KR0162266B1 - 자기광학특성 측정장치 - Google Patents

자기광학특성 측정장치 Download PDF

Info

Publication number
KR0162266B1
KR0162266B1 KR1019950043995A KR19950043995A KR0162266B1 KR 0162266 B1 KR0162266 B1 KR 0162266B1 KR 1019950043995 A KR1019950043995 A KR 1019950043995A KR 19950043995 A KR19950043995 A KR 19950043995A KR 0162266 B1 KR0162266 B1 KR 0162266B1
Authority
KR
South Korea
Prior art keywords
magneto
amplifier
care
optical
rotation angle
Prior art date
Application number
KR1019950043995A
Other languages
English (en)
Other versions
KR970029393A (ko
Inventor
조융국
Original Assignee
장용균
주식회사에스.케이.씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장용균, 주식회사에스.케이.씨 filed Critical 장용균
Priority to KR1019950043995A priority Critical patent/KR0162266B1/ko
Priority to US08/753,369 priority patent/US5838444A/en
Priority to JP8316754A priority patent/JPH09178649A/ja
Publication of KR970029393A publication Critical patent/KR970029393A/ko
Application granted granted Critical
Publication of KR0162266B1 publication Critical patent/KR0162266B1/ko

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0325Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Kerr effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1727Magnetomodulation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

본 발명은 광자기 기록재료로 사용되는 물질의 여러특성중 자기광학적 성질인 케어(Kerr)회전각을 측정하는 자기광학특성 측정장치에 관한 것이다.
종래의 자기광학특성 측정장치는 편광자를 통과한 직선편광이 샘플에 반사될 경우 자기광학효과에 의하여 케어회전각이 발생한 것을 편광자와 직교한 상태에 있는 검광자를 통하여 미세한 전류로 검출할 수 밖에 없었는데 자기케어효과를 나타내는 물질들의 케어회전각은 약 0.1∼0.5°이기 때문에 이러한 종래의 자기광학특성 측정기로서는 잡음성분의 영향으로 인하여 정확히 미소한 케어회전각을 측정하기가 어려운 문제점이 있었다.
본 발명은 광학부에서 편광자(12)를 거쳐 빔스프릿터(14)로 입력되는 레이저를 자기광학변조시키고, 광검출기(30)의 검출신호를 이용하여 X-Y 레코더(28)에 기록하는 전자회로부에서 록-인 증폭기(50;Lock-In Amplifier)를 사용함으로써 미소한 케어회전각을 정확히 측정할 수 있도록 된 발명임.

Description

자기광학특성 측정장치
제1도는 자화방향에 따른 제어회전각 θk의 변화와 케어타원율 ηk를 설명하기 위한 도면.
제2도는 케어효과를 설명하기 위한 도면.
제3도는 종래 자기광학특성 측정장치를 설명하기 위한 도면.
제4도는 종래 자기광학특성 측정장치의 측정방법을 설명하기 위한 도면.
제5도는 본 발명에 따른 자기광학특성 측정장치를 설명하기 위한 도면.
제6도는 본 발명에 따른 록-인 증폭기의 주요부분에 대한 파형을 설명하기 위한 도면.
제7도는 본 발명의 일실시예에 따른 측정결과를 설명하기 위한 도면.
제8도는 본 발명의 다른 실시예에 따른 측정결과를 설명하기 위한 도면이다.
* 도면의 주요부분에 대한 부호의 설명
10 : 레이저발생기 12 : 편광자
14 : 빔스프릿터 16 : 검광자
18 : 전자석 20 : 마그네트전원
22 : 홀소자 24 : H축 증폭기
26 : M축 증폭기 28 : X-Y 레코더
30 : 광검출기 32 : 반사경
40 : 편광변조기 42 : 시그날제네레이터
44 : 고역통과필터 46 : 대역통과필터
48 : 노치필터 50 : 록-인 증폭기
52 : 페이즈 시프터 54 : 스위칭회로
56 : 차동증폭기 60 : 적분기
62 : 저역통과필터 S : 샘플
본 발명은 자기광학특성 시험장치에 관한 것으로, 더욱 상세하게는 광자기 기록재료로 사용되는 물질의 여러특성중 자기광학적 성질인 케어(Kerr)회전각을 측정하는 자기광학특성 측정장치에 관한 것이다.
일반적으로 광자기디스크는 디스크기판에 성막한 자성체 박막에 레이저를 조사하여 온도를 상승시킨 수 온도가 상승된 부분만 자화방향을 변화시켜 기록하는 자기기록방식의 디스크이다.
이러한 디스크의 재생시에는 자기광학효과를 이용하게 되는데, 자기광학효과라 함은 레이저의 편광방향이 자화의 방향에 따라 회전하는 것을 의미한다.
이에 대해 좀더 상세히 설명하면 일반적으로 물질에 직선편광을 경사지게 입사시키면, 반사광은 타원편광이 되고, 그 주축의 방향이 입사광의 편광의 방향으로부터 회전한다.
이러한 현상은 타원측정법(Ellipsometry)로서 물질의 광학정수 n과 k를 구하고, 박막의 두께를 측정하는데 이용된다.
등방성의 물질에 광을 수직으로 입사시키는 경우에는 이런 현상이 일어나지 않는다.
그러나 예시도면 제1도에 도시된 바와 같이, 물질이 자화를 가지고 있고 직선편광이 수직으로 입사할 경우 주축의 방향이 입사편광에 대하여 기울어진 타원편광이 반사되는 이러한 현상을 케어효과라 하며, 이 경우의 자기선광각을 회전각 θk, 타원편광의 장축과 단축의 비를 케어 타원율 ηk라 부른다.
여기서 회전방향은 입사광방향과 자화의 방향이 일치할 경우에는 우회전하고, 입사광방향과 자화의 방향이 반대일 경우에는 좌회전하며, θk, ηk의 부호는 자화의 방향에 반대가 되면 음의 부호를 붙인다.
케어효과가 제2도에 도시된 바와 같이 극케어효과(Polar Kerr Effect), 종케어효과(Longitudinal Kerr Effect), 횡케어효과(Tranverse Kerr Effect) 등의 3종류가 있으나, 현재 광자기기록매체에 사용되는 것은 반사면의 법선방향에 평행하게 자화되어 있는 경우의 극케어효과이다.
여기서 미설명 부호 M은 자화의 방향 및 크기를 나타낸다.
자기케어효과가 있는 기록막에 기록된 정보를 재생할 경우 재생신호의 신호 대 잡음 비(S/N 비)는 다음의 식과 같이 나타난다.
즉 S/N 비는 기록막의 반사율과 케어회전각에 비례한다. 따라서 기록물질개발 및 최적 조성 선정 및 기록막의 성막공정조건 등의 선정에 있어 케어회전각의 평가가 매우 중요하다.
예시도면 제3도는 종래 자기광학특성 측정장치를 설명하기 위한 도면이다.
여기서 도면 부호 10은 레이저 발생기를 나타내는 것이다.
편광자(12)는 레이저광의 상태를 선편광으로 만들어 내보내 주는 렌즈 즉 자연광이나 타원편광 및 원편광으로부터 직선편광을 선택하여 내보내는 광학렌즈로서, 직선편광이라 함은 광을 전자기파라고 했을 때 전계가 일정한 방향으로 진동하는 것을 말한다.
또한 빔스프릿터(14)는 레이저빔의 방향을 바꾸어 주는 광학렌즈이고, 검광자(16)는 편광자(12)와 같은 기능을 하는 것으로서 선편광의 투과방향은 편광자의 90°(직교 상태)를 이룬다.
그리고 전자석(18)은 샘플(S)의 수직한 방향으로 자화를 걸어주기 위한 것으로, 전류가 흐르는 방향에 따라 N극과 S극의 방향이 변경가능한 전자석이고, 마그네트전원(20)은 전자석(18)에 전류를 공급하는 전원이다.
홀소자(22)는 샘플(S)의 하방에 설치되어 자화의 크기와 방향에 따라 미소전류를 발생시키는 자화센서이다.
한편 H축 증폭기(24)는 홀소자(22)에서 발생한 미소전류를 증폭하여 그 후단에 연결되는 X-Y 레코더(28)에서 X축을 플로팅할 수 있도록 증폭하는 작용을 하는 것이고, M축 증폭기(26)는 케어회전각에 의하여 검광자(16)를 통과한 미소한 빛이 광검출기(30)에 닿으면 전류가 발생하는데 이 값이 미세하므로 X-Y 레코더(28)에서 Y축을 플로팅할 수 있도록 증폭하는 작용을 하는 것이다.
미설명 부호 32는 반사경을 나타낸다.
이와 같은 구성요소로서 이루어진 종래의 자기광학특성 측정장치는 제4도에 도시된 바와 같이 편광자(12)를 통과한 직선편광이 샘플(S)에 반사될 경우 자기광학효과에 의하여 케어회전각이 발생한 것을 편광자(12)와 직교한 상태에 있는 검광자(16)를 통하여 미세한 전류로 검출할 수 밖에 없었다.
즉, 이때 광검출기(30)에서 출력되는 신호는
과 같이 표현될 수 있는데 그 크기는 매우 작다.
여기서 Io : 광검출기(30)의 출력전류,
K : 광검출기(30)의 이득,
P : 레이저의 세기
i : 편광자의 저소광 비에 의한 잡음
을 각각 나타낸다.
그런데 일반적으로 지금까지 자기케어효과를 나타내는 물질들의 케어회전각은 약 0.1∼0.5°이기 때문에 이러한 종래의 자기광학특성 측정기로서는 잡음성분의 영향으로 인하여 정확히 미소한 케어회전각을 측정하기가 어려운 문제점이 있었다.
본 발명은 상기한 사정을 감안하여 발명한 것으로, 광학부에서 편광자를 거쳐 빔스프릿터로 입력되는 레이저를 자기광학변조시키고, 광검출기의 검출신호를 이용하여 X-Y 레코더에 기록하는 전자회로부에서 록-인 증폭기(Lock-In Amplifier)를 사용함으로써 미소한 케어회전각을 정확히 측정할 수 있도록 된 자기광학특성 측정장치를 제공하고자 함에 발명의 목적이 있다.
이하 본 발명의 구성 및 작용효과를 예시도면에 의거하여 상세히 설명하면 다음과 같다.
본 발명은 레이저발생기(10)의 레이저출력을 편광자(12)를 매개로 빔스프릿터(14)에 통과시켜 반사경(32)을 통해 샘플(S)에 조사 및 반사시킨 후 검광자(16)의 출력을 광검출기(30)로 검출하여 M축 증폭기(26)를 통해 X-Y 레코더(28)의 Y축에 입력시키는 한편 마그네트전원(20)으로 전자석(18)을 통해 샘플(S)에 자계를 형성시켜주어 홀소자(22)로부터 검출되는 전압을 H축 증폭기(24)로 증폭한 다음 X-Y 레코더(28)의 X축에 입력시켜 케어회전각을 검출하도록 하는 자기광학특성 측정장치에 있어서, 상기 레이저발생기(10)에서 발생되는 레이저빔을 상기 편광자(12)와 빔스프릿터(14) 사이에서 시그날 제네레이터(42)에 의해 자기광학변조 시키도록 하는 편광변조기(40)를 설치한 구조로 되어 있다.
또한 상기 광검출기(30)의 출력단에는 고역통과필터(44)와 대역통과필터(46), 노치필터(48)를 차례로 매개하여 록-인 증폭기(50)를 연결하고, 상기 록-인 증폭기(50)에는 적분기(60)와 저역통과필터(62)를 차례로 매개하여 X-Y 레코더(28)의 Y축 입력단을 연결한 구조로 되어 있다.
그리고 록-인 증폭기(50)는 상기 노치필터(48)의 출력을 입력으로 하는 페이즈 시프터(52)와 상기 페이즈 시프터(52)의 출력단에 스위칭회로(54)를 매개로 차동증폭기(56)의 일측 입력단을 연결하고, 또한 상기 페이즈 시프터(52)의 출력단에 상기 차동증폭기(56)의 (-1)배 입력단을 직접 연결하여 구성한 것이다.
제5도는 본 발명에 따른 자기광학특성 측정장치의 구성도를 도시한 것이다.
여기서 편광변조기(40)는 파라데이의 회전현상을 이용한 자기광학변조장치로서, 파라데이 회전현상은 자계내에 놓여 있는 물질중을 통과하는 광의 편광면이 인가자계에 의하여 회전하는 현상을 말하며, 회전각 θ는 θ=VHL로 표현된다(V는 베르디정수, H는 자계, L은 물질의 길이를 각각 나타낸다).
여기서 인가하는 자계는 솔레노이드 코일을 이용한 전자석을 사용하는데 코일에 흐르는 전류의 방향을 바꾸어 줌으로써 즉 시그날제네레이터(42)에서 주파수ω를 갖는 교류전류를 흘려줌으로서 자계의 방향을 바꾸어 줄 수 있게 되고, 편광면이 자계가 존재하지 않을 경우 즉 H=0일때의 위치를 중심으로 하여 좌우로 (+,-)편광면을 진동시킬 수 있게 된다.
편광자(12)와 검광자(16)의 위치가 직교상태로부터 θ만큼 벗어나 있는 경우 광검출기(30)의 신호는 앞서의 (식 1)과 같다.
이때 θ가 작은 경우 (식 1)은
와 같이 표현될 수 있다.
편광자(12)와 검광자(16)를 직교시키고 편광자(12)를 통과한 레이저빔을 편광자(12)와 검광자(16) 사이에 있는 편광변조기(40)에 의하여 각속도 ω로 변조시켜 자기광학효과가 있는 물질에 반사시킨 경우 θ는 (식 3)과 같이 표시된다.
여기서 θk: 물질의 케어회전각,
θm: 각변조의 진폭,
이때 광검출기(30)의 출력전류는 (식 2)에 의하여 다음과 같이 표시된다.
이 출력전류를 변조주기 ω에 의하여 분리하여 표시하면 다음과 같다.
즉 DC(직류)성분, ω성분 그리고 2ω성분으로 나뉘어 진다.
그리고 (식 6)에서 θk 2은 값이 10-5∼10-6정도의 작은 값이므로 무시할 수 있다.
따라서 자기광학효과에 의한 케어회전각 θk성분은 ω성분의 출력전류값에 존재하게 되므로, DC(직류)성분 및 2ω성분을 제거하고 ω성분만 남기기 위하여 다음과 같은 여러 종류의 필터를 사용한다.
이와 같이 종래 자기광학효과를 측정하는 장치에서는 잡음원으로서 광검출기(30)의 쇼트노이즈(Short Noise)와 레이저의 출력변동에 의한 노이즈, 마그네틱필름의 결함에 의한 노이즈 등이 있으나, 상기와 같이 편광변조방법을 사용하게 되면 위와 같은 노이즈들이 제거될 수 있는 것이다.
필터회로의 구성에 의한 ω성분의 신호분리 방법은 다음과 같다.
먼저 광검출기(30)에서 나온 출력전류를 고역통과필터(44)에 통과시켜 직류성분의 전류를 제거한다. 그리고 ω성분만 통과시키기 위하여 대역통과필터(46)를 통과시키고 2ω성분을 완전히 제거하기 위하여 노치필터(48)를 통과시킨다.
그후 다음의 록-인 증폭기(50)를 사용하여 미소한 케어회전각 θk를 측정할 수 있다.
즉 노치필터(48)를 통과시킨 출력전류는 ω성분만 포함하게 되는데 스위칭회로(54)에 입력되는 주파수 ω의 구형파와 동기를 맞추어 주기 위하여 페이즈 시프터(52)를 통과시킨다.
스위칭회로(54)에서는 주파수 ω의 구형파가 +레벨일 때만 입력신호를 출력시킨다.
스위칭회로(54)를 통과한 신호는 2배하여 차동증폭기(56)로 입력시키고, 페이즈 시프터(52)를 통과시키고 스위칭회로(54)를 통과시키지 않은 신호는 (-1)배하여 차동증폭기(56)로 입력시킨다.
이때 록-인 증폭기(50)의 주요부분에 대한 파형도는 제6도에 도시된 바와 같다.
제6도(a)는 케어회전각 θk가 (+)인 경우로서, (a)는 스위칭회로(54)의 출력, (b)는 페이즈 시프터(52)의 출력, (c)는 차동증폭기(56)의 출력을 각각 나타낸다. 또한 제6도 (b)는 케어회전각 θk가 (-)인 경우로서, (a)는 스위칭회로(54)의 출력, (b)는 페이즈 시프터(52)의 출력, (c)는 차동증폭기(56)의 출력을 각각 나타낸다.
그리고 차동증폭된 신호는 적분기(60)에 의해 평활하게 되며, 평활된 신호의 평균레벨은 케어회전각에 비례하여 케어회전각이 크면 높은 값을 갖게 된다.
이어 적분기(60)에 의해 평활된 신호는 저역통과필터(62)에서 그 후단에 연결되는 출력장치인 X-Y 레코더(28)에서 사용될 수 있도록 더욱 평활한 신호로서 θk의 방향에 따른, 그리고 θk의 정도에 따른 직류값이 출력된다.
이와 같이 페이즈 시프터(52)와 스위칭회로(54) 및 차동증폭기(56)로 이루어진 록-인 증폭기(50)를 사용함으로서 0.1-0.5°정도의 미소한 케어회전각에서 발생하는 ω성분의 신호를 증폭시킬 수가 있고 민감하게 케어회전각을 측정할 수가 있다.
위와 같은 본 발명에 따른 자기광학특성 측정장치로부터 TbFeCo 박막의 케어회전각을 자장의 세기의 변화에 따라 측정한 결과를 제7도에 나타내었다.
측정시료의 준비는 다음과 같다.
[실시예 1]
폴리카보네이트 기판위에 SiN(Silicon Nitride) 막을 1100Å, 기록막을 230Å, SiN막을 400Å, Al막을 300Å 스펏터링 방법을 연속하여 코팅하였다.
스펏터링 하기 위한 초기진공도는 1×10-6Torr, 스펏터링시의 Ar 압력은 2mTorr로 하였다.
이때 기록막의 조성은 TbFeCo를 기본적으로 하여 다음과 같이 변경하여 제작하였다.
이에 대해 앞서 설명된 본 발명에 따른 자기광학특성 측정장치로 TbFeCo 박막의 케어회전각을 자장의 세기의 변화에 따라 측정한 결과를 제7도에 나타내었다.
여기서 시료 1-1,1-2는 0.33°로 평가되었고, 시료 1-3은 보상조성이기 때문에 무한대의 항자력(Hc)를 가짐으로 해서 100Koe 정도의 자장으로는 기록물질을 자화시킬 수 없어 케어회전각이 측정되지 않았다.
[실시예 2]
상기 실시예와 같은 방법으로 시료를 준비하고 TbFeCo를 기본으로 하여 기록막의 조성이 Zr과 Pt 각각 9.73a/o(Atomic Percent), 12.1a/o가 되도록 기록막을 제작하였다.
시료 2-1은 특별히 기록막 스펏터링중 산화처리를 실시하였다.
이에 대해 앞서 설명된 본 발명에 의한 자기광학특성 측정장치로 TbFeCo 박막의 케어회전각을 자장의 세기의 변화에 따라 측정한 결과를 제8도에 나타내었다.
시료 2-1은 0.33° 시료 2-2는 0.28°, 시료 2-3은 다량의 Pt를 합금함으로서 자기광학효과를 얻지 못하였다.

Claims (4)

  1. 레이저발생기(10)의 레이저출력을 편광자(12)를 매개로 빔스프릿터(14)에 통과시켜 반사경(32)을 통해 샘플(S)로 조사 및 반사시킨 후 검광자(16)의 출력을 광검출기(30)로 검출하여 M축 증폭기(26)를 통해 X-Y 레코더(28)의 Y축에 입력시키는 한편 마그네트전원(20)으로 전자석(18)을 통해 샘플(S)에 자계를 형성시켜주어 홀소자(22)로부터 검출되는 전압을 H축 증폭기(24)로 증폭한 다음 X-Y 레코더(28)의 X축에 입력시켜 케어회전각을 검출하도록 하는 자기광학특성 측정장치에 있어서, 상기 레이저발생기(10)에서 발생되는 레이저빔을 상기 편광자(12)와 빔스프릿터(14) 사이에서 시그날제네레이터(42)에 의해 자기광학변조시키도록 하는 편광변조기(40)를 설치한 구조로 되어 있는 자기광학특성 측정장치.
  2. 제1항에 있어서, 상기 광검출기(30)의 출력단에는 고역통과필터(44)와 대역통과필터(46), 노치필터(48)를 차례로 매개하여 록-인 증폭기(50)를 연결하고, 상기 록-인 증폭기(50)에는 적분기(60)와 저역통과필터(62)를 차례로 매개하여 출력장치인 X-Y 레코더(28)의 Y축 입력단을 연결한 구조로 되어 있는 것을 특징으로 하는 자기광학특성 측정장치.
  3. 제2항에 있어서, 상기 록-인 증폭기(50)는 상기 노치필터(48)의 출력을 입력으로 하는 페이즈 시프터(52)와 상기 페이즈 시프터(52)의 출력단에 스위칭회로(54)를 매개로 차동증폭기(56)의 일측 입력단을 연결하고, 또한 상기 페이즈 시프터(52)의 출력단에 상기 차동증폭기(56)의 (-1)배 입력단을 직접 연결하여 구성한 것을 특징으로 하는 자기광학특성 측정장치.
  4. 제3항에 있어서, 상기 차동증폭기(56)는 스위칭회로(54)의 입력을 2배하고 페이즈 시프터(52)의 입력을 (-1)배 하여 입력받도록 구성된 것을 특징으로 하는 자기광학특성 측정장치.
KR1019950043995A 1995-11-27 1995-11-27 자기광학특성 측정장치 KR0162266B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950043995A KR0162266B1 (ko) 1995-11-27 1995-11-27 자기광학특성 측정장치
US08/753,369 US5838444A (en) 1995-11-27 1996-11-25 Magneto-optic characteristic measuring apparatus
JP8316754A JPH09178649A (ja) 1995-11-27 1996-11-27 磁気光学特性測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950043995A KR0162266B1 (ko) 1995-11-27 1995-11-27 자기광학특성 측정장치

Publications (2)

Publication Number Publication Date
KR970029393A KR970029393A (ko) 1997-06-26
KR0162266B1 true KR0162266B1 (ko) 1998-12-15

Family

ID=19435911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950043995A KR0162266B1 (ko) 1995-11-27 1995-11-27 자기광학특성 측정장치

Country Status (3)

Country Link
US (1) US5838444A (ko)
JP (1) JPH09178649A (ko)
KR (1) KR0162266B1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231749A (ja) * 1999-02-09 2000-08-22 Sony Corp 光磁気記録媒体及びその製造方法
DE10203738B4 (de) * 2002-01-31 2004-01-15 AxynTeC Dünnschichttechnik GmbH Messvorrichtung und Verfahren zur Messung der Flussdichteverteilung in einer bandförmigen, supraleitenden Probe
US7092085B1 (en) 2004-01-20 2006-08-15 Desa Richard J Sample holder with intense magnetic field
CN102252969B (zh) * 2011-04-19 2013-02-27 复旦大学 一种磁光克尔效应与磁晶各向异性场测量系统及测量方法
US9348000B1 (en) 2012-12-20 2016-05-24 Seagate Technology Llc Magneto optic kerr effect magnetometer for ultra-high anisotropy magnetic measurements
WO2021067369A1 (en) * 2019-09-30 2021-04-08 Fohtung Edwin Diffractive imaging magneto-optical system
CN113567351B (zh) * 2021-06-10 2022-08-09 四川大学 基于量子弱测量的复磁光角测量系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410277A (en) * 1978-11-01 1983-10-18 Hitachi, Ltd. Apparatus for detecting magneto-optical anisotropy
JPS63122930A (ja) * 1986-11-13 1988-05-26 Matsushita Electric Ind Co Ltd 光磁気メモリ媒体のカ−回転角測定装置
US4838695A (en) * 1987-06-12 1989-06-13 Boston University Apparatus for measuring reflectivity
US4816761A (en) * 1987-06-22 1989-03-28 Josephs Richard M Apparatus for measuring the hysteresis loop of hard magnetic films on large magnetic recording disk
US4922200A (en) * 1989-08-25 1990-05-01 Ldj Electronics, Inc. Apparatus for measuring the hysteresis loop of magnetic film

Also Published As

Publication number Publication date
JPH09178649A (ja) 1997-07-11
US5838444A (en) 1998-11-17
KR970029393A (ko) 1997-06-26

Similar Documents

Publication Publication Date Title
US4410277A (en) Apparatus for detecting magneto-optical anisotropy
CA2004377A1 (en) Optical output controlling method and apparatus therefor
JP4585740B2 (ja) 磁気記録再生装置
US5619367A (en) Apparatus and method for measuring magnetic fields employing magneto-optic element
KR0162266B1 (ko) 자기광학특성 측정장치
FR2524650A1 (fr) Magnetometre optique
US3893023A (en) Magnetic bubble device for visualizing magnetic field patterns
US3775570A (en) Magneto-optic detection system with noise cancellation
Zhu et al. Zero loop-area Sagnac interferometer at oblique-incidence for detecting in-plane magneto-optic Kerr effect
JP3194838B2 (ja) 磁場測定方法および磁場測定装置
US5694384A (en) Method and system for measuring Kerr rotation of magneto-optical medium
EP0252813A1 (fr) Dispositif modulateur haute fréquence de polarisation de la lumière
JP3140546B2 (ja) 光磁界測定装置及び方法
Zhu et al. Design of surface magneto-optical kerr effect automatic measurement system based on LabVIEW
JPH0291840A (ja) 光磁気検出装置
JPS5938949A (ja) 磁気光学再生装置
JPH03276050A (ja) 磁気光学探傷装置
CN1071896C (zh) 磁光盘特性测试装置
Carey et al. The transverse Kerr effect in cobalt thin films and its application to a simple hysteresis loop plotter
Isella et al. A low cost modulation technique for magneto-optical measurements
SU1691796A1 (ru) Способ неразрушающего контрол намагниченности насыщени магнитных пленок
Haberl et al. A modulating aperture by domain wall displacements in magneto-optical materials
Abe et al. H/sub c/measurement of microscopic regions on thin film magnetic disc using longitudinal Kerr effect
JP2862024B2 (ja) 光磁気信号再生装置
Fu et al. Measurement System of Ferromagnetic Film Magnetic Properties Based on Mazneto-optical Kerr Effect

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee