 소수성 촉매 지지체의 경우에, 4% 수성 분산액 중에서 측정한다.
(본 발명에 따른 입상체의 제조)
열분해적으로 제조된 이산화규소를 완전한 탈이온수에 분산시킨다. 로터/스테이터 원리(rotor/stator principle)에 따라 작동하는 분산 응집물을 위의 공정에 사용한다. 형성된 현탁액을 분무 건조시킨다. 최종 생성물을 여과기 또는 사이클론으로 침전시킨다.
분무 입상체를 머플로(muffle furnace)에서 가열시킨다.
분무 건조되고 임의로 가열된 입상체를 실란화 반응의 공정을 위해 믹서에 넣고 우선 물에 이어 실란 Si 108(트리메톡시옥틸실란) 또는 HMDS(헥사메틸실라잔)을 함께 격렬히 혼합하면서 분무시킨다. 분무를 완료한 후에, 물질을 15 내지 30분 이상 혼합한 다음 1시간 내지 4시간 동안 100℃ 내지 400℃에서 가열한다.
사용되는 물을 예를 들어, 염산과 같은 산으로 pH7 내지 1로 산성화시킨다. 사용되는 실란화제를 예를 들면, 에탄올과 같은 용매에 용해시킨다.
실시예 1 내지 14에 따라 수득한 입상체의 입자 크기 분포를 제1도 내지 제4도에서 표 및 그래픽 형태로 나타낸다.
실시예 1,5,9,11 은 13은 선행분야(DE-A 36 11 449 Liu)에서의 비교 실시예이다.
(폴리에틸렌 제조시 촉매 지지체로로 본 발명에 따른 입상체 이용의 실시예)
활성 성분이 티타늄일 경우, 언급된 촉매는 에틸렌의 중합 반응에서 다음 결과를 달성한다.

Claims (6)

  1. (정정) 열분해적으로 제조된 이산화규소를 기재로 하며 다음 물리화학적 특성을 지닌 입상체.
    평균 입자 크기 : 10 내지 120㎛
    BET 표면적 : 40 내지 400㎡/g
    기공 용적 : 0.5 내지 2.5ml/g
    기공크기 분포 : 총 공극 용적의 5% 미만은 직경이 5nm 미만인 기공으로 존재하며, 나머지는 중기공 및 대기공으로서 존재한다.
    pH 값 : 3.6 내지 8.5
    탭 밀도 : 220 내지 700g/l
  2. (정정) 열분해적으로 제조된 이산화규소를 물에 분산시키고 이를 분무 건조시킨 후 수득된 과립을 150 내지 1,100℃의 온도에서 1 내지 8시간 동안 가열함을 특징으로 하는, 제1항에 따른 입상체의 제조방법.
  3. (정정) 열분해적으로 제조된 이산화규소를 물에 분산시키고 이를 분무건조시킨 후 수득된 입상체를 실란화시킴을 특징으로 하는, 제1항에 따른 입상체의 제조방법.
  4. (정정) 열분해적으로 제조된 이산화규소를 물에 분산시키고 이를 분무건조시킨 후 수득된 입상체를 150 내지 1,100℃의 온도에서 1 내지 8시간 동안 가열시킨 다음 연속해서 실란화시킴을 특징으로 하는, 제1항에 따른 입상체의 제조방법.
  5. (정정) 중합반응용 촉매의 제조를 위한 촉매 지지체로서의, 제1항에 따른 입상체의 용도.
  6. (정정) 폴리에틸렌 제조용 촉매를 제조하기 위한 촉매 지지체로서의, 제1항에 따른 입상체의 용도.
KR1019960002501A 1995-02-04 1996-02-02 발열적으로 제조된 이산화규소를 기본으로 하는 입상체, 이의 제조방법 및 이의 용도(Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof) KR100190472B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19503717.0 1995-02-04
DE195.3717.0 1995-02-04
DE19503717 1995-02-04
DE19601415A DE19601415A1 (de) 1995-02-04 1996-01-17 Granulate auf Basis von pyrogen hergestelltem Siliciumdioxid, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19601415.8 1996-01-17

Publications (2)

Publication Number Publication Date
KR960031342A KR960031342A (ko) 1996-09-17
KR100190472B1 true KR100190472B1 (ko) 1999-06-01

Family

ID=7753205

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960002501A KR100190472B1 (ko) 1995-02-04 1996-02-02 발열적으로 제조된 이산화규소를 기본으로 하는 입상체, 이의 제조방법 및 이의 용도(Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof)

Country Status (2)

Country Link
KR (1) KR100190472B1 (ko)
DE (2) DE19601415A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936478A1 (de) * 1999-08-03 2001-02-15 Degussa Sinterwerkstoffe
DE10109484A1 (de) * 2001-02-28 2002-09-12 Degussa Oberflächenmodifizierte, dotierte, pyrogen hergestellte Oxide
DE10114484C2 (de) * 2001-03-24 2003-10-16 Heraeus Quarzglas Verfahren für die Herstellung eines Komposit-Werkstoffs mit einem SiO¶2¶-Gehalt von mindestens 99 Gew.-%, und Verwendung des nach dem Verfahren erhaltenen Komposit-Werkstoffs
DE10145162A1 (de) * 2001-09-13 2003-04-10 Wacker Chemie Gmbh Kieselsäure mit geringem Gehalt an Kieselsäure-Silanolgruppen
EP1308422A1 (en) 2001-10-30 2003-05-07 Degussa AG A method of producing glass of optical qualitiy
EP1700830A1 (en) 2005-03-09 2006-09-13 Novara Technology S.R.L. Process for the production of monoliths by means of the invert sol-gel process
ES2295989T3 (es) 2005-03-09 2008-04-16 Degussa Novara Technology S.P.A. Proceso para la produccion de monolitos por medio del proceso sol-gel.
EP1700828A1 (en) 2005-03-09 2006-09-13 Degussa AG Method for producing ultra-high purity, optical quality, glass articles
EP1700832A1 (en) 2005-03-09 2006-09-13 Degussa AG A method of producing glass of optical quality
DE102005061965A1 (de) 2005-12-23 2007-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Oxidische Agglomeratpartikel, Verfahren zur Herstellung von Nanokompositen sowie deren Verwendung
EP2011769A1 (de) 2007-07-06 2009-01-07 Evonik Degussa GmbH Gesintertes, hochreines Siliciumdioxid enthaltendes Granulat
DE102007031633A1 (de) 2007-07-06 2009-01-08 Evonik Degussa Gmbh Verfahren zur Herstellung von hochreinem Siliciumdioxidgranulat
DE102007049158A1 (de) 2007-10-13 2009-04-16 Evonik Degussa Gmbh Verwendung von Kieselglasgranulaten
EP2088128B1 (en) 2007-12-10 2015-04-08 Cristal Materials Corporation Method for the production of glassy monoliths via the sol-gel process
JP5624361B2 (ja) * 2009-08-07 2014-11-12 パナソニック株式会社 メソポーラスシリカ微粒子の製造方法、メソポーラスシリカ微粒子、メソポーラスシリカ微粒子分散液、メソポーラスシリカ微粒子含有組成物、及びメソポーラスシリカ微粒子含有成型物
DE102011004532A1 (de) 2011-02-22 2012-08-23 Evonik Degussa Gmbh Hochreines Siliciumdioxidgranulat für Quarzglasanwendungen
DE102011087385A1 (de) 2011-11-30 2013-06-06 Evonik Degussa Gmbh Granulate auf der Basis von Titandioxid-Partikeln mit hoher mechanischer Stabilität

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611449A1 (de) * 1986-04-05 1987-10-15 Degussa Grundstoff zur herstellung von keramischen werkstoffen

Also Published As

Publication number Publication date
DE59606530D1 (de) 2001-04-12
KR960031342A (ko) 1996-09-17
DE19601415A1 (de) 1996-08-08

Similar Documents

Publication Publication Date Title
US5776240A (en) Granules based on pyrogenically prepared silicon dioxide, methods for their preparation and use thereof
KR100190472B1 (ko) 발열적으로 제조된 이산화규소를 기본으로 하는 입상체, 이의 제조방법 및 이의 용도(Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof)
KR100928376B1 (ko) 화열적으로 제조된 이산화규소 기재 과립, 그의 제조 방법 및 그의 용도
US6752864B2 (en) Granules based on pyrogenically prepared silicon dioxide doped with aluminum oxide by means of an aerosol, method of producing same, and use thereof
US6743269B2 (en) Granules based on pyrogenically produced aluminium oxide, process for the production thereof and use thereof
JP2010195680A (ja) 表面改質された、エアロゲル型ストラクチャードシリカ
EP1717202A1 (en) Sintered silicon dioxide materials
JP3581079B2 (ja) 熱分解により製造された二酸化チタンをベースとする顆粒及びその製法
WO2003054089A1 (en) Granules based on pyrogenically prepared silicon dioxide, a process for their preparation and their use
US6413490B1 (en) Granules based on pyrogenic titanium dioxide and a process for preparing the granules
TW393443B (en) Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
TW202406845A (zh) 熱解方式製備之表面改質氧化鎂

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140109

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160107

Year of fee payment: 18

EXPY Expiration of term