JPWO2020153316A1 - ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム - Google Patents

ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム Download PDF

Info

Publication number
JPWO2020153316A1
JPWO2020153316A1 JP2020568142A JP2020568142A JPWO2020153316A1 JP WO2020153316 A1 JPWO2020153316 A1 JP WO2020153316A1 JP 2020568142 A JP2020568142 A JP 2020568142A JP 2020568142 A JP2020568142 A JP 2020568142A JP WO2020153316 A1 JPWO2020153316 A1 JP WO2020153316A1
Authority
JP
Japan
Prior art keywords
drone
charging
work
unit
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020568142A
Other languages
English (en)
Other versions
JP7169009B2 (ja
Inventor
千大 和氣
洋 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nileworks Inc
Original Assignee
Nileworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nileworks Inc filed Critical Nileworks Inc
Publication of JPWO2020153316A1 publication Critical patent/JPWO2020153316A1/ja
Application granted granted Critical
Publication of JP7169009B2 publication Critical patent/JP7169009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles

Abstract

【課題】 ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンに効率よく充電することができる。
【解決策】
ドローン100と、ドローンに、飛行に必要なエネルギーを補充可能な補充部33a、33bと、ドローンの動作を決定する動作決定装置40と、を少なくとも含むドローンシステム500であって、動作決定装置は、ドローンの作業に必要な、ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部442と、作業中に1回又は複数回の充電を行い、ドローンへ総充電量のエネルギーを補充するための充電計画を決定する充電計画部44と、を備える。
【選択図】図13

Description

本願発明は、ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
また、ドローンに搭載できるバッテリや薬剤等の資源の量には限りがあるため、ドローンは作業中に資源を補充する必要がある。例えば、圃場周辺で待機する軽トラック等の移動体に資源が収容されていて、ドローンは適宜作業を中断して移動体に帰還し、資源の補充を行う。この構成によれば、補充機構が移動体に備えられているため、補充機構を作業中の圃場周辺に待機させることができる。すなわち、ドローンは短時間の飛行で資源の補充を行うことができ、エネルギー的にも時間的にも効率がよい。しかしながら、移動体に収容されている資源が不足する場合がある。そこで、移動体に収容されている資源が不足する場合に、移動体に効率よく資源を補充することができるシステムが必要とされている。
特許文献3には、複数の無人搬送車と、これら無人搬送車を作業箇所に導くメインルートと、各無人搬送車に充電する充電部と、各無人搬送車の充電後の走行回数を認知し、走行要求が入力されると共に、各無人搬送車に所定の動作を指令する集中制御部と、を備える無人搬送車の制御方法が記載されている。この制御方法は、経験的に求められてデータ化されている走行要求頻度分布に基づいて、走行要求の未処理量が大で走行要求数の減少が予想される場合は、充電時間が基準充電時間より短時間に定められた所定時間に達すると無人搬送車の走行を開始させる。
しかしながら、特許文献3には、作業を行う無人搬送車に充電を行う充電部に、さらに資源を補充することについては記載がない。
特許公開公報 特開2001−120151 特許公開公報 特開2017−163265 特許公開公報 特開平4−127303
ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンに効率よく充電することができるドローンシステムを提供する。
上記目的を達成するため、本発明の一の観点に係るドローンシステムは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムであって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行い、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備える。
前記ドローンへの充電時間と、前記充電時間の充電により得られるエネルギーによる前記ドローンの飛行可能時間と、の合計が最短となるような前記充電計画を決定するように構成されていてもよい。
前記充電計画部は、前記ドローンの充電率が満充電より低い所定範囲で使用されるように充電計画を決定するように構成されていてもよい。
前記充電計画部は、前記充電計画において複数回の充電時間を設定するように構成されていてもよい。
前記充電計画部は、充電中における充電速度を算出し、前記充電速度が所定以下になるとき充電を終了するように構成されていてもよい。
前記ドローンの充電率と、前記充電率を有する前記ドローンに所定量を充電するための所要時間との対応関係を記憶する充電率―充電時間記憶部をさらに備え、前記充電計画部は、前記対応関係に基づいて、前記充電計画を決定するように構成されていてもよい。
前記ドローンシステムは複数の前記ドローンを含み、第1の前記ドローンが前記補充部により充電中のとき、第2の前記ドローンは、地面に着陸して待機し、前記第1のドローンが充電を終了した後に前記補充部による充電を行うように構成されていてもよい。
前記第2のドローンは、待機している地点から前記補充部における充電可能な地点まで飛行可能な蓄電量を少なくとも保持して前記地点に着陸するように構成されていてもよい。
前記補充部は、前記ドローンが着陸可能であり、前記ドローンと共に移動可能な移動体に配置されているように構成されていてもよい。
前記ドローンシステムは複数の前記ドローンを含み、前記ドローンが前記移動体への帰還時において前記移動体に他の前記ドローンが着陸しているとき、当該前記ドローンは、地面に着陸して待機し、前記他のドローンが離陸した後に前記移動体に着陸するように構成されていてもよい。
前記ドローンおよび前記補充部の状態を使用者に通知可能な携帯端末をさらに含み、前記携帯端末は、前記ドローンの位置および状態、前記補充部の位置および状態、ならびに前記ドローンシステムの作業が終了する予想終了時刻の少なくともいずれかを前記使用者に通知するように構成されていてもよい。
上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御方法は、ドローンと、前記ドローンのバッテリを充電可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムの制御方法であって、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得するステップと、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定するステップと、を含む。
上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御プログラムは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムの制御プログラムであって、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する命令と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する命令と、を含む。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD−ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
上記目的を達成するため、本発明の一の観点に係る動作決定装置は、ドローンの位置および状態を把握し、前記ドローンの動作を決定する動作決定装置であって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備える。
上記目的を達成するため、本発明の一の観点に係るドローンは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムに含まれるドローンであって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備え、前記ドローンは、前記充電計画に基づいて前記補充部から充電される。
上記目的を達成するため、本発明の一の観点に係る移動体は、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部を備える移動体と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムに含まれる移動体であって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備え、前記移動体は、前記充電計画に基づいて前記ドローンを充電する。
ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンに効率よく充電することができる。
本願発明に係るドローンシステムが有するドローンの平面図である。 上記ドローンシステムが有するドローンの正面図である。 上記ドローンの右側面図である。 上記ドローンの背面図である。 上記ドローンの斜視図である。 上記ドローンが有する薬剤散布システムの全体概念図である。 上記ドローンが有する薬剤散布システムの第2実施形態を示す全体概念図である。 上記ドローンが有する薬剤散布システムの第3実施形態を示す全体概念図である。 上記ドローンが作業を行う圃場、上記移動体が走行する自動走行許可エリアの配置の様子を示す概念図である。 上記ドローンの制御機能を表した模式図である。 本願発明にかかる移動体の様子を示す概略斜視図である。 上記移動体の、上記ドローンが載置される上面板が後方にスライドしている様子を示す概略斜視図である。 上記ドローン、上記移動体、および本願発明にかかる動作決定装置が有する、上記ドローンおよび上記移動体に対する資源の補充に関する機能ブロック図である。 。上記ドローンが有するバッテリの、充電時間と充電率の関係を示すグラフである。 上記バッテリの、充電率と蓄電量の関係を示すグラフである。 総作業の開始から終了までにおける上記ドローンおよび上記移動体の動作の例を示す(a)タイムチャート、(b)圃場内作業の完了率を示すグラフ、(c)上記ドローンが有するバッテリの充電率を示すグラフである。
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
まず、本発明にかかるドローンシステムが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a(携帯端末の例)、基地局404および移動体406aは、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。
ドローン100および移動体406aは、互いに情報の送受信を行い、協調して動作する。移動体406a上は、発着地点406を有する。ドローン100は、ドローン100の飛行を制御する飛行制御部21の他、移動体406aと情報を送受信するための機能部を有している。
操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。基地局404は、本実施の形態においては、発着地点406と共に移動体406aに積載されている。
営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100および移動体406aの動作を変更してもよい。小型携帯端末401aは、ドローン100および移動体406aのいずれからでも情報を受信可能である。また、ドローン100からの情報は、移動体406aを介して小型携帯端末401aに送信されてもよい。
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
なお、図7に示す第2実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。
また、図8に示す第3実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。
図9に示すように、ドローン100は、圃場403a、403bの上空を飛行し、圃場内の作業を遂行する。移動体406aは、圃場403a、403bの周辺に設けられている自動運転許可エリア90を自動で走行する。自動運転許可エリア90は、例えば農道である。圃場403a、403bおよび自動運転許可エリア90は、作業エリアを構成する。また、自動運転許可エリア90は、移動体406aは移動可能であるが、ドローン100の着陸はできない移動許可エリア901と、移動体406aが移動可能で、かつ移動体406a上にドローン100が着陸可能な着陸許可エリア902と、に細分化されている。ドローン100の着陸ができない理由として、例えば当該エリアと圃場403aとの間に、ガードレール、電柱、電線、倉庫、墓等の障害物80が設置されていること等が挙げられる。
本実施形態においては、1個の圃場403a(作業エリアの例)に複数のドローン100a、100b(以下、第1ドローン100a、および第2ドローン100bともいう。)が同時に飛行し、それぞれ作業を行ってもよい。第1ドローン100aが行う作業は第1作業の例、第2ドローン100bが行う作業は第2作業の例である。第1作業は、圃場403aの一部である第1作業エリア403cに網羅的に設定される第1運転経路51を飛行する動作を含む。第2作業は、圃場403aのうち第1作業エリア403c以外の領域である第2作業エリア403dに、網羅的に設定される第2運転経路52を飛行する動作を含む。ドローン100a、100bは、第1、第2運転経路51、52に沿って飛行しながら、薬剤を散布したり、圃場403a内を撮影したりする。
第1運転経路51は、始点51s、作業済経路51a、未作業経路51b、および終点51eを備える。第1ドローン100aは始点51sから飛行を開始し、終点51eまで飛行する。ドローン100aがすでに飛行した経路を作業済経路51a、これから飛行する予定の経路を未作業経路51bとする。同様に、第2運転経路52は始点52s、作業済経路52a、未作業経路52b、および終点52eを備える。第2ドローン100bは始点52sから飛行を開始し、終点52eまで飛行する。ドローン100bがすでに飛行した経路を作業済経路52a、これから飛行する予定の経路を未作業経路52bとする。
複数の移動体406A、406b(以下、第1移動体406A、第2移動体406Bともいう。)が、自動運転許可エリア90内を走行する。ドローンシステム500に含まれる複数のドローン100a、100b、および複数の移動体406A、406Bは、互いにネットワークを介して接続され、図13に後述する動作決定装置40により集中管理されている。
本実施形態においては、ドローンおよび移動体の数は同数であるが、同数でなくてもよい。ドローンおよび移動体の数が同数である場合、移動体1台につきドローンが1台搭載可能であるので、移動体にすべてのドローンを積載して、作業エリア外からドローンを搬入することができる。また、移動体は複数のドローンに対して同時に資源を補充することはできないが、ドローンシステム500内にドローンと移動体が同数含まれる構成によれば全てのドローンに同時に資源補充が可能である。
動作決定装置40は、独立した装置であってもよいし、複数のドローン100a、100b、複数の移動体406A、406B又は営農クラウド405等、ドローンシステム500に含まれる構成のいずれかに搭載されていてもよい。
ドローン100は、移動体406aから離陸して圃場403a、403b内での作業を遂行する。ドローン100は、圃場403a、403b内での作業中に、適宜作業を中断して移動体406aに帰還し、バッテリ502および薬剤の補充を行う。ドローン100は所定の圃場の作業が完了すると、移動体406aに乗って別の圃場近傍まで移動した上で、移動体406aから再度離陸し、当該別の圃場における作業を開始する。このように、ドローン100の自動運転許可エリア90内の移動は、原則的に、移動体406aに乗って行われ、移動体406aは、作業を行う圃場近傍までドローン100を運搬する。この構成によれば、ドローン100のバッテリ502を節約することができる。また、移動体406aは、ドローン100に補充可能なバッテリ502や薬剤を格納しているため、ドローン100が作業を行っている圃場近傍に移動体406aが移動して待機する構成によれば、ドローン100への資源の補充を効率的に行うことができる。
自動運転許可エリア90の外の領域は、自動運転不許可エリア91である。自動運転許可エリア90と自動運転不許可エリア91とは、区画部材407a、407b、407c、407d、407eにより区画されている。自動運転許可エリア90と自動運転不許可エリア91とは、各種障害物等で隔てられている他、道路が連続的に形成されていて、区画部材407a、407b、407c、407d、407eは、当該道路上に配置されていてもよい。言い換えれば、区画部材407a、407b、407c、407d、407eは、自動運転許可エリア90への侵入口に配置されている。
区画部材407は、圃場403およびその周辺の領域であって、移動体406aやドローン100が作業する際に移動する作業エリアを区画するための部材であり、例えばカラーコーン(登録商標)、三角コーン、コーンバー、バリケード、フィールドアーチ、フェンス等である。区画部材407は、物理的に区画してもよいし、赤外線等の光線により区画されていてもよい。区画部材407は、主に作業エリア外の侵入者に作業中であることを知らせ、作業エリア内への立ち入りを制限するために用いられる。したがって、侵入者が遠方からでも視認できるような部材である。また、区画部材407は、作業の開始時に使用者402により設置されるため、設置および撤去が容易であるとよい。区画部材407は、ドローンシステム500内に複数含まれていてもよい。区画部材407は、侵入者が作業エリア内に侵入したことを検知して、移動体406aや操作器401、小型携帯端末401a等に当該侵入情報を伝達してもよい。なお、侵入者は、人や車、その他の移動体を含む。
図10に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。侵入者検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
●移動体の構成
図11および図12に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。
移動体406aは、進行方向前方に乗車席81、後方に荷台82が配置されている車両である。移動体406aの底面側には、移動手段の例である4個の車輪83が、駆動可能に配置されている。乗車席81には、使用者402が乗り込むことが可能である。
乗車席81には、移動体406aおよびドローン100の様子を表示する表示部65が配置されている。表示部65は、画面を有する装置であってもよいし、フロントガラスに情報を投影する機構により実現されていてもよい。また、この表示部65に加えて、乗車席81を覆う車体810の背面側にも背面表示部65aが設置されていてもよい。この背面表示部65aは、車体810に対する角度が左右に変更可能であり、荷台82の後方および左右側方で作業している使用者402が画面を見て情報を取得することができる。
移動体406aの荷台82前部左端には、丸棒の上方に円盤状の部材が連結された形状をしている基地局404が、乗車席81よりも上方に伸び出ている。なお、基地局404の形状および位置は、任意である。基地局404が荷台82の乗車席81側にある構成によれば、荷台82の後方にある構成と比較して、基地局404がドローン100の離着陸の妨げになりづらい。
荷台82は、ドローン100のバッテリ502や、ドローン100の薬剤タンク104に補充される薬剤を格納する荷室821を有する。荷室821は、乗車席81を覆う車体810と、後方板822と、1対の側方板823、823と、上面板824とに囲まれた領域である。後方板822および側方板823は、「あおり」とも呼ばれる。後方板822の上部両端それぞれには、レール825が、側方板823の上端に沿って乗車席81背面側の車体810まで配設されている。上面板824は、ドローン100が載置され、離着陸することが可能な発着地点406である発着領域となっており、レール825に沿って進行方向前後に摺動可能になっている。レール825は、上面板824の平面より上方に突出するリブとなっていて、上面板824上に乗っているドローン100が移動体406aの左右端から滑り出てしまうことを防いでいる。また、上面板824の後方にも、レール825と同程度上面側に突出するリブ8241が形成されている。
車体810上部および後方板822の進行方向後ろ側には、ドローンシステム500が作業中である旨を表示する警告灯830が配置されていてもよい。警告灯830は、配色又は明滅等で作業中と作業中以外とを区別する表示器であってもよいし、文字又は絵柄等が表示可能であってもよい。また、車体810上部の警告灯830は、車体810上方まで伸びあがって両面に表示することが可能であってもよい。この構成によれば、荷台82にドローン100が配置されている場合であっても、後方から警告を視認することができる。また、移動体406aの進行方向前方からも、警告を視認することができる。警告灯830が前方および後方から視認できることで、区画部材407を設置する手間を一部省略することができる。
上面板824は、手動で摺動可能であってもよいし、ラックアンドピニオン機構などを利用して自動で摺動してもよい。上面板824を後方に摺動させると、荷台82の上方から荷室821に物品を格納したり、物品を取り出したりすることができる。また、上面板824が後方に摺動している形態においては、上面板824と車体810とが十分離間するため、ドローン100が発着地点406に離着陸可能である。
上面板824には、ドローン100の足107-1,107-2,107-3,107-4が固定可能な足受部826が4個配設されている。足受部826は、例えばドローン100の4本の足107-1,107-2,107-3,107-4に対応する位置に1個ずつ設置されている、上面が円錐台状に凹んでいる円盤状の部材である。なお、足受部826の円錐台状の凹みの底と、足107-1,107-2,107-3,107-4の先端とは、互いに嵌合可能な形状になっていてもよい。足受部826上に着陸しているとき、ドローン100の足107-1,107-2,107-3,107-4は、足受部826の円錐面に沿って滑り、円錐台の底部に足107-1,107-2,107-3,107-4の先端が誘導される。ドローン100は適宜の機構により足受部826に自動又は手動で固定可能であり、移動体406aがドローン100を載せて移動する際にも、ドローン100が過度に振動したり落下することなくドローン100を安全に輸送することができる。また、移動体406aは、ドローン100が足受部826に固定されているか否かを検知可能である。
上面板824の、略中央部には、ドローン100の離着陸の位置の目安を表示する円周灯850が配置されている。円周灯850は、略円状に配設される発光体群により形成されていて、発光体群は個別に明滅可能である。本実施形態では、円周上に約90度ごとに配置される4個の大きな発光体850aと、大きな発光体850aの間に2個ずつ等間隔に配置される小さな発光体850bとで、1の円周灯850を構成している。円周灯850は、発光体群850a、850bのうち1又は複数が点灯することで、ドローン100の離陸後の飛行方向、又は着陸する際に飛来する方向を表示する。なお、円周灯850は、部分的に明滅可能な1個の円環状の発光体により構成されていてもよい。
1対の側方板823は、底部の辺が荷台82にヒンジで連結されていて、側方板823を外側に倒すことが可能である。図12では、進行方向左側の側方板823が外側に倒れている様子を示している。側方板823が外側に倒れると、移動体406aの側方から格納物を格納および取り出しが可能になる。側方板823は荷室821の底面と略平行に固定され、側方板823を作業台としても使用することができる。
1対のレール825は、形態切替機構を構成する。また、側方板823と荷台82を連結するヒンジも、形態切替機構に含まれていてもよい。上面板824が荷室821の上方を覆って配置され、側方板823が起立して荷室821の側面を覆っている形態において、移動体406aは移動する。移動体406aが静止しているとき、上面板824が後方に摺動している形態、又は側方板823が倒れている形態に切り替えられ、使用者402は荷室821の内部にアプローチできる。
ドローン100は、発着地点406に着陸している状態において、飛行に必要なエネルギーの補充を行うことができる。例えば、バッテリ502の充電を行うことができる。荷室821にはバッテリ502の充電装置が格納されていて、荷室821に格納されているバッテリ502の充電が可能である。また、ドローン100は、バッテリ502に代えてウルトラキャパシタの機構を備え、荷室821内にはウルトラキャパシタ用の充電器が格納されていてもよい。この構成においては、ドローン100が足受部826に固定されている際に、ドローン100の足を介して、ドローン100に搭載されているバッテリ502を急速充電することができる。
ドローン100は、発着地点406に着陸している状態において、薬剤タンク104に貯留される薬剤の補充を行うことができる。荷室821には、薬剤を希釈混合するための希釈混合タンク、撹拌機構、ならびに希釈混合タンクから薬剤を吸い上げて薬剤タンク104に注入せしめるポンプおよびホース等の希釈混合を行う適宜の構成要素が格納されていてもよい。また、荷室821から上面板824の上方へ伸び出て、薬剤タンク104の注入口に接続可能な補充用ホースが配管されていてもよい。
上面板824の上面側には、薬剤タンク104から排出される薬剤を誘導する廃液溝840および廃液孔841が形成されている。廃液溝840および廃液孔841は、それぞれ2個ずつ配置されていて、ドローン100が移動体406aの左右どちらを向いて着陸しても、薬剤ノズル103の下方に廃液溝840が位置するようになっている。廃液溝840は、薬剤ノズル103の位置に沿って、移動体406aの長さ方向に沿って略真っ直ぐに形成されている、所定の幅を有する溝であり、乗車席81側に向かってわずかに傾斜している。廃液溝840の乗車席81側の端部には、それぞれ上面板824を貫通して荷室821の内部に薬液を誘導する廃液孔841が形成されている。廃液孔841は、荷室821内であって廃液孔841の略真下に設置されている廃液タンク842に連通している。
薬剤タンク104に薬剤を注入する際、薬剤タンク104内に充満する気体、主に空気を外部に排出するエア抜き動作を行う。このとき、薬剤タンク104の排出口から薬剤が排出する動作が必要になる。また、ドローン100が作業終了後に、薬剤タンク104から薬剤を排出する動作が必要になる。上面板824に廃液溝840および廃液孔841が形成されている構成によれば、ドローン100を上面板824に配置した状態で、薬剤タンク104への薬剤注入および排出を行う際、廃液を廃液タンク842に誘導することができ、安全に薬剤注入および排出を行うことができる。
●ドローンシステムが有するドローン、移動体、および動作決定装置の構成
図13に示すように、ドローンシステム500は、ドローン100、第1移動体406A、第2移動体406B、および動作決定装置40を含む。ドローン100、第1移動体406A、第2移動体406B、および動作決定装置40は、例えば互いにネットワークNWを介して接続されて構成されている。なお、ネットワークNWは、すべて無線であってもよいし、一部又は全部が有線であってもよい。また、具体的な接続関係は同図に限られるものではなく、各構成が直接又は間接的に接続されていればよい。
本実施形態では、ドローンは1個、移動体は2個であるが、それぞれこれ以上であってもよい。また、ドローンと移動体の数は同数であってもよいし、個数が異なっていてもよい。複数のドローンは、複数の移動体406A、406Bのいずれでも離着陸可能であり、資源の補充が可能である。なお、資源の補充とは、バッテリ502の補充および薬剤の補充を含む概念である。
ドローン100は、飛行制御部21、搭載資源取得部22およびバッテリ502を備える。
飛行制御部21は、ドローン100が有するモータ102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラ501の機能によって実現される。
搭載資源取得部22は、ドローン100に搭載されている資源の量、すなわちバッテリ502の蓄電量および薬剤量を取得する機能部である。搭載資源取得部22は、蓄電量取得部221および薬剤量取得部222を備える。
蓄電量取得部221は、ドローン100に搭載されているバッテリ502の蓄電量を取得する機能部である。バッテリ502の蓄電量は、資源の補充なしにドローン100を動作可能なエネルギー量を指すものとする。バッテリ502は、一次電池、二次電池、キャパシタ又は燃料電池等どのような形式のエネルギー供給機構であってもよい。
蓄電量取得部221はバッテリ502の蓄電量を計測する別の構成から情報を取得してもよいし、蓄電量取得部221自身がバッテリ502の蓄電量を計測してもよい。
薬剤量取得部222は、薬剤タンク104における薬剤の現在の貯留量を推定する機能部である。薬剤量取得部222は、重量測定部211aにより測定されるドローン100の重量から貯留量を推定してもよい。また、薬剤量取得部222は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。薬剤量取得部222は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて貯留量を推定してもよい。ドローン100が作業中の場合は、薬剤量取得部222は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、貯留量を推定してもよい。
第1移動体406Aは、荷室821a、収容資源取得部31a、着陸検知部32aおよび補充部33aを備える。第2移動体406Bは、荷室821b、収容資源取得部31b、着陸検知部32bおよび補充部33bを備える。第1移動体406Aと第2移動体406Bの構成は略同一である。荷室821aおよび821bは、前述した荷室821の構成と同一である。
収容資源取得部31a、31bは、移動体406A、406Bが保有する資源の量を計量する機能部である。資源の量は、充電済みのバッテリ502の個数や薬剤量を含む。また、資源の量は、バッテリ502を充電する設備の充電余力であってもよい。ドローン100a、100bが燃料電池で駆動する構成の場合は、ドローン100a、100bに貯留可能な燃料ガス、例えば水素ガスの量であってもよい。移動体406A、406Bに準備されている資源の量は、使用者402による手入力によって取得されてもよいし、自動で取得する構成であってもよい。自動で取得する構成の例としては、薬剤量を取得するために荷室821の所定範囲の重量を計測する構成を有していてもよい。また、充電済みのバッテリ502の個数を取得するために、荷室821の所定範囲の重量に加えて、バッテリ502の蓄電量を測定する構成を有していてもよい。
着陸検知部32a、32bは、移動体406A、406Bにドローン100が着陸しているか否かを検知する機能部である。着陸検知部32a、32bは、例えば足受部826に搭載されているタッチスイッチや静電容量センサ等、ドローン100の足107-1乃至107-4を検出する構成により、ドローン100が移動体406A、406Bに着陸しているか否かを検知する。着陸検知部32a、32bは、ドローンシステム500内にドローン100が複数ある場合は、足107-1乃至107-4からドローン100の固有情報を取得することで、いずれのドローン100が着陸しているかを識別可能であってもよい。また、着陸検知部32a、32bは、RTK-GPS等により各ドローン100の位置情報を取得することで、着陸しているドローン100を識別してもよい。
補充部33a、33bは、移動体406A、406Bに着陸しているドローン100に資源を補充する機能部である。補充部33a、33bは、前述したように、移動体406A、406Bに着陸しているドローン100に搭載されているバッテリ502に充電することができる。また、補充部33a、33bは、薬剤タンク104に貯留される薬剤の補充を行うことができる。
動作決定装置40は、ドローン100および移動体406aの作業計画を決定する機能部である。動作決定装置40は、資源補充決定部41、通知部42、優先順位切替部43、充電計画部44、および着陸位置決定部45を備える。
資源補充決定部41は、それぞれの移動体406A、406Bに収容されている資源の量が所定の条件を満たしているか否かを判定し、当該移動体406A、406Bに資源を補充することを決定する機能部である。
資源補充決定部41は、移動体406A、406Bに収容されている資源の量を取得する移動体資源取得部411を備える。移動体資源取得部411は、ドローンシステム500に含まれる複数の移動体406A、406Bごとに、収容されている資源の量を取得する。移動体資源取得部411は、移動体406A、406Bがそれぞれ有する収容資源取得部31a、31bを介して、資源の量を取得してもよい。
資源補充決定部41は、例えば、移動体406A、406Bに収容されている資源の量が所定未満であるとき、当該移動体406A、406Bに資源を補充することを決定する。本実施形態のように、ドローンシステム500に移動体406aが複数含まれている場合は、移動体406A、406Bごとに資源の補充要否を決定する。
また、資源補充決定部41は、ドローン100の作業計画を参照して、移動体406A、406Bに収容されている資源の量が、作業計画においてドローン100に補充する計画値を下回っているとき、移動体406A、406Bに資源を補充することを決定してもよい。本実施形態のように、ドローンシステム500に移動体406aが複数含まれている場合は、作業計画に予定されている移動体406aごとの補充の計画を参照し、移動体406A、406Bに資源を補充することを決定してもよい。
資源補充決定部41は、資源の補充が決定される移動体406A、406Bを、資源を補充可能な位置に移動させることを決定する。資源を補充可能な位置とは、例えば移動体406A、406Bの自動運転許可エリア90の端部である。自動運転許可エリア90の端部は、自動運転許可エリア90と自動運転不許可エリア91との境界部全てが含まれる。使用者402は別途の倉庫から資源を運搬し、自動運転許可エリア90の外周近傍まで資源を運搬する。移動体406A、406Bが資源補充のために自動運転許可エリア90の端部まで移動する構成によれば、使用者402は自動運転許可エリア90の外部から移動体406A、406Bにアプローチして、移動体406A、406Bに資源を補充することができる。使用者402含め人、車等の侵入者が自動運転許可エリア90に侵入すると、移動体406A、406B又はドローン100に衝突するおそれがある。また、自動運転許可エリア90に侵入者が侵入するとき、移動体406A、406B又はドローン100の動作を停止させる構成を有している場合がある。本構成によれば、使用者402は自動運転許可エリア90に侵入せずに資源を補充できるので、安全であり、移動体406A、406B又はドローン100の動作を継続することができる。
資源補充決定部41は、通知部42を介して、移動体406A、406Bに資源の補充が必要であるとき、ドローンシステム500内の各種構成、例えば操作器401や小型携帯端末401aにその旨を通知する。通知部42は、資源補充が必要である旨の情報をドローンシステム500内の各種構成に送信する機能部である。
同通知を受信した操作器401や小型携帯端末401aは、使用者402に通知し、移動体406A、406Bの在庫の補充を促す。このとき、操作器401や小型携帯端末401aは、作業計画を参照して、補充すべき資源量を移動体406A、406Bごとに表示してもよい。また、操作器401や小型携帯端末401aは、作業計画を参照して、ドローン100a、100bが補充のために帰還する予想時刻、又は現時刻を基準として帰還するまでの所要時間を算出し、資源の補充がいつまでに必要なのかを合わせて表示してもよい。この構成によれば、使用者402が圃場403a、403bから離れて遠方にいる場合であっても、小型携帯端末401aを通じて在庫の補充に関する通知を受け取ることができる。本システムにおいては、ドローン100a、100b、および移動体406A、406Bがそれぞれ自動で動作するため、使用者402による作業は、移動体406A,406Bへの在庫補充にほぼ限られる。そのため、遠隔にいる使用者402に在庫補充の情報を通知可能とすることにより、使用者402は常時圃場403a、403bにいる必要がなくなる。
なお、操作器401及び小型携帯端末401aは、上述の情報と共に、ドローン100および移動体406aの現在の位置および作業状態、すなわちドローン100が散布中、撮影中、又は準備中であるかの情報、および移動体406aが移動中であるか否かの情報を表示してもよい。また、操作器401及び小型携帯端末401aは、圃場403における作業の進行状況、すなわち作業が進んでいるか使用者402の介入待ちであるかの情報や、作業の完了有無、作業完了率を表示してもよい。
小型携帯端末401aは、操作器401に表示される情報のうち一部の情報のみを表示してもよいし、さらに一部の情報についてのみ音等別途の発報手段により発報してもよい。例えば、小型携帯端末401aには、4406aへの資源の補充が必要な場合や、総作業が完了して片付けが必要な場合など、使用者402の介入が必要な時点の情報、および各時点の予測に関する情報のみ小型携帯端末401aに表示がなされるように構成されていてもよい。また、移動体406aへの資源の補充が必要な時点、総作業が完了した時点、および異常が発生した時点において、使用者402に発報してもよい。
なお、在庫の補充は、充分な資源が保有されている別の移動体から補充してもよいし、別途の倉庫から補充してもよい。操作器401や小型携帯端末401aは、いずれから資源を補充するかを表示してもよい。別の移動体から補充することで、作業完了後に移動体から倉庫に格納する手間が短縮できる。したがって、別の移動体からの補充を優先的に行うよう決定してもよい。
優先順位切替部43は、動作決定装置40が、総作業時間と総蓄電量のどちらを優先して作業計画を決定するかを切り替える機能部である。使用者402が圃場403近傍にいて作業を監視している場合は、作業が早く終わることが望ましい一方、使用者402が遠隔地にいる場合は、総蓄電量を優先した方が、作業コストが節約できるため、望まれる場合がある。優先順位切替部43は、使用者402からの入力に基づいて優先順位を決定してもよい。また、優先順位切替部43は、使用者402が有する小型携帯端末401aの位置情報に基づいて、使用者402が圃場403の作業を監視しているか否かを判別し、優先順位を切り替え可能に構成されていてもよい。
充電計画部44は、総充電率分の蓄電量をドローン100のバッテリ502に充電するための充電計画を決定する。充電計画は、作業計画の一部であり、ドローン100が移動体406A、406Bに帰還して充電を行うタイミング、充電時間、および充電回数を含む。充電を行うタイミングとは、例えば、充電を行う時刻、又は、ドローン100の離陸時等所定の基準時点から充電を行う時点までの経過時間である。充電時間は、1回の充電ごとに充電を行う時間である。充電回数は、作業計画内において充電を行う回数である。
充電計画部44は、充電率取得部441、必要充電量取得部442および充電率−充電時間記憶部443を備える。
充電率取得部441は、ドローン100に搭載されているバッテリ502の現在の充電率を取得する機能部である。充電率は、SOC(state of charge)とも呼ばれ、バッテリ502が完全充電された状態から放電した電気量を除いた残りの割合であり、残容量ともいう。充電率取得部441は、ドローン100の蓄電量取得部221から蓄電量を取得する。また、充電率取得部441は、移動体406A、406Bに着陸しているドローン100のバッテリ502の蓄電量を計測する構成であってもよい。
必要充電量取得部442は、ドローン100の作業計画の完遂に必要な総充電量を取得する機能部である。作業計画は、1又は複数の圃場を飛行して行う作業、例えば薬剤散布や監視作業である。作業計画は、ドローン100が移動体406A、406Bに帰還してバッテリ502を充電し、圃場への作業を再開する動作を含む。総充電量は、充電のために帰還するのに要するバッテリ502の蓄電量も含む。総充電量は、作業計画中に充電する動作を含むため、ドローン100が保持可能なエネルギーを超えていてもよく、すなわち充電率に換算して100%を超える値であってもよい。作業計画は、使用者402又は別途の構成により指定される作業エリアの情報に基づいて、自動又は手動で策定される。
充電率−充電時間記憶部443は、バッテリ502の充電率と、当該充電率を有するドローンに所定量を充電するための所要時間が対応付けられて記憶されている機能部である。
図14に示すように、バッテリ502の充電率と所要時間とは非線形である。充電率が小さい場合、短時間の充電で充電率を大きく上昇させることができる。充電率が大きい場合、充電率を上昇させるのにより多くの時間が必要になる。同図の例では、充電率が0%において充電を開始すると、初めの30分で充電率は80%に達する。一方、充電率80%から100%まで充電するためには、さらに150分を要する。
充電率−充電時間記憶部443は、図14に示されるような充電率と充電時間との対応関係を記憶している。充電率−充電時間記憶部443は、充電率と充電時間との複数の組み合わせをテーブルとして記憶していてもよいし、数式で保持していてもよい。充電率−充電時間記憶部443は、バッテリ502の個体ごとに、異なる対応関係を記憶してもよい。バッテリ502は使用回数等により劣化するため、バッテリ502ごとに対応関係が異なる場合があるためである。充電率−充電時間記憶部443は、バッテリ502に記憶されている情報、例えば使用履歴に基づいて、計算に使用する対応関係を呼び出すように構成されていてもよい。また、充電率−充電時間記憶部443が、当該対応関係を算出して記憶するように構成されていてもよい。充電率−充電時間記憶部443は、温度等の他の要素に応じて対応関係を補正してもよい。
充電計画部44は、バッテリ502の蓄電量が所定未満になる時点を予想して、ドローン100を帰還させる時点を決定してもよい。また、充電計画部44は、充電を終了して作業を再開する条件を判別可能に構成されていてもよい。例えば、充電計画部44は、充電率が所定の条件になるとき充電を終了して圃場内作業を再開するように構成されていてもよい。さらに言えば、充電計画部44は、充電率が所定値以上になるとき充電を終了するよう構成されていてもよい。当該所定値は、例えば70%未満であってもよいし、50%未満であってもよい。さらに、充電計画部44は、充電中における蓄電量又は充電率を随時計測し、充電速度を算出した上で、充電速度が所定以下になるとき充電を終了するよう構成されていてもよい。充電率が上昇するにつれて充電速度が下がるため、所定以上の充電速度が発揮される範囲において充電を行うことで、充電効率を向上させることができる。
図15に示すように、バッテリ502の充電率と蓄電量は、略線形である。蓄電量は、ドローン100の動作にかかるエネルギーに相当し、バッテリ502の充電率には関わらない。すなわち、例えば、充電率が100%のバッテリ502を90%になるまで放電させて発生するエネルギー量と、充電率が20%のバッテリ502を10%になるまで放電させて発生するエネルギー量とは略同一である。一方で、図14に示すように、充電率に応じて充電時間が異なり、充電率が低い範囲の方が同蓄電量の充電が速い。そこで、充電時間に対する充電率の上昇の割合、すなわち充電速度の速い範囲で繰り返し充電しながら作業をするようドローン100の作業計画を決定することで、充電に要する時間を短縮し、作業効率を向上させることができる。
充電計画部44は、ドローン100への充電の所要時間(充電時間)、当該充電により得られる充電率、および充電率に基づく飛行可能時間に基づいて、充電のための作業中断時間を含む総作業時間が最も短くなる充電計画を決定する。より具体的には、充電計画部44は、充電時間および飛行可能時間の合計が最短となるような充電計画を決定する。充電計画部44は、充電率が満充電より低い所定範囲で使用されるように充電計画を決定してもよい。
図16の例を用いて、総作業の開始から終了までの流れについて説明する。図16(a)に示すように、総作業時間は、移動体−圃場間移動時間60a乃至60hと、圃場内作業時間61a乃至61dと、充電時間62a乃至62cと、の総和である。まず、ドローン100は、移動体−圃場間移動時間60aをかけて、移動体406aから圃場403への移動を行う。ドローン100が圃場403に到達すると、圃場内作業時間61a乃至61dにおいて、圃場内作業を行う。ドローン100は、圃場内作業を適宜中断して、移動体―圃場間移動時間60b、60d、60fをかけて移動体406aに帰還し、充電時間62a乃至62cだけ充電を行う。所定の充電の後、ドローン100は、移動体―圃場間移動時間60c、60e、60gで圃場403に戻り、圃場内作業を再開する。圃場内作業が完了すると、移動体―圃場間移動時間60hにより移動体406aに帰還し、総作業を終了する。なお、本実施例においては充電回数は3回であるが、本願発明の技術的範囲はこれに限られない。なお、複数回の充電回数を設定する構成によれば、ドローン100に充電可能なエネルギーが少量である場合にも、自動で充電を繰り返し、総作業時間が長時間にわたる作業が可能である。ドローン100に搭載されるバッテリ502等のエネルギー保持機能部を小型かつ軽量に構成することができる。また、複数回の充電を行う構成であるので、充電速度の速い範囲で充電を繰り返すことは、総作業時間の短縮に一層効果的である。
図16(b)に示すように、圃場内作業の作業完了率は、総作業の開始時点においては0%である。作業完了率は、圃場内作業時間61a乃至61dにおいて上昇し、総作業時間のうち圃場内作業時間61a乃至61dを除いた作業中断時間63a乃至63cにおいては、変化しない。作業完了率は、圃場内作業時間61dの終点において100%に達する。
図16(c)に示すように、ドローン100に搭載されているバッテリ502の充電率は、充電時間62a乃至62cを除いた飛行時間64a乃至64dにおいて下降し、充電時間62a乃至62cにおいては上昇する。なお、充電時間62a乃至62cにおける充電率の上昇の様子は、図14に対応しており、非線形である。例えば、約30分間充電を行うことで、ドローン100は約10分間飛行することができる。
作業開始時の蓄電量による飛行時間64aに加えて、1回の作業中断時間63aと、当該作業中断時間により得られる飛行時間64bの和を、充電回数分積算し、開始時および終了時の移動体−圃場間移動時間60a,60hを足すことで、総作業時間が算出できる。充電計画部44は、総作業時間が最小となる作業中断時の充電率および1回の作業中断時間を決定することにより、充電計画を決定する。
総作業のうち最後の充電における充電時間62cは、他の充電時間62a、62bとは異なっていてもよい。特に、最後の充電時間62cは、他の充電時間62a、62bより短くてもよい。総作業中の最後の圃場内作業時間61dは、ほとんどの場合、他の圃場内作業時間61a乃至61cに比べて短いため、作業を完了させるのに要する蓄電量だけ充電すれば足りるためである。このように構成することにより、充電時間62cを短縮し、総作業時間を短くすることができる。
着陸位置決定部45は、ドローン100a、100bの着陸位置を決定する機能部である。例えば、着陸位置決定部45は、それぞれ複数の移動体406A、406Bのいずれに着陸させるかを決定する機能部である。1個のドローンシステム500が複数の移動体406A、406Bを有する構成においては、圃場403a、403b周辺に複数の移動体406A、406Bが存在している。着陸位置決定部45によれば、ドローン100は離陸した移動体406A、406Bに着陸する必要はなく、より条件に合致する移動体406A、406Bを判別して着陸することができる。また、着陸位置決定部45は、移動体406A、406B上に限らず、地面にドローン100a、100bを着陸させることを決定してもよい。例えば、後述するように、複数のドローンが同じ移動体406A、406Bに着陸したい場合に、一方を地面に着陸させて待機する決定を行うことも可能である。
着陸位置決定部45は、蓄電量取得部451および移動情報取得部452を備える。
蓄電量取得部451は、バッテリ502の蓄電量を取得する機能部である。
移動情報取得部452は、移動体406A、406Bの位置と、移動体406A、406Bが、ドローン100の着陸予定位置に到達するまでの到達所要時間を含む、移動体406A、406Bの移動情報を取得する。また、移動情報は、移動体406A、406Bそれぞれに収容されている資源の量を含んでいてもよい。さらに、移動情報は、移動体406A、406Bにドローン100が着陸しているか否かの情報を含んでいてもよい。
着陸位置決定部45は、複数の移動体406A、406Bのうち、ドローン100に補充が必要な資源量を保有している移動体406A、406Bにドローン100a、100bを着陸させることを決定してもよい。また、着陸位置決定部46は、ドローン100a、100bに補充が必要な資源量を保有している移動体406A、406Bのうち、最も保有量の少ない移動体にドローン100a、100bを着陸させることを決定してもよい。資源は、バッテリ502の保有量であってもよいし、薬剤の保有量であってもよい。ドローン100が着陸時に補充する資源の種類に応じて、バッテリ502および薬剤のどちらの保有量に基づいて移動体406A、406Bを選別するかを決定するようになっていてもよい。この構成によれば、特定の移動体にのみ資源を補充すれば足りるため、移動体406A、406Bの在庫の移動距離および在庫を補充する回数を軽減できる。
着陸位置決定部45は、複数の移動体406A、406Bのうち、他のドローン100が着陸していない移動体にドローン100を着陸させることを決定してもよい。一方のドローン100が着陸している移動体には、他方のドローン100を着陸させることができない。したがって、この構成によれば、複数のドローン100a、100bが干渉することなく同時に移動体406A、406Bに着陸することができる。すなわち、複数のドローン100a、100bに対する資源の補充が同時に可能になり、総作業時間を短縮し、効率良く作業を行うことができる。
着陸位置決定部45は、複数のドローン100a、100bが同じ移動体406Aに着陸を予定していて、一方のドローン100aが移動体406Aへの帰還時において移動体406Aに他のドローン100bが着陸している場合は、当該ドローン100bを、地面に着陸させて待機し、他のドローン100bが離陸した後に移動体406Aに着陸するよう決定してもよい。このとき、ドローン100bは、待機中および移動体406Aへの着陸に要する蓄電量を確保した状態で、着陸して待機するように構成されていてもよい。
なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。また、移動体は、車両に限らず適宜の構成であってもよい。
(本願発明による技術的に顕著な効果)
本発明にかかるドローンシステムにおいては、ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンのバッテリに効率よく充電することができる。

Claims (16)

  1. ドローンと、
    前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
    前記ドローンの動作を決定する動作決定装置と、
    を少なくとも含むドローンシステムであって、
    前記動作決定装置は、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、
    前記作業中に1回又は複数回の充電を行い、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
    を備える、
    ドローンシステム。
  2. 前記ドローンへの充電時間と、前記充電時間の充電により得られるエネルギーによる前記ドローンの飛行可能時間と、の合計が最短となるような前記充電計画を決定する、
    請求項1記載のドローンシステム。
  3. 前記充電計画部は、前記ドローンの充電率が満充電より低い所定範囲で使用されるように充電計画を決定する、
    請求項1又は2記載のドローンシステム。
  4. 前記充電計画部は、前記充電計画において複数回の充電時間を設定する、
    請求項1乃至3のいずれかに記載のドローンシステム。
  5. 前記充電計画部は、充電中における充電速度を算出し、前記充電速度が所定以下になるとき充電を終了する、
    請求項1乃至4のいずれかに記載のドローンシステム。
  6. 前記ドローンの充電率と、前記充電率を有する前記ドローンに所定量を充電するための所要時間との対応関係を記憶する充電率―充電時間記憶部をさらに備え、
    前記充電計画部は、前記対応関係に基づいて、前記充電計画を決定する、
    請求項1乃至5のいずれかに記載のドローンシステム。
  7. 前記ドローンシステムは複数の前記ドローンを含み、第1の前記ドローンが前記補充部により充電中のとき、第2の前記ドローンは、地面に着陸して待機し、前記第1のドローンが充電を終了した後に前記補充部による充電を行う、
    請求項1乃至6のいずれかに記載のドローンシステム。
  8. 前記第2のドローンは、待機している地点から前記補充部における充電可能な地点まで飛行可能な蓄電量を少なくとも保持して前記地点に着陸する、
    請求項7記載のドローンシステム。
  9. 前記補充部は、前記ドローンが着陸可能であり、前記ドローンと共に移動可能な移動体に配置されている、
    請求項1乃至8のいずれかに記載のドローンシステム。
  10. 前記ドローンシステムは複数の前記ドローンを含み、前記ドローンが前記移動体への帰還時において前記移動体に他の前記ドローンが着陸しているとき、当該前記ドローンは、地面に着陸して待機し、前記他のドローンが離陸した後に前記移動体に着陸する、
    請求項9記載のドローンシステム。
  11. 前記ドローンおよび前記補充部の状態を使用者に通知可能な携帯端末をさらに含み、
    前記携帯端末は、前記ドローンの位置および状態、前記補充部の位置および状態、ならびに前記ドローンシステムの作業が終了する予想終了時刻の少なくともいずれかを前記使用者に通知する、
    請求項1乃至10のいずれかに記載のドローンシステム。
  12. ドローンと、
    前記ドローンのバッテリを充電可能な補充部と、
    前記ドローンの動作を決定する動作決定装置と、
    を少なくとも含むドローンシステムの制御方法であって、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得するステップと、
    前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定するステップと、
    を含む、ドローンシステムの制御方法。
  13. ドローンと、
    前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
    前記ドローンの動作を決定する動作決定装置と、
    を少なくとも含むドローンシステムの制御プログラムであって、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する命令と、
    前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する命令と、
    を含む、ドローンシステム制御プログラム。
  14. ドローンの位置および状態を把握し、前記ドローンの動作を決定する動作決定装置であって、
    前記動作決定装置は、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、
    前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
    を備える、
    動作決定装置。
  15. ドローンと、
    前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
    前記ドローンの動作を決定する動作決定装置と、
    を少なくとも含むドローンシステムに含まれるドローンであって、
    前記動作決定装置は、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、
    前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
    を備え、
    前記ドローンは、前記充電計画に基づいて前記補充部から充電される、
    ドローン。
  16. ドローンと、
    前記ドローンに、飛行に必要なエネルギーを補充可能な補充部を備える移動体と、
    前記ドローンの動作を決定する動作決定装置と、
    を少なくとも含むドローンシステムに含まれる移動体であって、
    前記動作決定装置は、
    前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、
    前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
    を備え、
    前記移動体は、前記充電計画に基づいて前記ドローンを充電する、
    移動体。

JP2020568142A 2019-01-23 2020-01-20 ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム Active JP7169009B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019009213 2019-01-23
JP2019009213 2019-01-23
PCT/JP2020/001776 WO2020153316A1 (ja) 2019-01-23 2020-01-20 ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Publications (2)

Publication Number Publication Date
JPWO2020153316A1 true JPWO2020153316A1 (ja) 2021-10-21
JP7169009B2 JP7169009B2 (ja) 2022-11-10

Family

ID=71735608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020568142A Active JP7169009B2 (ja) 2019-01-23 2020-01-20 ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム

Country Status (2)

Country Link
JP (1) JP7169009B2 (ja)
WO (1) WO2020153316A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965468B1 (ja) * 2021-01-26 2021-11-10 Kddi株式会社 情報処理装置及び情報処理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127303A (ja) * 1987-11-12 1989-05-19 Bridgestone Corp 樹脂成型用インサート部品の型内支持方法
JPH04127303A (ja) * 1990-09-19 1992-04-28 Matsushita Electric Ind Co Ltd 無人搬送装置の制御方法
JP2001120151A (ja) * 1999-10-27 2001-05-08 Nec Corp Gpsを用いたラジコンヘリコプタによる自動農薬散布装置
JP2011146331A (ja) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd 電池システム
JP2013150440A (ja) * 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd 充電装置および電源装置
JP2015207149A (ja) * 2014-04-21 2015-11-19 薫 渡部 監視システム及び監視方法
US20160307448A1 (en) * 2013-03-24 2016-10-20 Bee Robotics Corporation Hybrid airship-drone farm robot system for crop dusting, planting, fertilizing and other field jobs
JP2017037369A (ja) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 小型飛行システム
WO2017130080A1 (ja) * 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 電力制御システム
JP2017163265A (ja) * 2016-03-08 2017-09-14 株式会社リコー 操縦支援システム、情報処理装置およびプログラム
JP2017527479A (ja) * 2014-08-08 2017-09-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd エネルギー提供ステーション

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127303A (ja) * 1987-11-12 1989-05-19 Bridgestone Corp 樹脂成型用インサート部品の型内支持方法
JPH04127303A (ja) * 1990-09-19 1992-04-28 Matsushita Electric Ind Co Ltd 無人搬送装置の制御方法
JP2001120151A (ja) * 1999-10-27 2001-05-08 Nec Corp Gpsを用いたラジコンヘリコプタによる自動農薬散布装置
JP2011146331A (ja) * 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd 電池システム
JP2013150440A (ja) * 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd 充電装置および電源装置
US20160307448A1 (en) * 2013-03-24 2016-10-20 Bee Robotics Corporation Hybrid airship-drone farm robot system for crop dusting, planting, fertilizing and other field jobs
JP2015207149A (ja) * 2014-04-21 2015-11-19 薫 渡部 監視システム及び監視方法
JP2017527479A (ja) * 2014-08-08 2017-09-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd エネルギー提供ステーション
JP2017037369A (ja) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 小型飛行システム
WO2017130080A1 (ja) * 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 電力制御システム
JP2017163265A (ja) * 2016-03-08 2017-09-14 株式会社リコー 操縦支援システム、情報処理装置およびプログラム

Also Published As

Publication number Publication date
JP7169009B2 (ja) 2022-11-10
WO2020153316A1 (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
CN113226025B (zh) 无人机系统
WO2020153372A1 (ja) ドローンシステム、ドローンシステムの制御方法
JP7008997B2 (ja) ドローンシステム、ドローン、移動体、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
CN113165753B (zh) 无人机系统、无人机、移动体、无人机系统的控制方法和计算机可读取存储介质
WO2020116442A1 (ja) 移動体
JP7242077B2 (ja) ドローンシステム、ドローンシステムの制御方法、ドローンシステム制御プログラム、および管制装置
WO2020162584A1 (ja) ドローンシステム、ドローン、管制装置、およびドローンシステムの制御方法
WO2020153370A1 (ja) ドローンシステム、ドローンシステムの制御方法および動作決定装置
JP6813161B2 (ja) ドローンシステム、ドローンシステムの制御方法
WO2020153369A1 (ja) ドローンシステム、ドローンシステムの制御方法、および動作決定装置
JP2020191059A (ja) ドローンシステム
WO2020116443A1 (ja) 移動体
JPWO2020149275A1 (ja) ドローンシステム、ドローン、移動体、区画部材、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP7169009B2 (ja) ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
JP7093126B2 (ja) ドローンシステム
WO2020116496A1 (ja) ドローンシステム
WO2020116494A1 (ja) ドローンシステム
WO2020116341A1 (ja) ドローンシステム
JP7169010B2 (ja) ドローンシステム、ドローン、管制装置、およびドローンシステムの制御方法
JP7184385B2 (ja) ドローンシステム、ドローン、管制装置、およびドローンシステムの制御方法
WO2020153368A1 (ja) ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2020116495A1 (ja) ドローンシステム
WO2020116396A1 (ja) ドローンシステムおよびドローン
JP2022036355A (ja) ドローンシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221021

R150 Certificate of patent or registration of utility model

Ref document number: 7169009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150