JPWO2021076642A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021076642A5 JPWO2021076642A5 JP2022522792A JP2022522792A JPWO2021076642A5 JP WO2021076642 A5 JPWO2021076642 A5 JP WO2021076642A5 JP 2022522792 A JP2022522792 A JP 2022522792A JP 2022522792 A JP2022522792 A JP 2022522792A JP WO2021076642 A5 JPWO2021076642 A5 JP WO2021076642A5
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- blood volume
- skin
- wearable system
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Description
第1目標温度又は第2目標温度の少なくとも一方は、ユーザに対して個別化されている
、本明細書で開示した任意の実施形態におけるウェアラブルシステム。
[1]人における異常な生物学的事象を検出するためのウェアラブルシステムであって、
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体と、
前記皮膚表面と連通する加熱源であって、前記皮膚表面を目標温度に加熱するように構成された加熱源と、
前記第2面上に配置され、前記加熱源と接触している前記皮膚表面の温度を測定するように構成された皮膚温度センサと、
前記第2面上に配置され、前記皮膚表面の血液量を測定するように構成された血液量センサと、
前記加熱源と、前記血液量センサと、前記皮膚温度センサと、前記ウェアラブルシステムの周囲の環境温度を測定するように構成された環境温度センサと、に対して通信可能に結合されたハードウェアプロセッサであって、
前記血液量センサからベースライン血液量信号を受信するように、
前記加熱源に対して加熱信号を出力することにより、前記皮膚表面を前記目標温度に加熱することを含む加熱サイクルを開始するように、
前記皮膚表面が前記目標温度に到達したことに応答して、前記血液量センサから第2血液量信号を受信するように、
前記第2血液量信号を、前記ベースライン血液量信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。
[2]前記第2血液量信号は、前記加熱源による加熱サイクルの、前に、最中に、及び後に、前記皮膚表面の前記血液量が繰り返して測定されるような、一組の血液量信号を含む、上記[1]に記載のウェアラブルシステム。
[3]前記第2血液量信号は、前記加熱源による加熱サイクルの、前に、最中に、及び後に、前記皮膚表面の前記血液量が連続的に測定されるような、複数の血液量信号を含む、上記[1]に記載のウェアラブルシステム。
[4]前記ハードウェアプロセッサは、前記目標温度に到達した後に、所定長さの時間が経過した後に、あるいは1つ又は複数の加熱サイクルが終了した後に、前記第2血液量信号を受信するように、さらに構成されている、上記[1]に記載のウェアラブルシステム。
[5]前記比較は、前記ベースライン血液量信号に関しての交流(AC)と直流(DC)とのベースライン比率と、前記第2血液量信号に関してのACとDCとの第2比率と、を計算することと、前記ベースライン比率を前記第2比率と比較することと、を含む、上記[1]に記載のウェアラブルシステム。
[6]前記環境温度センサは、前記ウェアラブルシステムの前記本体の前記第1面上に配置されている、上記[1]に記載のウェアラブルシステム。
[7]前記ウェアラブルシステムに対して通信可能に結合され、前記環境温度センサを含むリモートコンピューティングデバイスを、さらに含む、上記[1]に記載のウェアラブルシステム。
[8]前記リモートコンピューティングデバイスは、ラップトップ、セルラーデバイス、ワークステーション、サーバ、デスクトップコンピュータ、パーソナルデジタルアシスタント、第2ウェアラブルシステム若しくは第2ウェアラブルデバイス、又はネットブックの1つを含む、上記[7]に記載のウェアラブルシステム。
[9]前記加熱源は、前記本体の前記第2面上に配置されている、上記[1]に記載のウェアラブルシステム。
[10]前記ハードウェアプロセッサは、
前記皮膚温度センサから及び前記環境温度センサから、ベースライン温度信号を受信するように、
前記ベースライン温度信号に基づいて前記目標温度を決定するように、
前記目標温度が最高温度値未満であるかどうかを決定するように、さらに構成されている、上記[9]に記載のウェアラブルシステム。
[11]前記ハードウェアプロセッサは、前記加熱源を周期的に動作させることにより、前記目標温度を維持するように、さらに構成されている、上記[10]に記載のウェアラブルシステム。
[12]前記第2面上に配置された1つ又は複数の皮膚電気活動センサを、さらに含む、上記[1]に記載のウェアラブルシステム。
[13]前記1つ又は複数の皮膚電気活動センサは、前記加熱部材から、約0.25インチ~約4インチ(約6.35mm~約101.6mm)の分だけ離間している、上記[12]に記載のウェアラブルシステム。
[14]前記ウェアラブルシステムが結合された身体部分の動きを測定するように構成された1つ又は複数のモーションセンサを、さらに含む、上記[1]に記載のウェアラブルシステム。
[15]前記第1面及び前記第2面は、前記第1面と前記第2面との間に空気流を提供するために、それらの間に空洞を画定している、上記[1]に記載のウェアラブルシステム。
[16]前記ハードウェアプロセッサは、前記第1面上に又は前記第1面内に位置している、上記[15]に記載のウェアラブルシステム。
[17]前記第1面及び前記第2面によって画定された前記空洞は、前記加熱源を、前記第1面上の又は前記第1面内の前記ハードウェアプロセッサから、物理的に離間させている、上記[16]に記載のウェアラブルシステム。
[18]前記第1面及び前記第2面によって画定された前記空洞は、加熱サイクル間に前記加熱源の冷却を促進するのに充分な容積を有している、上記[16]に記載のウェアラブルシステム。
[19]前記異常な生物学的事象は、脳卒中事象を含む、上記[1]に記載のウェアラブルシステム。
[20]前記ウェアラブルシステムが、ユーザの左肢上に配置され、第2ウェアラブルシステムが、前記ユーザの右肢上に配置され、前記第2ウェアラブルシステムは、第2加熱部材と、第2皮膚温度センサと、第2血液量センサと、を含み、前記ハードウェアプロセッサは、右側の血液量信号を左側の血液量信号と比較することにより、前記異常な生物学的事象が発生しているかどうかを決定するように、さらに構成されている、上記[1]に記載のウェアラブルシステム。
[21]前記ハードウェアプロセッサは、
前記左肢及び前記右肢から受信した前記信号どうしを、時間的に同期させるように、
前記左肢及び前記右肢からの前記同期させた前記信号どうしを比較することにより、前記異常な生物学的事象が発生しているかどうかを決定するように、さらに構成されている、上記[20]に記載のウェアラブルシステム。
[22]前記比較に際しては、前記左肢と前記右肢との間におけるベースラインの差を考慮する、上記[21]に記載のウェアラブルシステム。
[23]前記本体に対して結合された締付可能なバンドを、さらに含む、上記[1]に記載のウェアラブルシステム。
[24]前記締付可能なバンドは、正確なセンサ読取を可能とするために、前記加熱部材、前記皮膚温度センサ、前記血液量センサ、又はこれらの組合せ、の1つ又は複数が前記皮膚表面に対して充分に結合していることを示す視覚的インジケータを、さらに含む、上記[23]に記載のウェアラブルシステム。
[25]前記締付可能なバンドの1つ又は複数の端部は、前記第2面上に配置された1つ又は複数のセンサに対して中心合わせされた位置で、前記本体に対して結合されている、上記[24]に記載のウェアラブルシステム。
[26]前記加熱源は、前記血液量センサと前記皮膚温度センサとの一方又は両方において、同心円状に配置されている、上記[1]に記載のウェアラブルシステム。
[27]前記血液量センサは、光電式脈波センサ又はインピーダンス式脈波センサを含む、上記[1]に記載のウェアラブルシステム。
[28]前記皮膚温度センサは、熱電対、抵抗温度検出器、サーミスタ、又は赤外線温度センサ、を含む、上記[1]に記載のウェアラブルシステム。
[29]前記加熱源に対して結合され、前記加熱源を前記第2面に対して結合するように、かつ前記加熱源を前記空洞に対して少なくとも部分的に露出させるように構成された支持構造を、さらに含む、上記[1]に記載のウェアラブルシステム。
[30]前記血液量センサは、心拍数、心拍数変動、又は酸素飽和度の1つ又は複数を測定するように、さらに構成されている、上記[1]に記載のウェアラブルシステム。
[31]前記目標温度は、ユーザに対して個別化される、上記[1]に記載のウェアラブルシステム。
[32]前記目標温度の前記個別化は、前記皮膚表面で感知された温度に関連したユーザ入力を受け取ることを含む、上記[31]に記載のウェアラブルシステム。
[33]前記目標温度の前記個別化は、前記血液量センサから受信した信号に基づいている、上記[31]に記載のウェアラブルシステム。
[34]前記加熱源は、加熱部材又は環境温度の1つを含む、上記[1]に記載のウェアラブルシステム。
[35]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記決定に応答して、ホームオートメーションシステムを電子的に管理するように構成された第1電子システムに対して、電子メッセージを送信するように構成されている、上記[1]に記載のウェアラブルシステム。
[36]前記ホームオートメーションシステムは、ドアロックを含み、前記電子メッセージは、前記第1電子システムに対して、前記ドアロックの解錠を指示するように構成されている、上記[35]に記載のウェアラブルシステム。
[37]前記ホームオートメーションシステムは、ホームアラームシステムを含み、前記電子メッセージは、前記第1電子システムに対して、前記ホームアラームシステムを無効とするよう指示するように構成されている、上記[35]又は[36]に記載のウェアラブルシステム。
[38]前記ホームオートメーションシステムは、ディスプレイを含み、前記電子メッセージは、前記第1電子システムに対して、ユーザの医療情報を表示するよう指示するように構成されている、上記[35]~[37]のいずれか一項に記載のウェアラブルシステム。
[39]前記医療情報は、投薬情報及び/又は投薬処方の遵守を含む、上記[38]に記載のウェアラブルシステム。
[40]前記ホームオートメーションシステムは、ディスプレイを含み、前記電子メッセージは、前記第1電子システムに対して、脳卒中処置ユーザインターフェースを表示するよう指示するように構成されている、上記[35]に記載のウェアラブルシステム。
[41]前記ホームオートメーションシステムは、スピーカシステムを含み、前記電子メッセージは、前記第1電子システムに対して、前記スピーカシステムを使用した可聴アラームを始動させるよう指示するように構成されている、上記[35]~[40]のいずれか一項に記載のウェアラブルシステム。
[42]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記決定に応答して、第三者コンピューティングシステムに対して警告を発出するように、さらに構成されている、上記[1]に記載のウェアラブルシステム。
[43]前記第三者コンピューティングシステムは、緊急サービスシステムを含む、上記[42]に記載のウェアラブルシステム。
[44]前記第三者コンピューティングシステムは、臨床医コンピューティングシステムを含む、上記[42]に記載のウェアラブルシステム。
[45]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記検出に応答して処置プロトコルを開始するように、さらに構成されている、上記[1]に記載のウェアラブルシステム。
[46]ウェアラブル処置システムをさらに含み、前記処置プロトコルは、前記ウェアラブル処置システムを活性化するように構成されている、上記[45]に記載のウェアラブルシステム。
[47]前記ウェアラブル処置システムは、超音波ヘルメットを含む、上記[46]に記載のウェアラブルシステム。
[48]前記ウェアラブル処置システムは、冷却ガス供給システムを含む、上記[46]に記載のウェアラブルシステム。
[49]前記ウェアラブル処置システムは、冷却ヘルメットを含む、上記[46]に記載のウェアラブルシステム。
[50]人における異常な生物学的事象を検出するためのウェアラブルシステムであって、
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体であって、前記第1面及び前記第2面は、前記第1面と前記第2面との間に空気流を提供するために、それらの間に空洞を画定する、本体と、
前記第2面上に配置され、前記皮膚表面を所定時間にわたって加熱するように構成された加熱部材と、
前記第2面上に配置され、前記加熱部材と接触している前記皮膚表面の温度を測定するように構成された皮膚温度センサと、
前記第2面上に配置され、前記皮膚表面の血液量を測定するように構成された血液量センサと、
前記加熱部材と、前記血液量センサと、前記皮膚温度センサと、前記ウェアラブルシステムの周囲の環境温度を測定するように構成された環境温度センサと、に対して通信可能に結合されたハードウェアプロセッサであって、
前記血液量センサからベースライン血液量信号を受信するように、
前記加熱部材に対して加熱信号を出力することにより、前記皮膚表面を目標温度に加熱する加熱サイクルを開始するように、
前記皮膚表面が前記目標温度に到達したことに応答して、前記血液量センサから第2血液量信号を受信するように、
前記第2血液量信号を、前記ベースライン血液量信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。
[51]人における異常な生物学的事象を検出するためのウェアラブルシステムであって、
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体と、
前記皮膚表面と連通する加熱源であり、前記皮膚表面を目標温度に加熱するように構成された加熱源と、
前記第2面上に配置され、前記加熱源と接触している前記皮膚表面の温度を測定するように構成された皮膚温度センサと、
前記第2面上に配置され、前記人における関心のあるパラメータを測定するように構成されたセンサと、
前記加熱源と、前記センサと、前記皮膚温度センサと、前記ウェアラブルシステムの周囲の環境温度を測定するように構成された環境温度センサと、に対して通信可能に結合されたハードウェアプロセッサであって、
前記センサからベースラインセンサ信号を受信するように、
前記加熱源に対して加熱信号を出力することにより、前記皮膚表面を前記目標温度に加熱する加熱サイクルを開始するように、
前記皮膚表面が前記目標温度に到達したことに応答して、前記センサから第2センサ信号を受信するように、
前記第2センサ信号を、前記ベースラインセンサ信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。
[52]前記センサは、ストレッチセンサ、皮膚電気活動センサ、心電図センサ、カメラ、又は血液量センサからなる群から選択される、上記[51]に記載のウェアラブルシステム。
[53]前記関心のあるパラメータは、血圧、心拍数、心拍数変動、視線、顔の表情、皮膚コンダクタンス応答、血管拡張応答、又は拡張応答の1つ又は複数を含む、上記[51]に記載のウェアラブルシステム。
[54]人における異常な生物学的事象を検出するためのウェアラブルシステムであって、
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体と、
前記皮膚表面と連通し、前記皮膚表面に対して刺激を印加するように構成された刺激源と、
前記第2面上に配置され、前記皮膚表面の血液量を測定するように構成された血液量センサと、
前記刺激源と前記血液量センサとに対して通信可能に結合されたハードウェアプロセッサであって、
前記血液量センサからベースライン血液量信号を受信するように、
前記刺激源に対して刺激信号を出力することにより、刺激サイクルを開始するように、
前記刺激サイクルの前記開始に応答して、前記血液量センサから第2血液量信号を受信するように、
前記第2血液量信号を、前記ベースライン血液量信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。
[55]前記刺激源は、加熱源を含む、上記[54]に記載のウェアラブルシステム。
[56]前記刺激源は、電源を含む、上記[54]に記載のウェアラブルシステム。
[57]前記比較は、血管拡張応答の変化を決定することを含む、上記[54]に記載のウェアラブルシステム。
[58]前記刺激源は、ペルチェ冷却器を含む、上記[54]に記載のウェアラブルシステム。
[59]前記第2血液量信号は、前記刺激サイクルの、前に、最中に、及び後に、前記皮膚表面の前記血液量が繰り返して測定されるような、一組をなす複数の血液量信号を含む、上記[54]に記載のウェアラブルシステム。
[60]前記第2血液量信号は、前記刺激サイクルの、前に、最中に、及び後に、前記皮膚表面の前記血液量が連続的に測定されるような、複数の血液量信号を含む、上記[54]に記載のウェアラブルシステム。
[61]前記ハードウェアプロセッサは、目標刺激へと到達した後に、あるいは所定長さの時間が経過した後に、あるいは1つ又は複数の刺激サイクルが終了した後に、前記第2血液量信号を受信するように、さらに構成されている、上記[54]に記載のウェアラブルシステム。
[62]前記比較は、前記ベースライン血液量信号に関しての交流(AC)と直流(DC)とのベースライン比率と、前記第2血液量信号に関してのACとDCとの第2比率と、を計算することと、前記ベースライン比率を前記第2比率と比較することと、を含む、上記[54]に記載のウェアラブルシステム。
[63]前記血液量センサは、前記ウェアラブルシステムの前記本体の前記第1面上に配置されている、上記[54]に記載のウェアラブルシステム。
[64]前記ウェアラブルシステムに対して通信可能に結合されたリモートコンピューティングデバイスであり、前記血液量センサを含むリモートコンピューティングデバイスを、さらに含む、上記[54]に記載のウェアラブルシステム。
[65]前記リモートコンピューティングデバイスは、ラップトップ、セルラーデバイス、ワークステーション、サーバ、デスクトップコンピュータ、パーソナルデジタルアシスタント、第2ウェアラブルシステム若しくは第2ウェアラブルデバイス、又はネットブックの1つを含む、上記[64]に記載のウェアラブルシステム。
[66]前記刺激源は、前記本体の前記第2面上に配置されている、上記[54]に記載のウェアラブルシステム。
[67]前記ハードウェアプロセッサは、
前記血液量センサからベースライン血液量信号を受信するように、
前記ベースライン血液量信号に基づいて目標血液量を決定するように、
前記目標血液量が最大血液量値未満であるかどうかを決定するように、さらに構成されている、上記[66]に記載のウェアラブルシステム。
[68]前記ハードウェアプロセッサは、前記刺激源を周期的に動作させることにより、前記目標血液量を維持するように、さらに構成されている、上記[67]に記載のウェアラブルシステム。
[69]前記第2面上に配置された1つ又は複数の皮膚電気活動センサを、さらに含む、上記[54]に記載のウェアラブルシステム。
[70]前記1つ又は複数の皮膚電気活動センサは、前記刺激源から、約0.25インチ~約4インチ(約6.35mm~約101.6mm)の分だけ離間している、上記[69]に記載のウェアラブルシステム。
[71]前記ウェアラブルシステムが結合された身体部分の移動を測定するように構成された1つ又は複数のモーションセンサを、さらに含む、上記[54]に記載のウェアラブルシステム。
[72]前記第1面及び前記第2面は、前記第1面と前記第2面との間に空気流を提供するために、それらの間に空洞を形成している、上記[54]に記載のウェアラブルシステム。
[73]前記ハードウェアプロセッサは、前記第1面上に又は前記第1面内に位置している、上記[72]に記載のウェアラブルシステム。
[74]前記第1面及び前記第2面によって形成された前記空洞は、前記刺激源を、前記第1面上の又は前記第1面内の前記ハードウェアプロセッサから、物理的に離間させている、上記[73]に記載のウェアラブルシステム。
[75]前記第1面及び前記第2面によって形成された前記空洞は、刺激サイクルどうしの間に前記刺激源の冷却を促進するのに充分な容積を有している、上記[73]に記載のウェアラブルシステム。
[76]前記異常な生物学的事象は、脳卒中事象を含む、上記[54]に記載のウェアラブルシステム。
[77]前記ウェアラブルシステムが、ユーザの左肢上に配置され、第2ウェアラブルシステムが、前記ユーザの右肢上に配置され、前記第2ウェアラブルシステムは、第2刺激源と、第2血液量センサと、を含み、前記ハードウェアプロセッサは、右側の血液量信号を左側の血液量信号と比較することにより、前記生物学的異常事象が発生しているかどうかを決定するように、さらに構成されている、上記[54]に記載のウェアラブルシステム。
[78]前記ハードウェアプロセッサは、
前記左肢及び前記右肢から受信した前記信号どうしを、時間的に同期させるように、
前記左肢及び前記右肢からの前記同期させた前記信号どうしを比較することにより、前記異常な生物学的事象が発生しているかどうかを決定するように、さらに構成されている、上記[77]に記載のウェアラブルシステム。
[79]前記比較に際しては、前記左肢と前記右肢との間におけるベースラインの差を考慮する、上記[78]に記載のウェアラブルシステム。
[80]前記本体に対して結合された締付可能なバンドを、さらに含む、上記[54]に記載のウェアラブルシステム。
[81]前記締付可能なバンドは、正確なセンサ読取を可能とするために、前記刺激源、前記血液量センサ、又はこれらの組合せ、の1つ又は複数が前記皮膚表面に対して充分に結合していることを示すための、視覚的インジケータを、さらに含む、上記[80]に記載のウェアラブルシステム。
[82]前記締付可能なバンドの1つ又は複数の端部は、前記第2面上に配置された1つ又は複数のセンサに対して中心合わせされた位置で、前記本体に対して結合されている、上記[81]に記載のウェアラブルシステム。
[83]前記刺激源は、前記血液量センサにおいて、同心円状に配置されている、上記[54]に記載のウェアラブルシステム。
[84]前記血液量センサは、光電式脈波センサ又はインピーダンス式脈波センサを含む、上記[54]に記載のウェアラブルシステム。
[85]前記刺激源に対して結合された支持構造であり、前記刺激源を前記第2面に対して結合するように構成され、さらに、前記刺激源を前記空洞に対して少なくとも部分的に露出させるように構成された支持構造を、さらに含む、上記[54]に記載のウェアラブルシステム。
[86]前記血液量センサは、心拍数、心拍数変動、又は酸素飽和度、の1つ又は複数を測定するように、さらに構成されている、上記[54]に記載のウェアラブルシステム。
[87]前記刺激サイクルは、ユーザに対して個別化される、上記[54]に記載のウェアラブルシステム。
[88]前記刺激サイクルの前記個別化は、前記皮膚表面で感知された刺激に関連したユーザ入力を受け取ることを含む、上記[87]に記載のウェアラブルシステム。
[89]前記刺激サイクルの前記個別化は、前記血液量センサから受信した信号に基づいている、上記[87]に記載のウェアラブルシステム。
[90]前記刺激源は、加熱部材又は環境温度の1つを含む、上記[54]に記載のウェアラブルシステム。
[91]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記決定に応答して、ホームオートメーションシステムを電子的に管理するように構成された第1電子システムに対して、電子メッセージを送信するように構成されている、上記[54]に記載のウェアラブルシステム。
[92]前記ホームオートメーションシステムは、ドアロックを含み、前記電子メッセージは、前記第1電子システムに対して、前記ドアロックの解錠を指示するように構成されている、上記[91]に記載のウェアラブルシステム。
[93]前記ホームオートメーションシステムは、ホームアラームシステムを含み、前記電子メッセージは、前記第1電子システムに対して、前記ホームアラームシステムを無効とするよう指示するように構成されている、上記[91]又は[92]に記載のウェアラブルシステム。
[94]前記ホームオートメーションシステムは、ディスプレイを含み、前記電子メッセージは、前記第1電子システムに対して、ユーザの医療情報を表示するよう指示するように構成されている、上記[91]~[93]のいずれか一項に記載のウェアラブルシステム。
[95]前記医療情報は、投薬情報及び/又は投薬処方の遵守を含む、上記[94]に記載のウェアラブルシステム。
[96]前記ホームオートメーションシステムは、ディスプレイを含み、前記電子メッセージは、前記第1電子システムに対して、脳卒中処置ユーザインターフェースを表示するよう指示するように構成されている、上記[91]に記載のウェアラブルシステム。
[97]前記ホームオートメーションシステムは、スピーカシステムを含み、前記電子メッセージは、前記第1電子システムに対して、前記スピーカシステムを使用した可聴アラームを始動させるよう指示するように構成されている、上記[91]~[96]のいずれか一項に記載のウェアラブルシステム。
[98]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記決定に応答して、第三者コンピューティングシステムに対して警告を発出するように、さらに構成されている、上記[54]に記載のウェアラブルシステム。
[99]前記第三者コンピューティングシステムは、緊急サービスシステムを含む、上記[98]に記載のウェアラブルシステム。
[100]前記第三者コンピューティングシステムは、臨床医コンピューティングシステムを含む、上記[98]に記載のウェアラブルシステム。
[101]前記ハードウェアプロセッサは、前記異常な生物学的事象の前記検出に応答して処置プロトコルを開始するように、さらに構成されている、上記[54]に記載のウェアラブルシステム。
[102]ウェアラブル処置システムをさらに含み、前記処置プロトコルは、前記ウェアラブル処置システムを活性化するように構成されている、上記[101]に記載のウェアラブルシステム。
[103]前記ウェアラブル処置システムは、超音波ヘルメットを含む、上記[102]に記載のウェアラブルシステム。
[104]前記ウェアラブル処置システムは、冷却ガス供給システムを含む、上記[102]に記載のウェアラブルシステム。
[105]前記ウェアラブル処置システムは、冷却ヘルメットを含む、上記[102]に記載のウェアラブルシステム。
[106]人における異常な生物学的事象を検出するためのシステムであって、
前記人の身体の右側上に位置した第1組織部位を第1時間に刺激するように構成された第1刺激源と、
前記人の身体の左側上に位置した第2組織部位を第2時間に刺激するように構成された第2刺激源と、
1つ又は複数のハードウェアプロセッサであって、
前記第1組織部位の前記刺激に基づいて、第1血管拡張応答を決定するように、
前記第2組織部位の前記刺激に基づいて、第2血管拡張応答を決定するように、
前記第1血管拡張応答及び前記第2血管拡張応答に関する1つ又は複数の差を決定するように、
前記第1血管拡張応答及び前記第2血管拡張応答に関して決定された前記1つ又は複数の差に基づいて、異常な生物学的事象を検出するように、構成された1つ又は複数のハードウェアプロセッサと、を含む、システム。
[107]前記第1刺激源は、加熱源、冷却源、又は電源、の少なくとも1つ又は複数を含む、上記[106]に記載のシステム。
[108]前記第2刺激源は、加熱源、冷却源、又は電源、の少なくとも1つ又は複数を含む、上記[106]に記載のシステム。
[109]前記第1時間は、前記第2時間と同期している、上記[106]に記載のシステム。
[110]前記第1血管拡張応答は、第1血液量センサからの測定に応答したパラメータに基づいて決定される、上記[106]に記載のシステム。
[111]前記第2血管拡張応答は、第2血液量センサからの測定に応答したパラメータに基づいて決定される、上記[106]に記載のシステム。
[112]前記第1血管拡張応答は、電気的活動度センサからの測定に応答したパラメータに基づいて決定される、上記[106]に記載のシステム。
[113]前記第2血管拡張応答は、電気的活動度センサからの測定に応答したパラメータに基づいて決定される、上記[106]に記載のシステム。
[114]前記1つ又は複数のハードウェアプロセッサは、前記第1組織部位における前記刺激の前に、第1ベースライン血管拡張応答を決定するように、そして、前記第2組織部位における前記刺激の前に、第2ベースライン血管拡張応答を決定するように、さらに構成されている、上記[106]に記載のシステム。
[115]人における脳卒中事象を検出するためのウェアラブルシステムであって、
人の第1皮膚表面に対して接触するように構成され、さらに、前記人の左肢に対して固定されるように構成された第1ウェアラブルデバイスであって、
前記第1皮膚表面と連通する第1加熱源であり、前記第1皮膚表面を第1目標温度に加熱するように構成された第1加熱源と、
前記第1皮膚表面の第1温度を測定するように構成された第1皮膚温度センサと、
前記第1皮膚表面に対して近接した第1組織部位における第1血液量を測定するように構成された第1血液量センサと、を含む第1ウェアラブルデバイスと、
前記人の第2皮膚表面に対して接触するように構成され、さらに、前記人の右肢に対して固定されるように構成された、第2ウェアラブルデバイスであって、
前記第2皮膚表面と連通する第2加熱源であり、前記第2皮膚表面を第2目標温度に加熱するように構成された第2加熱源と、
前記第2皮膚表面の第2温度を測定するように構成された第2皮膚温度センサと、
前記第2皮膚表面に対して近接した第2組織部位における第2血液量を測定するように構成された第2血液量センサと、を含む第2ウェアラブルデバイスと、
1つ又は複数のハードウェアプロセッサであって、
前記第1血液量センサから第1ベースライン血液量信号を受信するように、
前記第2血液量センサから第2ベースライン血液量信号を受信するように、
前記第1加熱源に対して第1加熱信号を出力することにより、前記第1皮膚表面を前記第1目標温度に加熱する第1加熱サイクルを開始するように、
前記第1皮膚表面が前記第1目標温度に到達したことに応答して、前記第1血液量センサから第1刺激後血液量信号を受信するように、
前記第2加熱源に対して第2加熱信号を出力することにより、前記第2皮膚表面を前記第2目標温度に加熱する第2加熱サイクルを開始するように、
前記第2皮膚表面が前記第2目標温度に到達したことに応答して、前記第2血液量センサから第2刺激後血液量信号を受信するように、
前記第1ベースライン血液量信号と、前記第2ベースライン血液量信号と、前記第1刺激後血液量信号と、前記第2刺激後血液量信号と、に基づいて、脳卒中事象を決定するように、構成された1つ又は複数のハードウェアプロセッサと、を含む、ウェアラブルシステム。
[116]前記第2刺激後血液量信号は、前記第2加熱源による加熱サイクルの、前に、最中に、及び後に、前記第2皮膚表面の前記第2血液量が繰り返して測定されることのために、一組をなす複数の血液量信号を含む、上記[115]に記載のウェアラブルシステム。
[117]前記第2刺激後血液量信号は、前記第2加熱源による加熱サイクルの、前に、最中に、及び後に、前記第2皮膚表面の前記第2血液量が連続的に測定されることのために、複数の血液量信号を含む、上記[115]に記載のウェアラブルシステム。
[118]前記1つ又は複数のハードウェアプロセッサは、前記第1ベースライン血液量信号に関しての交流(AC)と直流(DC)との第1ベースライン比率と、前記第2血液量信号に関してのACとDCとの第2ベースライン比率と、を計算するように、前記第1ベースライン比率を前記第2ベースライン比率と比較するように、さらに構成されている、上記[115]に記載のウェアラブルシステム。
[119]前記第1ウェアラブルデバイスは、環境温度センサをさらに含む、上記[115]に記載のウェアラブルシステム。
[120]前記第1ウェアラブルデバイス及び前記第2ウェアラブルデバイスに対して通信可能に結合されたリモートコンピューティングデバイスを、さらに含む、上記[115]に記載のウェアラブルシステム。
[121]前記リモートコンピューティングデバイスは、ラップトップ、セルラーデバイス、ワークステーション、サーバ、デスクトップコンピュータ、パーソナルデジタルアシスタント、第2ウェアラブルシステム若しくは第2ウェアラブルデバイス、又はネットブックの1つを含む、上記[120]に記載のウェアラブルシステム。
[122]1つ又は複数の皮膚電気活動センサを、さらに含む、上記[115]に記載のウェアラブルシステム。
[123]前記1つ又は複数の皮膚電気活動センサは、前記第1加熱源又は前記第2加熱源の少なくとも1つから、約0.25インチ~約4インチ(約6.35mm~約101.6mm)の分だけ離間している、上記[122]に記載のウェアラブルシステム。
[124]前記第1ウェアラブルデバイス又は前記第2ウェアラブルデバイスの少なくとも一方が結合された身体部分の移動を測定するように構成された1つ又は複数のモーションセンサを、さらに含む、上記[115]に記載のウェアラブルシステム。
[125]前記本体に対して結合された少なくとも1つの締付可能なバンドを、さらに含む、上記[115]に記載のウェアラブルシステム。
[126]前記第1加熱源は、第1血液量センサと第1皮膚温度センサとの一方又は両方において、同心円状に配置されている、上記[115]に記載のウェアラブルシステム。
[127]前記第2加熱源は、第2血液量センサと第2皮膚温度センサとの一方又は両方において、同心円状に配置されている、上記[115]に記載のウェアラブルシステム。
[128]前記第1血液量センサは、光電式脈波センサ又はインピーダンス式脈波センサを含む、上記[115]に記載のウェアラブルシステム。
[129]前記第2血液量センサは、光電式脈波センサ又はインピーダンス式脈波センサを含む、上記[115]に記載のウェアラブルシステム。
[130]前記第1皮膚温度センサは、熱電対、抵抗温度検出器、サーミスタ、又は赤外線温度センサ、を含む、上記[115]に記載のウェアラブルシステム。
[131]前記第2皮膚温度センサは、熱電対、抵抗温度検出器、サーミスタ、又は赤外線温度センサ、を含む、上記[115]に記載のウェアラブルシステム。
[132]前記第1血液量センサは、心拍数、心拍数変動、又は酸素飽和度、の1つ又は複数を測定するように、さらに構成されている、上記[115]に記載のウェアラブルシステム。
[133]前記第2血液量センサは、心拍数、心拍数変動、又は酸素飽和度、の1つ又は複数を測定するように、さらに構成されている、上記[115]に記載のウェアラブルシステム。
[134]前記第1目標温度又は前記第2目標温度の少なくとも一方は、ユーザに対して個別化される、上記[115]に記載のウェアラブルシステム。
[135]前記脳卒中事象の前記決定は、健康な個人に対応して格納された基準データに、さらに基づいている、上記[115]に記載のウェアラブルシステム。
[136]人における脳卒中事象を検出するためのウェアラブルシステムであって、
人の第1皮膚表面に対して接触するように構成され、さらに、前記人の左肢に対して固定されるように構成された第1ウェアラブルデバイスであって、
前記第1皮膚表面と連通する第1刺激源であり、前記第1皮膚表面に対して第1刺激を印加するように構成された第1刺激源と、
前記第1皮膚表面に対して近接した第1組織部位における第1応答を測定するように構成された第1センサと、を含む第1ウェアラブルデバイスと、
前記人の第2皮膚表面に対して接触するように構成され、さらに、前記人の右肢に対して固定されるように構成された第2ウェアラブルデバイスであって、
前記第2皮膚表面と連通する第2刺激源であり、前記第2皮膚表面に対して第2刺激を印加するように構成された第2刺激源と、
前記第2皮膚表面に対して近接した第2組織部位における第2応答を測定するように構成された第2センサと、を含む第2ウェアラブルデバイスと、
1つ又は複数のハードウェアプロセッサであって、
前記第1刺激源に対して第1刺激信号を出力することにより、前記第1刺激の前記印加を第1時間に開始するように、
前記第1刺激の前記印加の後に、前記第1応答を受信するように、
前記第2刺激源に対して第2刺激信号を出力することにより、前記第2刺激の前記印加を第2時間に開始するように、
前記第2刺激の前記印加の後に、前記第2応答を受信するように、
前記第1応答及び前記第2応答に基づいて、脳卒中事象を決定するように、構成された1つ又は複数のハードウェアプロセッサと、を含む、ウェアラブルシステム。
[137]人における脳卒中事象を検出するための方法であって、
人の第1皮膚表面に対して接触するように構成されかつ第1刺激源と第1センサとを含む第1ウェアラブルデバイスを、前記人の左肢に対して固定することと、
前記人の第2皮膚表面に対して接触するように構成されかつ第2刺激源と第2センサとを含む第2ウェアラブルデバイスを、前記人の右肢に対して固定することと、
前記第1刺激源に対して第1刺激信号を出力することにより、前記第1刺激の前記印加を第1時間に開始することと、
前記第1刺激の前記印加後に、前記第1センサによって測定された第1応答を受信することと、
前記第2刺激源に対して第2刺激信号を出力することにより、前記第2刺激の前記印加を第2時間に開始することと、
前記第2刺激の前記印加後に、前記第2センサによって測定された第2応答を受信することと、
前記第1応答と前記第2応答とに基づいて、脳卒中事象を決定することと、を含む、方法。
A wearable system in any embodiment disclosed herein, wherein at least one of the first target temperature or the second target temperature is personalized to a user.
[1] A wearable system for detecting abnormal biological events in humans, comprising:
a main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface;
a heating source in communication with the skin surface and configured to heat the skin surface to a target temperature;
a skin temperature sensor disposed on the second surface and configured to measure the temperature of the skin surface in contact with the heat source;
a blood volume sensor disposed on the second surface and configured to measure blood volume on the skin surface;
a hardware processor communicatively coupled to the heat source, the blood volume sensor, the skin temperature sensor, and an environmental temperature sensor configured to measure an environmental temperature around the wearable system; And,
receiving a baseline blood volume signal from the blood volume sensor;
initiating a heating cycle comprising heating the skin surface to the target temperature by outputting a heating signal to the heating source;
receiving a second blood volume signal from the blood volume sensor in response to the skin surface reaching the target temperature;
comparing the second blood volume signal to the baseline blood volume signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
[2] The second blood volume signal is a set of blood volumes such that the blood volume at the skin surface is repeatedly measured before, during, and after a heating cycle by the heating source. The wearable system according to [1] above, including a signal.
[3] The second blood volume signal includes a plurality of blood volumes, such that the blood volume on the skin surface is continuously measured before, during, and after a heating cycle by the heating source. The wearable system according to [1] above, including a signal.
[4] The hardware processor is configured to receive the second blood volume signal after a predetermined amount of time has elapsed after the target temperature has been reached, or after one or more heating cycles have completed. The wearable system according to [1] above, further comprising:
[5] The comparison includes a baseline ratio of alternating current (AC) and direct current (DC) with respect to the baseline blood volume signal and a second ratio of AC and DC with respect to the second blood volume signal. The wearable system according to [1] above, including calculating the baseline ratio and comparing the baseline ratio with the second ratio.
[6] The wearable system according to [1] above, wherein the environmental temperature sensor is disposed on the first surface of the main body of the wearable system.
[7] The wearable system according to [1] above, further comprising a remote computing device communicatively coupled to the wearable system and including the environmental temperature sensor.
[8] The remote computing device includes one of the following: a laptop, a cellular device, a workstation, a server, a desktop computer, a personal digital assistant, a second wearable system or device, or a netbook. The wearable system described in ].
[9] The wearable system according to [1] above, wherein the heat source is disposed on the second surface of the main body.
[10] The hardware processor includes:
receiving a baseline temperature signal from the skin temperature sensor and from the environmental temperature sensor;
determining the target temperature based on the baseline temperature signal;
The wearable system according to [9] above, further configured to determine whether the target temperature is less than a maximum temperature value.
[11] The wearable system according to [10], wherein the hardware processor is further configured to maintain the target temperature by periodically operating the heat source.
[12] The wearable system according to [1] above, further including one or more electrodermal activity sensors disposed on the second surface.
[13] The one or more electrodermal activity sensors are spaced apart from the heating member by about 0.25 inches to about 4 inches (about 6.35 mm to about 101.6 mm); 12].
[14] The wearable system according to [1] above, further comprising one or more motion sensors configured to measure movement of a body part to which the wearable system is coupled.
[15] [1] above, wherein the first surface and the second surface define a cavity therebetween to provide airflow between the first surface and the second surface. Wearable system described in.
[16] The wearable system according to [15], wherein the hardware processor is located on or within the first surface.
[17] The cavity defined by the first surface and the second surface physically separates the heating source from the hardware processor on or within the first surface. The wearable system according to [16] above.
[18] The cavity defined by the first surface and the second surface has a volume sufficient to facilitate cooling of the heating source between heating cycles. wearable system.
[19] The wearable system according to [1] above, wherein the abnormal biological event includes a stroke event.
[20] The wearable system is placed on the user's left limb, and the second wearable system is placed on the user's right limb, and the second wearable system includes a second heating member and a second skin temperature. a second blood volume sensor, the hardware processor determining whether the abnormal biological event is occurring by comparing the right blood volume signal to the left blood volume signal. The wearable system according to [1] above, further configured to make a decision.
[21] The hardware processor includes:
The signals received from the left limb and the right limb are temporally synchronized,
[20] further configured to determine whether the abnormal biological event is occurring by comparing the synchronized signals from the left limb and the right limb. The wearable system described in ].
[22] The wearable system according to [21] above, wherein the comparison takes into account a baseline difference between the left limb and the right limb.
[23] The wearable system according to [1] above, further including a tightenable band coupled to the main body.
[24] The tightenable band is configured such that one or more of the heating member, the skin temperature sensor, the blood volume sensor, or a combination thereof is attached to the skin surface to enable accurate sensor readings. The wearable system according to [23] above, further comprising a visual indicator indicating that the wearable system is sufficiently coupled to the wearable system.
[25] One or more ends of the tightenable band are coupled to the body at a location centered relative to one or more sensors disposed on the second surface. The wearable system according to [24] above.
[26] The wearable system according to [1], wherein the heat source is arranged concentrically in one or both of the blood volume sensor and the skin temperature sensor.
[27] The wearable system according to [1] above, wherein the blood volume sensor includes a photoelectric pulse wave sensor or an impedance pulse wave sensor.
[28] The wearable system according to [1] above, wherein the skin temperature sensor includes a thermocouple, a resistance temperature detector, a thermistor, or an infrared temperature sensor.
[29] A support coupled to the heat source and configured to couple the heat source to the second surface and at least partially expose the heat source to the cavity. The wearable system according to [1] above, further comprising a structure.
[30] The wearable system according to [1] above, wherein the blood volume sensor is further configured to measure one or more of heart rate, heart rate variability, or oxygen saturation.
[31] The wearable system according to [1] above, wherein the target temperature is individualized for the user.
[32] The wearable system according to [31], wherein the individualization of the target temperature includes receiving user input related to the temperature sensed at the skin surface.
[33] The wearable system according to [31], wherein the individualization of the target temperature is based on a signal received from the blood volume sensor.
[34] The wearable system according to [1] above, wherein the heat source includes one of a heating member and an ambient temperature.
[35] The hardware processor transmits an electronic message to a first electronic system configured to electronically manage a home automation system in response to the determination of the abnormal biological event. The wearable system according to [1] above, which is configured to.
[36] The home automation system includes a door lock, and the electronic message is configured to instruct the first electronic system to unlock the door lock. wearable system.
[37] The home automation system includes a home alarm system, and the electronic message is configured to instruct the first electronic system to disable the home alarm system. ] or the wearable system according to [36].
[38] The home automation system includes a display, and the electronic message is configured to instruct the first electronic system to display the user's medical information. 37]. The wearable system according to any one of [37].
[39] The wearable system according to [38] above, wherein the medical information includes medication information and/or compliance with a medication prescription.
[40] The home automation system includes a display, and the electronic message is configured to instruct the first electronic system to display a stroke treatment user interface. wearable system.
[41] The home automation system includes a speaker system, and the electronic message is configured to instruct the first electronic system to initiate an audible alarm using the speaker system. The wearable system according to any one of [35] to [40].
[42] The hardware processor is further configured to issue an alert to a third party computing system in response to the determination of the abnormal biological event. Wearable system described in.
[43] The wearable system according to [42] above, wherein the third party computing system includes an emergency service system.
[44] The wearable system according to [42] above, wherein the third party computing system includes a clinician computing system.
[45] The wearable system of [1] above, wherein the hardware processor is further configured to initiate a treatment protocol in response to the detection of the abnormal biological event.
[46] The wearable system according to [45] above, further comprising a wearable treatment system, and wherein the treatment protocol is configured to activate the wearable treatment system.
[47] The wearable system according to [46] above, wherein the wearable treatment system includes an ultrasonic helmet.
[48] The wearable system according to [46] above, wherein the wearable treatment system includes a cooling gas supply system.
[49] The wearable system according to [46] above, wherein the wearable treatment system includes a cooling helmet.
[50] A wearable system for detecting abnormal biological events in humans, comprising:
A main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface, the first surface and the second surface being a body defining a cavity therebetween to provide airflow between the first side and the second side;
a heating member disposed on the second surface and configured to heat the skin surface for a predetermined period of time;
a skin temperature sensor disposed on the second surface and configured to measure the temperature of the skin surface in contact with the heating member;
a blood volume sensor disposed on the second surface and configured to measure blood volume on the skin surface;
a hardware processor communicatively coupled to the heating member, the blood volume sensor, the skin temperature sensor, and an environmental temperature sensor configured to measure an environmental temperature around the wearable system; And,
receiving a baseline blood volume signal from the blood volume sensor;
starting a heating cycle for heating the skin surface to a target temperature by outputting a heating signal to the heating member;
receiving a second blood volume signal from the blood volume sensor in response to the skin surface reaching the target temperature;
comparing the second blood volume signal to the baseline blood volume signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
[51] A wearable system for detecting abnormal biological events in humans, comprising:
a main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface;
a heating source in communication with the skin surface and configured to heat the skin surface to a target temperature;
a skin temperature sensor disposed on the second surface and configured to measure the temperature of the skin surface in contact with the heat source;
a sensor disposed on the second surface and configured to measure a parameter of interest in the person;
a hardware processor communicatively coupled to the heating source, the sensor, the skin temperature sensor, and an environmental temperature sensor configured to measure an environmental temperature around the wearable system; hand,
receiving a baseline sensor signal from the sensor;
starting a heating cycle for heating the skin surface to the target temperature by outputting a heating signal to the heating source;
receiving a second sensor signal from the sensor in response to the skin surface reaching the target temperature;
comparing the second sensor signal with the baseline sensor signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
[52] The wearable system according to [51] above, wherein the sensor is selected from the group consisting of a stretch sensor, an electrodermal activity sensor, an electrocardiogram sensor, a camera, or a blood volume sensor.
[53] The parameter of interest includes one or more of blood pressure, heart rate, heart rate variability, gaze, facial expression, skin conductance response, vasodilatory response, or diastolic response, as described in [51] above. wearable system.
[54] A wearable system for detecting abnormal biological events in humans, comprising:
a main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface;
a stimulation source in communication with the skin surface and configured to apply stimulation to the skin surface;
a blood volume sensor disposed on the second surface and configured to measure blood volume on the skin surface;
a hardware processor communicatively coupled to the stimulation source and the blood volume sensor;
receiving a baseline blood volume signal from the blood volume sensor;
initiating a stimulation cycle by outputting a stimulation signal to the stimulation source;
receiving a second blood volume signal from the blood volume sensor in response to the initiation of the stimulation cycle;
comparing the second blood volume signal to the baseline blood volume signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
[55] The wearable system according to [54] above, wherein the stimulation source includes a heating source.
[56] The wearable system according to [54] above, wherein the stimulation source includes a power source.
[57] The wearable system according to [54] above, wherein the comparison includes determining a change in vasodilator response.
[58] The wearable system according to [54] above, wherein the stimulation source includes a Peltier cooler.
[59] The second blood volume signal includes a set of a plurality of blood volumes, such that the blood volume at the skin surface is repeatedly measured before, during, and after the stimulation cycle. The wearable system according to [54] above, including a signal.
[60] The second blood volume signal includes a plurality of blood volume signals such that the blood volume at the skin surface is successively measured before, during, and after the stimulation cycle. , the wearable system according to [54] above.
[61] The hardware processor receives the second blood volume signal after reaching a target stimulation, or after a predetermined amount of time has elapsed, or after one or more stimulation cycles have ended. The wearable system according to [54] above, further configured as follows.
[62] The comparison includes a baseline ratio of alternating current (AC) to direct current (DC) with respect to the baseline blood volume signal and a second ratio of AC to DC with respect to the second blood volume signal. The wearable system according to [54] above, comprising calculating the baseline ratio and comparing the baseline ratio with the second ratio.
[63] The wearable system according to [54], wherein the blood amount sensor is disposed on the first surface of the main body of the wearable system.
[64] The wearable system according to [54], further comprising a remote computing device communicatively coupled to the wearable system and including the blood volume sensor.
[65] The remote computing device includes one of a laptop, a cellular device, a workstation, a server, a desktop computer, a personal digital assistant, a second wearable system or device, or a netbook. The wearable system described in ].
[66] The wearable system according to [54], wherein the stimulation source is disposed on the second surface of the main body.
[67] The hardware processor:
receiving a baseline blood volume signal from the blood volume sensor;
determining a target blood volume based on the baseline blood volume signal;
The wearable system according to [66] above, further configured to determine whether the target blood volume is less than a maximum blood volume value.
[68] The wearable system according to [67], wherein the hardware processor is further configured to maintain the target blood volume by periodically operating the stimulation source.
[69] The wearable system according to [54], further comprising one or more electrodermal activity sensors disposed on the second surface.
[70] The one or more electrodermal activity sensors are spaced apart from the stimulation source by about 0.25 inches to about 4 inches (about 6.35 mm to about 101.6 mm); 69].
[71] The wearable system of [54] above, further comprising one or more motion sensors configured to measure movement of a body part to which the wearable system is coupled.
[72] The above-mentioned [54], wherein the first surface and the second surface form a cavity therebetween to provide airflow between the first surface and the second surface. Wearable system described in.
[73] The wearable system according to [72], wherein the hardware processor is located on or within the first surface.
[74] The cavity formed by the first surface and the second surface physically separates the stimulation source from the hardware processor on or within the first surface. The wearable system according to [73] above.
[75] The cavity defined by the first surface and the second surface has a volume sufficient to facilitate cooling of the stimulation source between stimulation cycles. The wearable system described.
[76] The wearable system according to [54] above, wherein the abnormal biological event includes a stroke event.
[77] The wearable system is placed on the user's left limb, and the second wearable system is placed on the user's right limb, and the second wearable system includes a second stimulation source and a second blood volume. a sensor, and the hardware processor is further configured to determine whether the biological abnormality event is occurring by comparing a right blood volume signal to a left blood volume signal. The wearable system according to [54] above.
[78] The hardware processor:
The signals received from the left limb and the right limb are temporally synchronized,
[77] further configured to determine whether the abnormal biological event is occurring by comparing the synchronized signals from the left limb and the right limb. The wearable system described in ].
[79] The wearable system according to [78] above, wherein the comparison takes into account a baseline difference between the left limb and the right limb.
[80] The wearable system according to [54], further comprising a tightenable band coupled to the main body.
[81] The tightenable band ensures that one or more of the stimulus source, the blood volume sensor, or a combination thereof is sufficiently held against the skin surface to enable accurate sensor readings. The wearable system according to [80] above, further comprising a visual indicator to indicate that it is coupled.
[82] One or more ends of the tightenable band are coupled to the body at a location centered relative to one or more sensors disposed on the second surface. The wearable system according to [81] above.
[83] The wearable system according to [54], wherein the stimulation sources are arranged concentrically in the blood volume sensor.
[84] The wearable system according to [54], wherein the blood volume sensor includes a photoelectric pulse wave sensor or an impedance pulse wave sensor.
[85] a support structure coupled to the stimulation source, configured to couple the stimulation source to the second surface, and further configured to couple the stimulation source to the cavity at least partially; The wearable system according to [54] above, further comprising a support structure configured to be exposed.
[86] The wearable system according to [54], wherein the blood volume sensor is further configured to measure one or more of heart rate, heart rate variability, or oxygen saturation.
[87] The wearable system according to [54] above, wherein the stimulation cycle is individualized for the user.
[88] The wearable system of [87], wherein the individualization of the stimulation cycle includes receiving user input related to stimulation sensed at the skin surface.
[89] The wearable system according to [87] above, wherein the individualization of the stimulation cycle is based on a signal received from the blood volume sensor.
[90] The wearable system according to [54] above, wherein the stimulus source includes one of a heating member or environmental temperature.
[91] The hardware processor transmits an electronic message to a first electronic system configured to electronically manage a home automation system in response to the determination of the abnormal biological event. The wearable system according to [54] above, which is configured to.
[92] The home automation system according to [91] above, wherein the home automation system includes a door lock, and the electronic message is configured to instruct the first electronic system to unlock the door lock. wearable system.
[93] The home automation system includes a home alarm system, and the electronic message is configured to instruct the first electronic system to disable the home alarm system. ] or the wearable system according to [92].
[94] The home automation system includes a display, and the electronic message is configured to instruct the first electronic system to display the user's medical information. 93]. The wearable system according to any one of [93].
[95] The wearable system according to [94] above, wherein the medical information includes medication information and/or compliance with a medication prescription.
[96] The home automation system according to [91] above, wherein the home automation system includes a display, and the electronic message is configured to instruct the first electronic system to display a stroke treatment user interface. wearable system.
[97] The home automation system includes a speaker system, and the electronic message is configured to instruct the first electronic system to initiate an audible alarm using the speaker system. The wearable system according to any one of [91] to [96].
[98] The hardware processor is further configured to issue an alert to a third party computing system in response to the determination of the abnormal biological event, as described in [54] above. Wearable system described in.
[99] The wearable system according to [98] above, wherein the third party computing system includes an emergency services system.
[100] The wearable system according to [98] above, wherein the third party computing system includes a clinician computing system.
[101] The wearable system of [54] above, wherein the hardware processor is further configured to initiate a treatment protocol in response to the detection of the abnormal biological event.
[102] The wearable system according to [101] above, further comprising a wearable treatment system, wherein the treatment protocol is configured to activate the wearable treatment system.
[103] The wearable system according to [102] above, wherein the wearable treatment system includes an ultrasonic helmet.
[104] The wearable system according to [102] above, wherein the wearable treatment system includes a cooling gas supply system.
[105] The wearable system according to [102] above, wherein the wearable treatment system includes a cooling helmet.
[106] A system for detecting abnormal biological events in humans, comprising:
a first stimulation source configured to stimulate a first tissue site located on the right side of the person's body at a first time;
a second stimulation source configured to stimulate a second tissue site located on the left side of the person's body at a second time;
one or more hardware processors,
determining a first vasodilatory response based on the stimulation of the first tissue site;
determining a second vasodilatory response based on the stimulation of the second tissue site;
determining one or more differences between the first vasodilatory response and the second vasodilatory response;
one or more hardware configured to detect an abnormal biological event based on the one or more differences determined with respect to the first vasodilator response and the second vasodilator response; A system including a processor.
[107] The system according to [106] above, wherein the first stimulation source includes at least one or more of a heating source, a cooling source, or a power source.
[108] The system according to [106] above, wherein the second stimulation source includes at least one or more of a heating source, a cooling source, or a power source.
[109] The system according to [106] above, wherein the first time is synchronized with the second time.
[110] The system according to [106] above, wherein the first vasodilation response is determined based on a parameter in response to a measurement from a first blood volume sensor.
[111] The system according to [106] above, wherein the second vasodilation response is determined based on a parameter in response to a measurement from a second blood volume sensor.
[112] The system according to [106] above, wherein the first vasodilation response is determined based on a parameter in response to a measurement from an electrical activity sensor.
[113] The system according to [106] above, wherein the second vasodilation response is determined based on a parameter in response to a measurement from an electrical activity sensor.
[114] The one or more hardware processors are configured to determine a first baseline vasodilatory response prior to the stimulation at the first tissue site; The system of [106] above, further configured to determine a second baseline vasodilatory response beforehand.
[115] A wearable system for detecting stroke events in humans, comprising:
A first wearable device configured to contact a first skin surface of a person and further configured to be secured to a left limb of the person, the first wearable device comprising:
a first heat source in communication with the first skin surface and configured to heat the first skin surface to a first target temperature;
a first skin temperature sensor configured to measure a first temperature of the first skin surface;
a first wearable device comprising: a first blood volume sensor configured to measure a first blood volume at a first tissue site proximate to the first skin surface;
A second wearable device configured to contact a second skin surface of the person and further configured to be secured to a right limb of the person, the second wearable device comprising:
a second heat source in communication with the second skin surface and configured to heat the second skin surface to a second target temperature;
a second skin temperature sensor configured to measure a second temperature of the second skin surface;
a second blood volume sensor configured to measure a second blood volume at a second tissue site proximate to the second skin surface;
one or more hardware processors,
receiving a first baseline blood volume signal from the first blood volume sensor;
receiving a second baseline blood volume signal from the second blood volume sensor;
starting a first heating cycle of heating the first skin surface to the first target temperature by outputting a first heating signal to the first heating source;
receiving a first post-stimulus blood volume signal from the first blood volume sensor in response to the first skin surface reaching the first target temperature;
starting a second heating cycle for heating the second skin surface to the second target temperature by outputting a second heating signal to the second heat source;
receiving a second post-stimulus blood volume signal from the second blood volume sensor in response to the second skin surface reaching the second target temperature;
determining a stroke event based on the first baseline blood volume signal, the second baseline blood volume signal, the first post-stimulus blood volume signal, and the second post-stimulus blood volume signal; and one or more hardware processors configured with.
[116] The second post-stimulation blood volume signal is obtained by repeatedly measuring the second blood volume on the second skin surface before, during, and after the heating cycle by the second heat source. In particular, the wearable system according to [115] above, comprising a set of a plurality of blood volume signals.
[117] The second post-stimulation blood volume signal is obtained by continuously measuring the second blood volume on the second skin surface before, during, and after a heating cycle by the second heat source. The wearable system according to [115] above, which includes a plurality of blood volume signals for the purpose of determining the blood volume.
[118] The one or more hardware processors are configured to determine a first baseline ratio of alternating current (AC) to direct current (DC) with respect to the first baseline blood volume signal and with respect to the second blood volume signal. [115], further configured to compare the first baseline ratio with the second baseline ratio to calculate a second baseline ratio between AC and DC. wearable system.
[119] The wearable system according to [115], wherein the first wearable device further includes an environmental temperature sensor.
[120] The wearable system according to [115], further comprising a remote computing device communicatively coupled to the first wearable device and the second wearable device.
[121] The remote computing device includes one of a laptop, a cellular device, a workstation, a server, a desktop computer, a personal digital assistant, a second wearable system or device, or a netbook. The wearable system described in ].
[122] The wearable system according to [115] above, further comprising one or more electrodermal activity sensors.
[123] The one or more electrodermal activity sensors are about 0.25 inches to about 4 inches (about 6.35 mm to about 101 mm) from at least one of the first heating source or the second heating source. 6 mm), the wearable system according to [122] above.
[124] The method of [115] above, wherein at least one of the first wearable device or the second wearable device further comprises one or more motion sensors configured to measure movement of a coupled body part. The wearable system described.
[125] The wearable system according to [115] above, further comprising at least one tightenable band coupled to the main body.
[126] The wearable system according to [115], wherein the first heat source is arranged concentrically in one or both of the first blood volume sensor and the first skin temperature sensor.
[127] The wearable system according to [115], wherein the second heat source is arranged concentrically in one or both of the second blood volume sensor and the second skin temperature sensor.
[128] The wearable system according to [115], wherein the first blood volume sensor includes a photoelectric pulse wave sensor or an impedance pulse wave sensor.
[129] The wearable system according to [115], wherein the second blood volume sensor includes a photoelectric pulse wave sensor or an impedance pulse wave sensor.
[130] The wearable system according to [115], wherein the first skin temperature sensor includes a thermocouple, a resistance temperature detector, a thermistor, or an infrared temperature sensor.
[131] The wearable system according to [115], wherein the second skin temperature sensor includes a thermocouple, a resistance temperature detector, a thermistor, or an infrared temperature sensor.
[132] The wearable system according to [115], wherein the first blood volume sensor is further configured to measure one or more of heart rate, heart rate variability, or oxygen saturation.
[133] The wearable system according to [115], wherein the second blood volume sensor is further configured to measure one or more of heart rate, heart rate variability, or oxygen saturation.
[134] The wearable system according to [115] above, wherein at least one of the first target temperature or the second target temperature is individualized for the user.
[135] The wearable system of [115] above, wherein the determination of the stroke event is further based on reference data stored corresponding to a healthy individual.
[136] A wearable system for detecting stroke events in humans, comprising:
A first wearable device configured to contact a first skin surface of a person and further configured to be secured to a left limb of the person, the first wearable device comprising:
a first stimulation source in communication with the first skin surface and configured to apply a first stimulation to the first skin surface;
a first sensor configured to measure a first response at a first tissue site proximate to the first skin surface;
A second wearable device configured to contact a second skin surface of the person and further configured to be secured to a right limb of the person, the second wearable device comprising:
a second stimulation source in communication with the second skin surface and configured to apply a second stimulation to the second skin surface;
a second sensor configured to measure a second response at a second tissue site proximate to the second skin surface;
one or more hardware processors,
starting the application of the first stimulation at a first time by outputting a first stimulation signal to the first stimulation source;
receiving the first response after the application of the first stimulus;
starting the application of the second stimulation at a second time by outputting a second stimulation signal to the second stimulation source;
receiving the second response after the application of the second stimulus;
one or more hardware processors configured to determine a stroke event based on the first response and the second response.
[137] A method for detecting a stroke event in a person, comprising:
securing a first wearable device to a left leg of the person configured to contact a first skin surface of the person and including a first stimulation source and a first sensor;
securing a second wearable device to the person's right leg, the second wearable device being configured to contact a second skin surface of the person and including a second stimulation source and a second sensor;
starting the application of the first stimulation at a first time by outputting a first stimulation signal to the first stimulation source;
receiving a first response measured by the first sensor after the application of the first stimulus;
starting the application of the second stimulation at a second time by outputting a second stimulation signal to the second stimulation source;
receiving a second response measured by the second sensor after the application of the second stimulus;
determining a stroke event based on the first response and the second response.
Claims (20)
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体と、
前記皮膚表面と連通する加熱源であり、前記皮膚表面を目標温度に加熱するように構成された加熱源と、
前記第2面上に配置され、前記加熱源と接触している前記皮膚表面の温度を測定するように構成された皮膚温度センサと、
前記第2面上に配置され、前記人における関心のあるパラメータを測定するように構成されたセンサと、
前記加熱源と、前記センサと、前記皮膚温度センサと、前記ウェアラブルシステムの周囲の環境温度を測定するように構成された環境温度センサと、に対して通信可能に結合されたハードウェアプロセッサであって、
前記センサからベースラインセンサ信号を受信するように、
前記加熱源に対して加熱信号を出力することにより、前記皮膚表面を前記目標温度に加熱する加熱サイクルを開始するように、
前記皮膚表面が前記目標温度に到達したことに応答して、前記センサから第2センサ信号を受信するように、
前記第2センサ信号を、前記ベースラインセンサ信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。 A wearable system for detecting abnormal biological events in humans, comprising:
a main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface;
a heating source in communication with the skin surface and configured to heat the skin surface to a target temperature;
a skin temperature sensor disposed on the second surface and configured to measure the temperature of the skin surface in contact with the heat source;
a sensor disposed on the second surface and configured to measure a parameter of interest in the person;
a hardware processor communicatively coupled to the heating source, the sensor, the skin temperature sensor, and an environmental temperature sensor configured to measure an environmental temperature surrounding the wearable system; hand,
receiving a baseline sensor signal from the sensor;
starting a heating cycle for heating the skin surface to the target temperature by outputting a heating signal to the heating source;
receiving a second sensor signal from the sensor in response to the skin surface reaching the target temperature;
comparing the second sensor signal with the baseline sensor signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
人の皮膚表面に対して接触する第2面と、この第2面とは反対側に位置した第1面と、を有する本体と、
前記皮膚表面と連通し、前記皮膚表面に対して刺激を印加するように構成された刺激源と、
前記第2面上に配置され、前記皮膚表面の血液量を測定するように構成された血液量センサと、
前記刺激源と前記血液量センサとに対して通信可能に結合されたハードウェアプロセッサであって、
前記血液量センサからベースライン血液量信号を受信するように、
前記刺激源に対して刺激信号を出力することにより、刺激サイクルを開始するように、
前記刺激サイクルの前記開始に応答して、前記血液量センサから第2血液量信号を受信するように、
前記第2血液量信号を、前記ベースライン血液量信号と比較するように、
前記比較に基づいて、異常な生物学的事象が発生しているかどうかを決定するように、構成されたハードウェアプロセッサと、を含む、ウェアラブルシステム。 A wearable system for detecting abnormal biological events in humans, comprising:
a main body having a second surface in contact with a human skin surface and a first surface located on the opposite side of the second surface;
a stimulation source in communication with the skin surface and configured to apply stimulation to the skin surface;
a blood volume sensor disposed on the second surface and configured to measure blood volume on the skin surface;
a hardware processor communicatively coupled to the stimulation source and the blood volume sensor;
receiving a baseline blood volume signal from the blood volume sensor;
initiating a stimulation cycle by outputting a stimulation signal to the stimulation source;
receiving a second blood volume signal from the blood volume sensor in response to the initiation of the stimulation cycle;
comparing the second blood volume signal to the baseline blood volume signal;
a hardware processor configured to determine whether an abnormal biological event is occurring based on the comparison.
人の皮膚表面に接触するように構成され、外周を含む第1面と、a first surface configured to contact a human skin surface and including an outer periphery;
前記第1面の切り欠きであって、内周を含む形状を備え、前記外周内に完全に囲まれた切り欠きと、a notch in the first surface, the notch having a shape including an inner periphery and completely surrounded by the outer periphery;
前記皮膚表面と熱的に連通する熱刺激源であって、前記内周と前記外周との間の前記第1面上に形成された部分に延在する表面領域を備える熱刺激源と、a thermal stimulation source in thermal communication with the skin surface, the thermal stimulation source comprising a surface region extending over a portion formed on the first surface between the inner periphery and the outer periphery;
前記皮膚表面の温度を測定するように構成され、前記切り込み内に配置された皮膚温度センサと、a skin temperature sensor configured to measure the temperature of the skin surface and disposed within the incision;
を備える、デバイス。A device comprising:
人の第1皮膚表面を監視するように構成され、前記人の左側を追跡するように構成された第1デバイスであって、A first device configured to monitor a first skin surface of a person and configured to track a left side of the person, the first device comprising:
前記第1皮膚表面と熱的に連通する第1熱刺激源であって、前記第1デバイスの第1本体表面上に延びる第1表面領域を含み、前記第1本体表面が、前記第1皮膚表面に接触するように構成される、第1熱刺激源と、a first thermal stimulus source in thermal communication with the first skin surface, the first surface region extending on a first body surface of the first device, the first body surface being in thermal communication with the first skin surface; a first thermal stimulation source configured to contact the surface;
前記第1皮膚表面の第1温度を測定するように構成され、前記第1表面領域によって囲まれた第1開口内に配置された第1皮膚温度センサと、を備える第1デバイスと、a first skin temperature sensor configured to measure a first temperature of the first skin surface and disposed within a first opening surrounded by the first surface area;
前記人の第2皮膚表面を監視するように構成され、前記人の右側を追跡するように構成された第2デバイスであって、a second device configured to monitor a second skin surface of the person and configured to track a right side of the person;
前記第2皮膚表面と熱的に連通する第2熱刺激源であって、前記第2デバイスの第2本体表面上に延びる第2表面領域を含み、前記第2本体表面が、前記第2皮膚表面に接触するように構成される、第2熱刺激源と、a second thermal stimulation source in thermal communication with the second skin surface, the second surface region extending on a second body surface of the second device, the second body surface being in thermal communication with the second skin surface; a second thermal stimulus source configured to contact the surface;
前記第2皮膚表面の第2温度を測定するように構成され、前記第2表面領域によって囲まれた第2開口内に配置された第2皮膚温度センサと、を備える第2デバイスと、a second skin temperature sensor configured to measure a second temperature of the second skin surface and disposed within a second opening surrounded by the second surface area;
前記第1および第2デバイスに通信可能に結合され、communicatively coupled to the first and second devices;
前記第1皮膚温度センサから第1ベースライン温度信号を受信するように、receiving a first baseline temperature signal from the first skin temperature sensor;
前記第2皮膚温度センサから第2ベースライン温度信号を受信するように、receiving a second baseline temperature signal from the second skin temperature sensor;
前記第1熱刺激源に第1熱刺激信号を出力して、第1期間の第1時間に第1サイクルを開始するように、outputting a first thermal stimulation signal to the first thermal stimulation source to start a first cycle at a first time of a first period;
前記第1熱刺激信号に応答する前記第1皮膚表面の第1温度応答を受信し、前記第1温度応答が、前記第1皮膚温度センサによって測定されるように、receiving a first temperature response of the first skin surface in response to the first thermal stimulation signal, the first temperature response being measured by the first skin temperature sensor;
前記第2熱刺激源に第2熱刺激信号を出力して、第2期間の第2時間に第2サイクルを開始するように、ここで、前記第1時間は前記第2時間と同期している、outputting a second thermal stimulation signal to the second thermal stimulation source to initiate a second cycle at a second time of a second period, wherein the first time is synchronized with the second time; There is,
前記第2熱刺激信号に応答する前記第2皮膚表面の第2温度応答を受信し、前記第2温度応答が、前記第2皮膚温度センサによって測定されるように、receiving a second temperature response of the second skin surface in response to the second thermal stimulation signal, the second temperature response being measured by the second skin temperature sensor;
前記第1温度応答と前記第2温度応答とを比較して、前記第1温度応答と前記第2温度応答との間の差が、前記人の左側と前記人の右側との間の温度非対称性を示しているかどうかを判定するように、かつComparing the first temperature response and the second temperature response, the difference between the first temperature response and the second temperature response indicates a temperature asymmetry between the left side of the person and the right side of the person. and
決定された前記温度非対称の表示に基づいて、脳卒中事象を示す警告を生成するように、構成された1以上のハードウェアプロセッサと、を備える、システム。one or more hardware processors configured to generate an alert indicative of a stroke event based on the determined indication of temperature asymmetry.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962915269P | 2019-10-15 | 2019-10-15 | |
US62/915,269 | 2019-10-15 | ||
US202063053265P | 2020-07-17 | 2020-07-17 | |
US63/053,265 | 2020-07-17 | ||
PCT/US2020/055604 WO2021076642A1 (en) | 2019-10-15 | 2020-10-14 | Systems and methods for multivariate stroke detection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022551988A JP2022551988A (en) | 2022-12-14 |
JPWO2021076642A5 true JPWO2021076642A5 (en) | 2023-10-23 |
Family
ID=75382172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022522792A Pending JP2022551988A (en) | 2019-10-15 | 2020-10-14 | Systems and methods for multivariate stroke detection |
Country Status (7)
Country | Link |
---|---|
US (3) | US11134859B2 (en) |
EP (1) | EP4044906A4 (en) |
JP (1) | JP2022551988A (en) |
CN (1) | CN113347916A (en) |
AU (1) | AU2020366348A1 (en) |
CA (1) | CA3157362A1 (en) |
WO (1) | WO2021076642A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113368367B (en) | 2016-02-24 | 2024-03-29 | 禾木(中国)生物工程有限公司 | Nerve vascular catheter with enhanced flexibility |
JP7264581B2 (en) | 2017-01-06 | 2023-04-25 | インセプト、リミテッド、ライアビリティ、カンパニー | Antithrombotic coating for aneurysm treatment devices |
WO2019212984A1 (en) | 2018-05-01 | 2019-11-07 | Imperative Care, Inc. | Devices and methods for removing obstructive material from an intravascular site |
US11395665B2 (en) | 2018-05-01 | 2022-07-26 | Incept, Llc | Devices and methods for removing obstructive material, from an intravascular site |
US11517335B2 (en) | 2018-07-06 | 2022-12-06 | Incept, Llc | Sealed neurovascular extendable catheter |
US11471582B2 (en) | 2018-07-06 | 2022-10-18 | Incept, Llc | Vacuum transfer tool for extendable catheter |
US11766539B2 (en) | 2019-03-29 | 2023-09-26 | Incept, Llc | Enhanced flexibility neurovascular catheter |
CA3157362A1 (en) * | 2019-10-15 | 2021-04-22 | Imperative Care, Inc. | Systems and methods for multivariate stroke detection |
CA3162704A1 (en) | 2019-12-18 | 2021-06-24 | Imperative Care, Inc. | Methods and systems for treating venous thromboembolic disease |
US11633272B2 (en) | 2019-12-18 | 2023-04-25 | Imperative Care, Inc. | Manually rotatable thrombus engagement tool |
US11259821B2 (en) | 2019-12-18 | 2022-03-01 | Imperative Care, Inc. | Aspiration system with accelerated response |
CA3171899A1 (en) | 2020-03-10 | 2021-09-16 | Imperative Care, Inc. | Enhanced flexibility neurovascular catheter |
US11207497B1 (en) | 2020-08-11 | 2021-12-28 | Imperative Care, Inc. | Catheter with enhanced tensile strength |
US20230397825A1 (en) * | 2020-10-26 | 2023-12-14 | Aquapass Ltd | Method and apparatus for early detection of worsening heart failure |
WO2022232992A1 (en) * | 2021-05-06 | 2022-11-10 | Huawei Technologies Co., Ltd. | System and method for determining risk of stroke for person |
CN115371844A (en) * | 2021-05-21 | 2022-11-22 | 华为技术有限公司 | Wearable equipment |
WO2023278858A1 (en) * | 2021-07-01 | 2023-01-05 | The Government Of The United States As Represented By The Secretary Of The Army | Thermoregulatory stress detection from skin temperature complexity |
US11426079B1 (en) | 2021-07-20 | 2022-08-30 | Fitbit, Inc. | Methods, systems, and devices for improved skin temperature monitoring |
CN116185101A (en) * | 2021-11-26 | 2023-05-30 | Oppo广东移动通信有限公司 | Control circuit, method, wearable device, and readable storage medium |
CN115089144A (en) * | 2022-06-09 | 2022-09-23 | 武汉威思众信息科技有限公司 | Intelligent recognition alarm system and method for early stroke |
US20240115210A1 (en) * | 2022-07-13 | 2024-04-11 | Impact Vitals, Inc | Methods and devices for mapping physiological sensor data |
WO2024111777A1 (en) * | 2022-11-27 | 2024-05-30 | 삼성전자주식회사 | Electronic device and method for identifying user's body temperature |
WO2024162547A1 (en) * | 2023-02-01 | 2024-08-08 | Samsung Electronics Co., Ltd. | Electronic device and method for determining a body core temperature |
CN116646070A (en) * | 2023-07-24 | 2023-08-25 | 深圳市联影高端医疗装备创新研究院 | Equipment and system for relieving restless leg syndrome |
Family Cites Families (753)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3605750A (en) | 1969-04-07 | 1971-09-20 | David S Sheridan | X-ray tip catheter |
US3884242A (en) | 1971-03-29 | 1975-05-20 | Mpc Kurgisil | Catheter assembly |
US3890976A (en) | 1972-10-26 | 1975-06-24 | Medical Products Corp | Catheter tip assembly |
US3965901A (en) | 1974-10-03 | 1976-06-29 | American Hospital Supply Corporation | Suction catheter |
US4030503A (en) | 1975-11-05 | 1977-06-21 | Clark Iii William T | Embolectomy catheter |
US4319580A (en) | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US4628168A (en) | 1980-05-14 | 1986-12-09 | Shiley, Inc. | Dielectric heating device for heating cannula members |
DE3020041A1 (en) | 1980-05-24 | 1981-12-03 | Sartorius GmbH, 3400 Göttingen | FILTRATION DEVICE FOR CONCENTRATING LIQUID MEDIA |
US4611594A (en) | 1984-04-11 | 1986-09-16 | Northwestern University | Medical instrument for containment and removal of calculi |
US4617019A (en) | 1984-09-28 | 1986-10-14 | Sherwood Medical Company | Catheter |
DE3442736C2 (en) | 1984-11-23 | 1987-03-05 | Tassilo Dr.med. 7800 Freiburg Bonzel | Dilatation catheter |
US4619274A (en) | 1985-04-18 | 1986-10-28 | Advanced Cardiovascular Systems, Inc. | Torsional guide wire with attenuated diameter |
US4810582A (en) | 1985-11-12 | 1989-03-07 | Tyndale Plains-Hunter Ltd. | Hydrophilic polyurethane composition |
US5040548A (en) | 1989-06-01 | 1991-08-20 | Yock Paul G | Angioplasty mehtod |
JPS6323645A (en) * | 1986-05-27 | 1988-01-30 | 住友電気工業株式会社 | Reflection heating type oxymeter |
US4739768B2 (en) | 1986-06-02 | 1995-10-24 | Target Therapeutics Inc | Catheter for guide-wire tracking |
US4767399A (en) | 1986-12-05 | 1988-08-30 | Fisher Scientific Group Inc. Dba Imed Corporation | Volumetric fluid withdrawal system |
US4762130A (en) | 1987-01-15 | 1988-08-09 | Thomas J. Fogarty | Catheter with corkscrew-like balloon |
US4923462A (en) | 1987-03-17 | 1990-05-08 | Cordis Corporation | Catheter system having a small diameter rotatable drive member |
US4898575A (en) | 1987-08-31 | 1990-02-06 | Medinnovations, Inc. | Guide wire following tunneling catheter system and method for transluminal arterial atherectomy |
US5217705A (en) | 1987-09-25 | 1993-06-08 | Neorx Corporation | Method of diagnosing blood clots using fibrin-binding proteins |
US4844064A (en) | 1987-09-30 | 1989-07-04 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument with end and side openings |
EP0330843B1 (en) | 1988-03-04 | 1993-12-22 | ANGIOMED Aktiengesellschaft | Method and apparatus for removing deposits from blood vessels and organs of living beings |
US5843156A (en) | 1988-08-24 | 1998-12-01 | Endoluminal Therapeutics, Inc. | Local polymeric gel cellular therapy |
US5011488A (en) | 1988-12-07 | 1991-04-30 | Robert Ginsburg | Thrombus extraction system |
DE8900059U1 (en) | 1989-01-04 | 1989-05-24 | Schneider (Europe) AG, Zürich | Catheter for the treatment of arterial thrombosis |
JP2766317B2 (en) | 1989-06-22 | 1998-06-18 | コーリン電子株式会社 | Pulse oximeter |
US5226909A (en) | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
US5120323A (en) | 1990-01-12 | 1992-06-09 | Schneider (Usa) Inc. | Telescoping guide catheter system |
US5527292A (en) | 1990-10-29 | 1996-06-18 | Scimed Life Systems, Inc. | Intravascular device for coronary heart treatment |
US5103827A (en) | 1990-12-14 | 1992-04-14 | Medasonics, Inc. | Apparatus for and a method of distinguishing ultrasound signals returned from bubbles and particles moving in a fluid from signals due to ultrasound transducer motion |
US5916192A (en) | 1991-01-11 | 1999-06-29 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty-atherectomy catheter and method of use |
US5638818A (en) | 1991-03-21 | 1997-06-17 | Masimo Corporation | Low noise optical probe |
US5290247A (en) | 1991-05-21 | 1994-03-01 | C. R. Bard, Inc. | Intracoronary exchange apparatus and method |
US5234416A (en) | 1991-06-06 | 1993-08-10 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter with a nontraumatic distal tip |
DE59202684D1 (en) * | 1991-08-12 | 1995-08-03 | Avl Medical Instr Ag | Device for measuring at least one gas saturation, in particular the oxygen saturation of blood. |
US5423846A (en) | 1991-10-21 | 1995-06-13 | Cathco, Inc. | Dottering auger catheter system |
US5308327A (en) | 1991-11-25 | 1994-05-03 | Advanced Surgical Inc. | Self-deployed inflatable retractor |
US5261916A (en) | 1991-12-12 | 1993-11-16 | Target Therapeutics | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
US5407432A (en) | 1992-03-30 | 1995-04-18 | Pameda N.V. | Method of positioning a stent |
WO1993019679A1 (en) | 1992-04-07 | 1993-10-14 | The Johns Hopkins University | A percutaneous mechanical fragmentation catheter system |
US5328472A (en) | 1992-07-27 | 1994-07-12 | Medtronic, Inc. | Catheter with flexible side port entry |
FR2696924B1 (en) | 1992-08-06 | 1995-01-06 | Domilens Laboratoires | Surgical instrument for the in situ fragmentation of a living material, in particular a phaco-fragmentation or phaco-emulsification instrument. |
WO1994003230A1 (en) | 1992-08-07 | 1994-02-17 | Boston Scientific Corporation | Support catheter assembly |
US5243997A (en) | 1992-09-14 | 1993-09-14 | Interventional Technologies, Inc. | Vibrating device for a guide wire |
US5474563A (en) | 1993-03-25 | 1995-12-12 | Myler; Richard | Cardiovascular stent and retrieval apparatus |
US5417697A (en) | 1993-07-07 | 1995-05-23 | Wilk; Peter J. | Polyp retrieval assembly with cauterization loop and suction web |
DE4329898A1 (en) | 1993-09-04 | 1995-04-06 | Marcus Dr Besson | Wireless medical diagnostic and monitoring device |
US6858024B1 (en) | 1994-02-14 | 2005-02-22 | Scimed Life Systems, Inc. | Guide catheter having selected flexural modulus segments |
ATE295127T1 (en) | 1994-03-03 | 2005-05-15 | Boston Scient Ltd | DEVICE FOR DETECTING THE DIVISION OF A VASS OCCLUSION DEVICE |
US5466222A (en) | 1994-03-30 | 1995-11-14 | Scimed Life Systems, Inc. | Longitudinally collapsible and exchangeable catheter |
US5454795A (en) | 1994-06-27 | 1995-10-03 | Target Therapeutics, Inc. | Kink-free spiral-wound catheter |
US5549119A (en) | 1994-09-13 | 1996-08-27 | Cordis Corporation | Vibrating tip catheter |
DE19504261A1 (en) | 1995-02-09 | 1996-09-12 | Krieg Gunther | Angioplasty catheter for dilating and / or opening blood vessels |
US5441051A (en) | 1995-02-09 | 1995-08-15 | Hileman; Ronald E. | Method and apparatus for the non-invasive detection and classification of emboli |
DK0817594T3 (en) | 1995-03-28 | 2002-07-15 | Straub Medical Ag | Catheter for removal of abnormal deposits in human blood vessels |
US5876414A (en) | 1995-03-28 | 1999-03-02 | Straub Medical Ag | Catheter for detaching abnormal deposits from blood vessels in humans |
US5662622A (en) | 1995-04-04 | 1997-09-02 | Cordis Corporation | Intravascular catheter |
US5702373A (en) | 1995-08-31 | 1997-12-30 | Target Therapeutics, Inc. | Composite super-elastic alloy braid reinforced catheter |
US5658263A (en) | 1995-05-18 | 1997-08-19 | Cordis Corporation | Multisegmented guiding catheter for use in medical catheter systems |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5591187A (en) | 1995-07-14 | 1997-01-07 | Dekel; Moshe | Laparoscopic tissue retrieval device and method |
US5776141A (en) | 1995-08-28 | 1998-07-07 | Localmed, Inc. | Method and apparatus for intraluminal prosthesis delivery |
US5569178A (en) | 1995-10-20 | 1996-10-29 | Henley; Julian L. | Power assisted suction lipectomy device |
US5885209A (en) | 1996-02-02 | 1999-03-23 | Green; Anthony D. | Endoscopic working channel and method of making same |
US5895398A (en) | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6022336A (en) | 1996-05-20 | 2000-02-08 | Percusurge, Inc. | Catheter system for emboli containment |
SE505822C2 (en) | 1996-05-23 | 1997-10-13 | Elekta Ab | Device for injecting a substance into a body, especially human or animal |
US5782811A (en) | 1996-05-30 | 1998-07-21 | Target Therapeutics, Inc. | Kink-resistant braided catheter with distal side holes |
US5899892A (en) | 1996-05-31 | 1999-05-04 | Scimed Life Systems, Inc. | Catheter having distal fiber braid |
US5827242A (en) | 1996-06-21 | 1998-10-27 | Medtronic, Inc. | Reinforced catheter body and method for its fabrication |
US5735816A (en) | 1996-07-23 | 1998-04-07 | Medtronic, Inc. | Spiral sheath retainer for autoperfusion dilatation catheter balloon |
US6221038B1 (en) | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US5690613A (en) | 1996-12-06 | 1997-11-25 | Medtronic, Inc. | Rapid exchange high pressure transition for high pressure catheter with non-compliant balloon |
US8529582B2 (en) | 1996-12-12 | 2013-09-10 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
US6582440B1 (en) | 1996-12-26 | 2003-06-24 | Misonix Incorporated | Non-clogging catheter for lithotrity |
US5843103A (en) | 1997-03-06 | 1998-12-01 | Scimed Life Systems, Inc. | Shaped wire rotational atherectomy device |
US20020026145A1 (en) | 1997-03-06 | 2002-02-28 | Bagaoisan Celso J. | Method and apparatus for emboli containment |
US6355016B1 (en) | 1997-03-06 | 2002-03-12 | Medtronic Percusurge, Inc. | Catheter core wire |
US6059745A (en) | 1997-05-20 | 2000-05-09 | Gelbfish; Gary A. | Thrombectomy device and associated method |
US6228046B1 (en) | 1997-06-02 | 2001-05-08 | Pharmasonics, Inc. | Catheters comprising a plurality of oscillators and methods for their use |
US5951539A (en) | 1997-06-10 | 1999-09-14 | Target Therpeutics, Inc. | Optimized high performance multiple coil spiral-wound vascular catheter |
US5928260A (en) | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
AU3532197A (en) | 1997-07-24 | 1999-02-16 | Australian National University, The | Method for detection of fibrin clots |
US6090118A (en) | 1998-07-23 | 2000-07-18 | Mcguckin, Jr.; James F. | Rotational thrombectomy apparatus and method with standing wave |
US5891114A (en) | 1997-09-30 | 1999-04-06 | Target Therapeutics, Inc. | Soft-tip high performance braided catheter |
US5935112A (en) | 1997-10-15 | 1999-08-10 | Stevens; Brian W. | Hemostasis valve with catheter/guidewire seals |
US5908435A (en) | 1997-10-23 | 1999-06-01 | Samuels; Shaun L. W. | Expandable lumen device and method of use |
US20100030256A1 (en) | 1997-11-12 | 2010-02-04 | Genesis Technologies Llc | Medical Devices and Methods |
US6183432B1 (en) | 1997-11-13 | 2001-02-06 | Lumend, Inc. | Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip |
JP2002502626A (en) | 1998-02-10 | 2002-01-29 | アーテミス・メディカル・インコーポレイテッド | Supplementary device and method of using the same |
US6824550B1 (en) | 2000-04-06 | 2004-11-30 | Norbon Medical, Inc. | Guidewire for crossing occlusions or stenosis |
US6796976B1 (en) | 1998-03-06 | 2004-09-28 | Scimed Life Systems, Inc. | Establishing access to the body |
IE980241A1 (en) | 1998-04-02 | 1999-10-20 | Salviac Ltd | Delivery catheter with split sheath |
US6666874B2 (en) | 1998-04-10 | 2003-12-23 | Endicor Medical, Inc. | Rotational atherectomy system with serrated cutting tip |
US6482217B1 (en) | 1998-04-10 | 2002-11-19 | Endicor Medical, Inc. | Neuro thrombectomy catheter |
US6511492B1 (en) | 1998-05-01 | 2003-01-28 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US6740104B1 (en) | 1998-05-15 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Enhanced catheter with alignment means |
EP2319398B1 (en) | 1998-06-03 | 2019-01-16 | Masimo Corporation | Stereo pulse oximeter |
US6368316B1 (en) | 1998-06-11 | 2002-04-09 | Target Therapeutics, Inc. | Catheter with composite stiffener |
US6024575A (en) | 1998-06-29 | 2000-02-15 | Paul C. Ulrich | Arrangement for monitoring physiological signals |
WO2000000100A1 (en) | 1998-06-30 | 2000-01-06 | Ethicon, Inc. | Endometrial balloon ablation catheter having heater |
US6285903B1 (en) | 1998-06-30 | 2001-09-04 | Eclipse Surgical Technologies, Inc. | Intracorporeal device with radiopaque marker |
AU758458B2 (en) | 1998-09-29 | 2003-03-20 | Mallinckrodt, Inc. | Oximeter sensor with encoded temperature characteristic |
US6214036B1 (en) | 1998-11-09 | 2001-04-10 | Cordis Corporation | Stent which is easily recaptured and repositioned within the body |
US6196972B1 (en) | 1998-11-11 | 2001-03-06 | Spentech, Inc. | Doppler ultrasound method and apparatus for monitoring blood flow |
US6591472B1 (en) | 1998-12-08 | 2003-07-15 | Medtronic, Inc. | Multiple segment catheter and method of fabrication |
DE69902986T4 (en) | 1998-12-09 | 2004-08-26 | Jms Co. Ltd. | infusion filters |
US6165199A (en) | 1999-01-12 | 2000-12-26 | Coaxia, Inc. | Medical device for removing thromboembolic material from cerebral arteries and methods of use |
US6171295B1 (en) | 1999-01-20 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular catheter with composite reinforcement |
JP4213350B2 (en) | 1999-01-20 | 2009-01-21 | ボストン サイエンティフィック リミテッド | Vascular catheter with composite reinforcement |
DE60042316D1 (en) | 1999-01-28 | 2009-07-16 | Salviac Ltd | CATHETER WITH EXPANDABLE END CUT |
US6350271B1 (en) | 1999-05-17 | 2002-02-26 | Micrus Corporation | Clot retrieval device |
EP1992308B1 (en) | 1999-06-02 | 2015-10-28 | Microtransform, Inc. | Intracorporeal occlusive device |
US6355027B1 (en) | 1999-06-09 | 2002-03-12 | Possis Medical, Inc. | Flexible microcatheter |
US6458139B1 (en) | 1999-06-21 | 2002-10-01 | Endovascular Technologies, Inc. | Filter/emboli extractor for use in variable sized blood vessels |
US6179859B1 (en) | 1999-07-16 | 2001-01-30 | Baff Llc | Emboli filtration system and methods of use |
EP1206296A4 (en) | 1999-07-23 | 2007-01-03 | Tfx Medical Extrusion Products | Catheter device having multi-lumen reinforced shaft and method of manufacture for same |
US6887199B2 (en) | 1999-09-23 | 2005-05-03 | Active Signal Technologies, Inc. | Brain assessment monitor |
US6400971B1 (en) | 1999-10-12 | 2002-06-04 | Orsense Ltd. | Optical device for non-invasive measurement of blood-related signals and a finger holder therefor |
WO2001032104A1 (en) | 1999-11-03 | 2001-05-10 | Endocare, Inc. | Method of loading a stent on a delivery catheter |
US7037267B1 (en) | 1999-11-10 | 2006-05-02 | David Lipson | Medical diagnostic methods, systems, and related equipment |
DE19959230C1 (en) | 1999-12-08 | 2001-04-05 | Fresenius Medical Care De Gmbh | Two-sheet pouch, used as disposable haemodialysis container, comprises top and bottom closed by convex weld seams and is repeatedly folded parallel to its vertical axis |
US6206852B1 (en) | 1999-12-15 | 2001-03-27 | Advanced Cardiovascular Systems, Inc. | Balloon catheter having a small profile catheter |
US6579246B2 (en) | 1999-12-22 | 2003-06-17 | Sarcos, Lc | Coronary guidewire system |
US6520934B1 (en) | 1999-12-29 | 2003-02-18 | Advanced Cardiovascular Systems, Inc. | Catheter assemblies with flexible radiopaque marker |
WO2001049341A2 (en) | 1999-12-31 | 2001-07-12 | Bacchus Vascular Inc. | Method and system for re-infusing filtered bodily aspirates |
US6394976B1 (en) | 2000-01-31 | 2002-05-28 | Intraluminal Therapeutics, Inc. | Catheter for controlling the advancement of a guide wire |
JP3915862B2 (en) | 2000-02-09 | 2007-05-16 | テルモ株式会社 | catheter |
US6554820B1 (en) | 2000-03-08 | 2003-04-29 | Scimed Life Systems, Inc. | Composite flexible tube for medical applications |
US6719717B1 (en) | 2000-03-17 | 2004-04-13 | Advanced Research & Technology Institute, Inc. | Thrombectomy treatment system and method |
US7713227B2 (en) | 2000-03-20 | 2010-05-11 | Michael Wholey | Method and apparatus for medical device for aspiration of thromboemobolic debris |
US6514273B1 (en) | 2000-03-22 | 2003-02-04 | Endovascular Technologies, Inc. | Device for removal of thrombus through physiological adhesion |
US6468301B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Repositionable and recapturable vascular stent/graft |
US20010031981A1 (en) | 2000-03-31 | 2001-10-18 | Evans Michael A. | Method and device for locating guidewire and treating chronic total occlusions |
US20050165276A1 (en) | 2004-01-28 | 2005-07-28 | Amir Belson | Methods and apparatus for accessing and treating regions of the body |
US7366561B2 (en) | 2000-04-07 | 2008-04-29 | Medtronic, Inc. | Robotic trajectory guide |
US6638268B2 (en) | 2000-04-07 | 2003-10-28 | Imran K. Niazi | Catheter to cannulate the coronary sinus |
US6468219B1 (en) | 2000-04-24 | 2002-10-22 | Philip Chidi Njemanze | Implantable telemetric transcranial doppler device |
US8133698B2 (en) | 2000-05-15 | 2012-03-13 | Silver James H | Sensors for detecting substances indicative of stroke, ischemia, infection or inflammation |
IL136213A0 (en) | 2000-05-17 | 2001-05-20 | Xtent Medical Inc | Selectively expandable and releasable stent |
US6890315B1 (en) | 2000-05-23 | 2005-05-10 | Chf Solutions, Inc. | Method and apparatus for vein fluid removal in heart failure |
US6605038B1 (en) | 2000-06-16 | 2003-08-12 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
KR100387384B1 (en) | 2000-07-26 | 2003-06-12 | 규 호 이 | Embolic material detachment detection system and method and assembly for embolic treatments |
US6613017B1 (en) | 2000-08-08 | 2003-09-02 | Scimed Life Systems, Inc. | Controlled depth injection device and method |
US6776770B1 (en) | 2000-09-07 | 2004-08-17 | Advanced Research & Technology Institute | Thromboaspiration valve-filter device and methods |
US6524303B1 (en) | 2000-09-08 | 2003-02-25 | Stereotaxis, Inc. | Variable stiffness magnetic catheter |
EP1326672A4 (en) | 2000-10-18 | 2007-03-07 | Nmt Medical Inc | Over-the-wire interlock attachment/detachment mechanism |
US20060100530A1 (en) | 2000-11-28 | 2006-05-11 | Allez Physionix Limited | Systems and methods for non-invasive detection and monitoring of cardiac and blood parameters |
US6554827B2 (en) | 2000-12-11 | 2003-04-29 | Scimed Life Systems, Inc. | Radio frequency ablation system |
US6533751B2 (en) | 2001-01-09 | 2003-03-18 | Andrew Cragg | Micro catheter and guidewire system having improved pushability and control |
US8414505B1 (en) | 2001-02-15 | 2013-04-09 | Hansen Medical, Inc. | Catheter driver system |
US7766894B2 (en) | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
US6673023B2 (en) | 2001-03-23 | 2004-01-06 | Stryker Puerto Rico Limited | Micro-invasive breast biopsy device |
US20020156460A1 (en) | 2001-04-20 | 2002-10-24 | Scimed Life Systems, Inc | Microcatheter with improved distal tip and transitions |
US20020156459A1 (en) | 2001-04-20 | 2002-10-24 | Scimed Life Systems, Inc | Microcatheter with improved distal tip and transitions |
US7635342B2 (en) | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
US20020188314A1 (en) | 2001-06-07 | 2002-12-12 | Microvena Corporation | Radiopaque distal embolic protection device |
US6818013B2 (en) | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
DE20110121U1 (en) | 2001-06-19 | 2002-12-05 | B. Braun Melsungen Ag, 34212 Melsungen | catheter |
US8715312B2 (en) | 2001-07-20 | 2014-05-06 | Microvention, Inc. | Aneurysm treatment device and method of use |
US8252040B2 (en) | 2001-07-20 | 2012-08-28 | Microvention, Inc. | Aneurysm treatment device and method of use |
US7112298B2 (en) | 2001-10-03 | 2006-09-26 | Scimed Life Systems, Inc. | Method for forming a medical device with polymer coated inner lumen |
US20030088266A1 (en) | 2001-11-02 | 2003-05-08 | Bowlin Gary L. | Method of fusing electroprocessed matrices to a substrate |
EP2248549A3 (en) | 2001-12-26 | 2010-12-08 | Yale University | Vascular access device |
US7029482B1 (en) | 2002-01-22 | 2006-04-18 | Cardica, Inc. | Integrated anastomosis system |
US7335216B2 (en) | 2002-01-22 | 2008-02-26 | Cardica, Inc. | Tool for creating an opening in tissue |
US7223274B2 (en) | 2002-01-23 | 2007-05-29 | Cardica, Inc. | Method of performing anastomosis |
US7087026B2 (en) | 2002-03-21 | 2006-08-08 | Radiant Medical, Inc. | Devices and methods for measuring blood flow rate or cardiac output and for heating or cooling the body |
US7232452B2 (en) | 2002-07-12 | 2007-06-19 | Ev3 Inc. | Device to create proximal stasis |
US7309334B2 (en) | 2002-07-23 | 2007-12-18 | Von Hoffmann Gerard | Intracranial aspiration catheter |
US8425549B2 (en) | 2002-07-23 | 2013-04-23 | Reverse Medical Corporation | Systems and methods for removing obstructive matter from body lumens and treating vascular defects |
US20070225614A1 (en) * | 2004-05-26 | 2007-09-27 | Endothelix, Inc. | Method and apparatus for determining vascular health conditions |
US20040045645A1 (en) | 2002-09-10 | 2004-03-11 | Scimed Life Systems, Inc. | Shaped reinforcing member for medical device and method for making the same |
US7060051B2 (en) | 2002-09-24 | 2006-06-13 | Scimed Life Systems, Inc. | Multi-balloon catheter with hydrogel coating |
US20070043333A1 (en) | 2002-10-03 | 2007-02-22 | Scimed Life Systems, Inc. | Method for forming a medical device with a polymer coated inner lumen |
ES2338001T3 (en) | 2002-10-10 | 2010-05-03 | Micro Therapeutics, Inc. | REINFORCED MICROCATETER WITH WIRE BRAIDED. |
US6814746B2 (en) | 2002-11-01 | 2004-11-09 | Ev3 Peripheral, Inc. | Implant delivery system with marker interlock |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US20040138693A1 (en) | 2003-01-14 | 2004-07-15 | Scimed Life Systems, Inc. | Snare retrievable embolic protection filter with guidewire stopper |
US8016752B2 (en) | 2003-01-17 | 2011-09-13 | Gore Enterprise Holdings, Inc. | Puncturable catheter |
JP2004275435A (en) | 2003-03-14 | 2004-10-07 | Terumo Corp | Catheter |
US7001369B2 (en) | 2003-03-27 | 2006-02-21 | Scimed Life Systems, Inc. | Medical device |
US20050131523A1 (en) | 2003-04-02 | 2005-06-16 | Mehran Bashiri | Detachable and retrievable stent assembly |
US20040199201A1 (en) | 2003-04-02 | 2004-10-07 | Scimed Life Systems, Inc. | Embolectomy devices |
US7413563B2 (en) | 2003-05-27 | 2008-08-19 | Cardia, Inc. | Flexible medical device |
ATE427131T1 (en) | 2003-06-10 | 2009-04-15 | Lumend Inc | CATHETER SYSTEM AND METHOD FOR OPENING BLOOD VESSEL OCCLUSIONS |
EP1670534B1 (en) | 2003-07-02 | 2010-01-27 | Cook Incorporated | Coaxial Catheters |
US20050004553A1 (en) | 2003-07-02 | 2005-01-06 | Medtronic Ave, Inc. | Sheath catheter having variable over-the-wire length and methods of use |
WO2005025643A2 (en) | 2003-09-04 | 2005-03-24 | Secant Medical, Llc | Endovascular snare for capture and removal of arterial emboli |
US8034003B2 (en) | 2003-09-11 | 2011-10-11 | Depuy Mitek, Inc. | Tissue extraction and collection device |
US7588555B2 (en) | 2003-09-24 | 2009-09-15 | Enpath Medical, Inc. | Bi-directional catheter assembly and method therefor |
US20050103332A1 (en) | 2003-11-17 | 2005-05-19 | Bruce Gingles | Airway exchange catheter |
EP2260776A1 (en) | 2003-11-21 | 2010-12-15 | Vnus Medical Technologies, Inc. | Apparatus for treating the carotid artery |
US8382739B2 (en) | 2003-12-02 | 2013-02-26 | Boston Scientific Scimed, Inc. | Composite medical device and method of forming |
US20050153309A1 (en) | 2003-12-22 | 2005-07-14 | David Hoon | Method and apparatus for in vivo surveillance of circulating biological components |
US7763011B2 (en) | 2003-12-22 | 2010-07-27 | Boston Scientific Scimed, Inc. | Variable density braid stent |
SG149883A1 (en) | 2004-01-23 | 2009-02-27 | Iscience Surgical Corp | Composite ophthalmic microcannula |
US20050182386A1 (en) | 2004-02-17 | 2005-08-18 | Steen Aggerholm | Catheter with stiffening element |
US8157792B2 (en) | 2004-02-26 | 2012-04-17 | Haemonetics Corporation | Wound drainage suction relief |
BRPI0508305A (en) | 2004-03-04 | 2007-07-31 | Straub Medical Ag | catheter for aspirating, fragmenting and removing material extractable from hollow bodies, in particular thrombi and emboli of blood vessels, and working head |
US20060100610A1 (en) | 2004-03-05 | 2006-05-11 | Wallace Daniel T | Methods using a robotic catheter system |
US8021326B2 (en) | 2004-03-05 | 2011-09-20 | Hansen Medical, Inc. | Instrument driver for robotic catheter system |
EP2384715B1 (en) | 2004-03-05 | 2015-07-08 | Hansen Medical, Inc. | Robotic catheter system |
US8747453B2 (en) | 2008-02-18 | 2014-06-10 | Aga Medical Corporation | Stent/stent graft for reinforcement of vascular abnormalities and associated method |
WO2005094283A2 (en) | 2004-03-25 | 2005-10-13 | Hauser David L | Vascular filter device |
US8535293B2 (en) | 2004-04-13 | 2013-09-17 | Gyrus Acmi, Inc. | Atraumatic ureteral access sheath |
US8235968B2 (en) | 2004-04-13 | 2012-08-07 | Gyrus Acmi, Inc. | Atraumatic ureteral access sheath |
US7379790B2 (en) | 2004-05-04 | 2008-05-27 | Intuitive Surgical, Inc. | Tool memory-based software upgrades for robotic surgery |
EP1750619B1 (en) | 2004-05-25 | 2013-07-24 | Covidien LP | Flexible vascular occluding device |
US7815627B2 (en) | 2004-05-27 | 2010-10-19 | Abbott Laboratories | Catheter having plurality of stiffening members |
US7632265B2 (en) | 2004-05-28 | 2009-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Radio frequency ablation servo catheter and method |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US9782130B2 (en) | 2004-05-28 | 2017-10-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system |
US9492084B2 (en) | 2004-06-18 | 2016-11-15 | Adidas Ag | Systems and methods for monitoring subjects in potential physiological distress |
US20060030835A1 (en) | 2004-06-29 | 2006-02-09 | Sherman Darren R | Catheter shaft tubes and methods of making |
DE602005017792D1 (en) | 2004-08-12 | 2009-12-31 | Hansen Medical Inc | ROBOT-CONTROLLED INTRAVASCULAR TISSUE INJECTION SYSTEM |
CN104523313B (en) | 2004-08-25 | 2018-05-18 | 微仙美国有限公司 | implant device delivery system |
US8366735B2 (en) | 2004-09-10 | 2013-02-05 | Penumbra, Inc. | System and method for treating ischemic stroke |
US9655633B2 (en) | 2004-09-10 | 2017-05-23 | Penumbra, Inc. | System and method for treating ischemic stroke |
US20060064036A1 (en) | 2004-09-21 | 2006-03-23 | Cook Incorporated | Variable flexibility wire guide |
US7306585B2 (en) | 2004-09-30 | 2007-12-11 | Engineering Resources Group, Inc. | Guide catheter |
JP2006102222A (en) | 2004-10-06 | 2006-04-20 | Sekisui Chem Co Ltd | Detachable balloon catheter |
US7621904B2 (en) | 2004-10-21 | 2009-11-24 | Boston Scientific Scimed, Inc. | Catheter with a pre-shaped distal tip |
US20060095062A1 (en) | 2004-11-01 | 2006-05-04 | Medical Components, Inc. | Universal catheter tunneler |
US20060217664A1 (en) | 2004-11-15 | 2006-09-28 | Hattler Brack G | Telescoping vascular dilator |
EP1827555A4 (en) | 2004-11-18 | 2010-03-10 | David W Chang | Endoluminal delivery of anesthesia |
US20060111649A1 (en) | 2004-11-19 | 2006-05-25 | Scimed Life Systems, Inc. | Catheter having improved torque response and curve retention |
US20080086110A1 (en) | 2004-11-19 | 2008-04-10 | Galdonik Jason A | Extendable Device On An Aspiration Catheter |
US9775963B2 (en) | 2010-11-03 | 2017-10-03 | Biocardia, Inc. | Steerable endoluminal devices and methods |
US20060200026A1 (en) | 2005-01-13 | 2006-09-07 | Hansen Medical, Inc. | Robotic catheter system |
WO2006113866A2 (en) | 2005-04-20 | 2006-10-26 | Cook Incorporated | Internal joint for medical devices |
JP2008541797A (en) | 2005-05-03 | 2008-11-27 | ハンセン メディカル,インク. | Robotic guide catheter system |
US7806871B2 (en) | 2005-05-09 | 2010-10-05 | Boston Scientific Scimed, Inc. | Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent |
US9014786B2 (en) | 2005-05-11 | 2015-04-21 | Eyoca Medical Ltd. | Device and method for opening vascular obstructions |
US7771358B2 (en) | 2005-05-20 | 2010-08-10 | Spentech, Inc. | System and method for grading microemboli monitored by a multi-gate doppler ultrasound system |
US20120330196A1 (en) | 2005-06-24 | 2012-12-27 | Penumbra Inc. | Methods and Apparatus for Removing Blood Clots and Tissue from the Patient's Head |
US20120078140A1 (en) | 2005-06-24 | 2012-03-29 | Penumbra, Inc. | Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head |
WO2007005976A1 (en) | 2005-07-01 | 2007-01-11 | Hansen Medical, Inc. | Robotic catheter system |
EP1907041B1 (en) | 2005-07-11 | 2019-02-20 | Catheter Precision, Inc. | Remotely controlled catheter insertion system |
US7938820B2 (en) | 2005-08-18 | 2011-05-10 | Lumen Biomedical, Inc. | Thrombectomy catheter |
US8021351B2 (en) | 2005-08-18 | 2011-09-20 | Medtronic Vascular, Inc. | Tracking aspiration catheter |
US20070060888A1 (en) | 2005-09-06 | 2007-03-15 | Kerberos Proximal Solutions, Inc. | Methods and apparatus for assisted aspiration |
US20080188928A1 (en) | 2005-09-16 | 2008-08-07 | Amr Salahieh | Medical device delivery sheath |
US7850623B2 (en) | 2005-10-27 | 2010-12-14 | Boston Scientific Scimed, Inc. | Elongate medical device with continuous reinforcement member |
RU2304926C2 (en) * | 2005-10-28 | 2007-08-27 | Государственное учреждение Российский научный центр хирургии им. акад. Б.В.Петровского Российской академии медицинских наук | Method for evaluating the reserve of limb's circulation |
EP1973680B1 (en) | 2005-11-17 | 2018-01-10 | Microvention, Inc. | Three-dimensional complex coil |
US20080262350A1 (en) | 2005-11-18 | 2008-10-23 | Imarx Therapeutics, Inc. | Ultrasound Apparatus and Method to Treat an Ischemic Stroke |
US20070185521A1 (en) | 2005-12-05 | 2007-08-09 | Cook Incorporated | Rapid exchange assembly |
US8498691B2 (en) | 2005-12-09 | 2013-07-30 | Hansen Medical, Inc. | Robotic catheter system and methods |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
EP1965852A4 (en) | 2005-12-30 | 2012-10-31 | Bard Inc C R | Embolus blood clot filter removal system and method |
US20070208302A1 (en) | 2006-01-26 | 2007-09-06 | Webster Mark W | Deflection control catheters, support catheters and methods of use |
JP2009525121A (en) | 2006-02-02 | 2009-07-09 | レリーフ メディカル リミテッド | Shock wave generator for treatment of calcific aortic stenosis and method of use thereof |
US7608063B2 (en) | 2006-02-23 | 2009-10-27 | Medrad, Inc. | Dual lumen aspiration catheter system |
WO2007102134A2 (en) | 2006-03-08 | 2007-09-13 | Philips Intellectual Property & Standards Gmbh | Method and system for monitoring the functional use of limbs |
US20120150147A1 (en) | 2010-12-08 | 2012-06-14 | Penumbra, Inc. | System and method for treating ischemic stroke |
US9615832B2 (en) | 2006-04-07 | 2017-04-11 | Penumbra, Inc. | Aneurysm occlusion system and method |
US8048032B2 (en) | 2006-05-03 | 2011-11-01 | Vascular Solutions, Inc. | Coaxial guide catheter for interventional cardiology procedures |
US7905877B1 (en) | 2006-05-12 | 2011-03-15 | Micrus Design Technology, Inc. | Double helix reinforced catheter |
US7558622B2 (en) | 2006-05-24 | 2009-07-07 | Bao Tran | Mesh network stroke monitoring appliance |
US9814425B2 (en) | 2006-05-12 | 2017-11-14 | Koninklijke Philips N.V. | Health monitoring appliance |
US7803136B2 (en) | 2006-06-05 | 2010-09-28 | Schatz Richard A | Myocardial injector |
EP2389960B1 (en) | 2006-06-15 | 2018-02-28 | MicroVention, Inc. | Environmentally responsive hydrogel |
US20080097251A1 (en) | 2006-06-15 | 2008-04-24 | Eilaz Babaev | Method and apparatus for treating vascular obstructions |
KR20090049051A (en) | 2006-06-30 | 2009-05-15 | 아테로메드, 아이엔씨. | Atherectomy devices and methods |
US8682411B2 (en) | 2007-01-22 | 2014-03-25 | Cvdevices, Llc | Devices, systems and methods for epicardial cardiac monitoring system |
AU2007269829B2 (en) | 2006-07-05 | 2012-04-05 | Cook Medical Technologies Llc | Suction clip |
WO2008014425A2 (en) | 2006-07-26 | 2008-01-31 | Hansen Medical, Inc. | Systems for performing minimally invasive surgical operations |
US8211023B2 (en) | 2006-08-11 | 2012-07-03 | Koninklijke Philips Electronics N.V. | Ultrasound system for cerebral blood flow monitoring |
US20080097476A1 (en) | 2006-09-01 | 2008-04-24 | Voyage Medical, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US8394078B2 (en) | 2006-10-04 | 2013-03-12 | Medrad, Inc. | Interventional catheters incorporating an active aspiration system |
US8246641B2 (en) | 2006-11-08 | 2012-08-21 | Cook Medical Technolgies, LLC | Thrombus removal device |
JP5221032B2 (en) | 2006-12-11 | 2013-06-26 | 株式会社グツドマン | Insertion aid, catheter assembly and catheter set |
US8108069B2 (en) | 2007-01-10 | 2012-01-31 | Hansen Medical, Inc. | Robotic catheter system and methods |
CN100482154C (en) * | 2007-01-19 | 2009-04-29 | 清华大学 | Portable near-infrared detection apparatus for human body local plasma volume variation parameter |
EP3542701B1 (en) | 2007-01-29 | 2021-03-10 | Intuitive Surgical Operations Inc. | System for controlling an instrument using shape sensors |
ES2415375T3 (en) | 2007-02-05 | 2013-07-25 | Region Nordjylland | A procedure to diagnose atherosclerotic plaques by measuring CD36 |
WO2008101206A2 (en) | 2007-02-15 | 2008-08-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter and method of manufacture |
US10433929B2 (en) | 2007-03-09 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for local deformable registration of a catheter navigation system to image data or a model |
US7922693B2 (en) | 2007-03-19 | 2011-04-12 | Hansen Medical, Inc. | Apparatus systems and methods for flushing gas from a catheter of a robotic catheter system |
WO2008118481A2 (en) | 2007-03-26 | 2008-10-02 | Hansen Medical, Inc. | Robotic catheter systems and methods |
CN101652155B (en) | 2007-04-03 | 2012-09-19 | 尼普洛株式会社 | Thrombus-aspiration catheter |
WO2008124618A1 (en) | 2007-04-05 | 2008-10-16 | Nmt Medical, Inc. | Implant recovery device |
US7884727B2 (en) | 2007-05-24 | 2011-02-08 | Bao Tran | Wireless occupancy and day-light sensing |
US7927309B2 (en) | 2007-05-29 | 2011-04-19 | Cordis Corporation | Expandable sheath introducer |
US20080312639A1 (en) | 2007-06-13 | 2008-12-18 | Jan Weber | Hardened polymeric lumen surfaces |
EP2977072A1 (en) | 2007-06-26 | 2016-01-27 | Roxwood Medical, Inc. | Catheter apparatus for treating vasculatures |
EP4088770A1 (en) | 2007-07-18 | 2022-11-16 | Silk Road Medical, Inc. | Methods and systems for establishing retrograde carotid arterial blood flow |
US8858490B2 (en) | 2007-07-18 | 2014-10-14 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US20090030400A1 (en) | 2007-07-25 | 2009-01-29 | Arani Bose | System and method for intracranial access |
CN101917911B (en) | 2007-07-27 | 2013-06-19 | 微排放器公司 | Detachable coil incorporating stretch resistance |
US8165684B2 (en) | 2007-08-01 | 2012-04-24 | Yale University | Wireless system for epilepsy monitoring and measurement |
US20090043330A1 (en) | 2007-08-09 | 2009-02-12 | Specialized Vascular Technologies, Inc. | Embolic protection devices and methods |
EP2626029B1 (en) | 2007-08-14 | 2021-04-28 | Koninklijke Philips N.V. | Robotic instrument systems utilizing optical fiber sensors |
US8131379B2 (en) | 2007-08-27 | 2012-03-06 | St. Jude Medical Atrial Fibrillation Division, Inc. | Cardiac tissue elasticity sensing |
WO2009054968A1 (en) | 2007-10-22 | 2009-04-30 | Atheromed, Inc. | Atherectomy devices and methods |
CA2643261A1 (en) | 2007-11-06 | 2009-05-06 | Queen's University At Kingston | Method and system for identifying and quantifing particles in flow systems |
US9144383B2 (en) | 2007-12-13 | 2015-09-29 | The Board Of Trustees Of The University Of Arkansas | Device and method for in vivo noninvasive magnetic manipulation of circulating objects in bioflows |
US9451884B2 (en) | 2007-12-13 | 2016-09-27 | Board Of Trustees Of The University Of Arkansas | Device and method for in vivo detection of clots within circulatory vessels |
US8734374B2 (en) | 2007-12-20 | 2014-05-27 | Angiodynamics, Inc. | Systems and methods for removing undesirable material within a circulatory system during a surgical procedure |
EP2231030B1 (en) | 2007-12-21 | 2019-02-27 | MicroVention, Inc. | System and method for locating detachment zone of a detachable implant |
US8470035B2 (en) | 2007-12-21 | 2013-06-25 | Microvention, Inc. | Hydrogel filaments for biomedical uses |
US20090171332A1 (en) | 2007-12-27 | 2009-07-02 | Intuitive Surgical, Inc. | Medical device with orientable tip for robotically directed laser cutting and biomaterial application |
US20090187143A1 (en) | 2008-01-18 | 2009-07-23 | Ev3 Inc. | Angled tip catheter |
EP3789069B1 (en) | 2008-02-05 | 2024-04-03 | Silk Road Medical, Inc. | Systems for establishing retrograde carotid arterial blood flow |
US20090254083A1 (en) | 2008-03-10 | 2009-10-08 | Hansen Medical, Inc. | Robotic ablation catheter |
US20090234321A1 (en) | 2008-03-12 | 2009-09-17 | James Edward Shapland | Visualization of coronary vein procedure |
US8684962B2 (en) | 2008-03-27 | 2014-04-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US9241768B2 (en) | 2008-03-27 | 2016-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
US8317744B2 (en) | 2008-03-27 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter manipulator assembly |
US9161817B2 (en) | 2008-03-27 | 2015-10-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8641664B2 (en) | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system with dynamic response |
US8343096B2 (en) | 2008-03-27 | 2013-01-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
WO2009120992A2 (en) | 2008-03-27 | 2009-10-01 | St. Jude Medical, Arrial Fibrillation Division Inc. | Robotic castheter system input device |
WO2009146128A1 (en) | 2008-04-03 | 2009-12-03 | William Cook Europe Aps | Implant release mechanism |
US20090264785A1 (en) | 2008-04-18 | 2009-10-22 | Brainscope Company, Inc. | Method and Apparatus For Assessing Brain Function Using Diffusion Geometric Analysis |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US20100125253A1 (en) | 2008-11-17 | 2010-05-20 | Avinger | Dual-tip Catheter System for Boring through Blocked Vascular Passages |
CA2722672C (en) | 2008-05-02 | 2019-10-22 | Sequent Medical Inc. | Filamentary devices for treatment of vascular defects |
EP3646917B1 (en) | 2008-05-06 | 2021-04-28 | Corindus, Inc | Catheter system |
US8974411B2 (en) | 2008-05-21 | 2015-03-10 | Becton, Dickinson And Company | Conical diffuser tip |
US8070694B2 (en) | 2008-07-14 | 2011-12-06 | Medtronic Vascular, Inc. | Fiber based medical devices and aspiration catheters |
US8333796B2 (en) | 2008-07-15 | 2012-12-18 | Penumbra, Inc. | Embolic coil implant system and implantation method |
US8574245B2 (en) | 2008-08-13 | 2013-11-05 | Silk Road Medical, Inc. | Suture delivery device |
US9731094B2 (en) | 2008-08-20 | 2017-08-15 | Cook Medical Technologies Llc | Introducer sheath having dual reinforcing elements |
US8343136B2 (en) | 2008-08-26 | 2013-01-01 | Cook Medical Technologies Llc | Introducer sheath with encapsulated reinforcing member |
US8758364B2 (en) | 2008-08-29 | 2014-06-24 | Rapid Medical Ltd. | Device and method for clot engagement and capture |
US8864792B2 (en) | 2008-08-29 | 2014-10-21 | Rapid Medical, Ltd. | Device and method for clot engagement |
EP2320990B2 (en) | 2008-08-29 | 2023-05-31 | Corindus, Inc. | Catheter control system and graphical user interface |
US8298591B2 (en) | 2008-09-10 | 2012-10-30 | Micro-Dose Life Sciences Llc | Anti-fever botanical composition and uses thereof |
US8485969B2 (en) | 2008-09-18 | 2013-07-16 | Jeffrey Grayzel | Medical guide element with diameter transition |
US10631745B2 (en) | 2008-09-22 | 2020-04-28 | Cheetah Medical, Inc. | System and method for determining blood flow |
US8390438B2 (en) | 2008-09-24 | 2013-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system including haptic feedback |
WO2010054225A2 (en) | 2008-11-07 | 2010-05-14 | Abbott Medical Optics Inc. | Automatically switching different aspiration levels and/or pumps to an ocular probe |
CH699981A2 (en) | 2008-11-27 | 2010-05-31 | Straub Medical Ag | Catheter for aspirating, fragmenting and out transport of removable material from blood vessels. |
US8725249B2 (en) | 2008-12-09 | 2014-05-13 | Nephera Ltd. | Stimulation of the urinary system |
EP2376171B1 (en) | 2008-12-10 | 2018-04-25 | Microvention, Inc. | Microcatheter |
WO2010068783A1 (en) | 2008-12-12 | 2010-06-17 | Corindus Inc. | Remote catheter procedure system |
US9199064B2 (en) | 2008-12-18 | 2015-12-01 | Invatec S.P.A. | Catheter guide |
WO2010075445A1 (en) | 2008-12-23 | 2010-07-01 | Silk Road Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
EP2384151B1 (en) | 2008-12-30 | 2021-04-21 | Invatec S.p.A. | Blood clot removal device |
JP5773884B2 (en) | 2008-12-31 | 2015-09-02 | セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド | Robot catheter system input device |
US8361095B2 (en) | 2009-02-17 | 2013-01-29 | Cook Medical Technologies Llc | Loop thrombectomy device |
EP3357419A1 (en) | 2009-02-25 | 2018-08-08 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
EP2407199A4 (en) | 2009-03-09 | 2014-08-13 | Sumitomo Bakelite Co | Catheter and method of manufacturing catheter |
US20100241155A1 (en) | 2009-03-20 | 2010-09-23 | Acclarent, Inc. | Guide system with suction |
BRPI1014975A2 (en) | 2009-04-15 | 2016-04-26 | Microventon Inc | implant delivery system |
WO2010121743A1 (en) | 2009-04-23 | 2010-10-28 | Fresenius Medical Care Deutschland Gmbh | Blood clot catcher, external functional device, blood circulation, and treatment device |
US20100280363A1 (en) | 2009-04-24 | 2010-11-04 | Medtronic, Inc. | Electromagnetic Navigation of Medical Instruments for Cardiothoracic Surgery |
US10639396B2 (en) | 2015-06-11 | 2020-05-05 | Microvention, Inc. | Polymers |
WO2010126786A1 (en) | 2009-05-01 | 2010-11-04 | Cook Incorporated | Aspiration catheter with thrombus removing device |
US8517955B2 (en) | 2009-05-08 | 2013-08-27 | Broncus Medical Inc. | Tissue sampling devices, systems and methods |
US10973414B2 (en) | 2009-05-20 | 2021-04-13 | Sotera Wireless, Inc. | Vital sign monitoring system featuring 3 accelerometers |
US20110082373A1 (en) | 2009-06-04 | 2011-04-07 | Gurley John C | Methods and apparatus for the detection of cardiopulmonary defects |
DK2442860T3 (en) | 2009-06-15 | 2019-06-24 | Perflow Medical Ltd | APPARATUS FOR POSSIBLE BLOOD FLOWING THROUGH AN UNCLUDED CAR |
US8409269B2 (en) | 2009-12-21 | 2013-04-02 | Covidien Lp | Procedures for vascular occlusion |
US8795317B2 (en) | 2009-07-08 | 2014-08-05 | Concentric Medical, Inc. | Embolic obstruction retrieval devices and methods |
US20110015484A1 (en) | 2009-07-16 | 2011-01-20 | Alvarez Jeffrey B | Endoscopic robotic catheter system |
US9439736B2 (en) | 2009-07-22 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
WO2011123669A1 (en) | 2010-03-31 | 2011-10-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems |
US8057497B1 (en) | 2009-07-28 | 2011-11-15 | Seshadri Raju | Thrombectomy removal device kit |
US20130006225A1 (en) | 2009-08-05 | 2013-01-03 | Rocin Laboratories, Inc. | Twin-type cannula assemblies for hand-held power-assisted tissue aspiration instruments |
CH701695A1 (en) | 2009-08-27 | 2011-02-28 | Straub Medical Ag | Catheter with protection system for aspirating, fragmenting and out pumping of removable material from hollow bodies or vessels, in particular of the human or animal body. |
WO2011025966A1 (en) | 2009-08-31 | 2011-03-03 | Boston Scientific Scimed, Inc. | Recanalization device with expandable cage |
EP2475417B1 (en) | 2009-09-11 | 2018-10-10 | Onset Medical Corporation | Expandable cerebrovascular sheath |
EP2477586B1 (en) * | 2009-09-16 | 2019-07-10 | Board of Regents, The University of Texas System | Altering temperature in a mammalian body |
US8911487B2 (en) | 2009-09-22 | 2014-12-16 | Penumbra, Inc. | Manual actuation system for deployment of implant |
US9375223B2 (en) | 2009-10-06 | 2016-06-28 | Cardioprolific Inc. | Methods and devices for endovascular therapy |
US11039845B2 (en) | 2009-10-06 | 2021-06-22 | Cardioprolific Inc. | Methods and devices for endovascular therapy |
EP3572115B1 (en) | 2009-10-12 | 2024-02-21 | Corindus, Inc. | Catheter system with percutaneous device movement algorithm |
US20110106200A1 (en) | 2009-10-29 | 2011-05-05 | Medtronic, Inc. | Stroke risk monitoring system including implantable medical device |
US8696698B2 (en) | 2009-12-02 | 2014-04-15 | Surefire Medical, Inc. | Microvalve protection device and method of use for protection against embolization agent reflux |
EP2523720A4 (en) | 2010-01-11 | 2017-05-03 | Assis Medical Ltd. | Device system and method for reshaping tissue openings |
US10342570B2 (en) | 2014-02-03 | 2019-07-09 | Medinol Ltd. | Device for traversing vessel occlusions and method of use |
US8545552B2 (en) | 2010-02-26 | 2013-10-01 | Silk Road Medical, Inc. | Systems and methods for transcatheter aortic valve treatment |
EP2542295B1 (en) | 2010-03-02 | 2019-04-17 | Corindus, Inc. | Robotic catheter system with variable speed control |
EP2542290B1 (en) | 2010-03-02 | 2019-11-06 | Corindus, Inc. | Robotic catheter system with variable drive mechanism |
US20110238041A1 (en) | 2010-03-24 | 2011-09-29 | Chestnut Medical Technologies, Inc. | Variable flexibility catheter |
EP4039203A1 (en) | 2010-04-13 | 2022-08-10 | Mivi Neuroscience, Inc. | Embolectomy devices for treatment of acute ischemic stroke condition |
WO2011130081A1 (en) | 2010-04-14 | 2011-10-20 | Microvention, Inc. | Implant delivery device |
US10238362B2 (en) | 2010-04-26 | 2019-03-26 | Gary And Mary West Health Institute | Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability |
US8764779B2 (en) | 2010-05-13 | 2014-07-01 | Rex Medical, L.P. | Rotational thrombectomy wire |
US9023070B2 (en) | 2010-05-13 | 2015-05-05 | Rex Medical, L.P. | Rotational thrombectomy wire coupler |
US8663259B2 (en) | 2010-05-13 | 2014-03-04 | Rex Medical L.P. | Rotational thrombectomy wire |
US9387077B2 (en) | 2010-05-27 | 2016-07-12 | Medtronic Vascular Galway | Catheter assembly with prosthesis crimping and prosthesis retaining accessories |
US9119662B2 (en) | 2010-06-14 | 2015-09-01 | Covidien Lp | Material removal device and method of use |
BR112013003333B1 (en) | 2010-08-12 | 2021-12-28 | C.R. Bard, Inc | CATHETER SET INCLUDING DISTAL PORTION STABILITY CHARACTERISTICS |
US9623228B2 (en) | 2010-08-12 | 2017-04-18 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US10238833B2 (en) | 2010-08-12 | 2019-03-26 | C. R. Bard, Inc. | Access port and catheter assembly including catheter distal portion stability features |
WO2012021407A2 (en) | 2010-08-13 | 2012-02-16 | Morehouse School Of Medicine | Biomarkers for stroke |
JP5934219B2 (en) | 2010-09-03 | 2016-06-15 | ユニヴァーシティ オブ ワシントン | Neurosurgical device and related systems and methods |
US8961533B2 (en) | 2010-09-17 | 2015-02-24 | Hansen Medical, Inc. | Anti-buckling mechanisms and methods |
US9833293B2 (en) | 2010-09-17 | 2017-12-05 | Corindus, Inc. | Robotic catheter system |
WO2012037213A1 (en) | 2010-09-17 | 2012-03-22 | Corindus Inc. | Wheel for robotic catheter system drive mechanism |
EP2618719B1 (en) | 2010-09-22 | 2017-10-04 | Acclarent, Inc. | Apparatus for treating disorders of the sinuses |
US9039749B2 (en) | 2010-10-01 | 2015-05-26 | Covidien Lp | Methods and apparatuses for flow restoration and implanting members in the human body |
US10238456B2 (en) | 2010-10-14 | 2019-03-26 | Corindus, Inc. | Occlusion traversal robotic catheter system |
US9446216B2 (en) | 2010-10-14 | 2016-09-20 | Medtronic, Inc. | Cannular device and method of manufacture |
US9107691B2 (en) | 2010-10-19 | 2015-08-18 | Distal Access, Llc | Apparatus for rotating medical devices, systems including the apparatus, and associated methods |
EP2640287B1 (en) | 2010-11-21 | 2023-01-18 | Merit Medical Systems, Inc. | Tissue removal device |
DE102010053111B4 (en) | 2010-12-01 | 2012-10-25 | Acandis Gmbh & Co. Kg | Arrangement with a device for supplying a medical functional element |
WO2012078678A1 (en) | 2010-12-06 | 2012-06-14 | Tyco Healthcare Group Lp | Vascular remodeling device |
US9867725B2 (en) | 2010-12-13 | 2018-01-16 | Microvention, Inc. | Stent |
US8736212B2 (en) | 2010-12-16 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection and prevention of motor runaway |
EP2676110A1 (en) * | 2011-02-16 | 2013-12-25 | Arizant Healthcare Inc. | Zero-heat-flux temperature measurement devices with peripheral skin temperature measurement |
WO2012129374A1 (en) | 2011-03-22 | 2012-09-27 | Corindus, Inc. | Robotic catheter system including imaging system control |
US9737646B2 (en) | 2011-03-23 | 2017-08-22 | Abbott Cardiovascular Systems Inc. | Small vessel stent and methods of use |
US10722683B2 (en) | 2011-04-05 | 2020-07-28 | Thermopeutix, Inc. | Microcatheter with distal tip portion and proximal solution lumen |
US9724491B2 (en) | 2011-04-05 | 2017-08-08 | Thermopeutix, Inc. | Microcatheter with distal tip portion and proximal solution lumen |
EP3865099A1 (en) | 2011-04-29 | 2021-08-18 | Evasc Neurovascular Enterprises ULC | Endovascular prosthesis |
CN103547222B (en) | 2011-05-11 | 2016-02-10 | 柯惠有限合伙公司 | Vascular remodeling device |
US9572481B2 (en) | 2011-05-13 | 2017-02-21 | Intuitive Surgical Operations, Inc. | Medical system with multiple operating modes for steering a medical instrument through linked body passages |
EP2709710B1 (en) | 2011-05-16 | 2018-01-10 | Brainlab AG | Medical catheter with reduced backflow |
EP2524653A1 (en) | 2011-05-17 | 2012-11-21 | Carag AG | Occluder |
US8793522B2 (en) | 2011-06-11 | 2014-07-29 | Aliphcom | Power management in a data-capable strapband |
US9814862B2 (en) | 2011-06-30 | 2017-11-14 | The Spectranetics Corporation | Reentry catheter and method thereof |
JP2014523777A (en) | 2011-07-08 | 2014-09-18 | グローバル ニュートリション アンド ヘルス インコーポレイテッド | Personalized nutrition and health assistant |
US9039715B2 (en) | 2011-07-11 | 2015-05-26 | Great Aspirations Ltd. | Apparatus for entrapping and extracting objects from body cavities |
US8676301B2 (en) | 2011-07-14 | 2014-03-18 | Med Works Limited | Guide wire incorporating a handle |
US9486605B2 (en) | 2011-07-15 | 2016-11-08 | Cook Medical Technologies Llc | Introducer sheath with braided filament securement mechanism |
US10779855B2 (en) | 2011-08-05 | 2020-09-22 | Route 92 Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
WO2013022796A2 (en) | 2011-08-05 | 2013-02-14 | Silk Road Medical, Inc. | Methods and systems for treatment of acute ischemic stroke |
US8787944B2 (en) | 2011-08-18 | 2014-07-22 | Rivada Research, Llc | Method and system for providing enhanced location based information for wireless handsets |
WO2013043872A1 (en) | 2011-09-20 | 2013-03-28 | Corindus, Inc. | Variable drive force apparatus and method for robotic catheter system |
WO2013050880A2 (en) | 2011-10-04 | 2013-04-11 | AVNERI, Ben-Ami | Devices and methods for percutaneous endarterectomy |
US9119625B2 (en) | 2011-10-05 | 2015-09-01 | Pulsar Vascular, Inc. | Devices, systems and methods for enclosing an anatomical opening |
WO2013056262A1 (en) | 2011-10-13 | 2013-04-18 | Atheromed, Inc. | Atherectomy apparatus, systems and methods |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
EP2768568B1 (en) | 2011-10-18 | 2020-05-06 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US8771341B2 (en) | 2011-11-04 | 2014-07-08 | Reverse Medical Corporation | Protuberant aneurysm bridging device and method of use |
EP2776108B1 (en) | 2011-11-09 | 2019-07-17 | Boston Scientific Scimed, Inc. | Guide extension catheter |
DE102011120004B3 (en) | 2011-11-30 | 2013-03-14 | Universitätsklinikum Freiburg | Device for detaching wall-shaped thrombi from a body vessel |
US8920368B2 (en) | 2011-12-22 | 2014-12-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
US9402555B2 (en) | 2011-12-29 | 2016-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Drive assembly for use in a robotic control and guidance system |
US9392945B2 (en) | 2012-01-04 | 2016-07-19 | Masimo Corporation | Automated CCHD screening and detection |
US20160081825A1 (en) | 2012-01-04 | 2016-03-24 | Rapid Medical Ltd. | Heat-treated braided intravascular devices and methods |
AU2013207123B2 (en) | 2012-01-04 | 2018-03-01 | Rapid Medical Ltd. | Braided devices for assisting medical treatments |
JPWO2013111700A1 (en) | 2012-01-23 | 2015-05-11 | テルモ株式会社 | Medical tube, catheter and method of manufacturing medical tube |
WO2013116521A2 (en) | 2012-01-31 | 2013-08-08 | Boston Scientific Scimed, Inc. | Guide extension catheter |
US10028854B2 (en) | 2012-02-02 | 2018-07-24 | Covidien Lp | Stent retaining systems |
WO2013119332A2 (en) | 2012-02-09 | 2013-08-15 | Stout Medical Group, L.P. | Embolic device and methods of use |
US10537706B2 (en) | 2012-02-28 | 2020-01-21 | Sumitomo Bakelite Co., Ltd. | Method for manufacturing medical instrument, and medical instrument |
AU2013231845B2 (en) | 2012-03-16 | 2017-07-06 | Terumo Corporation | Stent and stent delivery device |
WO2013152066A1 (en) | 2012-04-03 | 2013-10-10 | Mclean Hospital Corporation | System and method for evaluation of circulatory function |
WO2013158781A1 (en) | 2012-04-18 | 2013-10-24 | Microvention, Inc. | Embolic devices |
US10405791B2 (en) * | 2013-03-15 | 2019-09-10 | Yingchang Yang | Method and continuously wearable noninvasive apparatus for automatically detecting a stroke and other abnormal health conditions |
CN102698328B (en) | 2012-06-08 | 2014-12-03 | 李广成 | Double-container balanced lavaging device for hematoma remover |
US9351993B2 (en) | 2012-06-14 | 2016-05-31 | Microvention, Inc. | Polymeric treatment compositions |
US8948832B2 (en) * | 2012-06-22 | 2015-02-03 | Fitbit, Inc. | Wearable heart rate monitor |
US9211132B2 (en) | 2012-06-27 | 2015-12-15 | MicoVention, Inc. | Obstruction removal system |
US9445828B2 (en) | 2012-07-05 | 2016-09-20 | Cognition Medical Corp. | Methods, devices, and systems for postconditioning with clot removal |
US8684963B2 (en) | 2012-07-05 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Catheter with a dual lumen monolithic shaft |
WO2014010207A1 (en) | 2012-07-10 | 2014-01-16 | パナソニック株式会社 | Insertion device control device and control method, insertion device provided with control device, insertion device control program, and insertion device control integrated electronic circuit |
EP2874690B1 (en) | 2012-07-17 | 2021-03-24 | Boston Scientific Scimed, Inc. | Guide extension catheter |
JP6050045B2 (en) | 2012-07-20 | 2016-12-21 | テルモ株式会社 | Coronary catheter |
WO2014025894A1 (en) | 2012-08-07 | 2014-02-13 | The General Hospital Corporation | System and method for electrical impedance spectroscopy |
WO2014028528A1 (en) | 2012-08-13 | 2014-02-20 | Microvention, Inc. | Shaped removal device |
CN104470575B (en) | 2012-08-14 | 2017-06-06 | 直观外科手术操作公司 | The system and method for the part in configuration mis instruments |
US9597171B2 (en) | 2012-09-11 | 2017-03-21 | Covidien Lp | Retrieval catheter with expandable tip |
US9504476B2 (en) | 2012-10-01 | 2016-11-29 | Microvention, Inc. | Catheter markers |
JP6385937B2 (en) | 2012-10-15 | 2018-09-05 | マイクロベンション インコーポレイテッドMicrovention, Inc. | Polymeric therapeutic composition |
US9044575B2 (en) | 2012-10-22 | 2015-06-02 | Medtronic Adrian Luxembourg S.a.r.l. | Catheters with enhanced flexibility and associated devices, systems, and methods |
CN104755021B (en) | 2012-10-23 | 2017-12-29 | 皇家飞利浦有限公司 | For the apparatus and method for the vital sign information for obtaining biology |
US9301831B2 (en) | 2012-10-30 | 2016-04-05 | Covidien Lp | Methods for attaining a predetermined porosity of a vascular device |
WO2014076748A1 (en) | 2012-11-13 | 2014-05-22 | テルモ株式会社 | Catheter |
US8784434B2 (en) | 2012-11-20 | 2014-07-22 | Inceptus Medical, Inc. | Methods and apparatus for treating embolism |
JP2015535464A (en) | 2012-11-21 | 2015-12-14 | アムジエン・インコーポレーテツド | Drug delivery device |
US9539022B2 (en) | 2012-11-28 | 2017-01-10 | Microvention, Inc. | Matter conveyance system |
US8671817B1 (en) | 2012-11-28 | 2014-03-18 | Hansen Medical, Inc. | Braiding device for catheter having acuately varying pullwires |
US8894610B2 (en) | 2012-11-28 | 2014-11-25 | Hansen Medical, Inc. | Catheter having unirail pullwire architecture |
EP2928360B1 (en) | 2012-12-04 | 2017-01-11 | Koninklijke Philips N.V. | Device and method for obtaining vital sign information of a living being |
US20140163367A1 (en) | 2012-12-07 | 2014-06-12 | Covidien Lp | Microcatheter |
DE102012112732B4 (en) | 2012-12-20 | 2019-06-19 | Acandis Gmbh | Medical device, system with such a device and manufacturing method |
US10136822B1 (en) | 2013-01-21 | 2018-11-27 | Zynex Monitoring Solutions Inc. | Method and apparatus for non-invasively detecting blood volume imbalances in a mammalian subject |
US20160256255A9 (en) | 2013-02-22 | 2016-09-08 | Jianlu Ma | Design and methods for a device with blood flow restriction feature for embolus removal in human vasculature |
CN105163789A (en) | 2013-03-01 | 2015-12-16 | 波士顿科学国际有限公司 | Guide extension catheter with a retractable wire |
US9839481B2 (en) | 2013-03-07 | 2017-12-12 | Intuitive Surgical Operations, Inc. | Hybrid manual and robotic interventional instruments and methods of use |
US10531971B2 (en) | 2013-03-12 | 2020-01-14 | Abbott Cardiovascular System Inc. | Balloon catheter having hydraulic actuator |
US9370639B2 (en) | 2013-03-12 | 2016-06-21 | Cook Medical Technologies, LLC | Variable stiffness catheter |
US20140276923A1 (en) | 2013-03-12 | 2014-09-18 | Volcano Corporation | Vibrating catheter and methods of use |
US10383691B2 (en) | 2013-03-13 | 2019-08-20 | The Spectranetics Corporation | Last catheter with helical internal lumen |
US9883885B2 (en) | 2013-03-13 | 2018-02-06 | The Spectranetics Corporation | System and method of ablative cutting and pulsed vacuum aspiration |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
WO2014140978A1 (en) | 2013-03-14 | 2014-09-18 | Koninklijke Philips N.V. | Device and method for obtaining vital sign information of a subject |
US9549783B2 (en) | 2013-03-15 | 2017-01-24 | Corindus, Inc. | Catheter system with magnetic coupling |
US9498291B2 (en) | 2013-03-15 | 2016-11-22 | Hansen Medical, Inc. | Touch-free catheter user interface controller |
US8715314B1 (en) | 2013-03-15 | 2014-05-06 | Insera Therapeutics, Inc. | Vascular treatment measurement methods |
US10219753B2 (en) | 2013-03-15 | 2019-03-05 | Zansors Llc | Health monitoring, surveillance and anomaly detection |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
KR102698809B1 (en) | 2013-03-15 | 2024-08-28 | 테루모 코퍼레이션 | Embolic protection device |
US20140276394A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Input device for controlling a catheter |
ES2774327T3 (en) | 2013-03-15 | 2020-07-20 | Qxmedical Llc | Reinforcement catheter |
WO2014141226A1 (en) | 2013-03-15 | 2014-09-18 | National University Of Ireland | A device suitable for removing matter from inside the lumen and the wall of a body lumen |
US20140271718A1 (en) | 2013-03-15 | 2014-09-18 | University Of Florida Research Foundation Incorporated | Novel type 1 diabetes vaccines, and methods of use |
WO2014151209A1 (en) | 2013-03-18 | 2014-09-25 | Virginia Commonwealth Univerisity | Dynamic aspiration methods and systems |
WO2014160613A1 (en) | 2013-03-29 | 2014-10-02 | Silk Road Medical, Inc, | Systems and methods for aspirating from a body lumen |
US20140330286A1 (en) | 2013-04-25 | 2014-11-06 | Michael P. Wallace | Methods and Devices for Removing Obstructing Material From the Human Body |
WO2014182797A1 (en) | 2013-05-07 | 2014-11-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Steerable medical device having multiple curve profiles |
US9629978B2 (en) | 2013-05-20 | 2017-04-25 | Clph, Llc | Catheters with intermediate layers and methods for making them |
US10322260B2 (en) | 2013-05-30 | 2019-06-18 | Terumo Kabushiki Kaisha | Treatment method for treating lower limbs using multi-member catheter assembly |
US20150335288A1 (en) * | 2013-06-06 | 2015-11-26 | Tricord Holdings, Llc | Modular physiologic monitoring systems, kits, and methods |
WO2014203336A1 (en) | 2013-06-18 | 2014-12-24 | 住友ベークライト株式会社 | Medical device and method for manufacturing medical device |
US11229490B2 (en) | 2013-06-26 | 2022-01-25 | Corindus, Inc. | System and method for monitoring of guide catheter seating |
US20150018723A1 (en) | 2013-07-09 | 2015-01-15 | Industry-Academic Cooperation Foundation, Kyungpook National University | Apparatus for early detection of paralysis based on motion sensing |
CN105555193B (en) * | 2013-07-17 | 2019-03-08 | 格鲁科切克有限公司 | Blood sampling device and method |
KR102129536B1 (en) | 2013-08-06 | 2020-07-03 | 삼성전자주식회사 | Mobile terminal and method for controlling the mobile terminal |
US10265207B2 (en) | 2013-08-27 | 2019-04-23 | Covidien Lp | Delivery of medical devices |
CA2923753C (en) | 2013-09-19 | 2021-10-12 | Terumo Corporation | Polymer particles |
WO2015042462A1 (en) | 2013-09-19 | 2015-03-26 | Microvention, Inc. | Polymer films |
US20150087928A1 (en) | 2013-09-21 | 2015-03-26 | Leo Technologies, Inc. | Measuring tissue volume with dynamic autoreconfiguration |
US9936916B2 (en) | 2013-10-09 | 2018-04-10 | Nedim T. SAHIN | Systems, environment and methods for identification and analysis of recurring transitory physiological states and events using a portable data collection device |
EP3750586A3 (en) | 2013-10-15 | 2021-03-10 | Corindus, Inc. | Guide catheter control flexible track |
EP3057523A4 (en) | 2013-10-16 | 2016-10-19 | Medwerks Llc | Atraumatic medical device |
US20150112208A1 (en) | 2013-10-23 | 2015-04-23 | Quanttus, Inc. | Medication management |
WO2015061052A1 (en) | 2013-10-24 | 2015-04-30 | St. Jude Medical, Cardiology Division, Inc. | Flexible catheter shaft and method of manufacture |
US10695025B2 (en) | 2013-11-07 | 2020-06-30 | The Board Of Trustees Of The Leland Stanford Junior University | Wearable ultrasonic device for circulating tumor cell detection |
BR112016010067B1 (en) | 2013-11-08 | 2023-01-10 | Terumo Corporation | POLYMER PARTICLES AND PREPARATION METHODS |
US10639061B2 (en) | 2013-11-11 | 2020-05-05 | Cook Medical Technologies Llc | Devices and methods for modifying veins and other bodily vessels |
US11033220B2 (en) | 2013-12-05 | 2021-06-15 | Livanova Usa, Inc. | Systems and methods of limb-based accelerometer assessments of neurological disorders |
US10278592B2 (en) * | 2013-12-09 | 2019-05-07 | Samsung Electronics Co., Ltd. | Modular sensor platform |
WO2015095149A1 (en) | 2013-12-17 | 2015-06-25 | Corindus, Inc. | System and method for controlling a motor in a catheter procedure system |
CN110898312B (en) | 2013-12-20 | 2022-11-15 | 波士顿科学国际有限公司 | Integrated catheter system |
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
US9789283B2 (en) | 2014-02-03 | 2017-10-17 | Medinol Ltd. | Catheter tip assembled with a spring |
US9999355B2 (en) | 2014-02-12 | 2018-06-19 | Koninklijke Philips N.V. | Device, system and method for determining vital signs of a subject based on reflected and transmitted light |
US10534900B2 (en) | 2014-02-21 | 2020-01-14 | Samsung Electronics Co., Ltd. | Electronic device |
US20160066921A1 (en) | 2014-02-21 | 2016-03-10 | Neuravi Limited | DEVICE AND METHOD FOR ENDOVASCULAR TREATMENT OF ANEURYSMS USING EMBOLIC ePTFE |
US20150269825A1 (en) | 2014-03-20 | 2015-09-24 | Bao Tran | Patient monitoring appliance |
US9820761B2 (en) | 2014-03-21 | 2017-11-21 | Route 92 Medical, Inc. | Rapid aspiration thrombectomy system and method |
US9241699B1 (en) | 2014-09-04 | 2016-01-26 | Silk Road Medical, Inc. | Methods and devices for transcarotid access |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
US9433427B2 (en) | 2014-04-08 | 2016-09-06 | Incuvate, Llc | Systems and methods for management of thrombosis |
US9603573B2 (en) | 2014-04-14 | 2017-03-28 | Brain Sentinel, Inc. | Detection of EMG activity using sensors on both sides of the body |
JP5954748B2 (en) | 2014-04-25 | 2016-07-20 | 朝日インテック株式会社 | catheter |
JP6344762B2 (en) | 2014-05-21 | 2018-06-20 | 朝日インテック株式会社 | catheter |
WO2015189354A1 (en) | 2014-06-13 | 2015-12-17 | Neuravi Limited | Devices for removal of acute blockages from blood vessels |
US10792056B2 (en) | 2014-06-13 | 2020-10-06 | Neuravi Limited | Devices and methods for removal of acute blockages from blood vessels |
US10485478B1 (en) | 2014-06-13 | 2019-11-26 | Verily Life Sciences Llc | Wireless charging of a wrist-mounted sensor platform |
US10478127B2 (en) * | 2014-06-23 | 2019-11-19 | Sherlock Solutions, LLC | Apparatuses, methods, processes, and systems related to significant detrimental changes in health parameters and activating lifesaving measures |
US10265086B2 (en) | 2014-06-30 | 2019-04-23 | Neuravi Limited | System for removing a clot from a blood vessel |
US20160000443A1 (en) | 2014-07-01 | 2016-01-07 | Boston Scientific Scimed, Inc. | Overlapped braid termination |
US10448843B1 (en) | 2014-07-16 | 2019-10-22 | Verily Life Sciences Llc | Flow detection |
US10456552B2 (en) | 2014-07-28 | 2019-10-29 | Mayank Goyal | System and methods for intracranial vessel access |
US9538921B2 (en) * | 2014-07-30 | 2017-01-10 | Valencell, Inc. | Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same |
US20160030079A1 (en) | 2014-08-01 | 2016-02-04 | Patrick Cohen | Cannula assembly |
CN109620337A (en) | 2014-08-07 | 2019-04-16 | 珀弗娄医疗有限公司 | Aneurysm treatment device and method |
US9801643B2 (en) | 2014-09-02 | 2017-10-31 | Cook Medical Technologies Llc | Clot retrieval catheter |
JP6586172B2 (en) | 2014-10-31 | 2019-10-02 | セレバスク, エルエルシーCereVasc, LLC | Method and system for treating hydrocephalus |
US20160129221A1 (en) | 2014-11-07 | 2016-05-12 | Boston Scientific Scimed, Inc. | Medical device having an atraumatic distal tip |
US20160135829A1 (en) | 2014-11-13 | 2016-05-19 | Angiodynamics, Inc. | Systems and methods for en bloc removal of undesirable material from passageways |
US10357638B2 (en) | 2014-11-21 | 2019-07-23 | Microvention, Inc. | Reinforced balloon catheter |
CN111494008A (en) | 2014-12-05 | 2020-08-07 | 科林达斯公司 | System and method for guiding a wire |
WO2016094375A1 (en) | 2014-12-08 | 2016-06-16 | Rutgers, The State University Of New Jersey | Methods for measuring physiologically relevant motion |
US20160166265A1 (en) | 2014-12-16 | 2016-06-16 | Penumbra Inc. | Methods and Devices for Removal of Thromboembolic Material |
US9943321B2 (en) | 2014-12-16 | 2018-04-17 | Penumbra, Inc. | Methods and devices for removal of thromboembolic material |
US9724042B1 (en) | 2014-12-18 | 2017-08-08 | Hoyos Vsn Corp. | Device, system, and method for adjusting biometric sensing rate based on available energy |
US10518066B2 (en) | 2015-01-09 | 2019-12-31 | Mivi Neuroscience, Inc. | Medical guidewires for tortuous vessels |
US10039655B2 (en) | 2015-01-12 | 2018-08-07 | Microvention, Inc. | Stent |
ES2577288B8 (en) | 2015-01-13 | 2019-01-10 | Anaconda Biomed S L | Device for thrombectomy |
JP2018510669A (en) | 2015-01-19 | 2018-04-19 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Device, system, and method for skin detection |
US20160213396A1 (en) | 2015-01-22 | 2016-07-28 | Cook Medical Technologies Llc | Catheter with an auger and method of use thereof |
US11311203B2 (en) | 2015-01-29 | 2022-04-26 | Pixart Imaging Inc. | Microcirculation detection system |
US10426497B2 (en) | 2015-07-24 | 2019-10-01 | Route 92 Medical, Inc. | Anchoring delivery system and methods |
ES2949690T3 (en) | 2015-02-06 | 2023-10-02 | Rapid Medical Ltd | Systems for the removal of intravascular obstructions |
US9987028B2 (en) | 2015-02-12 | 2018-06-05 | Cook Medical Technologies Llc | Partially covered braided funnel aspiration catheter |
WO2016137875A1 (en) | 2015-02-24 | 2016-09-01 | Silk Road Medical, Inc. | Suture delivery device |
US20160242893A1 (en) | 2015-02-25 | 2016-08-25 | Microvention, Inc. | Stent And Filter |
EP3261702A2 (en) | 2015-02-26 | 2018-01-03 | Stryker Corporation | Surgical instrument with articulation region |
EP3265064A4 (en) | 2015-03-04 | 2018-11-07 | Microvention, Inc. | Drug delivery device |
JP6694870B2 (en) | 2015-03-11 | 2020-05-20 | テルモ株式会社 | Foreign matter removal device |
WO2016154592A1 (en) | 2015-03-26 | 2016-09-29 | Microvention, Inc. | Embiolic particles |
US10456059B2 (en) | 2015-04-06 | 2019-10-29 | Forest Devices, Inc. | Neuorological condition detection unit and method of using the same |
ES2759930T3 (en) | 2015-04-10 | 2020-05-12 | Silk Road Medical Inc | Methods and systems for establishing retrograde carotid arterial blood flow |
JP7015170B2 (en) | 2015-04-30 | 2022-02-02 | シルク・ロード・メディカル・インコーポレイテッド | Systems and methods for transcatheter aortic valve treatment |
US10537262B2 (en) | 2015-05-14 | 2020-01-21 | Elwha Llc | Systems and methods for detecting strokes |
US9907998B2 (en) * | 2015-05-15 | 2018-03-06 | Polar Electro Oy | Wrist device having heart activity circuitry |
US11653862B2 (en) | 2015-05-22 | 2023-05-23 | Cercacor Laboratories, Inc. | Non-invasive optical physiological differential pathlength sensor |
CA2974544C (en) | 2015-05-26 | 2018-02-27 | Vascular Solutions, Inc. | Guidewire fixation |
US10398874B2 (en) | 2015-05-29 | 2019-09-03 | Covidien Lp | Catheter distal tip configuration |
US11229402B2 (en) | 2015-05-29 | 2022-01-25 | Microvention, Inc. | Catheter circuit |
US11160459B2 (en) | 2015-06-12 | 2021-11-02 | ChroniSense Medical Ltd. | Monitoring health status of people suffering from chronic diseases |
FR3037249A1 (en) | 2015-06-12 | 2016-12-16 | Robocath | ROBOTIC METHOD FOR CATHETER TRAINING AND CATHETER GUIDE |
US11903680B2 (en) | 2015-06-14 | 2024-02-20 | Facense Ltd. | Wearable-based health state verification for physical access authorization |
US11064892B2 (en) | 2015-06-14 | 2021-07-20 | Facense Ltd. | Detecting a transient ischemic attack using photoplethysmogram signals |
WO2017004307A1 (en) | 2015-06-30 | 2017-01-05 | Corindus, Inc. | System and method for detecting a position of a guide catheter support |
US11638550B2 (en) | 2015-07-07 | 2023-05-02 | Stryker Corporation | Systems and methods for stroke detection |
US10631893B2 (en) | 2015-07-10 | 2020-04-28 | Warsaw Orthopedic, Inc. | Nerve and soft tissue removal device |
US10888280B2 (en) | 2016-09-24 | 2021-01-12 | Sanmina Corporation | System and method for obtaining health data using a neural network |
US9706269B2 (en) | 2015-07-24 | 2017-07-11 | Hong Kong Applied Science and Technology Research Institute Company, Limited | Self-powered and battery-assisted CMOS wireless bio-sensing IC platform |
US20170028170A1 (en) | 2015-07-28 | 2017-02-02 | Andrew Ho, M.D., Inc. | Guide catheter extension device and methods of use for cardiology procedures |
US10307168B2 (en) | 2015-08-07 | 2019-06-04 | Terumo Corporation | Complex coil and manufacturing techniques |
WO2017025775A1 (en) | 2015-08-11 | 2017-02-16 | Latvijas Universitate | Device for adaptive photoplethysmography imaging |
CN107847243B (en) | 2015-08-11 | 2021-06-01 | 泰尔茂株式会社 | Systems and methods for implant delivery |
EP3344184A4 (en) | 2015-09-01 | 2019-05-15 | Mivi Neuroscience, Inc. | Thrombectomy devices and treatment of acute ischemic stroke with thrombus engagement |
US20170072163A1 (en) | 2015-09-11 | 2017-03-16 | Cathera, Inc. | Catheter shaft and associated devices, systems, and methods |
US20170072165A1 (en) | 2015-09-11 | 2017-03-16 | Cathera, Inc. | Catheter shaft and associated devices, systems, and methods |
US11253292B2 (en) | 2015-09-13 | 2022-02-22 | Rex Medical, L.P. | Atherectomy device |
CN108348323B (en) | 2015-09-18 | 2021-11-16 | 微仙美国有限公司 | Implant retention, detachment and delivery system |
JP6816127B2 (en) | 2015-09-18 | 2021-01-20 | テルモ株式会社 | Vascular prosthesis |
CN108156803B (en) | 2015-09-18 | 2021-05-04 | 泰尔茂株式会社 | Pushable implant delivery system |
EP3349670B1 (en) | 2015-09-18 | 2020-09-09 | Microvention, Inc. | Releasable delivery system |
EP4079237A1 (en) | 2015-09-28 | 2022-10-26 | Stryker Corporation | Mechanical thrombectomy apparatuses |
US10639456B2 (en) | 2015-09-28 | 2020-05-05 | Microvention, Inc. | Guidewire with torque transmission element |
US10945664B1 (en) * | 2015-09-30 | 2021-03-16 | Apple, Inc. | Protective case with coupling gasket for a wearable electronic device |
EP3359031A4 (en) * | 2015-10-05 | 2019-05-22 | Mc10, Inc. | Method and system for neuromodulation and stimulation |
US20170100142A1 (en) | 2015-10-09 | 2017-04-13 | Incuvate, Llc | Systems and methods for management of thrombosis |
JP2018536454A (en) * | 2015-10-12 | 2018-12-13 | ノースウエスタン ユニヴァーシティNorthwestern University | Portable blood pressure and vital sign monitoring device, system, and method |
EP3367907B1 (en) * | 2015-10-28 | 2020-12-09 | Koninklijke Philips N.V. | Device for suv determination in emission tomography |
WO2017075544A1 (en) | 2015-10-30 | 2017-05-04 | Cerevasc, Llc | Systems and methods for treating hydrocephalus |
CN108348267B (en) | 2015-10-31 | 2022-04-08 | 纽瓦斯克医疗科技有限公司 | Thrombus removal device with blood flow restriction and related methods |
US10413226B2 (en) | 2015-11-09 | 2019-09-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Noncontact monitoring of blood oxygen saturation using camera |
WO2017087816A1 (en) | 2015-11-19 | 2017-05-26 | Penumbra, Inc. | Systems and methods for treatment of stroke |
US10398381B1 (en) * | 2015-11-19 | 2019-09-03 | Fitbit, Inc. | System and method for characterizing cardiac arrhythmia |
US10716915B2 (en) | 2015-11-23 | 2020-07-21 | Mivi Neuroscience, Inc. | Catheter systems for applying effective suction in remote vessels and thrombectomy procedures facilitated by catheter systems |
US10617509B2 (en) | 2015-12-29 | 2020-04-14 | Emboline, Inc. | Multi-access intraprocedural embolic protection device |
US10993657B1 (en) | 2015-12-30 | 2021-05-04 | Halo Wearables, Llc | Wearable hydration monitor sensors |
US9892310B2 (en) | 2015-12-31 | 2018-02-13 | Cerner Innovation, Inc. | Methods and systems for detecting prohibited objects in a patient room |
US20170189033A1 (en) | 2016-01-06 | 2017-07-06 | Microvention, Inc. | Occlusive Embolic Coil |
US20210169417A1 (en) | 2016-01-06 | 2021-06-10 | David Burton | Mobile wearable monitoring systems |
WO2017123725A1 (en) * | 2016-01-12 | 2017-07-20 | Yale University | System and method for diagnosis and notification regarding the onset of a stroke |
US20170224224A1 (en) | 2016-02-04 | 2017-08-10 | Chu-Yih Yu | Method of obtaining symmetric temperature change |
JP7032328B2 (en) | 2016-02-10 | 2022-03-08 | マイクロベンション インコーポレイテッド | Endovascular treatment site access |
BR112018016352A2 (en) | 2016-02-10 | 2018-12-18 | Microvention Inc | vascular occlusion devices |
CN113368367B (en) | 2016-02-24 | 2024-03-29 | 禾木(中国)生物工程有限公司 | Nerve vascular catheter with enhanced flexibility |
EP3422963B1 (en) | 2016-03-03 | 2022-06-29 | Boston Scientific Scimed Inc. | Accessory devices for use with catheters |
US10583270B2 (en) | 2016-03-14 | 2020-03-10 | Covidien Lp | Compound curve navigation catheter |
WO2017173213A1 (en) | 2016-03-31 | 2017-10-05 | Zoll Medical Corporation | Systems and methods of tracking patient movement |
WO2017201316A1 (en) | 2016-05-18 | 2017-11-23 | Microvention, Inc. | Embolic containment |
US10653873B2 (en) | 2016-05-26 | 2020-05-19 | Merit Medical Systems, Inc. | Expandable introducer assembly |
US10786659B2 (en) | 2016-06-01 | 2020-09-29 | Microvention, Inc. | Reinforced balloon catheter |
US11497565B2 (en) | 2016-06-07 | 2022-11-15 | Corindus, Inc. | Device drive for catheter procedure system |
US10470773B2 (en) | 2016-06-10 | 2019-11-12 | Terumo Corporation | Vessel occluder |
US11490975B2 (en) | 2016-06-24 | 2022-11-08 | Versitech Limited | Robotic catheter system for MRI-guided cardiovascular interventions |
EP3474740A1 (en) | 2016-06-24 | 2019-05-01 | Koninklijke Philips N.V. | System and method for vital signs detection |
US10245112B2 (en) | 2016-06-27 | 2019-04-02 | Corindus, Inc. | Interlocking system and method for joysticks in a catheter procedure system |
US10980555B2 (en) | 2016-07-12 | 2021-04-20 | Cardioprolific Inc. | Methods and devices for clots and tissue removal |
US11464528B2 (en) | 2016-07-26 | 2022-10-11 | Neuravi Limited | Clot retrieval system for removing occlusive clot from a blood vessel |
EP3496604A1 (en) | 2016-08-09 | 2019-06-19 | Koninklijke Philips N.V. | Device, system and method for monitoring of peripheral arterial perfusion of a subject |
EP3496603A1 (en) | 2016-08-09 | 2019-06-19 | Koninklijke Philips N.V. | Device for use in blood oxygen saturation measurement |
US20180042623A1 (en) | 2016-08-11 | 2018-02-15 | Stanley Batiste | Blood Clot Aspiration Catheter |
US11350825B2 (en) | 2016-08-25 | 2022-06-07 | Vivonics, Inc. | Contactless system and method for measuring and continuously monitoring arterial blood pressure |
US10368874B2 (en) | 2016-08-26 | 2019-08-06 | Microvention, Inc. | Embolic compositions |
US10814102B2 (en) | 2016-09-28 | 2020-10-27 | Project Moray, Inc. | Base station, charging station, and/or server for robotic catheter systems and other uses, and improved articulated devices and systems |
US10610668B2 (en) | 2016-10-05 | 2020-04-07 | Becton, Dickinson And Company | Catheter with an asymmetric tip |
KR102577572B1 (en) | 2016-10-19 | 2023-09-11 | 메드텍 메디컬, 인코포레이티드 | Electronic vacuum regulator device |
US9775730B1 (en) | 2016-11-02 | 2017-10-03 | Walzman Innovations, Llc | Flow-diverting covered stent |
WO2018089609A1 (en) * | 2016-11-10 | 2018-05-17 | Embr Labs Inc. | Methods and devices for manipulating temperature |
US20200113452A1 (en) | 2016-11-16 | 2020-04-16 | Jose Carmelo Martinez | Active biomonitor |
TW201825137A (en) | 2016-11-25 | 2018-07-16 | 日商住友電木股份有限公司 | Catheter and process for producing catheter |
WO2018102579A1 (en) | 2016-12-02 | 2018-06-07 | Cardiac Pacemakers, Inc. | Multi-sensor stroke detection |
CN109804331B (en) | 2016-12-02 | 2021-06-22 | 皮松科技股份有限公司 | Detecting and using body tissue electrical signals |
CN108245292B (en) | 2016-12-29 | 2019-11-08 | 先健科技(深圳)有限公司 | Conveying device and transportation system |
JP7264581B2 (en) | 2017-01-06 | 2023-04-25 | インセプト、リミテッド、ライアビリティ、カンパニー | Antithrombotic coating for aneurysm treatment devices |
US10905853B2 (en) | 2017-01-17 | 2021-02-02 | DePuy Synthes Products, Inc. | System and method for delivering a catheter |
CN114916978A (en) | 2017-01-20 | 2022-08-19 | 92号医疗公司 | Single operator intracranial medical device delivery system and method of use |
US10912919B2 (en) | 2017-01-23 | 2021-02-09 | Edwards Lifesciences Corporation | Expandable sheath |
CN106691414A (en) | 2017-02-06 | 2017-05-24 | 彭康明 | Double-wrist type human health detection mobile terminal |
WO2018148253A1 (en) | 2017-02-08 | 2018-08-16 | Forest Devices, Inc. | Portable device for providing non-contact heat-evoked potentials |
US20180228502A1 (en) | 2017-02-13 | 2018-08-16 | Penumbra, Inc. | Dual lumen hypotube catheter |
US10376267B2 (en) | 2017-02-24 | 2019-08-13 | Inceptus Medical, Llc | Vascular occlusion devices and methods |
US11123098B2 (en) | 2017-02-28 | 2021-09-21 | Angiosafe, Inc. | Device and method for centering and crossing a vascular occlusion |
US20180256101A1 (en) * | 2017-03-13 | 2018-09-13 | VivaLnk, Inc. | System of networked wearable patches for measurement and treatment |
CA3057631A1 (en) | 2017-03-24 | 2018-09-27 | BURL Concepts, Inc. | Portable ultrasound device |
CN110325238B (en) | 2017-03-29 | 2021-06-29 | 泰尔茂株式会社 | Catheter assembly |
US11051706B1 (en) | 2017-04-07 | 2021-07-06 | Fitbit, Inc. | Multiple source-detector pair photoplethysmography (PPG) sensor |
US20210330207A1 (en) | 2017-04-07 | 2021-10-28 | Fitbit, Inc. | Multiple Source-Detector Pair Photoplethysmography (PPG) Sensor |
EP3613461A1 (en) | 2017-04-20 | 2020-02-26 | Asahi Intecc Co., Ltd. | Catheter |
CN110650767B (en) | 2017-05-26 | 2023-02-28 | 住友电木株式会社 | Catheter tube |
US11432835B2 (en) | 2017-06-07 | 2022-09-06 | Penumbra, Inc. | Apparatus and methods for clot aspiration |
EP3661436B1 (en) | 2017-07-31 | 2022-06-29 | Boston Scientific Scimed, Inc. | Introducer system with expandable capabilities |
IN201741004103A (en) | 2017-08-03 | 2019-02-08 | ||
JP7006020B2 (en) | 2017-08-25 | 2022-01-24 | 住友ベークライト株式会社 | Catheter and catheter kit |
US20190070387A1 (en) | 2017-09-02 | 2019-03-07 | Mayank Goyal | System and methods for accessing and treating cerebral venous sinus thrombosis |
US10912624B2 (en) | 2017-09-11 | 2021-02-09 | Corindus, Inc. | System and apparatus for sensing contact on a robotic mechanism in a catheter procedure system |
US10950112B2 (en) | 2017-09-29 | 2021-03-16 | Koninklijke Philips N.V. | Wrist fall detector based on arm direction |
US11291401B2 (en) | 2017-10-03 | 2022-04-05 | Salutron, Inc. | Arrhythmia monitoring using photoplethysmography |
US10105154B1 (en) | 2017-11-09 | 2018-10-23 | Pebble Hill Partners, Llc | Basket for a catheter device |
US10080524B1 (en) * | 2017-12-08 | 2018-09-25 | VivaLnk, Inc. | Wearable thermometer patch comprising a temperature sensor array |
CN107811624A (en) | 2017-12-12 | 2018-03-20 | 深圳金康特智能科技有限公司 | A kind of user profile acquisition system based on double Intelligent worn devices |
CN108013918B (en) | 2017-12-26 | 2018-06-29 | 微创心脉医疗科技(上海)有限公司 | One kind takes bolt conduit |
CN111727016B (en) | 2018-01-25 | 2024-09-06 | 伊思凯米克尔有限公司 | Devices, systems, and methods for removing blood clots |
EP3742989B1 (en) | 2018-01-26 | 2022-12-14 | Smith & Nephew, Inc. | Tissue collection and delivery device |
CA3090284A1 (en) * | 2018-02-06 | 2019-08-15 | Adlore, Inc. | Devices, methods, and systems for the treatment and/or monitoring of damaged tissue |
CN111989033A (en) | 2018-02-06 | 2020-11-24 | 胡马疗法有限公司 | Non-invasive continuous blood pressure monitoring |
KR102690164B1 (en) | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | Systems and methods for operating medical devices |
CN112384152A (en) | 2018-03-12 | 2021-02-19 | 爱创医药公司 | Device and method for removing substance from a patient |
EP3539486A1 (en) | 2018-03-13 | 2019-09-18 | The University of Toledo | Minimally invasive thrombectomy |
US11864899B2 (en) | 2018-04-18 | 2024-01-09 | Interactive Skin, Inc. | Interactive skin |
US11395665B2 (en) | 2018-05-01 | 2022-07-26 | Incept, Llc | Devices and methods for removing obstructive material, from an intravascular site |
WO2019212984A1 (en) | 2018-05-01 | 2019-11-07 | Imperative Care, Inc. | Devices and methods for removing obstructive material from an intravascular site |
JP2021523793A (en) | 2018-05-17 | 2021-09-09 | ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. | Suction catheter system and how to use |
US20200289136A1 (en) | 2018-05-17 | 2020-09-17 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
CN118116571A (en) | 2018-05-18 | 2024-05-31 | 科林达斯公司 | Remote communication and control system for robotic intervention procedures |
US10716880B2 (en) | 2018-06-15 | 2020-07-21 | Incuvate, Llc | Systems and methods for aspiration and monitoring |
WO2019246583A1 (en) | 2018-06-21 | 2019-12-26 | Nasser Rafiee | Guidewires and related methods and systems |
US11154225B2 (en) * | 2018-06-22 | 2021-10-26 | The Regents Of The University Of Colorado | Transdermal biosensor |
US11517335B2 (en) | 2018-07-06 | 2022-12-06 | Incept, Llc | Sealed neurovascular extendable catheter |
US11471582B2 (en) | 2018-07-06 | 2022-10-18 | Incept, Llc | Vacuum transfer tool for extendable catheter |
DE102018212091A1 (en) | 2018-07-19 | 2020-01-23 | Siemens Healthcare Gmbh | Determination of a load-optimized MR sequence |
US10531883B1 (en) | 2018-07-20 | 2020-01-14 | Syntheon 2.0, LLC | Aspiration thrombectomy system and methods for thrombus removal with aspiration catheter |
KR20210035811A (en) | 2018-07-24 | 2021-04-01 | 퍼넘브러, 인코퍼레이티드 | Apparatus and method for controlled blood clot aspiration |
WO2020036809A1 (en) | 2018-08-13 | 2020-02-20 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
US20220015654A1 (en) | 2018-08-29 | 2022-01-20 | Sleep Advice Technologies S.R.L. | Photoplethysmography based detection of transitions between awake, drowsiness, and sleep phases of a subject |
EP3836865A4 (en) | 2018-09-19 | 2021-12-15 | Corindus, Inc. | Robotic assisted movements of elongated medical devices |
WO2020081503A1 (en) | 2018-10-15 | 2020-04-23 | Adams Rhonda Fay | Clinical smart watch for addressing adverse cardiac events |
US20210001141A1 (en) | 2018-10-22 | 2021-01-07 | Joovv, Inc. | Photobiomodulation therapy systems and devices |
US11918423B2 (en) | 2018-10-30 | 2024-03-05 | Corindus, Inc. | System and method for navigating a device through a path to a target location |
US10878683B2 (en) | 2018-11-01 | 2020-12-29 | Apple Inc. | Fall detection-audio looping |
US11020014B2 (en) * | 2018-11-30 | 2021-06-01 | Microsoft Technology Licensing, Llc | Photoplethysmogram device with skin temperature regulator |
EP3667635A1 (en) | 2018-12-14 | 2020-06-17 | Koninklijke Philips N.V. | A wrist-worn emergency detection device |
WO2020130924A1 (en) | 2018-12-20 | 2020-06-25 | Umansense Ab | Stroke detection sensor |
TR201900192A2 (en) | 2019-01-08 | 2019-02-21 | 18 Mart Üni̇versi̇tesi̇rektörlüğü | INTERNAL MOVING ASPIRATION CATHETER |
US20220096317A1 (en) * | 2019-01-11 | 2022-03-31 | Embr Labs Inc. | Thermal and vibrotactile haptic actuators |
CN109821137B (en) | 2019-01-29 | 2020-10-09 | 燕山大学 | Catheter and guide wire twisting and propelling mechanism of minimally invasive vascular interventional surgical robot |
CN117814917A (en) | 2019-02-11 | 2024-04-05 | 科林达斯公司 | Robotic catheter system |
US20200297972A1 (en) | 2019-02-27 | 2020-09-24 | Imperative Care, Inc. | Catheter with seamless flexibility transitions |
CN109730779B (en) | 2019-03-07 | 2024-05-14 | 深圳爱博合创医疗机器人有限公司 | Vascular intervention operation robot catheter guide wire cooperative control system and method |
US20200345979A1 (en) | 2019-03-22 | 2020-11-05 | Yince Loh | Transradial Access Systems Particularly Useful for Cerebral Access |
US10885759B1 (en) | 2019-03-26 | 2021-01-05 | Halo Wearables, Llc | Alert levels for a wearable device |
US11766539B2 (en) | 2019-03-29 | 2023-09-26 | Incept, Llc | Enhanced flexibility neurovascular catheter |
CN110151310B (en) | 2019-05-27 | 2020-08-25 | 燕山大学 | Catheter/guide wire rotary pushing device of minimally invasive vascular interventional surgical robot |
US10918289B1 (en) | 2019-06-12 | 2021-02-16 | Fitbit, Inc. | Ring for optically measuring biometric data |
JP2022540501A (en) | 2019-07-15 | 2022-09-15 | コリンダス、インコーポレイテッド | Management of long and narrow medical devices |
CN114340710A (en) | 2019-07-15 | 2022-04-12 | 科林达斯公司 | Systems, apparatus and methods for supporting and driving an elongate medical device in a robotic catheter-based surgical system |
KR20220038096A (en) | 2019-07-19 | 2022-03-25 | 엘릭서 메디컬 코포레이션 | Apparatus and method for thrombus aspiration |
CN114364423B (en) | 2019-07-19 | 2023-03-31 | 科林达斯公司 | Load sensing of elongate medical devices in robotic actuation |
US11712313B2 (en) | 2019-07-23 | 2023-08-01 | Siemens Medical Solutions Usa, Inc. | Dual manipulation for robotic catheter system |
US20210057112A1 (en) | 2019-08-23 | 2021-02-25 | Viz.ai Inc. | Method and system for mobile triage |
CN112577611B (en) * | 2019-09-29 | 2022-10-04 | 华为技术有限公司 | Human body temperature measuring method, electronic equipment and computer readable storage medium |
US20210093336A1 (en) | 2019-10-01 | 2021-04-01 | Incept, Llc | Embolic retrieval catheter |
JP7339355B2 (en) | 2019-10-03 | 2023-09-05 | 朝日インテック株式会社 | medical tubular body |
CA3157362A1 (en) * | 2019-10-15 | 2021-04-22 | Imperative Care, Inc. | Systems and methods for multivariate stroke detection |
KR20220071259A (en) | 2019-11-08 | 2022-05-31 | 아사히 인텍크 가부시키가이샤 | catheter |
GB201917184D0 (en) | 2019-11-26 | 2020-01-08 | Univ Sheffield | Guiding device for a vascular catheter |
WO2021150305A2 (en) | 2019-11-27 | 2021-07-29 | Vivonics, Inc. | Contactless system and method for assessing and/or determining hemodynamic parameters and/or vital signs |
CN110916768A (en) | 2019-11-29 | 2020-03-27 | 昆山金泰医疗科技有限公司 | High-efficient spiral shell rotary-cut bolt device |
CA3162704A1 (en) | 2019-12-18 | 2021-06-24 | Imperative Care, Inc. | Methods and systems for treating venous thromboembolic disease |
US11259821B2 (en) | 2019-12-18 | 2022-03-01 | Imperative Care, Inc. | Aspiration system with accelerated response |
US20210251497A1 (en) | 2020-02-17 | 2021-08-19 | Covidien Lp | Systems and methods for detecting strokes |
EP4153286A4 (en) | 2020-05-22 | 2024-07-24 | Orbusneich Medical Pte Ltd | Pre-shaped medical devices |
CN115605255A (en) | 2020-05-27 | 2023-01-13 | 安布雷斯医疗有限公司(Il) | Vascular access catheter |
US20210378582A1 (en) | 2020-06-08 | 2021-12-09 | Covidien Lp | Systems and methods for assessing stroke risk |
WO2022020744A1 (en) | 2020-07-23 | 2022-01-27 | Ori Imaging, Inc. | Non-invasive imaging systems and methods of use |
US11207497B1 (en) | 2020-08-11 | 2021-12-28 | Imperative Care, Inc. | Catheter with enhanced tensile strength |
US20220047849A1 (en) | 2020-08-11 | 2022-02-17 | Imperative Care, Inc. | Catheter with a preset curve |
US11232866B1 (en) | 2020-11-16 | 2022-01-25 | Acorai Ab | Vein thromboembolism (VTE) risk assessment system |
US11141129B1 (en) | 2021-01-28 | 2021-10-12 | Anexa Labs Llc | Multi-sensor auscultation device |
US11116448B1 (en) | 2021-01-28 | 2021-09-14 | Anexa Labs Llc | Multi-sensor wearable patch |
US11207025B1 (en) | 2021-01-28 | 2021-12-28 | Anexa Labs Llc | Multi-sided PCB for contact sensing |
-
2020
- 2020-10-14 CA CA3157362A patent/CA3157362A1/en active Pending
- 2020-10-14 EP EP20877443.0A patent/EP4044906A4/en active Pending
- 2020-10-14 CN CN202080009705.3A patent/CN113347916A/en active Pending
- 2020-10-14 US US17/070,832 patent/US11134859B2/en active Active
- 2020-10-14 WO PCT/US2020/055604 patent/WO2021076642A1/en unknown
- 2020-10-14 AU AU2020366348A patent/AU2020366348A1/en active Pending
- 2020-10-14 JP JP2022522792A patent/JP2022551988A/en active Pending
-
2021
- 2021-08-20 US US17/407,852 patent/US11504020B2/en active Active
-
2022
- 2022-08-08 US US17/818,281 patent/US20230072213A1/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2021076642A5 (en) | ||
US7597668B2 (en) | Non-invasive temperature measurement | |
US20190274551A1 (en) | Core body temperature system | |
Tang et al. | A chair–based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time | |
JP2022551988A (en) | Systems and methods for multivariate stroke detection | |
Hasselberg et al. | The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research | |
EP3595520B1 (en) | Device for noninvasive core body temperature monitoring | |
Davie et al. | Best practice in the measurement of body temperature. | |
US10827931B2 (en) | Patch for temperature determination | |
Teunissen et al. | Non-invasive continuous core temperature measurement by zero heat flux | |
EP3082578B1 (en) | Vital sign monitoring and control | |
Sim et al. | Estimation of circadian body temperature rhythm based on heart rate in healthy, ambulatory subjects | |
WO2015171667A1 (en) | Portable device with multiple integrated sensors for vital signs scanning | |
JPH09509584A (en) | Method and apparatus for non-invasive measurement of glucose concentration in human body parts | |
US20160235306A1 (en) | Thermal monitoring and control | |
EP3666179A1 (en) | Core body temperature sensor system based on flux measurement | |
JP2012237670A (en) | Thermometer and manometer provided with the same | |
Sim et al. | A nonintrusive temperature measuring system for estimating deep body temperature in bed | |
US20230165523A1 (en) | Methods and systems for measuring strengths and variations of ying-nutrient qi and wei-defensive qi | |
US11684282B2 (en) | Systems and methods for evaluating blood circulation and early detection of cardiovascular issues | |
CN114235210A (en) | Core body temperature measuring method and device | |
Farhad et al. | Measurement of vital signs with non-invasive and wireless sensing technologies and health monitoring | |
US20150297123A1 (en) | Method and device for non-invasive monitoring of blood glucose level | |
JPH053877A (en) | Living body rhythm curve measuring instrument | |
Vainer | Up-to-date thermal imaging systems in the multichannel automated measurements |