KR0163799B1 - 2'-데옥시-2'-플루오로코포르마이신과 이의 입체 이성체 - Google Patents

2'-데옥시-2'-플루오로코포르마이신과 이의 입체 이성체

Info

Publication number
KR0163799B1
KR0163799B1 KR1019940701645A KR19940701645A KR0163799B1 KR 0163799 B1 KR0163799 B1 KR 0163799B1 KR 1019940701645 A KR1019940701645 A KR 1019940701645A KR 19940701645 A KR19940701645 A KR 19940701645A KR 0163799 B1 KR0163799 B1 KR 0163799B1
Authority
KR
South Korea
Prior art keywords
deoxy
compound
fluoro
fluorocoformycin
atom
Prior art date
Application number
KR1019940701645A
Other languages
English (en)
Inventor
토미오 다케우찌
수미오 우메자와
추토무 츄지야
요시아키 다까하시
Original Assignee
오메자와 준오
자이단 호진 비세이부스 가가쿠 겐큐가이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오메자와 준오, 자이단 호진 비세이부스 가가쿠 겐큐가이 filed Critical 오메자와 준오
Application granted granted Critical
Publication of KR0163799B1 publication Critical patent/KR0163799B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • C07H5/06Aminosugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H11/00Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/052Imidazole radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/23Heterocyclic radicals containing two or more heterocyclic rings condensed among themselves or condensed with a common carbocyclic ring system, not provided for in groups C07H19/14 - C07H19/22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/02Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명에서는 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실 브로마이드를 통하여 다단 공정으로 2'-데옥시-2'-플루오로코포르마이신과 2'-데옥시-8-에피-2'-플루오로코포르마이신을 합성한다.
또한 본 발명에서는 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아라비노푸라노실 브로마이드에서 출발하여 다단 공정으로 2'-데옥시-2'-데피-2'-플루오로코포르마이신과 2'-데옥시-8,2'-디에피-플루오로코포르마이신을 합성한다.
이들 4종류의 코포르마이신-2'-플루오로유도체는 신규한 화합물이고, 아데노신 데아미나아제에 대하여 강력한 효소저해활성을 갖는다. 특히, 이들 신규한 화합물은 상기의 강력한 효소저해활성을 기초로하여 급성 림파계 백혈병에 대하여 의료 효과를 갖는 유용한 물질이다. 또한, 상기의 신규한 코포르마이신-2'-플루오로 유도체의 합성에 유용한 각종의 중간체를 신규 화합물로서 얻는다.

Description

[발명의 명칭]
2'-데옥시-2'-플로오로코포르마이신과 이의 입체 이성체
[발명의 상세한 설명]
[기술 분야]
본 발명은 신규한 화합물로서 저독성이고, 또 아데노신 데아미나아제에 대하여 강력한 효소저해활성을 갖고, 림파성 백혈병 및 림파종의 의료적 처리에 유용한 항종향활성을 나타내고, 또한 포르마이신 A의 공존하에서 그램 옴성균에 항균활성을 나타내는 2'-데옥시-2'-플로오로코포르마이신과 그의 입체 이성체에 관한 것이다.
또한, 본 발명은 2'-데옥시-2'-플로오로코포르마이신 또는 그의 입체 이성체의 합성에 사용하는 신규한 중간체 화합물로서 유용한 2-데옥시-2-플루오로-α,β-D-리보푸라노실할라이드와 2-데옥시-2-플로우로-α,β-D-리보푸라노실- 또는 -아리비노푸라노실 아지드와, 중간체로서 또는 항균제로서 유용한 2-데옥시-2-플루오로-α,β-D-리보푸라노실 또는 -아라비노푸라노실 아지드에 관한 것이다.
더우기, 본 발명은 신규한 중간체 화합물로서의 5-아미노-1-(2-데옥시-2-플루오로-β-D-리보푸라노실 또는 -아라비노푸라노실)이미다졸-4-카르복실산과, 3-(2-데옥시-2-플루오로-β-D-리보푸라노실 또는 -아라비노푸라노실)-6,7-디히드록이미다조[4,5-d][1,3]디아제핀-8(3H)-온에 관한 것이다.
[기술 배경]
아데노신 데아미나아제는 포유 동물의 생체 내에 다수 존재하는 효소이고, 푸린 합성과 살베이지 경로에서 아데노신에서 이노신으로의 변환에 관여하는 것이다. 아데노신 데아미나아제는 림파계 세포에 많이 존재하는 것으로 알려져 있다.
코포르마이신(coformycin)은 아데노신 데아미나아제 효소에 대하여 저해활성을 갖는 것이고, 또한 항종향활성을 갖는 포르마이신 A의 작용을 증강시킬 수 있는 누클레오시드형 항생 물질로서 알려져 있다[예를 들면, 특허 공보 소 45-12278호와 (Journal of Antibiotics) A20권 227페이지(1967) 참조]. 또한 코포르마이신은 포르마이신 A와 공존하면, 항균활성을 나타낸다. 그러나, 코포르마이신은 산성 조건의 수용액 중에서는 불안정한 결점을 갖는다(특허 공보 소 60-992호 공보와 미국 특허 제 4,151,374호 명세서 참조).
또한, 코포르마이신과 동일한 분자 골격을 갖는 유사 화합물로서는 2'-데옥시코포르마이신(별명, 펜토스타틴)과 2'-클로로펜토스타틴이 알려져 있다[예를 들면, 미국 특허 제 4,713,372호, 독일 특허 제 2,517,596호, J.Org.Chem. 50권 1651-1656페이지(1985)와 (The Journal of Antibiotics) XXXVIII권, 10호, 1344-1349페이지(1985년 10월) 참조].
이들 코포르마이신 유사화합물은 아데노신 데아미나아제에 대하여 저해활성을 가지고 있고, 이 성질에 기초하여 항종양활성을 갖고, 또는 항종양제 또는 항바이러스제로서 병용할 때 그 항종양제 또는 항바이러스제의 작용을 지속하고, 증대하는 생물학적 활성을 갖는 것이 알려져 있다[예를 들면 spiers 등의 논문 Remissions in hairy cell leukemia with pentostain(2'-데옥시코포르마이신)](New Engl. J. Med. 316권, 825-830vpdlwl(1987)에 소재); Daenen 등의 논문 Successful chemotherapy with deoxycoformycin in adult T-cell lymphoma-loukemia. (Brit. J. Heamatol. 58권 723페이지(1984)에 소재); 야마구지 등의 논문 Climical consequences of 2'-deoxycoformycin treatment in patients with refractory adult T-cell leukemia (Leukemia Res., 10권 989-993페이지(1986)에 소재); Cass 등의 논문 Enhancement of 9-β-D-arabinofuranosyladenine cytotoxicity to mouse leukemia L1210 in vitro by 2'-deoxycoformycin (Cancer Res., 36권 1486-1491페이지(1976)에 소재); wilson 등의 논문 Purinogenic immunodeficiency disease; Differential effects of deoxyadenosine and deoxyguanosine on DNA synthesis in human TlymphoblastsO(J. Chim., Invest. 64권 1475-1484페이지(1979)에 소재); Hershfield 등의 논문 Apparent suicide inactivation of human lymphoblast s-admosylhomocysteinl hydrolase by 2'-deoxyadenosine and adenine arabinoside : A basis for direct toxic effects of analogs of adenosine (J. Biol. Chem. 254권 22-25페이지(1979)에 소재 참조].
특히 2'-데옥시코포르마이신(별명 : 펜토스타틴)은 강한 아데노신 데아미나아제 저해활성을 갖고, 아데노신 데아미나아제를 많이 함유하는 림파구계 세포를 특이적으로 장해하는 작용을 갖기 때문에, 급성 림파성 백혈증 및 성인 T 세포 백혈증의 치료제로서 사용되고 있는 [치료학, 22권 2호 71-75페이지(1989)와 Onodera 등 저 항바이러스제, 194-195페이지 학회 출판 센타 발행(1991년 2월 20일 초판) 참조].
그러나, 코포르마이신과 종래 공지의 상기 코포르마이신 유사체는 산성 수용액 중에서는 불안정하고, 또 포유류에 대하여 아주 높은 급성 독성을 나타내기 때문에, 의약으로서 실제 사용에 난점이 많은 것으로 알려져 있다.
따라서, 아데노신 데아미나아제에 대하여 강력한 효소저해활성을 갖고 또한 산성의 수용액 중에서도 안정하고, 더우기 저독성의 신규한 코포르마이신 유도체를 제공하는 것이 요망되고 있다.
또한, 본 발명자들은 먼저 항종양활성을 갖는 7-0-(2,6-디데옥시-2-플로오로-α-L-탈로피라노실)다우노마이시노 또는 -아드리아마이시논을 합성하는데 성공하고, 이들의 2'-플루오로 안트라사이클린 유도체는 대응하는 2'-요오도, 2'-브로모 또는 2'-클로로-안트라사이클린 유도체에 비하여 산성 수용액 중에서 안정성이 증강되고 또 항종양활성도 증강되는 것이 알려져 있다(특허 공개 소 62-145097호 공보와 유럽 특허 출원 공개 제 230,013A1호 명세서 참조). 2'-플루오로안트라사이클린 유도체의 상기한 우수한 성질은 그 당부분의 2' 위치 플루오로 치환기가 높은 전기 음성도를 갖는 것으로 추정된다. 또한 상기 2'-플루오로-안트라사이클린 유도체의 합성에 관련하여 본 발명자들은, 각종 2-플루오로당의 합성에 많은 코포르마이신은 다음 식(A)으로 표시되는 화합물이고,
이의 화학명은 (8R)-3-(β-D-리보푸라노실)-3,6,7,8-테트라히드로이미다졸[4,5-d][1,3]디아제핀-8-올이다. 코포르마이신은 9-β-D-리보푸라노실푸린에서 출발하여 합성할 수 있다(특허 공고 소 52-958호 공보 및 J.A.C.S. 96권 4326페이지(1974) 참조.
또한 코포르마이신의 다른 합성법으로서는 출발 원료로서 5-아미노-1-(2,3,5-트리-0-아세틸-β-D-리보푸라노실)이미다졸-4-카르복실산을 사용하고, 이로부터 다단계를 통하여 3-(β-D-리보푸라노실)-6,7-히드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온을 중간체로서 만들고, 후자의 중간체를 환원시켜서 이루어지는 코포르마이신의 제조법도 알려져 있다(H. J. Thomas 등 nucleosides Nucleotides 5권 4호, 431-439페이지(1986) 참조).
[발명의 개시]
본 발명자들은 상기의 7-0-(2,6-디데옥시-2-플루오로-α-L-탈로피라노실)다우노마이시논과 -아드리아마이시논에 관한 발명과, 7-9-(2,6-디데옥시-2-플루오로-α-L-탈로피라노실)아드리아마이시논의 14-0-아실유도체에 관한 발명(특허원 소 61-288993호 및 이에 대응하는 유럽 특허원 공개 제 275,431A1호 명세서)에서 얻은 경험에서 보아 코포르마이신의 2' 위치의 수산기를 플루오로기로 대체한 화합물에 해당하는 2'-데옥시-2'-플루오로코포르마이신을 합성할 수 있으면, 이 2'-데옥시-2'-플루오로코포르마이신은 코포르마이신과 펜토스타틴에 비하여 산성 수용액 중에서의 증강된 안정성을 갖거나 아데노신 데아미나아제에 대한 효소저해활성도를 갖는 것이 예상된다.
이러한 예상을 기초로하여, 본 발명자들은 2'-데옥시-2'-플루오로코포르마이신을 합성할 목적으로 각종 연구를 행했다. 그 결과, 신규한 화합물인 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 β-D-리보푸라노실 브로마이드를 합성하고, 이 화합물로부터 다단 공정을 거쳐서 다음 식(B)으로 표시되는 2'-데옥시-2'-플루오로코포르마이신을 합성하는데 성공하고,
또 제2의 생성물로서 다음 식(C)로 표시되는 2'-데옥시-8-에피-2'-플루오로코포르마이신을 합성하는데 성공했다.
또한, 본 발명자들은 공지 화합물인 3,5-디-0-벤졸-2-데옥시-2-플로오로-α-D-아리비노푸라노실 브로마이드에서 출발하여 다단 공정을 통하여 다음 식(D)으로 표시되는 2'-데옥시-2'-에피-플루오로코포르마이신과
다음 식(E)으로 표시되는 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신을 합성하는데 성공했다.
이들 식(B), 식(C), 식(D)와 식(E)으로 표시되는 4종의 코포르마이신-2'-플루오로 유도체는 신규한 화합물임을 확인하고, 또 아데노신 데아미나아제에 대하여 강력한 효소저해활성을 갖는 것을 발견했다. 또한, 이들의 신규한 화합물은 그 강력한 아데노신 데아미나아제로 인하여 이를 환자에게 투여함으로써 급성 림파계 백혈병을 완화시키는 것도 가능함을 알 수 있다.
따라서 제1의 본 발명에 의하면, 다음 일반식(Ia)
[상기 식에서 8 위치의 수산기는 (R) 또는 (S)의 입체 배치를 갖는다]으로 표시되는 2'-데옥시-2'-플루오로코포르마이신[식에서, 8 위치의 수산기가 (R)의 입체 배치를 갖는 경우]와 2'-데옥시-8-에피-2'-플루오로코포르마이신[식에서, 8 위치의 수산기가 (S)의 입체 배치를 갖는 경우]으로 이루어지는 군에서 선택한 화합물을 제공한다.
또한, 제2의 본 발명에 의하면, 다음 일반식 (Ib)
[상기 식에서 8 위치의 수산기는 (R) 또는 (S)의 입체 배치를 갖는다]으로 표시되는 2'-데옥시-2'-에피-2'-플루오로코포르마이신[식에서 8 위치의 수산기가 (R)의 입체 배치를 갖는 경우]과 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신[식에서 8 위치의 수산기가 (S)의 입체 배치를 갖는 경우]으로 이루어지는 군에서 선택한 화합물을 제공한다.
제1의 본 발명에 따른 2'-데옥시-2'-플루오로코포르마이신은 무색의 고체이고, 비선광도 [α]22 D+12℃(c 0.1, 물)을 나타낸다. 이 물질은 아데노신 데아미나아제에 대하여 효소저해활성을 갖고, 또 항종양활성을 갖는다.
또한 제1의 본 발명에 따른 2'-데옥시-8-에피-2'-플루오로코포르마이신도 무색의 고체이고, 비선광도 [α]22 D-115℃(c 0.09, 물)를 나타낸다. 이 물질은 아데노신 데아미나아제에 대하여 효소저해활성을 갖고, 또 항종양활성을 갖는다.
제2의 본 발명에 따른 2'-데옥시-2'-에피-2'-플루오로코포르마이신은 무색의 고체이고 비선광도 [α]27 O+118℃(c 0.05, 물)을 나타낸다. 이 물질은 아데노신 데아민나아제에 대하여 효소저해활성을 갖고, 또 항종양활성을 갖는다.
제2의 본 발명에 따른 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신도 무색의 고체이고, 비선광도 [α]27 O-27℃(c 0.1, 물)를 나타낸다. 이 물질은 아데노신 데아미나아제에 대하여 효소저해활성을 갖고, 또 항종양활성을 갖는다.
제1과 제2의 본 발명에 의한 식(Ia)과 식(Ib)의 물질의 성질을 시험한 시험예를 나타내면 다음과 같다.
[시험예 1]
본 예에서는 2'-데옥시-2'-플루오로코포르마이신(약호:FCF); 2'-데옥시-8-에피-2'-플루오로코포르마이신(약호:e-FCF); 2'-데옥시-2'-에피-2'-플루오로코포르마이신(약호:Ara-FCF); 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신(약호:Ara-e-FCF)이 아데노신 데아미나아제의 효소활성을 저해하는 작용을 갖는 것을 입증하기 위하여, 아데노신 데아미나아제 활성을 50% 저해하는 상기 4종의 화합물의 농도(IC50)를 측정한다.
아데노신 데아미나아제에 대한 시험 화합물의 저해활성은 다음과 같이 시험했다.
0.05M 인산완충액(pH 7,4)과 아데노신 데아미나아제(전체로서 3.85단위/l)(EC 3.5.4.4, Type VI, 시그마 화학사 제품)를 혼합하여 25℃에 5분간 방치하여 프레-인큐베리이션을 행한 후, 아데노신(0.0561μ몰)을 가하여 전량 1.50ml의 혼합물을 조제한다. 이 반응 혼합물의 광학 밀도(파장 265nm으로 측정)를 시간적으로 측정하여, 광학 밀도의 감소에서 아데노신 데아미나아제에 대한 시험 화합물의 IC50값을 산정한다.
비교하기 위하여 코포르마이신과 펜토스타틴도 동일한 방법으로 시험한다.
상기 시험에서 얻은 결과를 다음 표 1에 요약하여 표시했다.
[시험예 2]
본 예는 본 발명에 따른 2'-데옥시-2'-플루오로코포르마이신(FCF)과 2'-데옥시-2'-에피-2'-플루오로코포르마이신(Ara-FCF)이 염산산성의 수용액(pH 2)중에서 코포르마이신과 펜토스타틴에 비하여 안정함을 입증한다.
그 시험법은 다음과 같다.
염산산성의 물에 시험 화합물을 용해한 수용액(pH 2)을 25℃에 유지하고, 그 수용액에서 시료를 시간적으로 취출하여 박층 실리카 겔 크로마토그라피한다. 전개 용매는 아세토니트릴-0.2M 염화암모늄 수용액(3:1)을 사용한다. 박층상의 시험 화합물의 스폿은 UV법, 농황산여색법, 콜리부덴산 암모늄-황산 수용액 시약 여색법을 병용하여 검출한다. 이에 따라, 시험 화합물이 염산산성 수용액 중에서 완전 소실하는데 요하는 시간(시간)을 판정한다. 비교하기 위하여, 코포르마이신과 펜토스타틴도 동일한 방법으로 시험한다. 그 결과는 다음 표 2에 요약하여 표시했다.
[시험예 3]
본 예는 본 발명에 따른 식(Ia)의 2'-데옥시-2'-플루오로코포르마이신(FCF)와 2'-데옥시-8-에피-2'-플루오로코포르마이신(e-FCF) 및 식(Ib)의 2'-데옥시-2'-에피-2'-플루오로코포르마이신(Ara-e-FCF)은 포르마이신 A가 대장균에 대한 항균력을 나타낼 수 있는 작용을 갖는 것을 나타낸다. 즉 포르마이신 A는 100mcg/ml의 농도로서는 대장균에 대한 항균활성을 나타내진 않지만, 식(Ia)와 (Ib)의 본 발명의 화합물이 공존하면, 포르마이신 A가 대장균에 대한 항균활성을 나타내는 것을 다음 시험에서 알 수 있다.
본 시험에서는 포르마이신 A의 100mcg/ml를 함유하는 육즙한천배지의 표면에 본 발명 화합물 즉, FCF, e-FCF, Ara-FCF 또는 ARA-e-FCF를 1mcg/ml의 농도로 함유하는 수용액의 몇방울을 가하여 본 수용액의 원형막을 형성시킨다. 다음, 방치하며 본 발명의 화합물이 육즙한천층에 침투하도록 한다. 다음에 대장균을 배지표면에 전체에 접종하여 약 37℃에서 배양한다. 대장균은 본 발명의 화합물이 침투한 배지표면의 부분을 제외하고 생육하지 않고 저자원이 형성되지만, 기타 배지표면 영역에서는 정상적으로 발육함을 알 수 있다.
[시험예 4]
본 예는 본 발명에 따른 2'-데옥시-2'-에피-2'-플루오로코포르마이신(Ara-FCF)이 공지의 아데노신 데아미나아제 저해제와 비교하여 저독성임을 나타낸다.
마우스를 시험 동물로 한 급성 독성 시험에서 Ara-FCF를 복강 내에 투여한 경우 100mg/kg의 투여에서도 치사되지 않았다.
동일한 급성 독성 시험(정맥 내 투여에서 코포르마이신은 12.5mg/kg 투여에서 치사를 일으키고, 또 펜토스타틴에서는 25mg/kg 투여에서 체중의 감소가 확인되었다(특허 공개 소 61-199797호 공보 참조).
본 발명에 의한 식(Ia)와 식(Ib)의 화합물은 아데노신 데아미나아제 저해활성을 이용한 항종양성 화합물로서, 또는 아데노신 데아미나아제의 영향을 받기 쉬운 항종양제 또는 항바이러스제의 작용을 지속, 증대시키는 화합물로서 유용하다. 또 아데노신 데아미나아제의 영향을 받는 항균성 화합물을 위한 보조제로서 유용하다. 또한, 식(Ia)와 식(Ib)의 본 발명 화합물은 그의 안정한 아데노신 데아미나아제 저해활성을 갖는 고로, 핵산 대사의 해석 및 핵산 대사에 관계하는 병 요인의 해석에 사용되는 시약으로서도 유용하다.
다음 제1의 본 발명에 의한 일반식(Ia)으로 표시되는 2'-데옥시-2'-플루오로코포르마이신과 2'-데옥시-8-에피-2'-플루오로코포르마이신의 합성법을, 메틸-3-데옥시-3-플루오로-β-D-알로피라노시드[화합물(1)]에서 출발하여 본 합성법의 모든 공정 1-19을 간략하게 표시한 다음의 합성 공정 차트(A)를 참조로 하여 설명한다.
합성 공정 차트(A):
단, 상기의 합성 공정 차트(A)에서 Me는 메틸기, Bz는 벤조일기, Ac는 아세틸기를 나타낸다.
다음의 합성 공정 차트(A)에 표시된 공정 1-공정 19에서 행한 반응을 설명한다.
이 공정 1에서는 출발 원료인 공지의 화합물(1), 즉 메틸 3-데옥시-3-플루오로-β-D-알루피라노시드를 염산 수용액 중에서 가온하에 가수 분해하면, 1 위치의 메틸기가 탈리되고, 화합물(2), 즉 3-데옥시-3-플루오로-D-알로파리노오스를 얻는다.
공정 2에서는 공정 1에서 얻은 화합물(2)을 초산에 용해시키고, 사초산납으로 실온에서 산화시키면, 상기 3-데옥시-3-플루오로-D-알로피라노오스의 α-글리콜의 산화적개열이 일어나고, 2 위치 탄소 원자가 포르밀기가 된다. 이에 의하여 산화 생성물로서, 2-데옥시-2-플루오로-4-0-포르밀-D-리보오스가 생성되며, 이를 산성 조건하에 수용액 중에서 70-90℃로 가열하면, 탈 0-포르밀화가 일어나고, 이로서 다히 폐환 반응이 일어나 2-데옥시-2-플루오로-α,β-D-리보푸라노오스[화합물(3)]이 생성된다.
다음 공정 3에서는 상기 화합물(3)을 염산수소 메탄올 중에서 실온하에 메탄올과 반응시키면, 메틸글리코시드화가 이루어져, 메틸 2-데옥시-2-플루오로-α-D-리보푸라노시드[화합물(4)]와 메틸 2-데옥시-2-플루오로-β-D-리보푸라노시드[화합물(5)]의 혼합물을 얻는다.
공정 4에서는, 공정 3에서 얻은 화합물(4), 화합물(5)의 3 위치와 5 위치의 수산기를 벤조일기로 보호하기 위하여 화합물(4), (5)의 혼합물을 피리딘에서 실온하에 필요량의 염화벤조일과 반응시킨다. 따라서 메틸 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-리보푸라노시드[화합물(6)]와 그의 β-이성체[화합물(7)]의 혼합물을 얻는다. 공정 5에서는 화합물 (6), (7)의 1-메톡시기를 아세톡실로 대체하기 위하여, 화합물(6)과 (7)의 혼합물을 황산의 존재하에 초산 중에서 실온으로 무수초산에서 아세틸화한다. 이로써 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-리보푸라노실 아세테이트[화합물(8)]과 그의 β-이성체[화합물(9)]의 혼합물을 얻는다.
공정 6에서는 화합물 (8), (9)의 1-아세톡시기를 브로모기와 대체하기 위하여, 화합물(8)과 (9)의 혼합물을 염소화 탄화수소용제, 예를 들면 디클로로메탄 중에서 초산의 존재 하에 브롬화수소와 실온에서 반응시킨다. 이로써 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-리보푸라노실 브로마이드[화합물(10)]와 그의 β-이성체[화합물(11)]의 혼합물을 얻는다.
공정 7에서는 화합물(10), (11)의 1-브로모기를 아지드기와 대체하기 위하여, 화합물(10)과 (11)의 혼합물을 아세토니트릴 또는 적당한 다른 유기 용매에서 아지화 알칼리 금속, 예를 들면 아지화 나트륨과 브롬화 테트라에틸암모늄의 존재하에 실온에서 반응시킨다. 이로써, 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-리보푸라노실아지드[화합물(12)]와 그의 β-이성체[화합물(13)]의 혼합물을 얻는다.
공정 8에서는 공정 7에서 얻은 아실화화합물(12), (13)의 아지드기를 아미노기로 환원시키기 위하여, 화합물(12)과 (13)의 혼합물을 디옥산 중에서 수소 첨가 촉매, 예를 들어 팔라듐 블랙의 존재하에 실온에서 수소와 반응시킴으로써 접촉 환원시킨다. 여기서 3,5-디-0-벤조일-2-데옥시-2-플루오로-α,β-리보푸라노실아민[화합물(14)]을 얻는다.
공정 9에서는 화합물(14)의 1-아니모기를 5-아미노-4-에톡시 카르보닐-1-이미다졸일기로 전화하기 위하여, 화합물(14)을 염화탄화수소용매, 예를 들면 디클로로메탄에서 다음식,
으로 표시되는 에틸 N-(α-시아노-α-에톡시카르보니메틸)포름이미데이트[D. H. Robinson 등; J. C. S. Perkin I 페이지 1715(1972)에 기재되어 있는 방법에 따라서 조제할 수 있다]와 가열환류하에 반응시킨다. 이 반응은 J. C. S. Chem. Comm. 페이지 453-455(1976)에 기재되어 있는 G. Mackenzie 등의 방법에 따라서 실시할 수 있다. 이 반응에 의하여 5-아미노-1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산 에틸에스테르[화합물(16)]과 그의 α-이성체[화합물(15)]를 혼합물로서 얻는다. 이 혼합물을 실리카 겔 컬럼 크로마토그라피(전개 용액으로서 초산에틸-클로로포름을 사용)하여, β-이성체 화합물(16)을 단리시킨다.
공정 10에서는 공정 9에서 단리시킨 화합물(16)에서 벤조일기와 에스테르 형성의 에틸기를 탈리시키기 위하여, 함수디옥산 중에 수산화나트륨에서 화합물(16)을 가열하게 처리한다. 이로서, 5-아미노-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산[화합물(17)]을 얻는다.
공정 11에서는 화합물(17)의 당부분의 수산기를 아세틸기로 보호하기 위하여, 화합물(17)을 피리딘에 현탁하여 무수초산을 실온에서 반응시킨다. 이로서, 5-아미노-1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산[화합물(18)]이 생성된다.
공정 12에서는 화합물(18)을 테트라하이드로푸란에 용해시키고, 빙냉하에 N,N-디메틸클로로포르미늄 클로라이드를 반응시킨다. 따라서, 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸-4-카르보닐클로라이드[화합물(19)]가 생성된다.
공정 13에서는 공정 12에서 생성된 화합물(19)을 반응액에서 분리하지 않고, 디아조메탄과 실온에서 반응시킨다. 이로써, 화합물(19)의 4-클로로카르보닐기는 디아조아세틸기로 전환하고, 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-4-디아조아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(20)]이 생성된다.
공정 14에서는 화합물(20)을 디클로로메탄 중에서 빙냉하에 염화 수소의 디에틸에테르 용액과 반응시키고, 여기서 화합물(20)의 4-디아조아세틸기를 4-클로로아세틸기로 전환시킨다. 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-4-클로로아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(21)]이 생성된다.
공정 15에서는 화합물(21)의 클로로기를 아지드기로 전환시키기 위하여, 화합물(21)을 N,N-디케닐포름아미즈 증에 실온에서 아지화 나트륨과 반응시킨다. 이로써, 1-(3,5-디-0-아세틸-2-데옥시-2-플로우로-β-D-리보푸라노실)4-아지드아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(22)]이 생성된다.
공정 16에서는, 화합물(22)로부터 그 당부분의 수산기를 보호하고 있는 아세틸기를 탈리시키기 위하여, 화합물(22)을 메탄올에 용해시키고, 나트륨 메틸레이트의 메탄올 용액에서 처리한다.
여기서, 4-아지드아세틸-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(23)]이 생성된다.
공정 17에서는 화합물(22)의 아지드기를 아미노기로 전환시키기 위하여 화합물(22)을 메탄올 중에서 수소 첨가 촉매, 예를 들면 탈리륨 블랙의 실온에서 수소로 접촉 환원시킨다. 따라서, 4-아미노아세틸-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(24)]이 생성된다.
공정 18에서는 화합물(24)을 메탄올 용해시키고, 나트륨 메틸레이트-메탄올 용액에서 실온하에 처리한다. 따라서, 화합물(24)의 이미다졸환상의 치환기가 환화를 일으킨다. 그러므로써 3-(2-데옥시-2-플루오로-β-D-리보푸라노실)-6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온[화합물(25)]이 생성된다.
공정 19에서는 화합물(25)을 함수 메탄올에 용해시키고, 수소화붕소 나트륨으로 실온에서 환원시킨다. 따라서, 화합물(25)의 디아제핀 환상의 8-케톤이 환원되어 수산기로 전환된다.
이로써 최종 목적 생성물로서 (8R)-3-(2-데옥시-2-플루오로-β-D-리보푸라노실)-3,6,7,8-테트라하이드로이미다졸[4,5-d][1,3]디아제핀-8-올, 즉, 2'-데옥시-2'-플루오로코포르마이신[화합물(26)]과 (8S)-3-(2-데옥시-2-플루오로-β-D-리보푸라노실)-3,6,7,8-테트라하이드로이미다졸[4,5-d][1,3]디아제핀-8-올, 즉 2'-데옥시-8-에피-2'-플루오로코포르마이신[화합물(27)]이 합성된다.
또한, 제2의 본 발명에 따른 일반식(Ib)으로 표시되는 2'-데옥시-2'-에피-2'-플루오로코포르마이신과 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신의 합성법은 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아라피노푸라노실브로마이드[화합물(28)]에서 출발하여 본 합성법의 모든 공정 a-m을 간략하게 표시한 하기의 합성 공정 차트(B)를 참조하여 설명한다. 이 합성 공정 차트(B)에서도 Bz는 벤조일기, Ac는 아세틸기를 나타낸다.
합성 공정 차트 B:
합성 공정 차트(B)에 표시된 공정 a-공정 m에서 행한 반응을 설명하면 다음과 같다.
이 공정 a에서는, 출발 원료인 공지의 화합물(28) 즉 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아리비노푸라노실브로마이드의 1-브로모기를 아지드로 대체하기 위하여, 화합물(28)을 아지화 나트륨과 반응시킨다. 이 공정 a는 합성 공정 차트(A)의 공정 7과 동일하게 실시힌다. 이로서, 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아라비노푸라노실아지드[화합물(29)]와 그의 β-이성체[화합물(30)]의 혼합물을 얻는다.
공정 b에서는, 공정 a에서 얻은 아지화 화합물(29), (30)의 아지드기를 아미노기로 환원시킨다. 이를 위하여, 공정 b는 합성 공정 차트(A)의 공정 8과 동일하게 화합물(29)(30)의 혼합물을 디옥산 중에서 수소 첨가 촉매, 예를 들면 필라듐 블랙의 존재 하에 실온에서 수소와 반응시켜서 접촉 환원시킨다. 이예 따라서, 3,5-디-0-벤조일-2-데옥시-2-플루오로-α,β-D-아라비노푸라노실아민[화합물(31)]을 얻는다.
공정 c에서는 화합물(31)의 1-아미노기를 5-아미노-4-에톡시카르보닐-1-이미다졸일기로 전환시키기 위하여, 화합물(31)을 염소화탄화수소용매, 예를 들면 디클로로에탄 중에서 다음 식,
으로 표시되는 에틸 N-(α-시아노-α-에톡시카르보닐메틸)포름이미데이트와 가열환류하에 반응시킨다. 이 반응은 합성 공정 차트(A)의 공정 9와 동일하게 실시한다.
이 반응에 따라서, 5-아비노-1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복살신에틸에스테르[화합물(33)]와 그의 α-이성체[화합물(32)]을 혼합물로서 얻는다. 이 혼합물을 실리카 겔 컬럼 크로마토그라피(전개 용매로서 초산에틸-클로로포름을 사용)하면 β-이성체 화합물(33)을 단리시킨다.
공정 d에서는 공정 c에서 단리시킨 화합물(33)로부터 벤조일기와 에스테르 형성의 에틸기를 탈리시키기 위하여, 함수디옥산 중에서 수산화나트륨으로 화합물(33)을 가열하에 처리한다. 이 처리는 합성 공정 차트(A)의 공정 10과 동일하게 행한다. 여기서 5-아미노-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산(34)을 얻는다.
공정 e에서는 화합물(34)의 당부분은 수산기를 아세틸기로 보호하기 위하여, 화합물(34)을 피리딘에 현탁시켜서 무수 초산을 실온에서 반응시킨다. 이 아세틸화 반응은 합성 공정 차트(A)의 공정 11과 동일하게 실시한다. 따라서, 5-아미노-1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산[화합물(35)]이 생성된다.
공정 f에서는, 화합물(35)을 테트라하이드로푸란에 용해시키고, 빙냉하게 N,N-디메틸클로로포르미늄 클로라이드를 반응시킨다. 이 반응은 합성 공정 차트(A)의 공정(12)과 동일하게 실시한다. 이에 따라서 1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라미노푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸-4-카르보닐클로라이드[화합물(36)]가 생성된다.
공정 g에서는, 공정 f에서 생성된 화합물(36)을 반응액에서 분리하지 않고, 디아조메탄과 온실에서 반응시킨다. 이 반응은 합성 공정 차트(A)의 공정 13과 동일하게 실시한다. 이에 따라서, 화합물(36)의 4-클로로카르보닐기는 디아조아세틸기로 전환하고, 1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라미노푸라노실)-4-디아조아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(37)]이 생성된다.
공정 h에서는 화합물(37)을 디클로로메탄 중에서 빙냉하에 염화수소의 디에틸에테르용액과 반응시키고, 이에 따라서 화합물(37)의 4-디아조아세틸기를 4-클로로아세틸기로 전환시킨다. 이 전환 반응은 합성 공정 차트(A)의 공정 14와 동일하게 실시한다. 이에 의하여 1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라비노푸라노실)-4-클로로아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(38)]이 생성된다.
공정 i에서는 화합물(38)의 클로로기를 아지드기로 전환시키기 위하여, 화합물(38)을 N,N-디메틸포름아미드 중에서 실온 하에 아지화나트륨과 반응시킨다. 이 반응은 합성 공정 차트(A)의 공정 15와 동일하게 실시한다. 이에 따라서 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-아라비노푸라노실)-4-아지드아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(39)]이 생성된다.
공정 j에서는 화합물(39)로부터 그의 당부분의 수산기를 보호하고 있는 아세틸기를 탈리시키기 위하여, 화합물(39)을 메탄올에 용해시키고, 나트륨 메틸레이트의 메탄올 용액으로 처리한다. 이 반응은 합성 공정 차트(A)의 공정 16과 동일하게 실시한다. 이에 따라서 4-아지드아세틸-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(40)]이 생성된다.
공정 k에서는 화합물(40)의 아지드기를 아미노기로 전환하기 위하여 화합물(40)을 메탄올중에서 수소첨가촉매, 예를 들면 팔라듐블랙의 존재하에 실온에서 수소로 접촉 환원시킨다. 이 환원은 합성 공정 차트(A)의 공정 17과 동일하게 실시한다. 이에 따라서 4-아미노아세틸-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(41)]이 생성된다.
공정 l에서는 화합물(41)을 메탄올에 용해시키고, 나트륨 메틸레이트-메탄올 용액에서 실온하에 처리한다. 이에 의하여, 화합물(41)의 이미다졸환상의 치환기가 환화를 일으킨다. 이 환화 반응은 합성 공정 차트(A)의 공정 18과 동일하게 실시한다. 그러므로써 3-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)온[화합물(42)]이 생성된다.
공정 m에서는, 화합물(42)을 함수메탄올에 용해시키고, 수소화붕소나트륨으로 실온에서 환원시킨다. 이 환원은 합성 공정 차트(A)의 공정 19와 동일하게 실시한다. 이에 의하여, 화합물(42)의 디아제핀환상의 8-케톤이 환원되어 수산기로 전환된다. 이로써 최종 목적 생성물로서 (8R)-3-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)3,6,7,8-테트라하이드로이미다졸[4,5-d][1,3]디아제핀-8-올, 즉 2'-데옥시-2'-에피-2'-플루오로코포르마이신[화합물(43)]과 (8S)-3-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-3,6,7,8-테트라하이드로이미다졸[4,5-d][1,3]디아제핀-8-올, 즉, 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신[화합물(44)]이 합성된다.
상기 합성 공정 차트(A)에서 표시된 합성 방법에서 중간체로서 얻은 3,5-디-0-벤조일-2-데옥시-2-플로오로-α-D-리보푸라노실브로마이드[화합물(10)]와, 3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-리보푸라노실브로마이드[화합물(11)]는 이들을 각각 메탄올 중에서 촉매량의 나트륨 메틸레이트의 존재하에 가용매 분해하면, 벤조일기가 탈리된다. 그에 따라서 2-데옥시-2-플루오로-α- 및 β-D-리보푸라노실브로마이드가 생성된다. 그 보로모기는 다른 할로기와 통상적 방법으로 치환시킨다.
이들 할로당은 신규한 화합물이고, 이들의 3- 및 5-의 수산기를 적당한 히드록실보호기, 예를 들면 아세틸기 또는 벤조일기로 보호하여 얻은 0-보호유도체가 일반식(Ia)으로 표시되는 2'-데옥시-2'-플루오로코포르마이신 또는 그의 8-에피 이성체의 합성에 전술한 바와 같이 중간체로서 유용하다.
상기 할로당은 다음 일반식(II)
(상기 식에서 Hal은 브롬, 염소 또는 요오드 원자이다)으로 표시되는 2-데옥시-2-플루오로-α- 및 β-D-리보푸라노실 할라이드로서 얻는다.
따라서, 제3의 본 발명에 의하면, 일반식(II)으로 표시되는 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실 할라이드를 신규한 화합물로 제공한다.
상기 합성 공정 차트(A) 및 (B)로 표시되는 합성 방법에서 중갖체로서 얻은 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-리보푸라노실아지드[화합물(12)]와 3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-리보푸라노실아지드[화합물(13)]와 3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아라비노푸라노실아지드[화합물(29)] 및 3,5-디-0-벤조일-2-데옥시-2-플루오로-β-D-아라비노푸라노실아지드[화합물(30)]는 이들을 각각 메탄올 중에서 또는 함수디옥산 중에서 나트륨 메틸레이트 또는 수산화나트륨의 존재하에 가용매 분해하면 벤조일기가 탈리된다. 그에 따라서 2-데옥시-2-플루오로-α 및 -β-D-리보푸라노실 아지드와, 2-데옥시-2-플루오로-α 및 β-D-아라비노푸라노실 아지드가 생성된다.
이들 4종의 아지드당은 신규한 화합물이고, 그들의 3- 및 5-수산기를 적당한 히드록실 보호기, 예를 들면 아세틸 또는 벤조일기로 보호하여 얻는 0-보호 유도체가 일반식(ia)으로 표시되는 2'-데옥시-2'-플루오로코포르마이신 또는 그의 8-에피 이성체, 또는 일반식(Ib)으로 표시되는 2'-데옥시-2'-에피-2'-플루오로코포르마이신 또는 그의 8-에피 이성체를 합성하는데 전술한 바와 같이 중간체로서 유용하다.
상기 4종의 아지드당은 다음 일반식(III)
(상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다)으로 표시되는 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실아지드(식에서 X는 수소 원자이고, X'는 플루오로 원자인 경우)와 2-데옥시-2-플루오로-α- 및 -β-D-아라비노푸라노실아지드[식에서 X는 플루오로 원자이고, X'는 수소 원자인 경우]로 이루어진 군에서 선택한 화합물로서 총괄적으로 표시된다.
따라서, 제4의 본 발명에 의하면, 일반식(III)으로 표시되는 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실아지드와, 2-데옥시-2-플루오로-α- 및 -β-D-아라비노푸라노실아지드로 이루어지는 군에서 선택한 화합물을 신규한 화합물로서 제공한다.
또한, 상기 식(III)의 아지드당은, 세균에 대한 항균활성을 100mg/ml의 농도에서 나타내지 않음을 알았다.
그리고, 상기 합성 공정 차트(A)와 (B)로 표시되는 합성 방법에서 중간체로서 얻은 3,5-디-0-벤조일-2-데옥시-2-플루오로-α,β-D-리보푸라노실아민[화합물(14) 및 3,5-디-0-벤조일-2-데옥시-2-플루오로-α,β-D-아라비노푸라노실아민[화합물(31)]은 1-아미노기를 보호후에 각각 이들로부터 적당한 수단으로 벤조일기를 탈리시키거나 아미노보호기를 제거하면, 신규한 화합물로서, 2-데옥시-2-플루오로-α,β-D-리보푸라노실아민과 2-데옥시-2-플루오로-α,β-아라비노푸라노실아민을 얻는다. 이러한 아미노당은, 일반식(III)으로 표시되는 2-데옥시-2-플루오로-D-리보푸라노실아지드 또는 2-데옥시-2-플루오로-아라비노푸라노실아지드를 직접 접촉 환원시킴으로써 얻는다.
따라서, 제5의 본 발명에 의하면, 다음 일반식(IV),
(상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다)으로 표시되는 2-데옥시-2-플루오로-αβ-D-리보푸라노실아민(식 중 X는 수소 원자이고, X'는 플루오로 원자인 경우) 및 2-데옥시-2-플루오로-α,β-D-아라비노푸라노실아민(식 중 X는 플루오로 원자이고 X'는 수소 원자인 경우)으로 이루어지는 군에서 선택한 화합물을 신규한 중간체 화합물로서 제공한다.
또한, 일반식(IV)의 화합물에 포함되는 2-데옥시-2-플루오로-α,β-D-리보푸라노실아민과 2-데옥시-2-플루오로-α,β-D-아라비노푸라노실아민은 어떤 종류의 세균에 대하여 항균활성을 나타낸다. 즉, 이들 화합물의 세균에 대한 최저 생육저지농도(MIC, mcg/ml)를 표준적인 배수희석법으로 측정하는 시험을 행했다. 그 시험 결과를 다음 표에 표시했다.
또한, 상기 합성 공정 차트(A)와 (B)로 표시되는 합성 방법에서 중간체로서 얻은 5-아미노-1-(2-데옥시-2-플루오로-β-D- 리보푸라노실)이미다졸-4-카르복실산[화합물(17)]과 5-아미노-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산[화합물(34)]은 신규한 화합물이고, 상기 합성법에 유용한 중간체이다.
따라서, 제6의 본 발명에 의하면, 신규한 중간체 화합물로서, 다음 일반식(V),
(상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다)으로 표시되는 5-아미노-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산(식 중, X는 수소 원자이고 X'는 플루오로 원자인 경우) 및 5-아미노-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산(식 중, X는 플루오로 원자이고 X'는 수소 원자인 경우)으로 이루어지는 군에서 선택한 화합물을 제공한다.
또한, 상기 합성 공정 차트(A)와 (B)로 표시되는 합성 방법에서 중간체로서 얻은 3-(2-데옥시-2-플루오로-β-D-리보푸라노실)-6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온[화합물(25)] 및 3-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온[화합물(42)]은 신규한 화합물이다. 이들은, 환원하면, 제1의 본 발명에 따른 일반식(Ia)의 화합물 또는 제2의 본 발명에 따른 일반식(Ib)의 화합물을 생성하는 중간체로서 유용하다.
따라서, 제7의 본 발명에 의하면 다음 일반식(VI),
(상기 식에서 Xa가 수소이고 Xb가 플루오로 원자이거나, 또는 Xa가 플루오로이고 Xb가 수소 원자이다)으로 표시되는 3-(2-데옥시-2-플루오로-β-D-리보푸라노실 또는 -아라비노푸라노실-6,7,-디하이드로이미다졸[4,5,-d][1,3]디아제핀-8(3H)-온을 제공한다.
[발명의 실시하기 위한 최적의 형태]
본 발명을 실시예 1, 2와 3으로 구체적으로 설명하면 다음과 같고, 본 발명은 이들 실시예에 한정되는 것은 아니다.
[실시예 1]
(1) 메틸 3-데옥시-3-플루오로-β-D-알로피라노시드[화합물(1)]로부터 3-데옥시-3-플루오로-D-알로피라노오스[화합물(2)]의 합성
메틸 3-데옥시-3-플루오로-β-D-알로피라노시드[화합물(1); 이 화합물은 Peter J. Card 등 J. Org. Chem. 48권, 페이지 4734-4743(1983)에 기재]의 24,5g을 6m 염산 500ml에 용해시키고, 70℃에 8시간 방치한다(가수 분해 반응). 반응액을 농축하고, 얻은 시럽을 물 400ml에 용해시킨다. 이 용액에 다우웩스 1x2(OH-형)이온효관수지(100-200메쉬) 약 800ml을 가하여 중화시킨 후, 여과하고 여액을 농축하면 표제의 화합물(2) 22.1g을 무색 시럽으로 얻는다. 수율 97%.
19F-NMR 스펙트럼(중 디메틸술폭시드에서, 프레온 11 내부표준):
δ -212.8(ddd. J=30.33, 54Hz)
-215.3(dt, J=32, 32, 54Hz)
본 물질을 메탄올-클로로포름의 혼액으로 결정화하면, 무색 결정을 얻는다.
mp 120.5-122.5℃
원소 분석
실측치 C39.55% H6.09% F10.42%
C6H11FO5로서의
계산치 C39.56% H6.09% F10.43%
(2) 메틸 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노시드[화합물(4)]와 화합물(5)]의 합성
전항(1)에서 얻은 화합물(2) 15.2g을 초산 450ml에 용해시키고, 이에 사초산납 38.8g을 가하고, 실온에서 30분간 반응시킨다. 따라서, α-글리콜의 산화개열이 일어난다. 이때 반응액에 물 80ml을 가하고 90℃에 24시간 방치하여 탈 0-포르밀화시킨다. 화합물(3)로서 생성된 2-데옥시-2-플루오로-α,β-D-리보푸라노오스를 함유하는 반응액을 농축하여 얻은 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 메탄올-초산에틸, 1:5)하여 정제하면 시럽상의 물질 12.6g을 얻는다.
따라서, 이 시럽을 0.5M 염화수소-메탄올 용액 260ml에 용해시키고, 실온에서 3일간 방치하고, 메틸글리코시드화를 행한다. 반응액에 다우웩스 1x2(OH-형)이온효관수지(100-200메쉬)를 가하여 중화시킨후, 여과하고 여액을 농축하여 표제의 화합물(4), (5)의 혼합물[화합물(4):(5)=약 1:17] 12.2g을 무색 고체로 얻는다. 수율 88%.
화합물 (4), (5)의 분리는 실리카 겔 크로마토그라피(전개계; 초산에틸-톨루엔, 4:1)로 용이하게 되고, 화합물(4)(α-이성체)을 무색 시럽으로, 또 화합물(5)(β-이성체)을 무색 침상 결정으로 얻는다.
화합물(4)(α-이성체):
[α]25 D+149°(c1, 메탄올)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 1.74(1H, dd, OH-5)
2.72(1H, dd, Jon-3, F=2Hz, OH-3)
3.51(3H, s, OCH3)
4.84(1H, ddd, J2, F=51Hz, H-2)
5.07(1H, d, J1,2=4Hz, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -217.9(Slightly br d, J=51Jz)
원소 분석
실측치 C43.06% H6.64% F11.46%
C6H11FO4로서의
계산치 C43.37% H6.67% F11.44%
화합물(5)(β-이성체):
mp 85.5-86.0℃(클로로포름-n-헥산으로 재결정후)
[α]24 D-70°(c1, 클로로포름)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 2.00(1H, dd, OH-5)
2.20(1H, dd, JOH-3, F=3Hz, OH-3)
3.43(3H, s, OCH3)
4.78(1H, dd, J2, F=54Hz, H-2)
5.02(1H, d, J1, F=11Hz, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -210.9(dddd, J=3,11,23,54Hz)
원소 분석
실측치 C43.61% H6.68% F11.46%
C6H11FO4로서의
계산치 C43.37% H6.67% F11.44%
또한, J. F. Codington, I. L. Doerr, and J. J. Fox Carbohydr. Res. 1권, 페이지 455-466(1966)에 다른 방법에 의한 메틸 2-데옥시-2-플루오로-D-리보푸라노시드가 기재되어 있다.
(3) 메틸 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노시드[화합물(6)과 화합물(7)]의 합성
전항에서 얻은 화합물(4), (5)의 혼합물 10.0g을 피리딘 200ml에 용해시키고, 염화벤조일 17.5ml을 가하고 실온에서 30분간 방치한다. 반응액에 소량의 물을 가한 후, 농축하고 얻은 시럽을 클로로포름으로 추출하고, 이 클로로포름 용액을 5% 황산수소칼륨 수용액, 5% 탄산수소나트륨 수용액과, 물로 순차적으로 세척한 후, 무수황산나트륨으로 건조하고, 농축하면 표제의 화합물(6), (7)의 혼합물 22.3g을 무색 결정으로 얻는다. 수율 99%.
본 결정을 톨루엔-n-헥산으로 재결정화하면, 무색침상 결정의 화합물(7)(β-이성체)을 얻는다.
화합물(7)(β-이성체)
mp 88-89℃
[α]21D+31°(c1, 클로로포름)
1H-NMR 스펙트럼(중벤젠에서 TMS 내부 표준)
δ 4.83(1H, d, J1, F=10Hz, H-1)
5.07(1H, dd, J2, F=53Hz, H-2)
원소 분석
실측치 C64.12% H5.19% F5.17%
C20H19FO6로서의
계산치 C64.17% H5.12% F5.08F
또한 J. F. Codington, I. L. Doerr and J. J. Fox, Carbohydr. Res. 1권 페이지 455-466(1966)에 메틸 3,5-디-0-벤조일-2-데옥시-2-플루오로-0-리보시드의 융점에 대해서만 기재가 되어 있음을 확인했다.
(4) 3,5-디-0-벤조일-2-데옥시-2-플루오로-α 및 -β-D-리보푸라노실 아세테이트 [화합물(8)과 (9)]의 합성
전항(3)에서 얻는 화합물(6)과 (7)의 혼합물 2.07g을 초산 30ml에 용해시키고 빙냉하에서 이에 무수초산 2ml, 황산 0.2ml을 가하고, 실온에서 하룻밤 방치한다. 반응액을 빙냉한 포화탄화수소 나트륨 수용액 400ml에 가하고, 생성된 불용물을 클로로포름으로 추출하고, 클로로포름 용액을 수세하고, 무수황산나트륨으로 건조한 후, 농축하면 담황색 시럽을 얻는다.
본 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 초산에틸-n-헥산, 1:3)하여 정제하고, 표제의 화합물(8)과 (9)의 혼합물 2.18g을 무색 고체로 얻는다. 수율 98%.
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
화합물(8):(9) = 약 1:6
δ 1.96[3H, s, 화합물(9)의 Ae]
2.19[3H, s, 화합물(8)의 Ac]
6.38[1H, d, J1, F=10.5Hz, 화합물(9)의 H-1]
6.53[1H, dd, J1,2=4, J1, F=2Hz, 화합물(8)의 H-1]
상기 고체의 에테르-n-헥산으로 결정화하면 무색 결정의 화합물(9)을 얻는다.
화합물(9)(β-이성체):
mp 105-106.5℃
[α]22 D+34°(c1, 클로로포름)
원소 분석
실측치 C62.83% H4.76% F4.52%
C21H19FO7로서의
계산치 C62.68% H4.76% F4.72%
(5) 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실 브로마이드 [화합물(10)과 (11)]의 합성
전항에서 얻은 화합물(8)과 (9)의 혼합물 3.18g을 디클로로메탄 60ml에 용해시키고 30% 브롬화수소-초산 6ml를 가하여 실온에서 하룻밤 반응시킨다. 반응액을 농축하고, 잔존하는 소량의 초산은 톨루엔과 공비를 행하여 제거하면, 표제의 화합물(10)과 (11)의 혼합물 3.31g을 담황색 시럽으로 얻는다. 초기 수율 99%.
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
화합물(10):(11) = 약 1:6
δ5.17[1H, ddd, J2, F=51Hz, 화합물(10)의 H-2]
5.62[1H, dd, J2, F=54Hz, 화합물(11)의 H-2]
6.52[1H, d, J1, F=12Hz, 화합물(11)의 H-1]
6.71[1H, d, J1,2=45Hz, 화합물(10)의 H-1]
상기 시럽을 톨루엔-n-헥산 혼액으로 결정화를 행하면, 무색침상결정의 화합물(11)(β-이성체)를 얻는다.
화합물(11)(β-이성체):
mp 92-93.5℃
[α]21 D-25°(c1, 클로로포름)
원소 분석
실측치 C53.89% H3.84% Br18.78% F4.65%
C19H16BrFO5로서의
계산치 C53.92% H3.81% Br18.88% F4.49%
(6) 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실 아지드[화합물(12)과 화합물(13)]의 합성
전항에서 얻은 화합물(10), (11)의 혼합물 2.02g을 아세토니트릴 40ml에 용해시키고, 이에 아지화나트륨 476mg과, 브롬화 테트라에틸암모늄 1.03g을 가하고 교반을 계속하고 실온에서 5시간 반응시킨다. 반응액을 소량씩 농축하고, 이에 클로로포름을 가하여 희석하고, 이 클로로포름 용액을 수세 후, 무수황산나트륨으로 건조하고, 농축하면 표제의 화합물(12)과 (13)의 혼합물[(12):(13) = 1.2:1] 1.80g을 무색 시럽으로 얻는다. 수율 98%.
이 시럽을 실리카 젤 크로마토그라피(전개계:클로로포름)하여 분리하면, 무색 시럽의 화합물(12)와 무색침상결정의 화합물(13)을 얻는다.
화합물(12)(α-이성체):
[α]23 D+150°(c1, 클로로포름)
IR : 2120cm-1(N3)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 5.26(1H, ddd, J2, F=52Hz, H-2)
5.46(1H, dd, J1,2=4, J1, F=pHz, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 내부 표준)
δ 212.6(ddd)
원소 분석
실측치 C59.22% H4.21% F4.78% N10.68%
C19H16FN3O5로서의
계산치 C59.22% H4.19% F4.93% N10.90%
화합물(13)(β-이성체):
mp 64-65℃(n-헥산으로 재결정후)
[α]23 D-107°(c1, 클로로포름)
IR : 2120cm-1(N3)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 5.09(1H, dd, J2, F=53Hz, H-2)
5.66(1H, d, J1, F=13Hz, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -205.8(ddd)
원소 분석
실측치 C59.20% H4.21% F4.70% N11.02%
C19H16FN3O5로서의
계산치 C59.22% H4.19% F4.93% N10.90%
(7) 에틸 5-아미노-1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실)이미다졸-4-카르복실레이트[화합물(15)와 (16)]의 합성.
전항(6)에서 얻은 화합물(12)과 (13)의 혼합물 1.16g을 디옥산 25ml에 용해시키고, 팔라듐 블랙을 촉매로하여 실온에서 수소를 취입시키고, 1시간 접촉 환원시킨다. 생성된 글리코실아민화합물(14)을 함유하는 반응액을 여과 후, 여액을 약 1/2양까지 농축하고, 이에 클로로포름 200ml을 가하여 희석한다. 이 용액을 무수황산나트륨으로 건조한 후, 농축하면 글리코실아민화합물(14)의 무색 시럽을 얻는다.
이 시럽을 디클로로에탄 10ml에 용해시키고, 이에 에틸 N-(α-시아노-α-에톡시카르보닐메틸)포름이미데이트 550mg을 디클로로 에탄 5ml에 용해시킨 용액을 가하고, 1시간 동안 가열 환류시킨다. 반응액을 농축하여 얻은 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 초산에틸-클로로포름, 1:2)하여 분리 정제하면, 표제의 화합물(15) 180mg을 무색 고체로 얻는다. 또 화합물(16) 285mg을 무색 결정으로 얻는다.
화합물(12), (13)의 화합물을 기준으로 한 수율; 화합물(15) : 12%; 화합물(16) : 19%
화합물(15)(α-이성체):
[α]22 D+47°(c1, 클로로포름)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 1.36(3H, t, -CH2CH3)
4.33(2H, q, -CH2CH3)
5.30(2H, s, -NH2)
5.56(1H, dt, J2, F=52.5Hz, H-2')
6.11(1H, dd, J1',2'=3.5, J1', F=16Hz, H-1')
원소 분석
실측치 C60.47% H4.95% F3.79% N8.46%
C25H24FN3O7으로서의
계산치 C60.36% H4.86% F3.82% N8.45%
화합물(16)(β-이성체):
mp 165.5-166.5℃(톨루엔-n-헥산으로 재결정후)
[α]24 D-45°(c1, 클로로포름)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 1.37(3H, t, -CH2CH3)
4.32(2H, q, -CH2CH3)
5.14(2H, s, -NH2)
5.62(1H, ddd, J2', F=52.5Hz, H-2')
5.89(1H, dd, J1',2'=4, J1', F=15Hz, H-1')
7.18(1H, s, H-2)
원소 분석
실측치 C60.27% H5.12% F3.54% N8.49%
C25H24FN3O7으로서의
계산치 C60.36% H4.86% F3.82% N8.45%
(8) 5-아미노-1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산[화합물(18)]의 합성
전항(7)에서 얻은 화합물(16) 321mg을 0.6M 수산화나트륨수-디옥산(1:1)의 혼액 18ml에 용해시키고, 80℃에서 1시간 반응시킨다. 탈벤조일화 및 탈에틸에스테르화를 행한다. 반응액을 1M 염산으로 중화한 후, 디에틸에테르로 세척하고, 수용액을 농축하면 화합물(17)을 함유하는 잔사 460ml을 얻는다.
이 잔사를 피리딘 8ml에 현탁시키고, 빙냉하에 무수초산 4ml을 가하여 실온에서 30분간 방치하고, 수산기의 아세틸화를 행한다. 반응액을 농축하여 얻은 잔사를 클로로포름으로 추출하고, 여과한 후, 여액을 소량까지 농축하고 디에틸에테르를 가하여 생성된 침전물을 수집하면, 표제의 화합물(18) 133mg을 얻는다. 수율 60%.
(9) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-4-디아조아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(20)]의 합성
전항(8)에서 얻은 화합물(18) 62mg을 테트라하이드로푸란 3ml에 용해시키고, 빙냉하에 N,N-디메틸클로로포르미늄클로라이드 90mg을 가하고, 같은 온도에서 30분간 교반하고, 클로로화 및 N,N-디메틸아미노메틸렌화를 행한다.
이로써, 화합물(19)이 생성된다. 다음, 화합물(19)을 함유하는 반응액을 0.2M 디아조메탄-디에틸에테르 용액 20ml에 가하여 실온에서 1시간 반응시킨다. 반응액을 여과하고, 여액을 농축하면 표제의 화합물(20)의 시럽, 55mg을 얻는다. 수율 75%.
1aH-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 2.13, 2.15(3Hx2, sx2, Acx2)
3.05, 3.14[3Hx2, sx2, n(CH3)2]
5.44(1H, ddd, H-2'), 6.02(1H, dd, H-1')
6.24(1H, s, CHN2), 7.36(1H, s, H-2)
9.03(1H, s, Ch=n)
(10) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-4-클로로아세틸-5(디메틸아미노메틸렌아미노)이미다졸[화합물(21)]의 합성
전항(9)에서 얻은 화합물(20) 21.8mg을 디클로로메탄 1ml에 용해시키고, 5℃에서 1.25M 염화수소-디에틸에테르 용액 0.05ml을 가하고, 같은 온도에서 하룻밤 반응을 시킨다. 반응액을 수세 후, 유기층을 무수황산나트륨으로 건조하고, 농축하면 표제의 화합물(21)의 시럽 18.0mg을 얻는다. 수율 81%.
(11) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-리보푸라노실)-4-아지도아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(22)]의 합성
전항(10)에서 얻은 화합물(21) 177mg을 N,N-디메틸포름아미드 3.5ml에 용해시키고, 아지화 나트륨 80mg을 가하고, 실온에서 2시간 동안 교반한다. 반응액을 농축하여 얻은 잔사를 클로로포름으로 추출하고 클로로포름 용액을 수세한 후, 무수황산 나트륨으로 건조하고, 농축하면 표제의 화합물(22)의 시럽 153mg을 얻는다. 수율 85%.
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 2.13, 2.16(3Hx2, sx2, Acx2)
3.07, 3.18[3Hx2, sx2, N(CH3)2]
4.58(2H, s, CH2N3), 5.40(1H, dd, H-2')
6.03(1H, d, H-1'), 7.40(1H, s, H-2)
9.10(1H, s, CH=N)
(12) 4-아지도아세틸-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(23)]의 합성
전항(11)에서 얻은 화합물(22) 130mg을 메탄올 6ml에 용해시키고, 0.2M 나트륨 메틸레이트-메탄올 용액 0.5ml을 가하고, 온실에서 30분간 방치한다. 반응액에 앰버라이트 CG-120(H+형) 이온 교환 수지(100-200메쉬)을 가하여 중화한 후, 여과하고 여액을 농축하여 얻은 고체를 디에틸에테르로 세척하면 불용의 표제화합물(23) 63mg을 얻는다. 수율 60%.
(13) 4-아미노아세틸-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(24)]의 합성
전항(12)에서 얻은 화합물(23) 52mg을 메탄올 6ml에 용해시키고, 이 용액에 팔라듐 블랙을 촉매로 하여 수소를 취입시키고, 30분간 실온에서 접촉 환원시킨다. 반응액을 여과한 후, 여액을 농축하고, 얻은 고체를 초산에틸로 세척하면, 불용의 표제화합물(24) 43mg을 얻는다. 수율 89%.
(14) 3-(2-데옥시-2-플루오로-β-D-리보푸라노실)-6,7-다히이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온[화합물(25)]의 합성
전항(13)에서 얻은 화합물(24) 20mg을 메탄올 0.4ml에 용해시키고, 0.2M 나트륨 메틸레이트-메탄올 용액 0.4ml을 가하고, 실온에서 하룻밤 방치한다. 반응액에 드라이아이스를 가하여 중화한 후, 농축하고 얻은 잔사를 실리카 겔 컬럼 크로마토그라피(전개계; 클로로포름-메탄올, 4:1)하여 정제하면, 표제화합물(25)인 무색 고체 62mg을 얻는다. 수율 36%.
1H-NMR 스펙트럼(중디메틸술폭시드에서 TMS 내부 표준)
δ 3.78(2H, s, COCH2), 5.15(1H, dt, H-2')
6.15(1H, dd, H-1'), 7.48(1H, s, H-5)
7.94(1H, s, H-2)
(15) 2'-데옥시-2'-플루오로코포르마이신[화합물(26)]과, 2'-데옥시-8-에피-2'-플루오로코포르마이신[화합물(27)]의 합성
전항(14)에서 얻은 화합물(25) 2.2mg을 물-메탄올(1:1)의 혼액 0.08ml에 용해시키고, 이 용액에 수소화붕소나트륨 0.3mg을 가하고, 실온에서 15분간 방치한다. 반응액에 드라이아이스를 가하고, 과잉의 시약을 분해한 후, 이 용액 모두를 역상컬럼(YMC-PACK S-343 I-15 ODS)을 사용한 분취고속 액체 크로마토그라피(이동상; 물-메탄올, 4:1)하여, 생성물을 분리, 정제한다.
화합물(26)(K'=0.7), 화합물(27)(K'=0.9)의 순서로 용출을 일으키고, 각 용출액을 동결 건조하면 표제화합물인 무색 고체 0.6mg(수율 27%)와 화합물(27)의 무색 고체 0.6mg(수율 27%)을 얻는다.
화합물(26)은 다음과 같은 물성을 나타낸다:
[α]22 D+12°(c0.1, 물)
1H-NMR 스펙트럼(증수에서 TMS 내부 표준)
δ 3.38(1H, d, H-7a), 3.50(1H, dd, H-7b)
3.81(1H, dd, H-5'a), 3.95(1H, dd, H-5'b)
4.19(1H, broad, H-4') 4.50(1H, ddd, H-3')
5.14(1H, d, H-8), 5.33(1H, ddd, H-2')
6.1(1H, dd, H-1'), 7.20(1H, s, H-5)
7.65(1H, s, H-2)
J1',2'=2.5, J2',3'=4.5, J3',4'=7.5 J4',5'a=4,
J4',5'b=2.5, J5'a,5'b=13, J7a,7b=13.5 J7b,8=4,
J1', F=18, J2', F=53, J3', F=19Hz
화합물(27)은 다음과 같은 물성을 나타낸다:
[α]22 D-115°(c0.09, 물)
1H-NMR 스펙트럼(증수에서 TMS 내부 표준)
δ 3.38(1H, d, H-7a), 3.50(1H, dd, H-7b)
3.80(1H, dd, H-5'a), 3.94(1H, dd, H-5'b)
4.19(1H, broad, H-4'), 4.52(1H, ddd, H-3')
5.14(1H, d, H-8), 5.37(1H, ddd, H-2')
6.17(1H, dd, H-1'), 7.20(1H, s, H-5)
7.65(1H, s, H-2)
J1',2'=2.5, J2',3'=4.5, J3',4'=7 J4',5'a=4,
J4',5'b=2.5, J5'a,5'b=13, J7a,7b=13.5 J7b,8=4,
J1', F=18, J2', F=53, J3', F=18.5Hz
[실시예 2]
(1) 3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-아라비노푸라노실 아지드[화합물(29)와 (30)]의 합성
3,5-디-0-벤조일-2-데옥시-2-플루오로-α-D-아라비노푸라노실 브로마이드[화합물(28): 이 화합물은 C. H. Tann 등 J. Org. Chem. 50권 페이지 3644-3647(1985)에 기재] 11.4g을 아세트니트릴 230ml에 용해시킨다. 이 용액에 아지화나트륨 2.64g과 브롬화 테트라에틸암모늄 5.80g을 가하고, 교반을 계속하고 실온에서 2시간 동안 반응시킨다.
반응액을 소량씩 농축하고, 이에 클로로포름을 가하여 희석하고, 이 클로로포름 용액을 수세한 후, 무수황산나트륨으로 건조하고 농축하면 표제의 화합물(29)와 (30)의 혼합물[(29):(30) = 1.4:1]의 무색 시럽 10.2g을 얻는다. 수율 98%.
이 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 초산에틸-n-헥산 1:4)하여 분리하면, 무색 시럽인 화합물(29)과 무색 침상 결정인 화합물(30)을 얻는다.
화합물(29)(α-이성체):
[α]23 D+150°(c1, 클로로포름)
IR : 2110cm-1(N3)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 5.05(1H, d, J2, F=49.5Hz, H-2)
5.76(1H, d, J1, F=12.5Hz, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -187.6(ddd)
원소 분석
실측치 C59.56% H4.45% F 5.32% N11.22%
C19H16FN3O5로서의
계산치 C59.22% H4.19% F4.93% N10.90%
화합물(30)(β-이성체):
mp 88-89℃(n-헥산으로 재결정 후)
[α]23 D-106°(c1, 클로로포름)
IR : 2120cm-1(N3)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준,19F-브로우드밴드 커플링법)
δ 5.23(1H, t, J1,2=J2,3=4Hz, H-2)
5.32(1H, d, H-1)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -202.5
원소 분석
실측치 C59.32% H4.20% F4.72% N11.04%
C19H16FN3O5로서의
계산치 C59.22% H4.19% F4.93% N10.90%
(2) 에틸-5-아미노-1-(3,5-디-0-벤조일-2-데옥시-2-플루오로-α- 및 -β-D-아라비노푸라노실)이미다졸-4-카르복실레이트[화합물(32)와 (33)]의 합성
전항(1)에서 얻은 화합물(29)과 (30)의 혼합물 1.00g을 디옥산 20ml에 용해시키고, 이 용액에 팔라듐블랙을 촉매로 하여 실온에서 수소를 취입시키고, 1시간 접촉 환원시킨다. 반응액을 여과한 후, 여액을 약 1/2양까지 농축시키고, 이에 클로로포름 200ml을 가하여 희석한다. 이 용액을 무수황산나트륨으로 건조한 후, 농축하면, 글리코실아민 화합물(31)의 무색 시럽을 얻는다. 이 시럽을 디클로로 에탄 10ml에 용해시키고, 에틸 N-(α-시아노-α-에톡시카르보닐메틸)포름이미데이트 500mg을 디클로로에탄 5ml에 용해시킨 용액을 가하고, 1시간 가열 환류시킨다.
반응액을 농축하여 얻은 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 초산에틸-클로로포름, 1:2)하여 분리 정제하면 표제의 화합물(32) 298mg을 무색 결정으로, 또 화합물(33)의 302mg을 무색 고체로서 얻는다.
화합물(29), (30)의 혼합물을 기준으로 한 수율: 화합물(32) 23%, 화합물(33) 23%.
화합물(32)(α-이성체)
mp 176-177℃(클로로포름-n-헥산으로 재결정 후)
[α]23 D+41°(c1, 클로로포름)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 1.38(3H, t, -CH2CH3)
4.34(2H, q, -CH2CH3)
5.28(2H, s, NH2), 5,77(1H, dt, H-2')
6.07(1H, dd, H-1'), 7.27(1H, s, H-2)
J1',2'=2, J1'F=16, J2', F=49.5Hz
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -187.7(ddd)
원소 분석
실측치 C60.32% H5.09% F4.05% N8.65%
C25H24FN3O7로서의
계산치 C60.36% H4.86% F3.82% N8.45%
화합물(33)(β-이성체)
[α]23 D-26°(c1, 클로로포름)
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 1.36(3H, t, -CH2CH3)
4.32(2H, q, -CH2CH3), 5.33(2H, s, NH2)
5.38(1H, ddd, J2', F=50Hz, H-2')
5.91(1H, dd, J1',2'=2.5, J1', F=22.5Hz, H-1')
7.24(1H, d, J2,F=2Hz, H-2)
19F-NMR 스펙트럼(중클로로포름에서 프레온 11 내부 표준)
δ -198.5(dddd)
원소 분석
실측치 C59.10% H5.35% F3.70% N8.64%
C25H24FN3O70.5H2O로서의
계산치 C59.29% H4.98% F3.75% N8.30%
(3) 5-아미노-1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산[화합물(35)]의 합성
전항(2)에서 얻은 화합물(33) 255mg을 0.6M 수산화나트륨수-디옥산(1:1)의 혼액 15ml에 용해시키고, 80℃에서 1시간 동안 반응시킨다. 생성된 화합물(34)을 함유하는 반응액에 1M 염산을 가하여 중화시킨다. 이 수용액을 디에틸-에테르로 세척하고, 농축하면 화합물(34)을 함유하는 잔사 380mg을 얻는다.
이 잔사를 피리딘 7ml에 현탁시킨 빙냉하에 무수초산 3.5ml을 가하고, 실온에서 30분간 반응시킨다. 반응액을 농축하여 얻은 잔사를 클로로포름으로 추출하고, 클로로포름 용액을 여과한 후, 여액을 소량으로 농축하고, 디에틸-에테르를 가하고, 생성된 침전물을 수집하면, 표제의 화합물(35) 105mg을 얻는다. 수율 85%.
(4) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-아라비노푸라노실)-4-디아조아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(37)]의 합성
전항(3)에서 얻은 화합물(35) 93mg을 테트라하이드로푸란 4.5ml에 용해시키고, 빙냉하에 N,N-디메틸클로로포르미늄 클로라이드 135mg을 가하고, 30분간 반응시킨다. 다음 생성된 화합물(36)을 함유하는 반응액을 0.2M 디아조메탄-디에틸에테르 용액 30ml에 가하고, 실온에서 1시간 반응시킨다. 반응액을 여과한 후, 여액을 농축하면 표제의 화합물(37)의 시럽 83mg을 얻는다. 수율 75%.
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 2.11, 2.16(3Hx2, sx2, Acx2)
3.05, 3.15(3Hx2, sx2, N(CH3)2]
5.02(1h, ddd, h-2'), 6.19(1H, dd, H-1')
6.27(1H, s, CHN2), 7.41(1H, d, H-2)
9.04(1H, s, CH=N)
(5) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-아라비노푸라노실)-4-클로로아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(38)]의 합성
전항에서 얻은 화합물(37) 80mg을 디클로로메탄 4ml에 용해시키고 5℃에서 1.25M 염화수소디에틸에테르 용액 0.2ml을 가하고, 같은 온도에서 하룻밤 반응시킨다. 반응액을 수세한 후, 유기층을 무수황산나트륨으로 건조시키고, 농축하면 표제의 화합물(38)의 시럽 61mg을 얻는다. 수율 75%.
(6) 1-(3,5-디-0-아세틸-2-데옥시-2-플루오로-β-D-아라비노푸라노실)-4-아지도아세틸-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(39)]의 합성
전항에서 얻은 화합물(38) 60mg을 N,N-디메틸포름아미드 1.2ml에 용해시키고, 아지화나트륨 27mg을 가하고, 실온에서 2시간 교반한다. 반응액을 농축하여 얻은 잔사를 클로로포름으로 추출하고, 이 클로로포름 용액을 수세한 후, 무수황산나트륨으로 건조하고, 농축하면 표제의 화합물(39)인 시럽 56mg을 얻는다. 수율 92%.
1H-NMR 스펙트럼(중클로로포름에서 TMS 내부 표준)
δ 2.11, 2.16(3Hx2, sx2, Acx2)
3.05, 3.18[3Hx2, sx2, N(CH3)2]
4.62(2H, s, CH2N3)
5.04(1H, dd, H-2'), 6.19(1H, dd, H-1')
7.44(1, d, H-2), 9.09(1H, s, CH=N)
(7) 4-아지드아세틸-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(40)]의 합성
전항(6)에서 얻은 화합물(39) 50mg을 메탄올 2ml에 용해시키고, 0.2M 나트륨 메틸레이트-메탄올 용액 0.2ml을 가하여 실온에서 20분 동안 반응시킨다. 반응액에 앰버라이트 CG-120(H+형) 이온교환수지(100-200메쉬)를 가하여 중화한 후, 여과하고, 여액을 농축하여 얻은 고체를 디에틸에테르로 세척하면, 불용의 표제화합물(40) 31mg을 얻는다. 수율 77%.
(8) 4-아미노아세틸-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)-5-(디메틸아미노메틸렌아미노)이미다졸[화합물(41)]의 합성
전항(7)에서 얻은 화합물(40) 35mg을 메탄올 3.5ml에 용해시키고, 이 용액에 파라듐블랙을 촉매로서 실온에서 수소를 취입하고, 30분동안 접촉 환원시킨다. 반응액을 여과한 후, 여액을 농축하고, 얻은 고체를 초산에틸로 세척하고, 불용의 표제화합물(41) 29.7mg을 얻는다. 수율 92%.
(9) 3-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온[화합물(42)]의 합성
전항(8)에서 얻은 화합물(41) 18mg을 0.1M 나트륨 메틸레이트-메탄올 용액 0.7ml에 용해시키고 실온에서 하룻밤 방치시킨다. 반응액에 드라이아이스를 가하여 중화한 후, 농축하여 얻은 잔사를 실리카 겔 컬럼 크로마토그라피(전개계; 물-메탄올-클로로포름, 1:2:4의 하층)하여 정제하면, 표제의 화합물(42)인 무색 고체 4.7mg을 얻는다. 수율 30%.
1H-NMR 스펙트럼(중디메틸술폭시드에서 TMS 내부 표준)
δ 3.79(2H, d, COCH2), 5.05(1H, d, t, H-2')
6.32(1H, dd, H-1'), 7.46(1H, d, H-5)
7.73(1H, d, H-2)
(10) 2'-데옥시-2'-에피-2'-플루오로코포르마이신[화합물(43)]과 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신[화합물(44)]의 합성
전항(9)에서 얻은 화합물(42) 3.3mg을 물-메탄올(1:1)의 혼액 0.06ml에 용해시키고, 이 용액에 수소화붕소 0.4mg을 가하여 실온에서 15분간 반응시킨다. 반응액에 드라이아이스를 가하여 과잉의 시약을 분해한 후, 이 용액 모두를 역상 컬럼(YMC-PACK D-ODS-5)을 이용한 분취고속액체 크로마토그라피(이동상; 물-메탄올 4:1)하여, 생성물을 분리, 정제한다.
화합물(44)(K'=0.6), 화합물(43)(K'=0.8)의 순서로 용출이 일어나고, 각 용출액을 동결 건조하면 표제의 화합물(43)인 무색 고체 1.0mg(수율 30%)과, 화합물(44)인 무색 고체 1.3mg(수율 39%)을 얻는다.
화합물(43)은 다음과 같은 물성을 나타낸다.
[α]27 D+118°(c0.05, 물)
1H-NMR 스펙트럼(중수에서 TMS 내부 표준)
δ 3.36(1H, d, H-7a), 3.49(1H, dd, H-7b)
3.78(1H, dd, H-5a), 3.86(1H, dd, H-5b)
4.02(1H, m, H-4'), 4.47(1H, ddd, H-3')
5.13(1H, d, H-8), 5.16(1H, ddd, H-2')
6.27(1H, dd, H-1'), 7.19(1H, s, H-5)
7.70(1H, d, H-2)
J7a,7b=13.5 J7b,8=4.5 J2, F=2.5,
J1',2'=4, J2',3'=3, J3',4'=5, J4',5'=4,
J4',5'b=6, J5'a,5'b=12.5, J1', F=18,
J2', F=51.5, J3', F=18.5Hz
[α]27 D-27°(c0.1, 물)
1H-NMR 스펙트럼(중수에서 TMS 내부 표준)
δ 3.38(1H, d, H-7a), 3.50(1H, dd, H-7b)
3.80(1H, dd, H-5'a), 3.88(1H, dd, H-5'b)
4.03(1H, m, H-4'), 4.50(1H, ddd, H-3')
5.14(1H, d, H-8), 5.19(1H, ddd, H-2')
6.28(1H, dd, H-1'), 7.20(1H, s, H-5)
7.70(1H, d, H-2)
J7a,7b=13.5 J7b,8=4.5
J1',2'=4, J2',3'=3, J3',4'=5
J4',5'a=4, J4',5'b=6
J5'a,5'b=12.5, J1', F=18,
J2', F=51.5, J3', F=18.5Hz
[실시예 3]
2-데옥시-2-플루오로-D-아라비노푸라노실아지드[화합물(45)]와 2-데옥시-2-플루오로-D-아라비노푸라노실아민[화합물(46)]의 합성
(1) 화합물(29), (30)의 혼합물 580mg을 메탄올 12ml에 용해시키고, 이에 0.2M 나트륨 메틸레이트-메탄올 용액 2.5ml을 가하여 실온에서 30분 동안 반응시키고 가메탄올 분해를 행한다. 반응액에 앰버라이트 CG-120(H+형) 이온 교환 수지(100-200메쉬)를 가하여 중화한 후, 여과하고, 여액을 농축하여 얻은 시럽을 실리카 겔 컬럼 크로마토그라피(전개계; 톨루엔-초산에틸, 1:2)하여 정제하면 표제의 화합물(45), 235mg을 무색 시럽으로 얻는다. 수율 88%.
1H-NMR 스펙트럼(중디메틸술폭시드에서 TMS 내부 표준)
(α:β = 약 1.4:1)
δ 4.74[slightly br. d, J2, F-51.5Hz, H-2(α)]
4.96[dt, J1,2=J2,3=4, J2, F=52Hz, H-2(β)]
5.35[dd, J1, F=10Hz, H-1(β)]
5.73[slightly br. d, J1, F=14Hz, H-1(α)]
19F-NMR 스펙트럼(중디메틸술폭시드에서 프레온 11 내부 표준)
δ -185.1[ddd, F-2(α)], -200.5[ddd, F-2(β)]
(2) 이 화합물(45) 65.0mg을 디옥산 2ml에 용해시키고, 이 용액에 팔라듐블랙을 촉매로 하여 실온에서 수소를 취입하고, 1시간 접촉 환원시킨다. 반응액을 여과한 후, 여액을 농축하면, 표제의 화합물 51.0mg을 무색 고체로서 얻는다. 수율 92%.
[산업상 이용 가능성]
본 발명에서 합성한 2'-데옥시-2'-플루오로코포르마이신과 2'-데옥시-8-에피-2'-플루오로코포르마이신 및 2'-데옥시-2'-에피-2'-플루오로코포르마이신과 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신은 신규한 화합물이고 아데노신 데아미나아제에 대하여 강력한 효소저해활성을 갖는다. 특히, 이들 신규한 화합물은 강력한 아데노신 데아미나아제 저해활성을 기초로하여, 급성 림파계 백혈병에 대하여 의료 효과를 갖는 유용한 물질이다. 또, 상기의 신규한 코포르마이신-2'-플루오로 유도체의 합성 과정 중에 유용한 각종 중간체를 신규 화합물로서 얻는다.

Claims (7)

  1. 다음 일반식(Ia)
    [상기 식에서 8위치의 수산기는 (R) 또는 (S) 입체 배치를 갖는다]으로 표시되는 2'-데옥시-2'-플루오로코포르마이신[식에서, 8위치의 수산기가 (R)의 입체 배치를 갖는 경우]과 2'-데옥시-8-에피-2'-플루오로코포르마이신[식에서, 8위치의 수산기가 (S)의 입체 배치를 갖는 경우]으로 이루어지는 군에서 선택한 화합물.
  2. 다음 일반식(Ib)
    [상기 식에서 8위치의 수산기는 (R) 또는 (S)의 입체 배치를 갖는다]으로 표시되는 2'-데옥시-2'-에피-2'-플루오로코포르마이신[식에서, 8위치의 수산기가 (R)의 입체 배치를 갖는 경우]과 2'-데옥시-8,2'-디에피-2'-플루오로코포르마이신[식에서 8위치의 수산기가 (S)의 입체 배치를 갖는 경우]으로 이루어지는 군에서 선택한 화합물.
  3. 다음 일반식(II)
    [상기 식에서 Hal은 브롬, 염소 또는 요오드이다]으로 표시되는 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실 할라이드.
  4. 다음 일반식(III)
    [상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다]으로 표시되는 2-데옥시-2-플루오로-α- 및 -β-D-리보푸라노실아지드[식에서 X는 수소 원자이고 X'는 플루오로 원자인 경우] 더불어 2-데옥시-2-플루오로-α- 및 -β-D-아라비노푸라노실아지드[식에서 X는 플루오로 원자이고 X'는 수소 원자인 경우]로 이루어지는 군에서 선택한 화합물.
  5. 다음 일반식(IV)
    [상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다]으로 표시되는 2-데옥시-2-플루오로-α,β-D-리보푸라노실아민[식에서 X는 수소 원자이고 X'는 플루오로 원자인 경우]과2-데옥시-2-플루오로-α,β-D-아라비노푸라노실아민[식에서 X는 플루오로 원자이고 X'는 수소 원자인 경우]으로 이루어지는 군에서 선택한 화합물.
  6. 다음 일반식(V)
    [상기 식에서 X와 X'는 각각 수소 원자 또는 플루오로 원자이다]으로 표시되는 5-아미노-1-(2-데옥시-2-플루오로-β-D-리보푸라노실)이미다졸-4-카르복실산[식에서 X는 수소 원자이고 X'는 플루오로 원자인 경우]과 5-아미노-1-(2-데옥시-2-플루오로-β-D-아라비노푸라노실)이미다졸-4-카르복실산[식에서 X는 플루오로 원자이고 X'는 수소 원자인 경우]으로 이루어지는 군에서 선택한 화합물.
  7. 다음 일반식(VI)
    [상기 식에서 Xa가 수소 원자이고 Xb가 플루오로 원자이거나, 또는 Xa가 플루오로 원자이고 Xb가 수소 원자이다]으로 표시되는 3-(2-데옥시-2-플루오로-β-D-리보푸라노실 또는 -아라비노푸라노실)-6,7-디하이드로이미다졸[4,5-d][1,3]디아제핀-8(3H)-온.
KR1019940701645A 1991-11-14 1992-11-13 2'-데옥시-2'-플루오로코포르마이신과 이의 입체 이성체 KR0163799B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP91-352588 1991-11-14
JP35258891 1991-11-14

Publications (1)

Publication Number Publication Date
KR0163799B1 true KR0163799B1 (ko) 1998-11-16

Family

ID=18425076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940701645A KR0163799B1 (ko) 1991-11-14 1992-11-13 2'-데옥시-2'-플루오로코포르마이신과 이의 입체 이성체

Country Status (11)

Country Link
EP (1) EP0643069B1 (ko)
JP (1) JP3030087B2 (ko)
KR (1) KR0163799B1 (ko)
AT (1) ATE149510T1 (ko)
AU (1) AU661520B2 (ko)
CA (1) CA2122815C (ko)
DE (1) DE69218005T2 (ko)
DK (1) DK0643069T3 (ko)
ES (1) ES2099841T3 (ko)
NO (1) NO301231B1 (ko)
WO (1) WO1993010137A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241294A (ja) * 1996-03-07 1997-09-16 Microbial Chem Res Found 2′−デオキシ−2′−ハロコホルマイシン又はその立体異性体の製造法
JP6045641B1 (ja) * 2015-06-04 2016-12-14 株式会社 資生堂 化粧容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625020A (en) * 1983-11-18 1986-11-25 Bristol-Myers Company Nucleoside process
DE3562623D1 (en) * 1984-03-16 1988-06-16 Warner Lambert Co 2'-chloropentostatin, a pharmaceutical composition comprising the compound and a novel microorganism for producing the compound
JPS61199797A (ja) * 1985-02-28 1986-09-04 Kitasato Inst:The 新規化合物アデクロリンおよびその製造法
JPH0631298B2 (ja) * 1985-12-18 1994-04-27 財団法人微生物化学研究会 新規アンスラサイクリン誘導体,抗腫瘍剤,及び製造法
JPH0798832B2 (ja) * 1987-05-01 1995-10-25 財団法人微生物化学研究会 イミダゾジアゼピン誘導体

Also Published As

Publication number Publication date
DK0643069T3 (da) 1997-09-15
AU661520B2 (en) 1995-07-27
WO1993010137A1 (en) 1993-05-27
CA2122815A1 (en) 1993-05-27
ES2099841T3 (es) 1997-06-01
EP0643069A4 (en) 1994-11-22
DE69218005D1 (de) 1997-04-10
NO941800L (no) 1994-07-04
NO301231B1 (no) 1997-09-29
JP3030087B2 (ja) 2000-04-10
ATE149510T1 (de) 1997-03-15
NO941800D0 (no) 1994-05-13
EP0643069B1 (en) 1997-03-05
AU2931892A (en) 1993-06-15
CA2122815C (en) 1998-09-15
JPH06511062A (ja) 1994-12-08
DE69218005T2 (de) 1997-10-16
EP0643069A1 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US3798209A (en) 1,2,4-triazole nucleosides
USRE29835E (en) 1,2,4-Triazole nucleosides
CA2509687C (en) Process for the production of 2'-branched nucleosides
US6525191B1 (en) Conformationally constrained L-nucleosides
HU199871B (en) Process for producing deazapurine nucleoside derivatives and antiviral compositions comprising said compounds
IE902665A1 (en) Nucleoside derivatives and pharmaceutical compositions¹containing them
OHTSUKA et al. Studies on transfer ribonucleic acids and related compounds. XVI. Synthesis of ribooligonucleotides using a photosensitive o-nitrobenzyl protection for the 2'-hydroxyl group
JP4593917B2 (ja) プリンヌクレオシドを調製する方法
NZ544634A (en) Synthesis of beta-l-2-deoxy nucleosides
NZ528575A (en) Process for the preparation of 2'-halo-beta-L-arabinofuranosyl nucleosides
US5811408A (en) 2'-deoxy-2'-(substituted or unsubstituted)methylidene-4'-thionucleosides
KR0163799B1 (ko) 2'-데옥시-2'-플루오로코포르마이신과 이의 입체 이성체
JPH0853490A (ja) 2’−デオキシ−2’,2’−ジハロゲノ−4’−チオヌクレオシド
Sivets et al. Synthesis of 2-fluoro-substituted and 2, 6-modified purine 2′, 3′-dideoxy-2′, 3′-difluoro-d-arabinofuranosyl nucleosides from d-xylose
US5886167A (en) 2'-deoxy-2'-epi-2'-fluorocoformycin
Thomas et al. Synthesis and biologic activity of purine 2′-deoxy-2′-fluoro-ribonucleosides
US5290927A (en) Process for preparing 2',3'-dideoxyadenosine
Alexandrova 4′-C-nucleoside derivatives: Synthesis and antiviral properties
US4918056A (en) 2-substituted arabinopyranosyl nucleosides and nucleotides
EP0794194B1 (en) A process for the preparation of 2'-deoxy-2'-halocoformycins or stereoisomers thereof
Cristalli et al. 3, 7-Dideazapurine nucleosides. Synthesis and antitumor activity of 1-deazatubercidin and 2-chloro-2'-deoxy-3, 7-dideazaadenosine
Carmona et al. Branched-chain fluoro nitro d-and l-sugars from glucose
JPH06211890A (ja) 2’−デオキシ−2’(s)−置換アルキルシチジン誘導体
Mizuno et al. Studies on Condensed Systems of Aromatic Nitrogenous Series. XXIII. Synthesis of 1-(β-D-Ribofuranosyl)-1H-imidazo [4, 5-c] pyridines1
Pankiewicz et al. Nucleosides. 164. Studies directed toward the synthesis of 2'-deoxy-2'-substituted arabino nucleosides. 10. Synthesis of 2'-. beta.-fluoro-and 3'-. alpha.-fluoro-substituted guanine nucleosides. Effect of sugar conformational shifts on nucleophilic displacement of the 2'-hydroxy and 3'-hydroxy group with DAST

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020902

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee