KR0125442B1 - 표면 거칠기 광탐지 방법 및 장치 - Google Patents
표면 거칠기 광탐지 방법 및 장치Info
- Publication number
- KR0125442B1 KR0125442B1 KR1019890002219A KR890002219A KR0125442B1 KR 0125442 B1 KR0125442 B1 KR 0125442B1 KR 1019890002219 A KR1019890002219 A KR 1019890002219A KR 890002219 A KR890002219 A KR 890002219A KR 0125442 B1 KR0125442 B1 KR 0125442B1
- Authority
- KR
- South Korea
- Prior art keywords
- roughness
- material surface
- light
- optical
- angle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/303—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Paper (AREA)
- Holo Graphy (AREA)
Abstract
없음
Description
제1도는 물질표면의 거칠기 윤곽을 광학적으로 탐지하기 위한 광 거칠기 탐색장치의 개략도,
제2도는 장치를 확대해 놓은 광거칠기 탐색장치의 개략도,
제3도는 제2도의 A-A선을 따라 절단한 단면도,
제4도는 물질표면위의 광비이드가 간헐적으로 주사운동하는 광거칠기 탐색장치를 구체화한 개략도,
제5도는 제4도의 A-A선을 따라 절단한 단면도,
제6도는 이동한 물체들의 평균거칠기를 검사하기 위해 수광장치 뒤에 연결된 평가 및 제어논리회로의 블록도.
본 발명은 이동한 물질표면의 거칠기 윤곽을 광학적으로 탐지하는 방법에 관한 것으로서, 미세 광비이드(bead)가 물질표면위에 발생하고, 반사광은 수광장치로 들어간다. 아울러 본 발명은 그 방법을 수행하는 장치에 관한 것이다.
표면윤곽은 다이아몬드 끝을 사용하는 소위 첨필(stylus)방법에 의해 직접 기계적 측정으로 결정한다. 이러한 표준 측정방법은 모든 기계표면에 널리 사용되지만 측정방법이 느리며, 물질표면을 손상시키기 쉽다. 더군다나 움직이는 물질에 관해 측정이 용이하지 못하다.
직접적인 광학적 윤곽측정방법은 이미 사용되어졌는데, 예를 들면 미세 광비이드로 목표물의 높이를 추적 측정하는 광학적 주사방법(OPTIC COMMUNICATION, VOLUME 31, NO. 3, 1979)과 목표물을 추적하지 않고 두 수신신호의 차로 높이를 측정하는 광학적 주사방법(EP 0234997) 있다. 첫번째 경우는, 모든 거칠기 영역에 대해 일반적인 비접촉 광학측정이 가능하지만 상대적으로 느리며 (500HZ)조절과 진동에 민감하다. 두번째 경우는 측정은 약간 빠르나 높이측정 영역에 제한을 받으며 진동에 상당히 민감하다.
물질표면에 산재하는 돌출부의 광학적 탐지를 통하여 평균거칠기에 대한 간접적인 결정을 얻을 수 있다.(DE 30 37 622 A1)
이와 같은 단순한 적분방법은 진동에는 무감각하나 사용한 광의 파장 λ보다 윤곽높이가 작을 경우 측정에 제한을 받으며, 특별한 윤곽모양에 대해 측정이 불가능하다. 더군다나, 얻어진 측정값은 거칠기 윤곽이나 특성거칠기 수를 정의하기가 애매하며, 더 욱 어렵게 할 수 있다.
본 발명은 앞에서 말한 단점을 해결하며, 단면 높이가 사용된 광의 파장 λ보다 크고, 빠르게 움직이는 물질들에 대해 상응하는 빠르기로 진동에 무관한 측정을 목적으로 한다. 그 목적은 본 발명의 방법이 다음과 같은 경우 해결된다. 물질표면에 주사된 각점에 대해, 반사광의 반사각과 각 표면 경사값이 결정된다. 거칠기 윤곽은 일련의 주사된 점들을 따라 얻어진 경사값으로부터 재구성된다. 반사각의 결정을 위해 탐지한 것은 산란광의 중심방향에 있다. 거칠기 윤곽의 재구성이나 주사된 일련의 점들을 따라 윤곽절단의 재구성은 주사된 일련의 점들을 따라 경사값을 적분하여 얻어진다.
이러한 구성으로 거칠기 윤곽 측정은 상대적으로 빠르게 혹은 높은 측정속도로 움직이는 물체에 대해 수행될 수 있다. 나타나는 윤곽높이들은 사용한 광의 파장 λ보다 상당히 커질 수 있다. 이와 같은 경우 얻어진 경사값들로부터 명확한 거칠기 윤곽의 재구성이 항상 가능하다. 예를들어 본 발명은 차량부품용 냉연강판의 거칠기를 직접 압연선에서 모니터하기에 적합하다.
차량용 강철의 거칠기 영역(Ra=0.8~2.5/㎛)의 결과로, 단지 이산화탄소(λ=10.5㎛)만이 처음에 언급한 산재하는 돌출부의 적분 평가로 사용될 수 있는데 반하여 다루기 편리한 레이저 다이오우드는 본 발명의 방법 및 장치의 복사원으로 사용될 수 있다. 더군다나, 본 발명의 측정방법은 예를 들어 100/㎛의 윤곽높이를 갖는 표면 윤곽에 간단히 사용될 수 있다.
거칠기 윤곽의 재구성 또는 주사된 일련의 점들을 따른 윤곽절단면 재구성은 주사된 일련의 점들을 따라 경사값들을 적분하여 얻어진다. 발견된 중심각이나 경사값들은 일시적으로 저장될 수 있으므로 실제의 측정과정은 후속의 계산단계와는 독립적으로 빠른 속도로 수행할 수 있다.
한예로써 기계로 가공되는 표면들에 대해 거칠기를 측정할때 누구나 가공방향에 횡표면 윤곽을 알기를 원한다. 이러한 경우 광비이드의 간헐적인 주사운동의 발생을 위해 설비는 운동방향이나 물질표면의 가공방향에 횡측으로 만들어져야 한다.
특히 평균거칠기(Ra)나 평균거칠기 깊이(Rz)과 같은 보편적인 거칠기 측정 매개변수들은 재구성된 거칠기 윤곽으로 구해진다.
이동한 물질표면에 광비이드를 발생시키는 레이저 다이오우드와 수광장치를 갖는 본 발명의 장치는 다음과 같은 특성을 가진다. 지정된 반사각의 영역내에서 물질표면으로부터의 반사된 광을 탐지하는 수광장치는 산란된 반사광의 중심각과 상호 일치하는 한쌍의 출력신호(Ua,Ub)를 전달하기 위해 위치감지 수광장치에 연결한다. 따라서 물질표면의 표면윤곽은 미세 광비이드로 주사되는데, 이는 각점에서 반사광의 각과 그에 따른 물질의 표면경사를 탐지하기 위한 것이다. 반사광의 산란이 일어나더라도 별 문제없이 산란각을 탐지하기 위해, 위치감지 수광장치는 한쌍의 출력신호들을 직접 전달하기 위해 가능한 넓은 산란각의 범위로 물질표면으로부터 반사된 산란광의 산란각을 탐지한다. 여기서 출력신호는 위치에 의존하여 반응하므로 중심각에 따른다.
본 발명의 장치를 구체화하면 위치감지 수광장치는 많은 광다이오우드를 갖는다. 광다이오우드는 광비이드 둘레에 원호로 배열된다. 광전변환기 또는 광다이오우드는 위치 감지 회로에 연결되어 있어 중심각에 따른 신호쌍은 직접 출력된다. 광전변환기들은 원호 위에 서로 인접하게 놓일 수 있고 또는 적절히 배열되어 광전변환기들은 렌즈에 의해 각각 관련된 광전변환기 위에 상이 맺히는데, 렌즈들은 더 큰 원호위에 서로 인접하게 배치되어 있다.
특히 위치감지 수광장치는 수신원호의 큰 각의 영역으로 반사된 모든 산란광을 항상 받는다. 장치를 좀 더 전개하면, 광전변환기들의 출력신호들은 저항체인으로 들어가고, 반사각 또는 중심각에 따른 출력신호는 저항체인에서 얻을 수 있는 특성이 있다. 이 장치는 저항체인이 두 부분으로 나뉘어지고, 반사각이나 중심각에 따른 출력신호가 두 부분전압들로 세분된다. 여기서 하나의 부분전압은 저항체인 한쪽끝과 두 체인들 사이에 있는 중간점 사이에서 얻어지고, 다른 하나의 부분전압은 저항체인의 다른 한쪽끝과 중간점 사이에서 얻어진다. 예를들어 산란된 반사광의 중심에 대한 직접적인 정보는 두 부분전압의 차와 합의 몫으로 얻을 수 있다. 이와 같은 목적을 위해 중심각이나 반사각에 따른 출력신호 또는 위치감지 수광장치의 두 부분 출력 전압은 전기평가회로에 측정값으로 들어간다. 여기서 측정값은 중심각이나 나중의 측정값 표시에 비례한다.
중심각이나 반사각에서 표면 경사값을 얻는데 필요한 수단, 경사값에서 거칠기 윤곽을 재구성하는데 필요한 수단, 그리고 재구성한 거칠기 윤곽에서 평균거칠기값(Ra)와 평균거칠기 깊이(Rz)과 같은 거칠기 매개변수들을 얻는데 필요한 수단들이 전기평가회로에서 제공된다. 물질표면위의 연속점에 대해 주사진동수를 설정하는 제어는 평가장치와 동일하게 연결된다. 물질 수송 속도를 탐지하는 수단들은 각 수송속도에 대한 주사 주파수를 다른것들 사이에서 채택할 수 있도록 주어진다.
장치를 구체화시키면, 광비이드는 어떤 평면내에서 물질표면위를 앞뒤로 간헐적으로 움직인다. 이 평면은 광전변환기와 결합된 원호를 갖는다. 이러한 방법으로 가공방향의 횡표면 윤곽이 제공가능하다. 여기서 가공방향은 칩가공방향으로 가공된 표면을 갖는다. 표면조건이 균일하면 간단히 주사하기 쉽다.
이것을 위해 적합한 장치의 설계는 다음과 같이 구성된다. 광시준계에서 발생한평생한 평행광선은 일정한 각속도에서 간헐적으로 굴절되고, 텔레센트릭 F(telecentric F) 대물렌즈에 의해 물질표면위의 광비이드로 전환한다. 여기서 광비이드는 일정한 속도와 일정한 입사각에서 움직인다. 광비이드가 항상 일정한 속도에서 움직이고 일정한 입사각에서 발생한다는 것은 믿을만한 측정을 보장한다. 본 발명의 구체적인 장점은 특허청구에 설명되어 있다.
본 발명의 장치를 구체적인 설명과 도면으로 상세히 살펴보면 다음과 같다.
제1도는 광학적으로 거칠기를 조사하기 위한 것으로 빠르게 움직이는 물질표면(10)의 거칠기 윤곽을 탐지하기 위해 광원으로 레이저 다이오우드(12)를 갖는다. 그것의 방사는 물질표면(10)위에 광비이드(24)를 형성하기 위한 것으로 아래에 상세히 기술될 광학계를 통과하여 상이 맺힌다. 위치감지 수광장치(16)는 물질표면(10)의 반사에서 산란한 광의 산란각의 영역을 탐지한다. 산란영역은 반원형태를 갖는 원호로 미리 설정된다. 광전변환기를 형성하는 대부분의 광다이오우드(20)는 원호위에 서로 옆에 배열된다. 물질표면(10)에서 산란된 광은 환상렌즈(42)에서 탐지되고 반원에 분포한 광다이오우드(20)로 집적된다.
광학계와 연결된 레이저 다이오우드(12)는 표면에 수직인 면에 위치한 수광장치(16)에 기울어져 있는데, 이는 전달자(transmitter)에 의해 가려진 물질표면에서 역반사된 광을 피하기 위한 것이다. 환상렌즈(42)는 단면도에서 반원과 같은 모양이나, 원의 반경은 다이오우드(20)과 연결된 원의 반경보다는 작다. 저항체인(24)는 원호위에 배열된 광다이오우드(20)과 연결된다. 여기서 저항체인은 다수의 저항(Ri)으로 이루어져 있다.
저항체인(24)은 두 부분체인(26,28)로 나뉘어진다. 중심에서 원호에 배열된 광다이오우드(20)는 중간점(30)에 연결되고, 중간점은 부분체인(26,28) 사이에 놓여 있으며 대지전위(M)을 갖는다. 이와 같이 위치감지 수광장치는 원호위에 배열된 수신 다이오우드의 각면에 동일수의 광다이오우드(20)를 갖는다. 광다이오우드(20)의 출력은 부분체인(26,28)의 두저항(Ri) 사이의 연결점에 연결되어 있다. 부분체인(26,28)은 각각 저항체인(24)의 왼쪽 및 오른쪽 연결점이다.
원호의 왼쪽 끝에 배열된 광다이오우드는 저항체인(24)의 왼쪽 끝 연결점과 연결되고 오른쪽 끝에 배열된 광다이오우드는 저항체인(24)의 오른쪽 끝 연결점에 연결된다. 내부쪽에 놓인 광다이오우드의 출력은 저항체인(24)의 내부쪽으로 배열된 연결점에 연결된다. 따라서 전술한 위치감지 수광장치(16)는 산란된 반사광의 중심각 또는 반사각에 관련된 각에 의존하는 출력신호를 전달하고 출력신호는 저항체인(24)으로부터 두 부분전압 형태로 얻어진다.
부분전압 Ua는 저항체인(24)의 왼쪽 끝과 대지 사이인 왼쪽체인(26)에서 얻어진다. 부분전압 Ub는 저항체인(24)의 오른쪽 끝과 대지전위(M)쪽 중간점(30) 사이에서 얻어진다. 화살표(D)는 신속히 이동하는 물질의 운동방향이다.
따라서 물질표면(10)에서 반사된 산란광의 중심각에 따른 측정값은 두 부분전압 Ua와 Ub에 의해 직접 결정될 수 있다. 광비이드(14)를 발생시키는 광선은 물질표면(10)위에 거의 수직으로 충돌한다. 수광장치(16)의 광다이오우드(20)로 형성된 원호는 입사광선에 의해 형성된 직선에 대하여 중심을 갖는다. 즉 물질표면이 반사거울이라 할 때 규칙적으로 반사된 광선은 원호의 중심에 배열된 광다이오우드로 떨어진다.
만약 두 부분전압 Ua와 Ub가 같다면 광비이드로 부딪친 표면요소에서 반사된 중심각은 영이다. 즉, 거시적으로 말해 그 요소는 경사가 없다. 부분전압 Ub가 부분전압 Ua 보다 크다면 제1도의 산란된 반사광은 제1도의 오른쪽으로 기울어진다. 따라서 위치감지 수광장치(16)는 두 부분신호 Ua와 Ub의 형태로 출력신호를 전달한다. 여기서 Ua와 Ub는 각각에 일어나는 중심각에 의존한다. 각각에 일어나는 중심각의 표면값은 두 부분전압들의 차와 합으로부터 형성된 몫의 탄젠트 값으로 나타난다.
전술한 거칠기에 대한 세밀한 조사는 윤곽높이나 평균거칠기값(Ra)는 발생된 레이저광의 파장(λ)보다 크며 이동하는 물질을 신속히 모니터할 수 있다. 그 측정은 진동에 무관하다. 따라서 압연선에서 직접 차량부품용 냉연강판의 거칠기를 모니터한다. 차량부품용 강판의 거칠기 영역은 Ra가 약 0.8~2.5㎛이다. 이러한 경우 처음에 언급한 산재하는 돌출부의 적분 평가로 이산화탄소 레이저광(λ=0.5㎛)만이 작동가능하나 실제로 다루기 편리한 레이저 다이오우드를 표면단면의 광학적인 결정을 위해 본 발명의 장치의 방법에 사용한다. 더군다나 본 발명의 거칠기에 대한 세밀한 조사는 심지어 높이가 100㎛인 표면단면에서도 사용가능하다. 반사광의 각과 표면경사도를 선택된점의 각 위치에 대해 탐지하는 거칠기조사에서 미세 광비이드(14)로 물질표면(10)에 주사된다. 선택한 점들을 따라 경사값을 적분함으로 각 높이 윤곽은 어려움없이 재구성된다. 반사각은 반사광의 산란이 존재하더라도 전술한 장치로 탐지할 수 있다. 수신원호의 큰 각의 범위를 넘어 산란된 총 광은 광다이오우드로 주로 검출한다. 이들 다이오우드에 위치감지를 연결하면 중심각은 직접 탐지되고, 표면요소의 평균검사와 일치하는 반사각을 말한다.
제2도는 광학적으로 거칠기를 조사하기 위해 장치를 확대해 놓은 것이며 화살표 D는 물질표면(10)의 운동방향을 가르킨다. 일그러짐을 고정시키는 왜상 광학 시준계(32)에 의해 레이저 다이오우드(12)의 방사영역은 무한대에서 첫째 상이 맺히고, 물질표면(10)위에 광비이드(14)를 형성하기 위해 광학계(34)에 의해 그 다음의 상이 맺힌다. 발생된 광비이드(14)는 직경이 약 15㎛이며 물질표면(10)을 주사한다. 물질표면은 화살표 D방향으로 20m/sec 속도까지 움직인다.
이 물질표면(10)으로부터 반사된 산란광은 렌즈(22)나 L0,L1…Ln과 L-1…L-n위에 각각 연결된 광다이오우드(20)나 E0,E1…와 En에 의해 집적된다.
수광장치(16)과 연결된 광다이오우드(20)등은 차례차례 저항체인(24)에 연결되어 있으며 저항체인은 제2도에는 나타나 있지 않다. 두 부분전압 Ua와 Ub의 몫은 저항체인(24)에서 얻어지며 또한 이를 두 부분전압의 차와 합 몫은 산란광의 중심각과 광비이드에 의해 비친 표면요소의 경사각에 직접 정보를 전달한다. 두 부분전압의 차와 합의 몫에 대한 탄젠트값이 구해지면 표면요소의 경사가 산출된다. 렌즈(L-n~Ln)로 연결된 원호는 120°부터 160°까지의 구경각을 가질 수 있다. 여기서는 구경각의 각이 140°까지이다. 렌즈(L-n~Ln)은 원호위에 서로서로 가깝게 인접해 있다. 이러한 각 렌즈는 렌즈위에 부딪치는 광을 광다이오우드(E-n~En)로 집적한다. 중심각이나 중심신호들이 20MHz의 주파수라면 20m/sec의 물질속도에서 10㎛의 간격으로 물질위에 일련의 측정점을 갖는다. 관련된 표면요소의 평균경사값은 이들 측정점들에 대해 형성되고 평균값의 탄젠트값은 평균 경사를 말한다. 이와 같은 경사값은 측정값 메모리에 빠르게 줄 수 있다. 올바른 윤곽높이는 컴퓨터를 사용 측정점을 적분하여 일련의 경사값으로부터 재구성된다. 이런 종합적인 윤곽으로부터 평균거칠기값(Ra)과 평균거칠기 깊이(Rz)와 같은 거칠기 매개변수가 구해진다. 이러한 거칠기 매개변수들은 기계적 거칠기 측정장치와 같은 방법에 의해 거칠기 윤곽으로부터 결정될 수 있다. 예를 들어 클럭신호가 발생되면 위치감지 다이오우드 장치의 두 부분전압 Ua와 Ub는 전기제어 및 평가회로에서 증폭되고, 계수화되고 경사값으로 환산된다. 그때 윤곽높이는 동일한 전기평가회로에서 경사값들로부터 구성될 수 있고 최종적으로 올바른 거칠기값들은 계산될 수 있다.
제3도는 제2도의 A-A선을 따라 절단한 단면도이다. 이 단면도로부터 렌즈(L-n~Ln)과 광다이오우드(E-n~En)을 갖는 수광장치(16)와 레이저 다이오우드(12), 광학 시준계(32) 대물렌즈(34)를 갖는 수송장치는 서로 기울어져 있다. 이는 물질표면(10)으로부터 반사된 산란광이 수송장치에 의해 차단되지 않게 하기 위한 것이다.
본 발명의 광거칠기 조사의 구체적인 형태가 제4도와 제5도에서 보여진다. 여기서 광비이드(14)는 광다이오우드(20)나 E-n과 En을 연결한 원호를 내포한 평면내에서 주기적으로 앞뒤로 움직인다. 광비이드(14)의 주사운동은 화살표 D로 나타낸 물질표면(10)의 운동방향에 대해 횡곡으로 확장된다.
광학 시준계(32)에 발생한 평행광선은 회전거울(28)에 의해 주기적으로 굴절된다. 회전거울(38)은 구동기(40)에 의해 일정한 각속도로 돌아간다. 광학 시준계(32)에서 발생하고 회전거울(38)에 의해 일정한 각속도에서 굴절되는 평행광선은 텔레센트릭 Fθ(telecentric Fθ)-대물렌즈(36)에 의해 물질표면(10)위에 광비이드(14)로 전환된다. 여기서 물질표면위의 광비이드는 일정한 속도로 움직이고 일정한 입사각에서 발생한다.
이것은 칩가공기술로 가공된 표면의 거칠기 측정에 특히 적합하다. 여기서 관심의 촛점은 가공방향에 횡표면 윤곽이다. 가공방향에서 횡윤곽을 감지하기 위해 광비이드(14)는 평면내의 부분원에서 좌측 끝 광비이드위치(14')와 우측 끝 광비이드위치(14'')사이를 주기적으로 앞뒤로 움직인다. 이 운동방향은 화살표 D로 나타난 물질의 운동방향을 횡쪽으로 연장된다. 표면조건이 균일하다면 제4도에서 보여준 것과 같이 미소표면지역을 충분히 주사한다. 이러한 지역은 여러가지 가공홈을 포함하여 그것의 윤곽은 탐지된다. 앞의 장치는 광비이드 직경이 10㎛에서 15㎛까지 가질 수 있다. 8000rpm으로 회전하고 육면과 주사길이 15mm인 회전거울(38)로 광비이드(14)의 주사운동은 12m/sec의 속도를 갖는다.
대부분의 경우 이런 주사속도는 물질표면(10)의 수송속도나 칩가공기계의 속도보다 빠르다. 따라서 주기적으로 굴절된 광비이드(14)를 갖는 거칠기 조사는 가공홈에 수직방향으로 가공된 표면에서 거칠기 단면의 탐지가 가능하고 이 거칠기 단면으로부터 관련된 특성값들을 유도할 수 있다. 제4도와 제5도의 다른 나머지 요소들은 제2도와 3도의 같은 번호에 대해 동일한 부품을 갖는다. 제5도는 차량부품용 냉연강판 같은 물체를 압연선에서 평균거칠기를 직접 연속적으로 검사하기 위한 측정 설비 블록도이다.
이 장치에서 두 부분전압 Ua와 Ub는 위치감지 수광장치(16)의 출력으로 얻어진다. 이 두 부분전압은 논리평가회로(18)의 전치증폭기(preamplifier)(44,46)에 의해 각각 증폭되고 전치증폭기는 수광장치(16)뒤에 연결한다. 증폭된 출력신호들 Ua'와 Ub'는 각각 A/D 변환기(48,50)로 들어간다. 증폭된 신호(Ua',Ub')들의 차와 합의 몫은 두개의 A/D 변환기(48,50)가 뒤에 연결된 산술논리장치(52)에서 만들어진다. 이것은 물질표면(10)에서 반사된 산란광의 중심각과 표면요소의 경사각을 측정하기 위한 것이다. 최종적으로 이 경사각의 탄젠트는 이 표면요소의 경사를 유도하기 위한 것이다
산술논리장치(52)의 출력은 마이크로프로세스(microprocess)장치(54)로 들어간다. 바른 측정값 메모리를 갖는 마이크로프로세스장치는 표면요소의 평균경사값들을 일시적으로 저장한다.
물질속도감지기(62)는 물체속도를 감지하기 위해 인터페이스(interface)(60)로 출력신호를 보낸다. 인터페이스는 속도정보를 마이크로프로세스장치(54)로 전달한다. 올바른 윤곽높이는 표시화면(58)을 갖는 개인용 컴퓨터(56)를 이용 측정간격을 적분하여 일련의 경사값들로부터 재구성된다. 평균거칠기값(Ra)과 평균거칠기 깊이(Rz)와 같은 거칠기 매개변수는 종합적인 단면에서 결정된다.
물체속도의 탐지결과로 측정주파수를 물질수송속도와 조화시킬 수 있다.
Claims (20)
- 움직이는 물질표면의 거칠기 윤곽을 광학적으로 탐지하기 위한 방법으로서, 미세 광비이드가 물질표면위에 발생되고 반사광이 수광장치로 들어가는 표면거칠기 광탐지방법에 있어서, 물질표면에 주사된 각점에 대해 반사광의 반사각과 각 표면경사값이 결정되고, 거칠기 윤곽은 일련의 주사된 점들을 따라 얻어진 경사값으로부터 재구성되며, 반사각을 결정할 경우에, 반사각은 탐지된 산란된 반사광의 중심방향이며, 거칠기 윤곽의 재구성이나 또는 주사된 일련의 점들을 따른 윤곽절단면의 재구성은 주사된 일련의 점들을 따라 경사값을 적분하여 얻어짐을 특징으로 하는 표면거칠기 광탐지방법.
- 제1항에 있어서, 광비이드의 주기적인 주사운동이 물질표면의 운동방향에 횡측으로 발생됨을 특징으로 하는 방법.
- 상기한 어느 한 항에 있어서, 평균거칠기값 Ra와 평균거칠기 깊이 Rz 등과 같은 거칠기 측정 매개변수들은 재구성된 거칠기 윤곽으로부터 공지된 방식으로 형성됨을 특징으로 하는 방법.
- 상기 항중 어느 한 항에 따른 방법을 수행하기 위한 장치로서, 이동된 물질표면(10)위에 광비이드(14)를 발생시키기 위한 레이저 다이오우드(12)와 수광장치(16)를 포함하는 표면거칠기 광탐지장치에 있어서, 미리 결정된 반사각 범위내에서 물질표면(10)으로부터 반사된 광을 탐지하는 수광배열(16)은 산란된 반사광의 중심각과 각각 일치하는 한쌍의 출력신호(Ua,Ub)를 전달하기 위해 위치감지 수광장치에 연결됨을 특징으로 하는 표면거칠기 광탐지장치.
- 제4항에 있어서, 수광장치(16)는 물질표면(10)이 거울로 생각될때 물질표면에서 반사되는 방향과 물질표면(10)의 운동방향, 광비이드(14)에 의해 정의되는 평면내에 있는 광비이드 둘레에 원호로 배열함을 특징으로 하는 장치.
- 제5항에 있어서, 수광장치(16)는 원호위에 한줄로 가깝게 뭉쳐서 배열된 많은 광전변환기(20)로 구성됨을 특징으로 하는 장치.
- 제6항에 있어서, 다수의 렌즈(22)들이, 각각의 렌즈가 관련된 변환기 위에 광비이드(14)의 상을 맺기 위하여 렌즈뒤에 배치된 광전변환기(20)와 결합되어 원호위에 가깝게 뭉쳐서 배열됨을 특징으로 하는 장치.
- 제6항 또는 제7항에 있어서, 광전변환기(20)들과 결합된 원호와 렌즈(22)들과 결합된 원호가 약 120°내지 160°의 구경각을 가짐을 특징으로 하는 장치.
- 제6항에 있어서, 광전변환기(20)의 출력신호들은 저항체인(24)으로 들어가고, 각각의 반사각 내지 중심각에 의존하는 출력신호(Ua,Ub)들은 저항체인(24)에서 얻을 수 있음을 특징으로 하는 장치.
- 제6항에 있어서, 광전변환기(20)들은 광다이오우드임을 특징으로 하는 장치.
- 제10항에 있어서, 광다이오우드는 위치감지회로에서 광전달자의 출력표면에 배열되어 있으며, 광전달자의 끝표면은 광다이오우드 내에 있는 관련된 원위에 배열됨을 특징으로 하는 장치.
- 제9항에 있어서, 출력신호 또는 중심각 내지 반사각에 의존하는 두 부분전압(Ua,Ub)들은 중심각 또는 반사각과 바람직한 비율의 측정된 값을 직접 형성하기 위해 전기평가회로(18)로 들어감을 특징으로 하는 장치.
- 제12항에 있어서, 전기평가회로(18)는 중심각 내지 반사각으로부터 표면경사값을 형성시키기 위한 수단을 포함하여, 경사값으로부터 거칠기 윤곽을 재구성하는 수단을 포함함을 특징으로 하는 장치.
- 제13항에 있어서, 전기평가회로(18)는 재구성된 거칠기 윤곽으로부터 평균거칠기값(Ra) 또는 평균거칠기 깊이(Rz) 등과 같은 거칠기 측정 매개변수들을 형성하기 위한 수단들을 포함함을 특징으로 하는 장치.
- 제4항에 있어서, 광원은 레이저 다이오우드(12)임을 특징으로 하는 장치.
- 제4항에 있어서, 광비이드(14)의 발생을 위해 광원(12)의 방사영역은 왜상 광학 시준계(32)에 의해 무한대에서 상이 형성되고, 렌즈나 대물렌즈(34,36)에 의해 물질표면위에 상이 맺혀짐을 특징으로 하는 장치.
- 제16항에 있어서, 광섬유로 연결된 레이저 다이오우드가 사용되며, 광섬유의 출구면은 렌즈나 광학반사기에 의해 물질표면(10)에서 상이 맺힘을 특징으로 하는 장치.
- 제4항에 있어서, 광비이드(14)가 광전변환기(20)와 결합된 원호를 갖는 평면내에서 물질표면(10)위를 주기적으로 앞뒤로 움직일 수 있음을 특징으로 하는 장치.
- 제18항에 있어서, 광학 시준계(32)에서 발생한 평행광선은 일정한 각속도에서 굴절되고 텔레센트릭 Fθ-대물렌즈(36)에 의해 물질표면위에 일정한 속도와 일정한 입사각에서 움직이는 광비이드(14)로 전환됨을 특징으로 하는 장치.
- 제18항에 있어서, 주기적으로 앞뒤로 움직이는 광비이드(14)의 굴절속도는 광비이드에 수직으로 이동한 물질표면(10)의 속도보다 빠름을 특징으로 하는 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3805785.9 | 1988-02-24 | ||
DE3805785A DE3805785A1 (de) | 1988-02-24 | 1988-02-24 | Verfahren und vorrichtung zur optischen erfassung des rauheitsprofils einer materialoberflaeche |
Publications (2)
Publication Number | Publication Date |
---|---|
KR890013458A KR890013458A (ko) | 1989-09-23 |
KR0125442B1 true KR0125442B1 (ko) | 1997-12-24 |
Family
ID=6348075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019890002219A KR0125442B1 (ko) | 1988-02-24 | 1989-02-24 | 표면 거칠기 광탐지 방법 및 장치 |
Country Status (10)
Country | Link |
---|---|
US (1) | US4973164A (ko) |
EP (1) | EP0329986B1 (ko) |
JP (1) | JPH01253607A (ko) |
KR (1) | KR0125442B1 (ko) |
AT (1) | ATE64453T1 (ko) |
AU (1) | AU2976589A (ko) |
DD (1) | DD283682A5 (ko) |
DE (2) | DE3805785A1 (ko) |
NO (1) | NO890777L (ko) |
ZA (1) | ZA891352B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9841267B2 (en) | 2015-02-04 | 2017-12-12 | Soongsil University Research Consortium Techno-Park | Surface roughness sensor apparatus and processing tool structure using the same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5243406A (en) * | 1990-07-04 | 1993-09-07 | Fujitsu Limited | Method and apparatus for measuring three-dimensional configuration of wire-shaped object in a short time |
DE4114671A1 (de) * | 1991-05-06 | 1992-11-12 | Hoechst Ag | Verfahren und messanordnung zur beruehrungslosen on-line messung |
DE4137673C2 (de) * | 1991-11-15 | 2001-08-02 | Bruker Axs Analytical X Ray Sy | Röntgenreflektometer |
DE4313094A1 (de) * | 1993-04-22 | 1994-10-27 | Gernot K Brueck | Lasermikroskopie |
DE4324800C2 (de) * | 1993-07-23 | 1997-05-22 | Olaf Dr Ing Schnabel | Vorrichtung zur Bestimmung von Fehlern von Oberflächen hoher Güte |
NL9401796A (nl) * | 1994-10-28 | 1996-06-03 | Tno | Documentherkenningsinrichting. |
US5504303A (en) * | 1994-12-12 | 1996-04-02 | Saint-Gobain/Norton Industrial Ceramics Corp. | Laser finishing and measurement of diamond surface roughness |
US5608527A (en) * | 1995-03-08 | 1997-03-04 | Optical Dimensions, Llc | Apparatus and method for dynamic measurement of surface roughness |
GB2310557B (en) * | 1996-02-21 | 2000-05-10 | Rank Taylor Hobson Ltd | Image processing apparatus |
DE19616245C2 (de) * | 1996-04-15 | 1998-06-18 | Zam Zentrum Fuer Angewandte Mi | Verfahren und Anordnung zum zerstörungsfreien, berührungslosen Prüfen und/oder Bewerten von Festkörpern, Flüssigkeiten, Gasen und Biomaterialien |
IT1302609B1 (it) | 1998-10-06 | 2000-09-29 | Techint Spa | Procedimento e relativa apparecchiatura per la misurazione delledeviazioni di forma di superfici lavorate. |
US6247238B1 (en) | 1999-04-15 | 2001-06-19 | Greg Harvey | Laser marking device |
DE10151332B4 (de) * | 2001-10-22 | 2007-12-06 | Jenoptik Surface Inspection Gmbh | Vorrichtung zur optischen Messung von Oberflächeneigenschaften |
FR2898410B1 (fr) * | 2006-03-07 | 2008-05-09 | Airbus France Sas | Procede de caracterisation de la tenue en fatigue d'une piece a partir de son profil de surface |
US8582117B2 (en) | 2011-04-08 | 2013-11-12 | Schmitt Industries, Inc. | Systems and methods for calibrating an optical non-contact surface roughness measurement device |
CN112304259A (zh) * | 2020-11-25 | 2021-02-02 | 泰州市华发新型建材厂 | 一种铝型材平面度检测设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB894570A (en) * | 1959-07-15 | 1962-04-26 | British Iron Steel Research | Improvements in or relating to the detection of surface abnormalities |
US3667846A (en) * | 1969-07-28 | 1972-06-06 | Charles Nater | Optical surface inspection apparatus |
GB1388189A (en) * | 1972-06-29 | 1975-03-26 | Gallaher Ltd | Optical inspection apparatus |
CH552197A (de) * | 1972-11-24 | 1974-07-31 | Bbc Brown Boveri & Cie | Einrichtung zum messen der rauhigkeit einer oberflaeche. |
JPS5065254A (ko) * | 1973-10-09 | 1975-06-02 | ||
GB2004061B (en) * | 1977-09-09 | 1982-03-10 | Rank Organisation Ltd | Optical sensing instrument |
IT1108255B (it) * | 1978-10-24 | 1985-12-02 | Fiat Spa | Procedimento e dispositivo per il controllo della rugosita della superficie di un pezzo che ha subito una lavorazione meccanica |
DD145956A1 (de) * | 1979-09-12 | 1981-01-14 | Elvira Hundt | Verfahren und vorrichtung zur best mmung der rauhigkeit einer oberflaeche |
US4583861A (en) * | 1981-08-12 | 1986-04-22 | Tokyo Shibaura Denki Kabushiki Kaisha | Surface condition judging apparatus |
DE3428435A1 (de) * | 1984-08-01 | 1986-02-06 | Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch | Rauheitssonde |
JPH0617948B2 (ja) * | 1985-02-13 | 1994-03-09 | 富士写真フイルム株式会社 | 光ビ−ム走査装置 |
US4732485A (en) * | 1985-04-17 | 1988-03-22 | Olympus Optical Co., Ltd. | Optical surface profile measuring device |
-
1988
- 1988-02-24 DE DE3805785A patent/DE3805785A1/de not_active Withdrawn
-
1989
- 1989-02-01 DE DE8989101742T patent/DE58900139D1/de not_active Expired - Lifetime
- 1989-02-01 EP EP89101742A patent/EP0329986B1/de not_active Expired - Lifetime
- 1989-02-01 AT AT89101742T patent/ATE64453T1/de not_active IP Right Cessation
- 1989-02-08 AU AU29765/89A patent/AU2976589A/en not_active Abandoned
- 1989-02-15 US US07/311,599 patent/US4973164A/en not_active Expired - Lifetime
- 1989-02-22 DD DD89325952A patent/DD283682A5/de not_active IP Right Cessation
- 1989-02-22 ZA ZA891352A patent/ZA891352B/xx unknown
- 1989-02-23 JP JP1041997A patent/JPH01253607A/ja active Pending
- 1989-02-23 NO NO89890777A patent/NO890777L/no unknown
- 1989-02-24 KR KR1019890002219A patent/KR0125442B1/ko not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9841267B2 (en) | 2015-02-04 | 2017-12-12 | Soongsil University Research Consortium Techno-Park | Surface roughness sensor apparatus and processing tool structure using the same |
Also Published As
Publication number | Publication date |
---|---|
ZA891352B (en) | 1989-11-29 |
JPH01253607A (ja) | 1989-10-09 |
ATE64453T1 (de) | 1991-06-15 |
KR890013458A (ko) | 1989-09-23 |
EP0329986A1 (de) | 1989-08-30 |
US4973164A (en) | 1990-11-27 |
NO890777D0 (no) | 1989-02-23 |
NO890777L (no) | 1989-08-25 |
AU2976589A (en) | 1989-08-24 |
DE58900139D1 (de) | 1991-07-18 |
DE3805785A1 (de) | 1989-09-07 |
EP0329986B1 (de) | 1991-06-12 |
DD283682A5 (de) | 1990-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0125442B1 (ko) | 표면 거칠기 광탐지 방법 및 장치 | |
CA1307051C (en) | Method and apparatus for monitoring the surface profile of a moving workpiece | |
CA2103828C (en) | Measurement of transparent container wall thickness | |
US4158507A (en) | Laser measuring system for inspection | |
EP0348607B1 (en) | Measuring curvature of transparent or translucent material | |
JP4992059B2 (ja) | 表面に対する物体の移動速度測定用の光学装置 | |
EP0279347B1 (en) | Optical axis displacement sensor | |
EP0015506B1 (en) | Change of distance measuring apparatus comprising a laser light source | |
JPH0153401B2 (ko) | ||
US4672200A (en) | Optical inspection of transparent layers | |
US4861164A (en) | Apparatus for separating specular from diffuse radiation | |
JP4183370B2 (ja) | トルク計測装置 | |
EP0678188A1 (en) | Interferometric cylinder sizing and velocimetry device | |
JPH0772683B2 (ja) | 干渉ボールベアリング試験装置 | |
US4527893A (en) | Method and apparatus for optically measuring the distance to a workpiece | |
US6285451B1 (en) | Noncontacting optical method for determining thickness and related apparatus | |
US7071460B2 (en) | Optical non-contact measuring probe | |
JP2004000004U6 (ja) | 表面計測のためのプローブ | |
JP2004000004U (ja) | 表面計測のためのプローブ | |
WO1994023401A1 (en) | An active edge position measuring device | |
US4865443A (en) | Optical inverse-square displacement sensor | |
JP3162364B2 (ja) | 光センサ装置 | |
US20030122054A1 (en) | Vertical cavity surface emitting laser array for velocity measurement | |
JP2899875B2 (ja) | 非接触表面粗さ測定方法およびその測定装置 | |
JP3950567B2 (ja) | トルク計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |