JPWO2021009792A1 - 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法 - Google Patents

固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法 Download PDF

Info

Publication number
JPWO2021009792A1
JPWO2021009792A1 JP2021532555A JP2021532555A JPWO2021009792A1 JP WO2021009792 A1 JPWO2021009792 A1 JP WO2021009792A1 JP 2021532555 A JP2021532555 A JP 2021532555A JP 2021532555 A JP2021532555 A JP 2021532555A JP WO2021009792 A1 JPWO2021009792 A1 JP WO2021009792A1
Authority
JP
Japan
Prior art keywords
phase coil
region
coil
phase
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021532555A
Other languages
English (en)
Other versions
JP7237159B2 (ja
Inventor
松岡 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021009792A1 publication Critical patent/JPWO2021009792A1/ja
Application granted granted Critical
Publication of JP7237159B2 publication Critical patent/JP7237159B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

固定子(3)は、固定子鉄心(31)と、固定子鉄心(31)に分布巻きで取り付けられた3相コイル(32)と、レーシング材(34)とを有する。第1相のコイルは、磁性体(22)の着磁用の電源から3相コイル(32)に電流が流れるときに、3相コイル(32)の中で最も大きな電流が流れるコイルである。第1相のコイルは、第1の領域35a、第2の領域35b、及び第3の領域35cを持つ。レーシング材(34)は、第2の領域(35b)及び第3の領域(35c)の少なくとも一方よりも多く第1の領域(35a)に巻かれている。

Description

本発明は、電動機用の固定子に関する。
一般に、固定子鉄心に取り付けられた3相コイルを利用して、回転子の磁性体を着磁する着磁方法が知られている。この着磁方法では、3相コイルに着磁用の電流が流れたときに電磁力が生じ、この電磁力が3相コイルの変形を引き起こすことがある。そのため、特許文献1に記載の固定子では、3相コイルの変形を防ぐため、3相コイルの周方向に均等にレーシング材が巻きつけられている。
特開平11−136896号公報
しかしながら、従来の技術では、回転子を固定子の内側に配置した状態で着磁を行うときに多くのレーシング材が必要となるため、固定子のコストが増加し、固定子の3相コイルの著しい変形を効率的に防ぐことができないという問題がある。
本発明の目的は、回転子を固定子の内側に配置した状態で着磁を行うときに、固定子の3相コイルの著しい変形を効率的に防ぐことである。
本発明の一態様に係る固定子は、
回転子の磁性体を着磁することができる固定子であって、
固定子鉄心と、
前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルと、
前記3相コイルに巻かれたレーシング材と
を備え、
前記第1相のコイルは、前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記3相コイルの中で最も大きな電流が流れるコイルであり、
前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
前記レーシング材は、前記第2の領域及び前記第3の領域の少なくとも一方よりも多く前記第1の領域に巻かれている。
本発明の他の態様に係る固定子は、
回転子の磁性体を着磁することができる固定子であって、
固定子鉄心と、
前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルと、
前記3相コイルに巻かれたレーシング材と
を備え、
前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記第1相のコイルに流れる電流は、前記第2相のコイルに流れる電流及び前記第3相のコイルに流れる電流の少なくとも一方よりも大きく、
前記3相コイルのコイルエンドにおいて、前記第3相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
前記レーシング材は、前記第2の領域及び前記第3の領域の少なくとも一方よりも多く前記第1の領域に巻かれている。
本発明の他の態様に係る電動機は、
前記固定子と、
前記固定子の内側に配置された前記回転子と
を備える。
本発明の他の態様に係る圧縮機は、
密閉容器と、
前記密閉容器内に配置された圧縮装置と、
前記圧縮装置を駆動する前記電動機と
を備える。
本発明の他の態様に係る空気調和機は、
前記圧縮機と、
熱交換器と
を備える。
本発明の他の態様に係る固定子の製造方法は、
固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の製造方法であって、
前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
前記3相コイルを分布巻きで前記固定子鉄心に取り付けることと、
前記第1相のコイルのコイルエンドにおいて、レーシング材を、第2の領域及び第3の領域の少なくとも一方よりも多く第1の領域に巻きつけることと
を備える。
本発明の他の態様に係る着磁方法は、
固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の内側で、回転子の磁性体を着磁する着磁方法であって、
前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
前記第1相のコイルのコイルエンドにおいて、レーシング材が、第2の領域及び第3の領域の少なくとも一方よりも多く第1の領域に巻きつけられており、
固定子の内側に、前記磁性体を有する回転子を配置することと、
前記第1相のコイルに最も大きい電流が流れるように前記磁性体の着磁用の電源から前記3相コイルに電流を供給することと
を備える。
本発明によれば、回転子を固定子の内側に配置した状態で着磁を行うときに、固定子の3相コイルの著しい変形を効率的に防ぐことができる。
本発明の実施の形態1に係る電動機の構造を概略的に示す平面図である。 回転子の構造を概略的に示す平面図である。 固定子の一例を示す平面図である。 図3に示される固定子の内部構造を概略的に示す図である。 3相コイルにおける結線の一例を示す模式図である。 各第1相のコイルにおける、第1の領域、第2の領域、及び第3の領域を示す図である。 固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 固定子の製造工程の一例を示すフローチャートである。 外相コイルの挿入工程を示す図である。 中相コイルの挿入工程を示す図である。 内相コイルの挿入工程を示す図である。 回転子の磁性体の着磁方法の一例を示すフローチャートである。 固定子の他の例を示す図である。 図13に示される固定子の内部構造を概略的に示す図である。 変形例1において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 固定子の他の例を示す図である。 図16に示される固定子の内部構造を概略的に示す図である。 変形例2において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 変形例3において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 変形例4において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 変形例5において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 固定子の他の例を示す平面図である。 変形例6において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 変形例7において、固定子を利用して磁性体を着磁するときの3相コイルの結線パターンの等価回路を示す図である。 固定子3の製造工程、具体的には、磁性体の着磁工程において、3相コイルに通電したとき、3相コイルのコイルエンドに生じる径方向における電磁力の例を示す図である。 固定子の製造工程、具体的には、磁性体の着磁工程において、3相コイルに通電したとき、3相コイルのコイルエンドに生じる軸方向における電磁力の例を示す図である。 磁性体の着磁工程において、各相のコイルに通電したとき、3相コイルにおける結線パターンごとの径方向における電磁力の大きさの違いを示すグラフである。 磁性体の着磁工程において、各相のコイルに通電したとき、3相コイルにおける結線パターンごとの軸方向における電磁力の大きさの違いを示すグラフである。 磁性体の着磁工程において、3相コイルのうちの2つのコイルに通電したとき、3相コイルにおける結線パターンごとの径方向における電磁力の大きさの違いを示すグラフである。 磁性体の着磁工程において、3相コイルのうちの2つのコイルに通電したとき、3相コイルにおける結線パターンごとの軸方向における電磁力の大きさの違いを示すグラフである。 本発明の実施の形態2に係る圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、固定子3の中心であり、回転子2の回転中心でもある。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」ともいう。径方向は、回転子2又は固定子3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2又は固定子3の周方向を、単に「周方向」ともいう。
〈電動機1の構造〉
図1は、本発明の実施の形態1に係る電動機1の構造を概略的に示す平面図である。
電動機1は、複数の磁極を持つ回転子2と、固定子3と、回転子2に固定されたシャフト4とを有する。電動機1は、例えば、永久磁石同期電動機である。
回転子2と固定子3との間には、エアギャップが存在する。回転子2は、軸線Axを中心として回転する。
図2は、回転子2の構造を概略的に示す平面図である。
回転子2は、固定子3の内側に回転可能に配置されている。回転子2は、回転子鉄心21と、少なくとも1つの磁性体22とを有する。
回転子鉄心21は、複数の磁石挿入孔211と、シャフト孔212とを有する。回転子鉄心21は、各磁石挿入孔211に連通する空間である少なくとも1つのフラックスバリア部をさらに有してもよい。
本実施の形態では、回転子2は、複数の磁性体22を有する。各磁性体22は、各磁石挿入孔211内に配置されている。シャフト4は、シャフト孔212に固定されている。
完成品としての電動機1に備えられた各磁性体22は、着磁された磁性体22、すなわち、永久磁石である。本実施の形態では、1つの磁性体22が、回転子2の1磁極、すなわち、N極又はS極を形成する。ただし、2以上の磁性体22が回転子2の1磁極を形成してもよい。
本実施の形態では、xy平面において、回転子2の1磁極を形成する1つの磁性体22は、真っ直ぐに配置されている。ただし、xy平面において、回転子2の1磁極を形成する1組の磁性体22が、V字形状を持つように配置されていてもよい。
回転子2の各磁極の中心は、回転子2の各磁極(すなわち、回転子2のN極又はS極)の中心に位置する。回転子2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、回転子2のN極又はS極の役目をする領域を意味する。
〈固定子3の構造〉
固定子3は、後述する着磁工程において、2×n(nは自然数)個の磁極を持つ回転子2の磁性体22を着磁することができる。
図3は、固定子3の一例を示す平面図である。ハッチングが施されたコイルには、後述する着磁工程において電源から大きな電流が流れる。例えば、図3に示される例では、中相コイル322に流れる電流は、内相コイル321に流れる電流及び外相コイル323に流れる電流の各々よりも大きい。
図4は、図3に示される固定子3の内部構造を概略的に示す図である。
固定子3は、固定子鉄心31と、3相コイル32と、3相コイル32に巻かれた少なくとも1つのレーシング材34と、ワニス36とを有する。
固定子鉄心31は、3相コイル32が配置される複数のスロット311を有する。図3に示される例では、固定子鉄心31は、36個のスロット311を有する。
3相コイル32は、固定子鉄心31に分布巻きで取り付けられている。図4に示されるように、3相コイル32は、スロット311内に配置されたコイルサイド32bと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、軸方向における3相コイル32の端部である。
3相コイル32は、少なくとも1つの内相コイル321、少なくとも1つの中相コイル322、及び少なくとも1つの外相コイル323を含む。すなわち、3相コイル32は、第1相、第2相、及び第3相を持つ。例えば、第1相はV相であり、第2相はW相であり、第3相はU相である。
3相コイル32は、2×n個の第1相のコイル、2×n個の第2相のコイル、及び2×n個の第3相のコイルを有する。本実施の形態では、n=3である。したがって、図3に示される例では、3相コイル32は、6個の内相コイル321、6個の中相コイル322、及び6個の外相コイル323を持っている。ただし、各相のコイルの数は、6個に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図3に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図3に示される構造を持っていればよい。
3相コイル32に電流が流れたとき、3相コイル32は、2×n個の磁極を形成する。本実施の形態では、n=3である。したがって、本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、6磁極を形成する。
3相コイル32のコイルエンド32aにおいて、3相コイル32のうちの、第2相のコイル、第1相のコイル、及び第3相のコイルは、固定子鉄心31の周方向においてこの順に配列されている。図3に示される例では、3相コイル32のコイルエンド32aにおいて、3相コイル32のうちの、内相コイル321、中相コイル322、及び外相コイル323は、固定子鉄心31の周方向においてこの順に配列されている。
3相コイル32のコイルエンド32aにおいて、第2相のコイル、第1相のコイル、及び第3相のコイルは、固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されている。図3に示される例では、内相コイル321、中相コイル322、及び外相コイル323は、固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されている。したがって、コイルエンド32aにおいて、固定子鉄心31の径方向において、中相コイル322は内相コイル321の外側に位置しており、外相コイル323は中相コイル322の外側に位置している。
コイルエンド32aにおいて、3相コイル32の各相のコイルは、円環形状を持つ。すなわち、図3に示される例では、コイルエンド32aにおいて、6個の内相コイル321は円環形状を持ち、6個の中相コイル322は円環形状を持ち、6個の外相コイル323は円環形状を持つ。
コイルエンド32aにおいて、3相コイル32の各相のコイルは、同心円状に配列されている。すなわち、図3に示される例では、コイルエンド32aにおいて、6個の内相コイル321は同心円状に配列されており、6個の中相コイル322は同心円状に配列されており、6個の外相コイル323は同心円状に配列されている。
コイルエンド32aにおいて、各相のコイルは周方向において等間隔に配置されている。1つのスロット311にいずれか1つの相のコイルが配置されている。これにより、回転子2の各磁性体22の磁束を有効に用いることができる。
図5は、3相コイル32における結線の一例を示す模式図である。
3相コイル32における結線は、例えば、Y結線である。言い換えると、3相コイル32は、例えば、Y結線で接続されている。この場合、3相コイル32は、中性点を持ち、内相コイル321、中相コイル322、及び外相コイル323は、Y結線で接続されている。
図6は、各第1相のコイルにおける、第1の領域35a、第2の領域35b、及び第3の領域35cを示す図である。
3相コイル32のコイルエンド32aにおいて、2×n個の第1相のコイルの各々は、均等に分けられた、第1の領域35a、第2の領域35b、及び第3の領域35cを持つ。例えば、図3に示されるように、第1相のコイルが中相コイル322のとき、コイルエンド32aにおいて、6個の中相コイル322の各々は、第1の領域35a、第2の領域35b、及び第3の領域35cを持つ。
第1の領域35aは、第2の領域35bと第3の領域35cとの間に位置している。3相コイル32のコイルエンド32aにおいて、各第1相のコイルは、第1の領域35a、第2の領域35b、及び第3の領域35cに均等に分かれている。すなわち、xy平面においては、各第1の領域35a、各第2の領域35b、及び各第3の領域35cは、同じ面積を持つ。
レーシング材34は、例えば、紐である。レーシング材34には、ワニス36が付着している。これにより、レーシング材34が3相コイル32に固定されている。
各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれている。言い換えると、各第1相のコイルの各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の少なくとも一方よりも高い。
すなわち、レーシング材34は、第2の領域35bよりも多く第1の領域35aに巻かれていてもよく、レーシング材34は、第3の領域35cよりも多く第1の領域35aに巻かれていてもよく、レーシング材34は、第2の領域35b及び第3の領域35cの各々よりも多く第1の領域35aに巻かれていてもよい。言い換えると、各第1相のコイルの各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度よりも高くてもよく、第1の領域35aにおけるレーシング材34の密度は、第3の領域35cにおけるレーシング材34の密度よりも高くてもよく、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の各々よりも高くてもよい。
本実施の形態では、各第1相のコイル(本実施の形態では、各中相コイル322)の各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの各々よりも多く第1の領域35aに巻かれている。言い換えると、各第1相のコイル(本実施の形態では、各中相コイル322)の各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の各々よりも高い。
各第1相のコイルと同様に、3相コイル32のコイルエンド32aにおいて、2×n個の第2相のコイルの各々は、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持つ。すなわち、xy平面において、各第2相のコイルの各第1の領域、各第2の領域、及び各第3の領域は、同じ面積を持つ。この場合、各第2相のコイルにおいて、第1の領域は、第2の領域と第3の領域との間に位置している。
各第1相のコイルと同様に、3相コイル32のコイルエンド32aにおいて、2×n個の第3相のコイルの各々は、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持つ。すなわち、xy平面において、各第3相のコイルの各第1の領域、各第2の領域、及び各第3の領域は、同じ面積を持つ。この場合、各第3相のコイルにおいて、第1の領域は、第2の領域と第3の領域との間に位置している。
図3に示される例では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、後述する磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
図7は、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図7は、Y結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図7に示される矢印は、電流の向きを示す。磁性体22の着磁用の電源を単に「電源」とも称する。本実施の形態では、電源は、直流電源である。
〈Y結線・3相通電・結線パターンP1〉
図7に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側(すなわち、電源のプラス極側)が中相コイル322に接続されており、電源のマイナス側(すなわち、電源のマイナス極側)が内相コイル321及び外相コイル323に接続されている。図7に示される結線状態を、結線パターンP1と称する。着磁用の電源から3相コイル32に電流が流れるときに、各相のコイルに電流が流れる通電方法を「3相通電」と称する。
図7に示される回路図は、等価回路図であるが、実際の着磁工程では、着磁用の電源から3相コイル32に電流が流れるときに、2×n個の第1相のコイルの各々は、電源のプラス側又はマイナス側に接続されている。結線パターンP1では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
結線パターンP1では、着磁工程において、着磁用の電源から3相コイル32に電流が流れるときに、第1相のコイルの各々に流れる電流は、第2相のコイルの各々に流れる電流よりも大きく、第3相のコイルの各々に流れる電流よりも大きい。すなわち、着磁工程において、着磁用の電源から3相コイル32に電流が流れるときに、第1相のコイルの各々に流れる電流は、第2相のコイルの各々に流れる電流よりも大きくてもよく、第1相のコイルの各々に流れる電流は、第3相のコイルの各々に流れる電流よりも大きくてもよく、第1相のコイルの各々に流れる電流は、第2相のコイルの各々に流れる電流及び第3相のコイルの各々に流れる電流の両方よりも大きくてもよい。
結線パターンP1では、着磁用の電源から第1相のコイルに流れる電流は、第2相のコイルに流れる電流及び第3相のコイルに流れる電流に分かれる。すなわち、結線パターンP1では、電源から大きな電流が中相コイル322に流れる。電源から中相コイル322に流れる電流は、内相コイル321に流れる電流及び外相コイル323に流れる電流に分かれる。したがって、中相コイル322に流れる電流は、内相コイル321に流れる電流及び外相コイル323に流れる電流の各々よりも大きい。
〈固定子3の製造方法〉
固定子3の製造方法の一例について説明する。
図8は、固定子3の製造工程の一例を示すフローチャートである。
図9は、ステップS11における外相コイル323の挿入工程を示す図である。
ステップS11では、図9に示されるように、予め作製された固定子鉄心31に、外相コイル323を分布巻きで取り付ける。具体的には、固定子鉄心31のスロット311内に、外相コイル323を挿入器具で挿入する。
図10は、ステップS12における中相コイル322の挿入工程を示す図である。
ステップS12では、図10に示されるように、固定子鉄心31に中相コイル322を分布巻きで取り付ける。具体的には、固定子鉄心31のスロット311内に、中相コイル322を挿入器具で挿入する。
図11は、ステップS13における内相コイル321の挿入工程を示す図である。
ステップS13では、図11に示されるように、固定子鉄心31に内相コイル321を分布巻きで取り付ける。具体的には、固定子鉄心31のスロット311内に、内相コイル321を挿入器具で挿入する。
ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、中相コイル322、内相コイル321、及び外相コイル323が固定子鉄心31の周方向においてこの順に配列されるように、3相コイル32が分布巻きで固定子鉄心31に取り付けられる。
言い換えると、ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、内相コイル321、中相コイル322、及び外相コイル323が固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されるように、3相コイル32が分布巻きで固定子鉄心31に取り付けられる。
これにより、ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、固定子鉄心31の径方向において、中相コイル322は内相コイル321の外側に位置し、外相コイル323は中相コイル322の外側に位置するように、3相コイル32が固定子鉄心31に取り付けられる。
ステップS14では、内相コイル321、中相コイル322、及び外相コイル323を接続する。例えば、内相コイル321、中相コイル322、及び外相コイル323は、Y結線又はデルタ結線で接続される。本実施の形態では、内相コイル321、中相コイル322、及び外相コイル323は、Y結線で接続される。さらに、接続された3相コイル32の形を整える。
ステップS15では、レーシング材34を3相コイル32に取り付ける。本実施の形態では、図3及び図4に示されるように、レーシング材34を3相コイル32に巻き付ける。
例えば、レーシング材34を、内相コイル321及び中相コイル322に巻きつける。これにより、内相コイル321及び中相コイル322は、レーシング材34で留められる。
同様に、レーシング材34を、中相コイル322及び外相コイル323に巻きつける。これにより、中相コイル322及び外相コイル323は、レーシング材34で留められる。
さらに、レーシング材34を、内相コイル321、中相コイル322、及び外相コイル323に巻きつけてもよい。これにより、内相コイル321、中相コイル322、及び外相コイル323は、レーシング材34で留められる。
ステップS15では、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34を、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻きつける。言い換えると、各第1相のコイルの各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度が第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の少なくとも一方よりも高くなるように、レーシング材34を3相コイル32に巻きつける。
本実施の形態では、各第1相のコイル(本実施の形態では、各中相コイル322)の各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの各々よりも多く第1の領域35aに巻かれる。言い換えると、各第1相のコイル(本実施の形態では、各中相コイル322)の各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度が第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の各々よりも高くなるように、レーシング材34が3相コイル32に巻かれる。
ステップS16では、ワニス36を、レーシング材34に付着させる。例えば、レーシング材34をワニス36に含侵させる。
各第1相のコイル(本実施の形態では、各中相コイル322)の各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの各々よりも多く第1の領域35aに巻かれるので、第1の領域35aにおけるレーシング材34に付着しているワニス36の量は、第2の領域35bにおけるレーシング材34に付着しているワニスの量及び第3の領域35cにおけるレーシング材34に付着しているワニスの量の各々よりも多い。これにより、第1の領域35aにおけるレーシング材34の保持力が強化される。その結果、各第1相のコイル(本実施の形態では、各中相コイル322)をしっかり固定することができ、従来の技術に比べて固定子3におけるワニス36の量を低減することができる。
ステップS17では、レーシング材34に付着されたワニス36を硬化させる。例えば、レーシング材34に付着されたワニス36を加熱器で加熱すると、ワニス36が硬化する。これにより、3相コイル32はレーシング材34で固定され、図3に示される固定子3が得られる。
〈固定子3を利用した、回転子2の磁性体22の着磁方法〉
固定子3を利用した、回転子2の磁性体22の着磁方法について説明する。
図12は、回転子2の磁性体22の着磁方法の一例を示すフローチャートである。
ステップS21では、固定子3を固定する。例えば、固定子3を圧縮機又は電動機内に、圧入又は焼き嵌めなどの固定方法で固定する。
ステップS22では、固定子3の内側に回転子を配置する。この回転子には、少なくとも1つの磁性体22が取り付けられている。
ステップS23では、着磁用の電源に3相コイル32を接続する。例えば、電源のプラス側又はマイナス側に第1相のコイルを接続する。3相コイル32と電源との接続は、例えば、上述の結線パターンP1である。3相コイル32と電源との接続は、後述する変形例における結線パターンP2からP8のいずれか1つでもよい。
ステップS24では、少なくとも1つの磁性体22を有する回転子2の位置(具体的には、回転子2の位相)を治具で固定する。
ステップS25は、磁性体22を着磁する工程(単に「着磁工程」とも称する)である。ステップS25では、磁性体22を着磁させる。具体的には、第1相のコイルに最も大きい電流が流れるように電源から3相コイル32に電流を供給する。
結線パターンP1では、電源から大きな電流が中相コイル322に流れる。電源から中相コイル322に流れる電流は、内相コイル321に流れる電流及び外相コイル323に流れる電流に分かれる。したがって、中相コイル322に流れる電流は、内相コイル321に流れる電流及び外相コイル323に流れる電流の各々よりも大きい。
電源から3相コイル32に流れる電流によって磁場が生じ、回転子2の磁性体22が着磁される。これにより、その磁性体22は、永久磁石になる。
ステップS26では、ステップS24で用いた治具を回転子から取り外す。
固定子3の他の例、すなわち、変形例1から7について、上述の実施の形態1で説明した点と異なる点を以下に説明する。
変形例1.〈Y結線・3相通電・結線パターンP2〉
図13は、固定子3の他の例を示す図である。
図14は、図13に示される固定子3の内部構造を概略的に示す図である。
図13及び図14に示される固定子3(以下、変形例1とも称する)では、第1相のコイルは内相コイル321であり、第2相のコイルは中相コイル322であり、第3相のコイルは外相コイル323である。
すなわち、変形例1では、3相コイル32のコイルエンド32aにおいて、3相コイル32のうちの、第1相のコイル、第2相のコイル、及び第3相のコイルは、固定子鉄心31の周方向においてこの順に配列されており、第1相のコイル、第2相のコイル、及び第3相のコイルは、固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されている。
図15は、変形例1において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図15は、変形例1において、Y結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図15に示される矢印は、電流の向きを示す。
図15に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側(すなわち、電源のプラス極側)が内相コイル321に接続されており、電源のマイナス側(すなわち、電源のマイナス極側)が中相コイル322及び外相コイル323に接続されている。図15に示される結線状態を、結線パターンP2と称する。
図15に示される回路図は、等価回路図であるが、実際の着磁工程では、着磁用の電源から3相コイル32に電流が流れるときに、2×n個の第1相のコイルの各々は、電源のプラス側又はマイナス側に接続されている。
結線パターンP2では、電源から大きな電流が内相コイル321に流れる。電源から内相コイル321に流れる電流は、中相コイル322に流れる電流及び外相コイル323に流れる電流に分かれる。したがって、内相コイル321に流れる電流は、中相コイル322に流れる電流及び外相コイル323に流れる電流の各々よりも大きい。
変形例1では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例1では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
変形例2.〈Y結線・2相通電・結線パターンP3〉
図16は、固定子3の他の例を示す図である。
図17は、図16に示される固定子3の内部構造を概略的に示す図である。
図16及び図17に示される固定子3(以下、変形例2とも称する)では、第1相のコイルは内相コイル321であり、第2相のコイルは外相コイル323であり、第3相のコイルは中相コイル322である。
この場合、3相コイル32のコイルエンド32aにおいて、3相コイル32のうちの、第1相のコイル、第3相のコイル、及び第2相のコイルは、固定子鉄心31の周方向においてこの順に配列されており、第1相のコイル、第3相のコイル、及び第2相のコイルは、固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されている。
ただし、変形例2において、第1相のコイルが外相コイル323でもよい。この場合、内相コイル321は、例えば、第2相のコイルである。
変形例2では、各内相コイル321は、第1の領域35a、第2の領域35b、及び第3の領域35cを持ち、各外相コイル323も第1の領域35a、第2の領域35b、及び第3の領域35cを持つ。
各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれている。言い換えると、各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の少なくとも一方よりも高い。
図16に示される例では、各コイルエンド32aにおいて、レーシング材34は、第2の領域35bよりも多く第1の領域35aに巻かれている。言い換えると、各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度よりも高い。
図18は、変形例2において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図18は、変形例2において、Y結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図18に示される矢印は、電流の向きを示す。
図18に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が内相コイル321に接続されており、電源のマイナス側が外相コイル323に接続されている。中相コイル322の一端は、中性点に接続されており、他端は解放端である。図18に示される結線状態を、結線パターンP3と称する。着磁用の電源から3相コイル32に電流が流れるときに、3相のうちの2つに電流が流れる通電方法を「2相通電」と称する。
結線パターンP3では、着磁用の電源から第1相のコイルに流れる電流は、第2相のコイルに流れ、第3相のコイルには流れない。本実施の形態では、電源から大きな電流が内相コイル321及び外相コイル323に流れる。電源から内相コイル321に流れる電流は、外相コイル323に流れ、中相コイル322には流れない。
変形例2では、第1相のコイル及び第2相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例2では、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第3相のコイルの第1の領域におけるレーシング材34の密度よりも高く、各第2相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第3相のコイルの第1の領域におけるレーシング材34の密度よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が第1相のコイル及び第2相のコイルに流れるので、磁性体22の着磁工程において、第1相のコイル及び第2相のコイルの著しい変形を防ぐことができる。
変形例3.〈デルタ結線・3相通電・結線パターンP4〉
変形例3では、固定子3の構造は、図3及び図4に示される固定子3の構造と同じであり、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンが、図7に示される結線パターンP1と異なる。
変形例3では、3相コイル32における結線は、デルタ結線である。言い換えると、3相コイル32は、デルタ結線で接続されている。この場合、内相コイル321、中相コイル322、及び外相コイル323は、デルタ結線で接続されている。
図19は、変形例3において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図19は、変形例3において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図19に示される矢印は、電流の向きを示す。
図19に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が中相コイル322及び外相コイル323に接続されており、電源のマイナス側が内相コイル321及び中相コイル322に接続されている。図19に示される結線状態を、結線パターンP4と称する。
結線パターンP4では、電源から、内相コイル321、中相コイル322、及び外相コイル323に電流が流れる。外相コイル323及び内相コイル321は直列に接続されているので、外相コイル323から内相コイル321までの電気抵抗値は、中相コイル322の電気抵抗値よりも大きい。したがって、外相コイル323及び内相コイル321に流れる電流は、中相コイル322に流れる電流よりも小さく、中相コイル322に流れる電流は、外相コイル323に流れる電流及び内相コイル321に流れる電流の各々よりも大きい。
変形例3では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例3では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
変形例4.〈デルタ結線・3相通電・結線パターンP5〉
変形例4では、固定子3の構造は、図13及び図14に示される変形例1の構造と同じであり、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンが、変形例1における結線パターンP2と異なる。
変形例4では、3相コイル32における結線は、デルタ結線である。言い換えると、3相コイル32は、デルタ結線で接続されている。この場合、内相コイル321、中相コイル322、及び外相コイル323は、デルタ結線で接続されている。
図20は、変形例4において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図20は、変形例4において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図20に示される矢印は、電流の向きを示す。
図20に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が中相コイル322及び内相コイル321に接続されており、電源のマイナス側が内相コイル321及び外相コイル323に接続されている。図20に示される結線状態を、結線パターンP5と称する。
結線パターンP5では、電源から、内相コイル321、中相コイル322、及び外相コイル323に電流が流れる。中相コイル322及び外相コイル323は直列に接続されているので、中相コイル322から外相コイル323までの電気抵抗値は、内相コイル321の電気抵抗値よりも大きい。したがって、中相コイル322及び外相コイル323に流れる電流は、内相コイル321に流れる電流よりも小さく、内相コイル321に流れる電流は、中相コイル322に流れる電流及び外相コイル323に流れる電流の各々よりも大きい。
変形例4では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例4では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
変形例5.〈デルタ結線・2相通電・結線パターンP6〉
変形例5では、固定子3の構造は、図16及び図17に示される変形例2の構造と同じであり、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンが、変形例2における結線パターンP3と異なる。
変形例5では、3相コイル32における結線は、デルタ結線である。言い換えると、3相コイル32は、デルタ結線で接続されている。この場合、内相コイル321、中相コイル322、及び外相コイル323は、デルタ結線で接続されている。
図21は、変形例5において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図21は、変形例5において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図21に示される矢印は、電流の向きを示す。
図21に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が、外相コイル323、中相コイル322、及び内相コイル321に接続されており、電源のマイナス側が内相コイル321及び外相コイル323に接続されている。図21に示される結線状態を、結線パターンP6と称する。
結線パターンP6では、電源から、内相コイル321及び外相コイル323に電流が流れ、中相コイル322には電流は流れない。したがって、内相コイル321及び外相コイル323に大きな電流が流れる。
変形例5では、第1相のコイル及び第2相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例5では、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第3相のコイルの第1の領域におけるレーシング材34の密度よりも高く、各第2相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第3相のコイルの第1の領域におけるレーシング材34の密度よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が第1相のコイル及び第2相のコイルに流れるので、磁性体22の着磁工程において、第1相のコイル及び第2相のコイルの著しい変形を防ぐことができる。
変形例6.〈Y結線・3相通電・結線パターンP7〉
図22は、固定子3の他の例を示す平面図である。
変形例6では、第1相のコイルは外相コイル323であり、第2相のコイルは中相コイル322であり、第3相のコイルは内相コイル321である。
すなわち、変形例6では、3相コイル32のコイルエンド32aにおいて、3相コイル32のうちの、第3相のコイル、第2相のコイル、及び第1相のコイルは、固定子鉄心31の周方向においてこの順に配列されており、第3相のコイル、第2相のコイル、及び第1相のコイルは、固定子鉄心31の径方向において固定子鉄心31の内側よりこの順に配列されている。
図23は、変形例6において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図23は、変形例6において、Y結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図23に示される矢印は、電流の向きを示す。
図23に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が内相コイル321及び中相コイル322に接続されており、電源のマイナス側が外相コイル323に接続されている。図23に示される結線状態を、結線パターンP7と称する。
結線パターンP7では、電源からの電流は、内相コイル321に流れる電流及び中相コイル322に流れる電流に分かれ、これらの電流は、外相コイル323に流れる。したがって、外相コイル323に流れる電流は、内相コイル321に流れる電流及び中相コイル322に流れる電流の各々よりも大きい。
変形例6では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例6では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域35aにおけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
変形例7.〈デルタ結線・3相通電・結線パターンP8〉
変形例7では、固定子3の構造は、図22に示される固定子3の構造と同じであり、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンが、図23に示される結線パターンP7と異なる。
変形例7では、3相コイル32における結線は、デルタ結線である。言い換えると、3相コイル32は、デルタ結線で接続されている。この場合、内相コイル321、中相コイル322、及び外相コイル323は、デルタ結線で接続されている。
図24は、変形例7において、固定子3を利用して磁性体22を着磁するときの3相コイル32の結線パターンの等価回路を示す図である。言い換えると、図24は、変形例7において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の例を示す図である。図24に示される矢印は、電流の向きを示す。
図24に示される例では、着磁用の電源から3相コイル32に電流が流れるときに、電源のプラス側が中相コイル322及び外相コイル323に接続されており、電源のマイナス側が内相コイル321及び外相コイル323に接続されている。図24に示される結線状態を、結線パターンP8と称する。
結線パターンP8では、外相コイル323に流れる電流は、内相コイル321に流れる電流及び中相コイル322に流れる電流の各々よりも大きい。
変形例7では、第1相のコイルは、着磁用の電源から3相コイル32に電流が流れるときに、3相コイル32の中で最も大きな電流が流れるコイルである。
変形例7では、3相コイル32のコイルエンド32aにおいて、各第1相のコイルの第1の領域におけるレーシング材34の密度は、各第2相のコイルの第1の領域におけるレーシング材34の密度及び各第3相のコイルの第1の領域におけるレーシング材34の密度の各々よりも高い。これにより、磁性体22の着磁工程において、3相コイル32の中で最も大きな電流が流れる第1相のコイルの著しい変形を防ぐことができる。
〈固定子3の利点〉
固定子3の利点について説明する。
図25は、固定子3の製造工程、具体的には、磁性体22の着磁工程において、3相コイル32に通電したとき、3相コイル32のコイルエンド32aに生じる径方向における電磁力F1の例を示す図である。図25において、3相コイル32内の矢印は、電流の向きを示す。
図25に示される例では、着磁用の電源から電流が3相コイル32に流れると、中相コイル322と外相コイル323との間で、互いに反発する径方向における電磁力F1が発生する。この電磁力F1は、ローレンツ力ともいう。
図26は、固定子3の製造工程、具体的には、磁性体22の着磁工程において、3相コイル32に通電したとき、3相コイル32のコイルエンド32aに生じる軸方向における電磁力F2の例を示す図である。
コイルエンド32aのような湾曲した経路に電流が流れる場合、湾曲した部分における内側と外側との間で電流によって生じる磁束密度に差が生じ、これらの磁束密度が均等になるように3相コイル32に力が生じる。これにより、コイルエンド32aにおいて、コイルエンド32aが直線状に変形しようとする力が生じる。各層のコイルのコイルエンド32aの両端は、固定子鉄心31に固定されているため、コイルエンド32aにおいて軸方向に力が働く。したがって、着磁用の電源から3相コイル32に電流が流れると、図26に示されるように、軸方向における電磁力F2が3相コイル32に生じる。
図27は、磁性体22の着磁工程において、各相のコイルに通電したとき、3相コイル32における結線パターンごとの径方向における電磁力F1の大きさの違いを示すグラフである。すなわち、図27は、磁性体22の着磁工程において、3相通電で着磁を行ったときに発生する径方向における電磁力F1の大きさの違いを示すグラフである。図27に示されるデータは、電磁界解析で解析した結果である。
図27において、結線パターンP1及びP2は、図7及び図15に示される結線パターンにそれぞれ対応する。結線パターンEx1は、比較例である。結線パターンEx1では、Y結線で接続された3相コイル32において、着磁用の電源のプラス側に外相コイル323が接続されており、電源のマイナス側に内相コイル321及び中相コイル322が接続されている。結線パターンEx1では、外相コイル323に大きな電流が流れる。
結線パターンEx1では、着磁用の電源から大きな電流が外相コイル323に流れ、外相コイル323に発生する電磁力F1は、結線パターンP1,P2よりも大きい。この場合、外相コイル323が径方向に変形しやすい。これにより、例えば、電動機1を圧縮機に適用したとき、外相コイル323が、金属部品(例えば、圧縮機の密閉容器)に近づき、外相コイル323の電気絶縁性を確保することが難しい。
一方、結線パターンP1及びP2では、外相コイル323に発生する電磁力F1が、結線パターンEx1に比べて小さい。したがって、回転子2を固定子3の内側に配置した状態で着磁を行うときに、3相コイル32、特に外相コイル323の著しい変形を防ぐことができる。その結果、外相コイル323の変形が抑制されるので、外相コイル323の電気絶縁性を確保することができる。
図28は、磁性体22の着磁工程において、各相のコイルに通電したとき、3相コイル32における結線パターンごとの軸方向における電磁力F2の大きさの違いを示すグラフである。すなわち、図28は、磁性体22の着磁工程において、3相通電で着磁を行ったときに発生する軸方向における電磁力F2の大きさの違いを示すグラフである。図28において、結線パターンEx1,P1,P2は、図27における結線パターンEx1,P1,P2にそれぞれ対応する。
図28に示されるように、軸方向における電磁力F2に関して、結線パターンに関わらず、3相コイル32のうちの1つのコイルに大きな軸方向における電磁力F2が生じる。具体的には、結線パターンEx1では、外相コイル323に電源から大きな電流が流れ、外相コイル323に軸方向における大きな電磁力F2が生じる。結線パターンP1では、中相コイル322に電源から大きな電流が流れ、中相コイル322に軸方向における大きな電磁力F2が生じる。結線パターンP2では、内相コイル321に電源から大きな電流が流れ、内相コイル321に軸方向における大きな電磁力F2が生じる。
上述のように、磁性体22の着磁工程では、径方向における電磁力F1を考慮すると、3相コイル32の結線は結線パターンP1又はP2であることが望ましい。しかしながら、結線パターンP1又はP2では、着磁用の電源のプラス側に接続された第1相のコイルの電磁力F2が大きい。特に、第1相のコイルの中央部分、すなわち、第1の領域35aにおける変形が大きくなりやすい。
そのため、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれている。言い換えると、各第1相のコイルの各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の少なくとも一方よりも高い。結線パターンP1では、第1相のコイルは中相コイル322であり、結線パターンP2では、第1相のコイルは内相コイル321である。
これにより、結線パターンP1又はP2において、回転子2を固定子3の内側に配置した状態で着磁を行うときに、レーシング材34によって第1相のコイルの著しい変形を防ぐことができる。
したがって、3相コイル323の変形が抑制されるので、電動機1の性能、例えば、3相コイル32の電気絶縁性を確保することができる。
さらに、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれていればよいので、レーシング材34の数を低減することができ、固定子3のコストを低減することができる。これにより、3相コイル32の著しい変形を効率的に防ぐことができる。
第1の領域35aにおけるレーシング材34に付着しているワニス36の量は、第2の領域35bにおけるレーシング材34に付着しているワニスの量及び第3の領域35cにおけるレーシング材34に付着しているワニスの量の少なくとも一方よりも多ければよい。これにより、第1の領域35aにおけるレーシング材34の保持力が強化される。その結果、各第1相のコイルをしっかり固定することができ、固定子3におけるワニス36の量を従来の技術に比べて低減することができる。
図29は、磁性体22の着磁工程において、3相コイル32のうちの2つのコイルに通電したとき、3相コイル32における結線パターンごとの径方向における電磁力F1の大きさの違いを示すグラフである。すなわち、図29は、磁性体22の着磁工程において、2相通電で着磁を行ったときに発生する径方向における電磁力F1の大きさの違いを示すグラフである。図29に示されるデータは、電磁界解析で解析した結果である。
図29において、結線パターンP3は、図18に示される結線パターンに対応する。結線パターンEx2及びEx3は、比較例である。結線パターンEx2では、Y結線で接続された3相コイル32において、着磁用の電源のプラス側に外相コイル323が接続されており、電源のマイナス側に中相コイル322が接続されており、内相コイル321の一端は解放端である。結線パターンEx3では、Y結線で接続された3相コイル32において、着磁用の電源のプラス側に中相コイル322が接続されており、電源のマイナス側に内相コイル321が接続されており、内相コイル321の一端は解放端である。
結線パターンEx2では、着磁用の電源から大きな電流が外相コイル323に流れ、外相コイル323に発生する電磁力F1が大きい。この場合、外相コイル323が径方向に変形しやすい。これにより、例えば、電動機1を圧縮機に適用したとき、外相コイル323が、金属部品(例えば、圧縮機の密閉容器)に近づき、外相コイル323の電気絶縁性を確保することが難しい。
一方、結線パターンEx3及びP3では、外相コイル323に発生する電磁力F1が、結線パターンEx2に比べて小さい。したがって、回転子2を固定子3の内側に配置した状態で着磁を行うときに、3相コイル32、特に外相コイル323の著しい変形を防ぐことができる。その結果、外相コイル323の変形が抑制されるので、外相コイル323の電気絶縁性を確保することができる。
図30は、磁性体22の着磁工程において、3相コイル32のうちの2つのコイルに通電したとき、3相コイル32における結線パターンごとの軸方向における電磁力F2の大きさの違いを示すグラフである。すなわち、図30は、磁性体22の着磁工程において、2相通電で着磁を行ったときに発生する軸方向における電磁力F2の大きさの違いを示すグラフである。図30において、結線パターンEx2,Ex3,P3は、図29における結線パターンEx2,Ex3,P3にそれぞれ対応する。
図30に示されるように、軸方向における電磁力F2に関して、結線パターンに関わらず、3相コイル32のうちの2つのコイルに大きな軸方向における電磁力F2が生じる。
2相通電の場合、磁性体22の着磁工程では、径方向における電磁力F1を考慮すると、3相コイル32の結線は結線パターンEx3又はP3であることが望ましい。結線パターンEx3では、内相コイル321の電磁力F1が大きいため、2相通電の場合、3相コイル32の結線は結線パターンP3であることがより望ましい。
しかしながら、結線パターンEx3又はP3では、着磁用の電源のプラス側に接続された第1相のコイルの電磁力F2が大きい。特に、第1相のコイルの中央部分、すなわち、第1の領域35aにおける変形が大きくなりやすい。
そのため、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれている。言い換えると、各第1相のコイルの各コイルエンド32aにおいて、第1の領域35aにおけるレーシング材34の密度は、第2の領域35bにおけるレーシング材34の密度及び第3の領域35cにおけるレーシング材34の密度の少なくとも一方よりも高い。結線パターンEx3では、第1相のコイルは中相コイル322であり、結線パターンP3では、第1相のコイルは内相コイル321である。
これにより、結線パターンEx3又はP3において、回転子2を固定子3の内側に配置した状態で着磁を行うときに、レーシング材34によって第1相のコイルの著しい変形を防ぐことができる。
したがって、3相コイル323の変形が抑制されるので、電動機1の性能、例えば、3相コイル32の電気絶縁性を確保することができる。
さらに、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれていればよいので、レーシング材34の数を低減することができ、固定子3のコストを低減することができる。これにより、3相コイル32の著しい変形を効率的に防ぐことができる。
第1の領域35aにおけるレーシング材34に付着しているワニス36の量は、第2の領域35bにおけるレーシング材34に付着しているワニスの量及び第3の領域35cにおけるレーシング材34に付着しているワニスの量の少なくとも一方よりも多ければよい。これにより、第1の領域35aにおけるレーシング材34の保持力が強化される。その結果、各第1相のコイルをしっかり固定することができ、固定子3におけるワニス36の量を従来の技術に比べて低減することができる。
3相コイル32がデルタ結線で接続されている場合も、図27から図30に示される特性を持つ。したがって、3相コイル32がデルタ結線で接続されている場合も、回転子2を固定子3の内側に配置した状態で着磁を行うときに、レーシング材34によって第1相のコイルの著しい変形を防ぐことができる。したがって、3相コイル323の変形が抑制されるので、電動機1の性能、例えば、3相コイル32の電気絶縁性を確保することができる。
3相コイル32がデルタ結線で接続されている場合も、各第1相のコイルの各コイルエンド32aにおいて、レーシング材34は、第2の領域35b及び第3の領域35cの少なくとも一方よりも多く第1の領域35aに巻かれていればよいので、レーシング材34の数を低減することができ、固定子3のコストを低減することができる。これにより、3相コイル32の著しい変形を効率的に防ぐことができる。
3相コイル32がデルタ結線で接続されている場合も、第1の領域35aにおけるレーシング材34に付着しているワニス36の量は、第2の領域35bにおけるレーシング材34に付着しているワニスの量及び第3の領域35cにおけるレーシング材34に付着しているワニスの量の少なくとも一方よりも多ければよい。これにより、第1の領域35aにおけるレーシング材34の保持力が強化される。その結果、各第1相のコイルをしっかり固定することができ、固定子3におけるワニス36の量を従来の技術に比べて低減することができる。
実施の形態2.
本発明の実施の形態2に係る圧縮機300について説明する。
図31は、圧縮機300の構造を概略的に示す断面図である。
圧縮機300は、電動要素としての電動機1と、ハウジングとしての密閉容器307と、圧縮要素(圧縮装置とも称する)としての圧縮機構305とを有する。本実施の形態では、圧縮機300は、スクロール圧縮機である。ただし、圧縮機300は、スクロール圧縮機に限定されない。圧縮機300は、スクロール圧縮機以外の圧縮機、例えば、ロータリー圧縮機でもよい。
圧縮機300内の電動機1は、実施の形態1で説明した電動機1である。電動機1は、圧縮機構305を駆動する。
圧縮機300は、さらに、シャフト4の下端部(すなわち、圧縮機構305側と反対側の端部)を支持するサブフレーム308を備えている。
圧縮機構305は、密閉容器307内に配置されている。圧縮機構305は、渦巻部分を有する固定スクロール301と、固定スクロール301の渦巻部分との間に圧縮室を形成する渦巻部分を有する揺動スクロール302と、シャフト4の上端部を保持するコンプライアンスフレーム303と、密閉容器307に固定されてコンプライアンスフレーム303を保持するガイドフレーム304とを備える。
固定スクロール301には、密閉容器307を貫通する吸入管310が圧入されている。また、密閉容器307には、固定スクロール301から吐出される高圧の冷媒ガスを外部に吐出する吐出管306が設けられている。この吐出管306は、密閉容器307の圧縮機構305と電動機1との間に設けられた開口部に連通している。
電動機1は、固定子3を密閉容器307に嵌め込むことにより密閉容器307に固定されている。電動機1の構成は、上述した通りである。密閉容器307には、電動機1に電力を供給するガラス端子309が溶接により固定されている。
電動機1が回転すると、その回転が揺動スクロール302に伝達され、揺動スクロール302が揺動する。揺動スクロール302が揺動すると、揺動スクロール302の渦巻部分と固定スクロール301の渦巻部分とで形成される圧縮室の容積が変化する。そして、吸入管310から冷媒ガスが吸入され、圧縮されて、吐出管306から吐出される。
圧縮機300は、実施の形態1で説明した電動機1を有するので、実施の形態1で説明した利点を持つ。
さらに、圧縮機300は実施の形態1で説明した電動機1を有するので、圧縮機300の性能を改善することができる。
実施の形態3.
実施の形態2に係る圧縮機300を有する、空気調和機としての冷凍空調装置7について説明する。
図32は、実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
冷凍空調装置7は、例えば、冷暖房運転が可能である。図32に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
室外機71は、圧縮機300と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機300によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機300によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機300へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
実施の形態3に係る冷凍空調装置7によれば、実施の形態1から2で説明した利点を持つ。
さらに、実施の形態3に係る冷凍空調装置7は、実施の形態2に係る圧縮機300を有するので、冷凍空調装置7の性能を改善することができる。
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
1 電動機、 2 回転子、 3 固定子、 7 冷凍空調装置、 31 固定子鉄心、 32 3相コイル、 32a コイルエンド、 34 レーシング材、 35a 第1の領域、 35b 第2の領域、 35c 第3の領域、 36 ワニス、 71 室外機、 72 室内機、 300 圧縮機、 305 圧縮機構、 307 密閉容器、 74 凝縮器、 77 蒸発器、 321 内相コイル、 322 中相コイル、 323 外相コイル。

Claims (15)

  1. 回転子の磁性体を着磁することができる固定子であって、
    固定子鉄心と、
    前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルと、
    前記3相コイルに巻かれたレーシング材と
    を備え、
    前記第1相のコイルは、前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記3相コイルの中で最も大きな電流が流れるコイルであり、
    前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
    前記レーシング材は、前記第2の領域及び前記第3の領域の少なくとも一方よりも多く前記第1の領域に巻かれている
    固定子。
  2. 前記コイルエンドにおいて、前記第2相のコイル、前記第1相のコイル、及び前記第3相のコイルは、前記固定子鉄心の周方向においてこの順に配列されており、
    前記コイルエンドにおいて、前記第2相のコイル、前記第1相のコイル、及び前記第3相のコイルは、前記固定子鉄心の径方向において前記固定子鉄心の内側よりこの順に配列されている
    請求項1に記載の固定子。
  3. 前記コイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、前記固定子鉄心の周方向においてこの順に配列されており、
    前記コイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、前記固定子鉄心の径方向において前記固定子鉄心の内側よりこの順に配列されている
    請求項1に記載の固定子。
  4. 前記3相コイルのコイルエンドにおいて、前記第2相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第2相のコイルの第1の領域は、前記第2相のコイルの第2の領域と前記第2相のコイルの第3の領域との間に位置しており、
    前記3相コイルのコイルエンドにおいて、前記第3相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第3相のコイルの第1の領域は、前記第3相のコイルの第2の領域と前記第3相のコイルの第3の領域との間に位置しており、
    前記第1相のコイルのコイルは、前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記3相コイルの中で最も大きな電流が流れるコイルであり、
    前記3相コイルのコイルエンドにおいて、前記第1相のコイルの第1の領域における前記レーシング材の密度は、前記第2相のコイルの第1の領域における前記レーシング材の密度及び前記第3相のコイルの第1の領域における前記レーシング材の密度の各々よりも高い
    請求項1から3のいずれか1項に記載の固定子。
  5. 前記コイルエンドにおいて、前記第1相のコイル、前記第3相のコイル、及び前記第2相のコイルは、前記固定子鉄心の周方向においてこの順に配列されており、
    前記コイルエンドにおいて、前記第1相のコイル、前記第3相のコイル、及び前記第2相のコイルは、前記固定子鉄心の径方向において前記固定子鉄心の内側よりこの順に配列されている
    請求項1に記載の固定子。
  6. 前記3相コイルのコイルエンドにおいて、前記第2相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第2相のコイルの第1の領域は、前記第2相のコイルの第2の領域と前記第2相のコイルの第3の領域との間に位置しており、
    前記3相コイルのコイルエンドにおいて、前記第3相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第3相のコイルの第1の領域は、前記第3相のコイルの第2の領域と前記第3相のコイルの第3の領域との間に位置しており、
    前記第1相のコイル及び前記第2相のコイルは、前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記3相コイルの中で最も大きな電流が流れるコイルであり、
    前記第1相のコイルの第1の領域における前記レーシング材の密度は、前記第3相のコイルの第1の領域における前記レーシング材の密度よりも高く、前記第2相のコイルの第1の領域における前記レーシング材の密度は、前記第3相のコイルの第1の領域における前記レーシング材の密度よりも高い
    請求項1又は5に記載の固定子。
  7. 前記コイルエンドにおいて、前記第3相のコイル、前記第2相のコイル、及び前記第1相のコイルは、前記固定子鉄心の周方向においてこの順に配列されており、
    前記コイルエンドにおいて、前記第3相のコイル、前記第2相のコイル、及び前記第1相のコイルは、前記固定子鉄心の径方向において前記固定子鉄心の内側よりこの順に配列されている
    請求項1に記載の固定子。
  8. 前記3相コイルのコイルエンドにおいて、前記第2相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第2相のコイルの第1の領域は、前記第2相のコイルの第2の領域と前記第2相のコイルの第3の領域との間に位置しており、
    前記3相コイルのコイルエンドにおいて、前記第3相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第3相のコイルの第1の領域は、前記第3相のコイルの第2の領域と前記第3相のコイルの第3の領域との間に位置しており、
    前記第1相のコイルのコイルは、前記磁性体の着磁用の電源から前記3相コイルに電流が流れるときに、前記3相コイルの中で最も大きな電流が流れるコイルであり、
    前記3相コイルのコイルエンドにおいて、前記第1相のコイルの第1の領域における前記レーシング材の密度は、前記第2相のコイルの第1の領域における前記レーシング材の密度及び前記第3相のコイルの第1の領域における前記レーシング材の密度の各々よりも高い
    請求項1又は7に記載の固定子。
  9. 前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、Y結線で接続されている請求項1から8のいずれか1項に記載の固定子。
  10. 前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、デルタ結線で接続されている請求項1から8のいずれか1項に記載の固定子。
  11. 請求項1から10のいずれか1項に記載の固定子と、
    前記固定子の内側に配置された前記回転子と
    を備えた電動機。
  12. 密閉容器と、
    前記密閉容器内に配置された圧縮装置と、
    前記圧縮装置を駆動する請求項11に記載の電動機と
    を備えた圧縮機。
  13. 請求項12に記載の圧縮機と、
    熱交換器と
    を備えた空気調和機。
  14. 固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の製造方法であって、
    前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
    前記3相コイルを分布巻きで前記固定子鉄心に取り付けることと、
    前記第1相のコイルのコイルエンドにおいて、レーシング材を、第2の領域及び第3の領域の少なくとも一方よりも多く第1の領域に巻きつけることと
    を備えた固定子の製造方法。
  15. 固定子鉄心と、前記固定子鉄心に分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の内側で、回転子の磁性体を着磁する着磁方法であって、
    前記3相コイルのコイルエンドにおいて、前記第1相のコイルは、均等に分けられた、第1の領域、第2の領域、及び第3の領域を持ち、
    前記第1の領域は、前記第2の領域と前記第3の領域との間に位置しており、
    前記第1相のコイルのコイルエンドにおいて、レーシング材が、第2の領域及び第3の領域の少なくとも一方よりも多く第1の領域に巻きつけられており、
    固定子の内側に、前記磁性体を有する回転子を配置することと、
    前記第1相のコイルに最も大きい電流が流れるように前記磁性体の着磁用の電源から前記3相コイルに電流を供給することと
    を備えた着磁方法。
JP2021532555A 2019-07-12 2019-07-12 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法 Active JP7237159B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027649 WO2021009792A1 (ja) 2019-07-12 2019-07-12 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法

Publications (2)

Publication Number Publication Date
JPWO2021009792A1 true JPWO2021009792A1 (ja) 2021-10-28
JP7237159B2 JP7237159B2 (ja) 2023-03-10

Family

ID=74210288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021532555A Active JP7237159B2 (ja) 2019-07-12 2019-07-12 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法

Country Status (4)

Country Link
US (1) US20220216757A1 (ja)
JP (1) JP7237159B2 (ja)
CN (1) CN114072991A (ja)
WO (1) WO2021009792A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118749A (ja) * 1989-10-02 1991-05-21 Aichi Emerson Electric Co Ltd 永久磁石界磁型電動機
JPH06315252A (ja) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd 永久磁石界磁型回転電機における界磁の着磁方法
JPH11341725A (ja) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp 永久磁石型モータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118749A (ja) * 1989-10-02 1991-05-21 Aichi Emerson Electric Co Ltd 永久磁石界磁型電動機
JPH06315252A (ja) * 1993-04-28 1994-11-08 Sanyo Electric Co Ltd 永久磁石界磁型回転電機における界磁の着磁方法
JPH11341725A (ja) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp 永久磁石型モータ

Also Published As

Publication number Publication date
CN114072991A (zh) 2022-02-18
US20220216757A1 (en) 2022-07-07
WO2021009792A1 (ja) 2021-01-21
JP7237159B2 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
JP7058802B2 (ja) 電動機の製造方法、電動機、圧縮機、及び空気調和機
WO2004079883A1 (ja) 着磁治具とそれを用いた着磁方法ならびにそれらを用いた電動圧縮機の組み立て方法
US6552461B2 (en) Permanent magnet type rotating electric machine
US11228214B2 (en) Motor, fan, compressor, and air conditioning apparatus
CN109565191B (zh) 电动机、压缩机及制冷空调装置
KR102516257B1 (ko) 클로 폴형 모터 및 이를 포함하고 있는 가전기기
JP2003520552A (ja) 電動機回転子の永久磁石を磁化する方法と密閉圧縮機電動機を組み立てる方法
WO2021009792A1 (ja) 固定子、電動機、圧縮機、空気調和機、固定子の製造方法、及び着磁方法
JP4627002B2 (ja) 密閉型圧縮機の製造方法
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
US20230208232A1 (en) Stator, electric motor, compressor, and air conditioner
WO2020188733A1 (ja) 固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法
JP4080277B2 (ja) Dcブラシレスモータ及び圧縮機及び冷凍サイクル装置及びdcブラシレスモータの組込着磁方法
WO2021205527A1 (ja) 着磁方法、電動機の製造方法、電動機、圧縮機、及び空気調和機
WO2023112076A1 (ja) 電動機、圧縮機、及び空気調和機
US20230318381A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
US20230291263A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
WO2023119455A1 (ja) 着磁方法、電動機、圧縮機および冷凍サイクル装置
US11962191B2 (en) Rotor, electric motor, compressor, and air conditioner
WO2023032134A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2022219675A1 (ja) 電動機、圧縮機、冷凍サイクル装置、着磁方法および着磁装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230228

R150 Certificate of patent or registration of utility model

Ref document number: 7237159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150