JPWO2020122168A1 - Aquaculture equipment, purification equipment, purification methods and moldings - Google Patents

Aquaculture equipment, purification equipment, purification methods and moldings Download PDF

Info

Publication number
JPWO2020122168A1
JPWO2020122168A1 JP2020559308A JP2020559308A JPWO2020122168A1 JP WO2020122168 A1 JPWO2020122168 A1 JP WO2020122168A1 JP 2020559308 A JP2020559308 A JP 2020559308A JP 2020559308 A JP2020559308 A JP 2020559308A JP WO2020122168 A1 JPWO2020122168 A1 JP WO2020122168A1
Authority
JP
Japan
Prior art keywords
molded body
wires
molded product
thermoplastic resin
aquaculture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020559308A
Other languages
Japanese (ja)
Inventor
朋樹 川岸
康治 森
磨理 原
宏之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2020122168A1 publication Critical patent/JPWO2020122168A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

水生生物を養殖する装置において、生成するアンモニアを効率よく除去するための方法を提供することを課題とする。水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える水生生物を養殖するための水生生物養殖装置であって、前記浄化槽は、連通孔を有する成形体、例えば熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で線材同士が融着されている立体網目状成形体を備え、該成形体は、一定割合以上のジカルボン酸由来の構成単位を含み、例えば生分解性を含んでもよい。An object of the present invention is to provide a method for efficiently removing the ammonia produced in an apparatus for culturing aquatic organisms. An aquaculture device for cultivating aquatic organisms, which comprises a culturing tank for cultivating aquatic organisms and a septic tank for purifying water used for cultivating aquatic organisms. A body, for example, a wire rod made of a thermoplastic resin is bent and entangled, and the wire rods are fused to each other at a contact portion where the wire rods come into contact with each other. It may contain the above-mentioned structural units derived from dicarboxylic acid, and may contain, for example, biodegradability.

Description

本発明は、水生生物の養殖に使用される水生生物養殖装置に関する。また、水生生物の養殖に使用される水を浄化する浄化装置及び浄化方法、更にはこれらの装置乃至は方法に好適に用いられ得る立体網目状成形体などの成形体に関する。 The present invention relates to an aquatic animal aquaculture apparatus used for aquatic animal aquaculture. Further, the present invention relates to a purification device and a purification method for purifying water used for aquaculture of aquatic organisms, and further to a molded body such as a three-dimensional network molded body that can be suitably used for these devices or methods.

魚などの養殖を行う際には、養殖されている魚からの排泄物や、えさの残りなどから発生する窒素分がアンモニアとなって養殖している魚などに害を与えるのを防ぐために、川などから新鮮な水を取り入れるなどの方法により、短期間のうちに養殖している水槽等の水を入れ替える必要があった。
しかしながら水の入れ替えには大量の水を使用することが前提になり、例えば海や川が近くに存在しない内陸部などにおいて養殖を行う際には、多量の水の入れ替えは困難である。また水の入替えは、大量の排水を生じさせることを意味し、排水として養殖中に発生した窒素をすべて川や海に流すことは、河川等の富栄養化などの点からも好ましくない。加えて、排水の基準は、近年の環境保護の観点から厳しくなる一方である。
When culturing fish, etc., in order to prevent the excrement from the cultivated fish and the nitrogen content generated from the rest of the food as ammonia, which harms the cultivated fish, etc. It was necessary to replace the water in the aquaculture tanks, etc. in a short period of time by taking in fresh water from rivers and the like.
However, it is premised that a large amount of water is used for water replacement, and it is difficult to replace a large amount of water, for example, when culturing in an inland area where there is no sea or river nearby. In addition, replacement of water means that a large amount of wastewater is generated, and it is not preferable to flush all the nitrogen generated during aquaculture as wastewater to rivers and the sea from the viewpoint of eutrophication of rivers and the like. In addition, wastewater standards are becoming stricter in recent years from the viewpoint of environmental protection.

この問題を解決するため、魚などから発生したアンモニアを、微生物を用いた2段階の反応を用いて排水から除去することが行われている。すなわちアンモニアを硝酸に変える反応と、硝酸を窒素に分解する反応を用いる方法である。窒素まで分解されれば、環境に負担を与えることなく空気中に排出することができる。
この生物を用いた反応、特に後段の硝酸を窒素(N)に還元する反応は、通性嫌気性細菌である脱窒菌を使用して行われていた。
In order to solve this problem, ammonia generated from fish and the like is removed from wastewater by using a two-step reaction using microorganisms. That is, it is a method using a reaction of converting ammonia into nitric acid and a reaction of decomposing nitric acid into nitrogen. If it is decomposed to nitrogen, it can be discharged into the air without burdening the environment.
Reactions using this organism, especially the reaction of reducing nitric acid in the latter stage to nitrogen (N 2 ), were carried out using denitrifying bacteria, which are facultative anaerobic bacteria.

上記微生物を用いた反応において、第1段階のアンモニアを硝酸に変える反応では、そのまま廃棄されるような貝殻などのカルシウム系の基材に自然に住み着く菌が用いられることが多い。一方で、第2段階の硝酸を窒素に変える脱窒反応では、セルロース等の高分子を基材として、ここに住み着く脱窒菌を使用することが多い。 In the reaction using the above microorganisms, in the reaction of converting ammonia to nitric acid in the first stage, bacteria that naturally settle on a calcium-based base material such as shells that are discarded as they are are often used. On the other hand, in the second stage denitrification reaction of converting nitric acid to nitrogen, a polymer such as cellulose is often used as a base material, and denitrifying bacteria that settle there are often used.

第2段階の反応にセルロース等が基材として使用される原理は、「天然高分子や生分解合成樹脂等の生分解性高分子は、従属(有機)栄養細菌の生育、増殖するうえでの基質あるいは水素供与体となり、水中の溶存酸素の極めて少ない状況において窒素酸化物である亜硝酸塩、及び硝酸塩の存在下で窒素酸化物中の酸素を呼吸に利用し、窒素酸化物を還元除去する通性嫌気性微生物である脱窒細菌が生分解性高分子上に群がり着床する」と説明されている(特許文献1参照)。
また、セルロースの他脱窒反応で使用可能な基材として、生分解性樹脂が例示された技術が開示されている(特許文献2及び3参照)。
The principle that cellulose or the like is used as a base material in the second stage reaction is that "biodegradable polymers such as natural polymers and biodegradable synthetic resins are used for the growth and proliferation of dependent (organic) vegetative bacteria. It serves as a substrate or a hydrogen donor, and uses oxygen in nitrogen oxides for breathing in the presence of nitrite, which is a nitrogen oxide, and nitrogen oxides in the presence of extremely low dissolved oxygen in water, and reduces and removes nitrogen oxides. Denitrifying bacteria, which are sexually anaerobic microorganisms, swarm and land on biodegradable polymers "(see Patent Document 1).
Further, a technique in which a biodegradable resin is exemplified as a base material that can be used in a denitrification reaction in addition to cellulose is disclosed (see Patent Documents 2 and 3).

特開平10−85782号公報Japanese Unexamined Patent Publication No. 10-85782 特開2014−24000号公報Japanese Unexamined Patent Publication No. 2014-24000 特開2010−88307号公報Japanese Unexamined Patent Publication No. 2010-88307

特許文献2及び3では、生分解性樹脂を、脱窒菌を担持させる基材として使用しているが、水生生物を養殖する装置において、脱窒菌を担持する基材をどのような形状にすることが好ましいかの検討はされていない。
本発明は、水生生物を養殖する装置において、生成するアンモニアを効率よく除去するための方法を提供する。
In Patent Documents 2 and 3, a biodegradable resin is used as a base material for carrying denitrifying bacteria. However, in an apparatus for culturing aquatic organisms, what shape should the base material carrying denitrifying bacteria have? Has not been examined as to whether it is preferable.
The present invention provides a method for efficiently removing the ammonia produced in an apparatus for culturing aquatic organisms.

本発明者らは、上記課題を解決すべく研究を進め、脱窒菌を担持する基材として、連通孔を有し、特定の熱可塑性樹脂からなる成形体、又は線材からなる立体網目状成形体であって、線材同士が融着されることで一体となった構造を有する成形体、を用いることで、上記課題を解決できることを見出し、本発明に到達した。本発明は、以下のものを含む。 The present inventors have proceeded with research to solve the above problems, and as a base material for carrying denitrifying bacteria, a molded product having communication holes and made of a specific thermoplastic resin, or a three-dimensional network molded product made of a wire rod. Therefore, they have found that the above problems can be solved by using a molded body having a structure in which wire rods are fused to each other, and have reached the present invention. The present invention includes:

(1)水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える水生生物養殖装置であって、
前記浄化槽は、熱可塑性樹脂からなり連通孔を有する成形体を備え、
前記成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、水生生物養殖装置。
(2)前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、(1)に記載の水生生物養殖装置。
(3)水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える、水生生物を養殖するための水生生物養殖装置であって、
前記浄化槽は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体を備え、該立体網目状成形体を形成する該線材が生分解性樹脂を含む、水生生物養殖装置。
(4)前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、(3)に記載の水生生物養殖装置。
(5)前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、(1)から(4)のいずれかに記載の水生生物養殖装置。
(6)水生生物の養殖に使用される水を浄化する浄化装置であって、
アンモニアを硝酸にする酸化手段と、硝酸を脱窒する脱窒手段と、を備え、
前記脱窒手段は、熱可塑性樹脂からなり連通孔を有する成形体に脱窒菌を担持させた脱窒菌担体であって、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、浄化装置。
(7)前記成形体が、線材を含み、線材同士が接触する接触部で、該線材同士が接着されている成形体である、(6)に記載の浄化装置。
(8)水生生物の養殖に使用される水を浄化する浄化装置であって、
アンモニアを硝酸にする酸化手段と、硝酸を脱窒する脱窒手段と、を備え、
前記脱窒手段は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体に、脱窒菌を担持させた脱窒菌担体であって、該線材が生分解性樹脂を含む、浄化装置。
(9)前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、(8)に記載の浄化装置。
(10)前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、(6)から(9)のいずれかに記載の浄化装置。
(11)水生生物の養殖に使用される水を浄化する浄化方法であって、
水に含まれるアンモニアを硝酸に酸化し、その後、硝酸を脱窒することで窒素に還元する工程を含み、
前記硝酸の脱窒は、熱可塑性樹脂からなり連通孔を有する成形体に担持された脱窒菌により行われ、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、浄化方法。
(12)前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、(11)に記載の浄化方法。
(13)水生生物の養殖に使用される水を浄化する浄化方法であって、
水に含まれるアンモニアを硝酸に酸化し、その後、硝酸を脱窒することで窒素に還元する工程を含み、
前記硝酸の脱窒は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体に、担持された脱窒菌により行われ、該線材が生分解性樹脂を含む、浄化方法。
(14)前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、(13)に記載の浄化方法。
(15)前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、(11)から(14)のいずれかに記載の浄化方法。
(16)熱可塑性樹脂からなり連通孔を有する成形体であって、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、成形体。
(17)前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、(16)に記載の成形体。
(18)熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体であって、該線材が生分解性樹脂を含む、成形体。
(19)前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、(18)に記載の成形体。
(20)前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、(16)から(19)のいずれかに記載の成形体。
(1) An aquatic aquaculture apparatus including a aquaculture tank for cultivating aquatic organisms and a septic tank for purifying water used for aquatic organisms.
The septic tank is made of a thermoplastic resin and includes a molded body having communication holes.
The molded product is an aquatic organism culture apparatus containing 50% by mass or more of a dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded product.
(2) The aquaculture apparatus according to (1), wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other.
(3) An aquaculture device for cultivating aquatic organisms, which comprises a culturing tank for cultivating aquatic organisms and a septic tank for purifying water used for culturing aquatic organisms.
The septic tank includes a three-dimensional mesh-like molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wires are in contact with each other. An aquatic organism culture device in which the wire rod forming the body contains a biodegradable resin.
(4) The aquaculture apparatus according to (3), wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid.
(5) The aquaculture apparatus according to any one of (1) to (4), wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less.
(6) A purification device that purifies water used for aquatic aquaculture.
It is equipped with an oxidizing means that converts ammonia into nitric acid and a denitrifying means that denitrifies nitric acid.
The denitrification means is a denitrifying bacterium carrier in which a denitrifying bacterium is carried on a molded body made of a thermoplastic resin and having communication holes, and the molded body is a dicarboxylic acid in the total thermoplastic resin constituting the molded body. A purification device containing 50% by mass or more of the derived building blocks.
(7) The purifying apparatus according to (6), wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other.
(8) A purification device that purifies water used for aquatic aquaculture.
It is equipped with an oxidizing means that converts ammonia into nitric acid and a denitrifying means that denitrifies nitric acid.
The denitrification means carries denitrifying bacteria on a three-dimensional network-like molded body in which wires made of a thermoplastic resin are bent and entangled, and the wires are fused to each other at a contact portion where the wires are in contact with each other. A purification device which is a denitrified bacterium carrier and the wire rod contains a biodegradable resin.
(9) The purification apparatus according to (8), wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid.
(10) The purifying apparatus according to any one of (6) to (9), wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less.
(11) A purification method that purifies water used for aquaculture.
It includes a step of oxidizing ammonia contained in water to nitric acid and then reducing it to nitrogen by denitrifying nitric acid.
The denitrification of nitrate is carried out by denitrifying bacteria carried on a molded body made of a thermoplastic resin and having communication holes, and the molded body is composed of a dicarboxylic acid in the total thermoplastic resin constituting the molded body. A purification method containing 50% by mass or more of units.
(12) The purification method according to (11), wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other.
(13) A purification method that purifies water used for aquatic aquaculture.
It includes a step of oxidizing ammonia contained in water to nitric acid and then reducing it to nitrogen by denitrifying nitric acid.
The denitrification of nitric acid was carried on a three-dimensional network molded body in which the wires made of a thermoplastic resin were bent and entangled, and the wires were fused to each other at a contact portion where the wires were in contact with each other. A purification method performed by denitrifying bacteria, wherein the wire contains a biodegradable resin.
(14) The purification method according to (13), wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid.
(15) The purification method according to any one of (11) to (14), wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less.
(16) A molded product made of a thermoplastic resin and having communication holes, wherein the molded product contains 50% by mass or more of a dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded product. ..
(17) The molded body according to (16), wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other.
(18) A three-dimensional mesh-like molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wire rods come into contact with each other, and the wire rods are biodegraded. A molded product containing a sex resin.
(19) The molded product according to (18), wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid.
(20) The molded product according to any one of (16) to (19), wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less.

水生生物養殖装置の一形態を示す模式図である。It is a schematic diagram which shows one form of an aquaculture aquaculture apparatus. 水生生物養殖装置の別の形態を示す模式図である。It is a schematic diagram which shows another form of an aquaculture apparatus. 水生生物養殖装置の別の形態を示す模式図である。It is a schematic diagram which shows another form of an aquaculture apparatus. 実施例1で用いた立体網目状成形体の模式図である。It is a schematic diagram of the three-dimensional mesh-like molded body used in Example 1. 実施例1で用いた実験装置の模式図である。It is a schematic diagram of the experimental apparatus used in Example 1. 実施例1において、水質を測定した結果を示すグラフである。It is a graph which shows the result of having measured the water quality in Example 1. FIG.

以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents. It can be implemented with various modifications within the scope of the abstract.

本発明の一実施形態は、水生生物を養殖するための水生生物養殖装置であって、水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える。そして浄化槽には、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で線材同士が融着されている立体網目状成形体を備え、該立体網目状成形体を形成する線材が生分解性樹脂を含む。
また、本発明の別の実施形態では、浄化槽には、熱可塑性樹脂からなる連通孔を有する成形体を備え、前記成形体は、成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む。
水生生物養殖装置の具体的な構成例を図1に示す。
One embodiment of the present invention is an aquaculture aquaculture apparatus for cultivating aquatic organisms, and includes a culturing tank for culturing aquatic organisms and a septic tank for purifying water used for culturing aquatic organisms. The septic tank is provided with a three-dimensional mesh-like molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wire rods come into contact with each other. The wire rod forming the body contains a biodegradable resin.
Further, in another embodiment of the present invention, the septic tank is provided with a molded body having communication holes made of a thermoplastic resin, and the molded body is configured to be derived from a dicarboxylic acid in the total thermoplastic resin constituting the molded body. Contains 50% by mass or more of units.
A specific configuration example of the aquaculture apparatus is shown in FIG.

図1は、水生生物養殖装置10の構成を示す模式図である。水生生物養殖装置10は、飼育槽11、ポンプ12、浄化槽13を備える。浄化槽13は、水に含まれるアンモニアを硝酸に酸化する酸化手段である貝殻14、及び硝酸を脱窒することで窒素に還元する、生分解性樹脂からなる立体網目状成形体15を含む。 FIG. 1 is a schematic view showing the configuration of the aquaculture apparatus 10. The aquaculture apparatus 10 includes a breeding tank 11, a pump 12, and a septic tank 13. The septic tank 13 includes a shell 14 which is an oxidizing means for oxidizing ammonia contained in water to nitric acid, and a three-dimensional network molded body 15 made of a biodegradable resin which reduces nitric acid to nitrogen by denitrifying it.

飼育槽11は、水生生物を養殖する水槽である。飼育槽11は、養殖する水性生物の種類、数に応じその大きさ、形状などを適宜設定することができ、水生生物を養殖可能であれば必ずしも水槽である必要はない。
養殖する水生生物は水中に生息する生物であればよく、典型的にはサケ、マス、アユ、イワナなどの淡水魚、カニ、エビなどの甲殻類などがあげられるが、これらに限定されない。養殖には典型的には淡水又は海水を用いる。海水を用いる場合、その塩分濃度は限定されない。
The breeding tank 11 is a water tank for cultivating aquatic organisms. The size and shape of the breeding tank 11 can be appropriately set according to the type and number of aquatic organisms to be cultivated, and the breeding tank 11 does not necessarily have to be a water tank as long as aquatic organisms can be cultivated.
The aquaculture organisms to be cultivated may be any organisms that live in water, and typically include, but are not limited to, freshwater fish such as salmon, trout, sweetfish, and char, and crustaceans such as crabs and shrimp. Freshwater or seawater is typically used for aquaculture. When seawater is used, its salinity is not limited.

飼育槽11の水中の酸素濃度(DO)は5mg/L以上であり、好ましくは6mg/L以上であり、より好ましくは7mg/L以上であり、さら好ましくは8mg/L以上であり、特に好ましくは9mg/L以上であり、最も好ましくは10mg/L以上である。水中の酸素濃度(DO)が下限値より高ければ、水生生物の棲息に適した環境となる。
飼育槽11の水中のアンモニア態窒素の濃度は、10mg/L以下、より好ましくは8mg/L以下、さらに好ましく6mg/L以下、特に好ましくは4mg/L以下である。アンモニア態窒素濃度が上限値より高いと水生生物に対して致命的な影響を及ぼす。アンモニア態窒素濃度が上限値以下であれば、水生生物が棲息するのに適した環境となる。
The oxygen concentration (DO) in the water of the breeding tank 11 is 5 mg / L or more, preferably 6 mg / L or more, more preferably 7 mg / L or more, still more preferably 8 mg / L or more, and particularly preferably. Is 9 mg / L or more, and most preferably 10 mg / L or more. If the oxygen concentration (DO) in the water is higher than the lower limit, the environment is suitable for the habitat of aquatic organisms.
The concentration of ammonia nitrogen in the water of the breeding tank 11 is 10 mg / L or less, more preferably 8 mg / L or less, still more preferably 6 mg / L or less, and particularly preferably 4 mg / L or less. If the concentration of ammonia nitrogen is higher than the upper limit, it will have a fatal effect on aquatic organisms. If the ammonia nitrogen concentration is below the upper limit, the environment is suitable for aquatic organisms to live in.

ポンプ12は、飼育槽11の水を浄化槽13に移送する手段である。飼育槽11の水を浄化槽13に移送することができれば、移送手段としてポンプに限定されるものではなく、他の移送手段に代替されてもよい。ポンプ12による水の移送速度は特段限定されないが、移送速度を遅くすることで、細菌に酸素を供給しにくくなることから、ある程度の移送速度を有することが好ましい。1日に1度は飼育槽11の水が循環する程度であってよく、1日に2度以上、例えば12時間に1度、10時間に1度、6時間に1度、4時間に1度、2時間に1度、1時間に1度、30分に1度、10分に1度、飼育槽11の水が循環する程度であってよい。 The pump 12 is a means for transferring the water in the breeding tank 11 to the septic tank 13. As long as the water in the breeding tank 11 can be transferred to the septic tank 13, the transfer means is not limited to the pump, and may be replaced by other transfer means. The transfer rate of water by the pump 12 is not particularly limited, but it is preferable to have a certain transfer rate because it becomes difficult to supply oxygen to bacteria by slowing the transfer rate. The water in the breeding tank 11 may circulate once a day, and more than twice a day, for example, once every 12 hours, once every 10 hours, once every 6 hours, once every 4 hours. The water in the breeding tank 11 may circulate once every two hours, once every hour, once every 30 minutes, and once every 10 minutes.

浄化槽13は、水に含まれるアンモニアを硝酸に酸化する酸化手段である貝殻14、及び硝酸を脱窒することで窒素に還元するPBSA樹脂の立体網目状成形体15を含む。
貝殻14は、飼育槽11から移送されてきた水中のアンモニアを硝酸に変換させるための菌を生育させる基材である。アンモニアを硝酸に変換させるための菌は、当該機能を有する既に知られた菌を適宜用いることができる。なお、貝殻14は、水に含まれるアンモニアを硝酸に酸化する酸化手段であり、同様の酸化機能を有するものであれば、他の物で代替することができる。例えば、各種酸化剤を添加してもよい。アンモニアを硝酸に変換させるための菌を担持する基材としては、カルシウム系基材などのアルカリ土類金属を含有する基材であってよく、より具体的には、廃棄物の利用活用の観点から、貝殻、珊瑚砂、ウニ殻などを用いてよい。
アンモニアを硝酸に酸化する酸化手段としては、貝殻以外にポリエチレン、ポリプロピレンなどを基材とした、ペレット型、リング型、スポンジ型、繊維型、モール型、ネット型のいわゆる微生物担体あるいは硝化担体と言われる担体を用いてよい。ポリエチレングリコールからなる担体に微生物をあらかじめ封入した、いわゆる固定化担体を用いてもよい。
貝殻や担体が浄化槽内で流動する、いわゆる流動床としてもよく、貝殻や担体が固定されているいわゆる固定床としてもよい。
The septic tank 13 includes a shell 14 which is an oxidizing means for oxidizing ammonia contained in water to nitric acid, and a three-dimensional network molded body 15 of PBSA resin which reduces nitric acid to nitrogen by denitrifying it.
The shell 14 is a base material for growing bacteria for converting ammonia in water transferred from the breeding tank 11 into nitric acid. As the bacteria for converting ammonia into nitric acid, already known bacteria having the above-mentioned function can be appropriately used. The shell 14 is an oxidizing means for oxidizing ammonia contained in water to nitric acid, and can be replaced with another substance as long as it has a similar oxidizing function. For example, various oxidizing agents may be added. The base material that carries the bacteria for converting ammonia to nitric acid may be a base material containing an alkaline earth metal such as a calcium-based base material, and more specifically, from the viewpoint of utilization and utilization of waste. Therefore, shells, coral sand, sea urchin shells, etc. may be used.
As an oxidizing means for oxidizing ammonia to nitric acid, it is said to be a pellet-type, ring-type, sponge-type, fiber-type, moor-type, or net-type so-called microbial carrier or nitrification carrier based on polyethylene, polypropylene, etc. in addition to shells. You may use the carrier to be used. A so-called immobilized carrier in which microorganisms are pre-sealed in a carrier made of polyethylene glycol may be used.
It may be a so-called fluidized bed in which shells and carriers flow in a septic tank, or it may be a so-called fixed bed in which shells and carriers are fixed.

貝殻14は、そのまま浄化槽13に配置してもよく、粗粉砕した後に配置してもよく、微粉砕した後に配置してもよい。
なお、アンモニアが硝酸に変換すると、硝酸により浄化槽13内の水はpHが低くなる。アンモニアを硝酸に変換させるための菌を生育させるための基材として、アルカリ土類金属を含有する基材を用いることで、pHを調整し硝化菌の育成を促すことができる。
The shell 14 may be arranged in the septic tank 13 as it is, may be arranged after coarse pulverization, or may be arranged after fine pulverization.
When ammonia is converted to nitric acid, the pH of the water in the septic tank 13 is lowered by the nitric acid. By using a base material containing an alkaline earth metal as a base material for growing bacteria for converting ammonia into nitric acid, it is possible to adjust the pH and promote the growth of nitrifying bacteria.

立体網目状成形体15は、連通孔を有する成形体の一例であり、連通孔とは、成形体中を流体が流れることができる空間である。連通孔を有する成形体として、例えば、線状の樹脂が屈曲して絡まり合った網目状の成形体、ペレットを融着して内部に空間を形成した成形体、線状の樹脂を編んで作った成形体、不織布を用いた成形体、樹脂を発泡させることで空間を形成した成形体等をあげることができる。連通孔には、硝酸を窒素とするための菌を生育させる。
連通孔を有する成形体の一例である立体網目状成形体15は、硝酸を脱窒することで窒素に還元するための菌を生育する基材であり、生分解性樹脂を含んでいてもよい。硝酸を窒素とするための菌は、当該機能を有する既に知られた菌を適宜用いることができる。
生分解性樹脂としては、一般に、PLA(polylactic acid)系、PBS(polybutylene succinate)系、PCL(poly caprolactone)系、PHB(poly hydroxybutyrate)系のものが知られている。本実施形態においては、生分解性樹脂として、ジカルボン酸由来の構成単位を含む合成生分解性樹脂を用いることが好ましい。かかる合成生分解性樹脂は、ジオール由来の構成単位を含んでいてもよい。
The three-dimensional network-shaped molded body 15 is an example of a molded body having communication holes, and the communication holes are spaces through which a fluid can flow. As a molded body having communication holes, for example, a mesh-shaped molded body in which linear resin is bent and entangled, a molded body in which pellets are fused to form a space inside, and a linear resin are knitted. Examples include a molded product, a molded product using a non-woven fabric, and a molded product in which a space is formed by foaming a resin. Bacteria for converting nitric acid into nitrogen grow in the communication holes.
The three-dimensional network-like molded body 15, which is an example of a molded body having communication holes, is a base material for growing bacteria for reducing nitric acid to nitrogen by denitrifying nitric acid, and may contain a biodegradable resin. .. As the bacteria for converting nitric acid to nitrogen, already known bacteria having the above-mentioned function can be appropriately used.
As the biodegradable resin, PLA (polylactic acid) type, PBS (polybutylene succinate) type, PCL (poly caprolactone) type, and PHB (poly hydroxybutyrate) type are generally known. In the present embodiment, it is preferable to use a synthetic biodegradable resin containing a structural unit derived from a dicarboxylic acid as the biodegradable resin. Such a synthetic biodegradable resin may contain a constituent unit derived from a diol.

生分解性樹脂の種類としては、ポリエステルが好適である。ジカルボン酸の種類としては、コハク酸、アジピン酸、シユウ酸、マロン酸、グルタル酸、スベリン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、フタル酸等があげられる。ジカルボン酸由来の構成単位を2種以上含む生分解性樹脂が好ましい。ジカルボン酸由来の構成単位を1種類含む生分解性樹脂を用いた場合よりも脱窒速度が速く、高い脱窒性能を示す傾向がある。これらのうち、コハク酸由来の構成単位を含むことが好ましく、即ち、ブチレンサクシネート単位を主たる繰り返し単位とするPBS系の生分解性樹脂が好ましい。PBS系の生分解性樹脂としては、具体的には、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)(PBSA)、ポリ(ブチレンサクシネート/カーボネート)などが好ましい例として挙げられる。特に、ポリ(ブチレンサクシネート/アジペート)(PBSA)が、生分解性が高い点で、また、脱窒に必要な炭素源を徐放的に供給できる点から好ましい。さらにPBSAは、PLA系など他の生分解性樹脂より分解しやすいため、脱窒菌が生育、増殖するうえでの基質あるいは水素供与体として好ましい。 As the type of biodegradable resin, polyester is preferable. Examples of the dicarboxylic acid include succinic acid, adipic acid, oxalic acid, malonic acid, glutaric acid, suberic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and phthalic acid. A biodegradable resin containing two or more dicarboxylic acid-derived constituent units is preferable. The denitrification rate is faster and the denitrification performance tends to be higher than when a biodegradable resin containing one type of dicarboxylic acid-derived constituent unit is used. Of these, it is preferable to include a structural unit derived from succinic acid, that is, a PBS-based biodegradable resin having a butylene succinate unit as a main repeating unit is preferable. Specific preferred examples of the PBS-based biodegradable resin include polybutylene succinate, poly (butylene succinate / adipate) (PBSA), and poly (butylene succinate / carbonate). In particular, poly (butylene succinate / adipate) (PBSA) is preferable because it has high biodegradability and can supply a carbon source necessary for denitrification in a sustained-release manner. Further, PBSA is more easily decomposed than other biodegradable resins such as PLA, and is therefore preferable as a substrate or a hydrogen donor for the growth and growth of denitrifying bacteria.

水生生物養殖装置10を稼働する環境においては、一般排水処理と比較して水中の硝酸濃度が低濃度であることから、脱窒に必要な有機物は少量でよく、過剰な有機物の溶出は溶存酸素の低下などに繋がり得る。そのため、立体網目状成形体15中において、成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位の占める割合が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましく、95質量%以上であることが最も好ましい。また、立体網目状成形体15中において成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位の占める割合が高いことで、過剰な有機物の溶出が抑制されることで過度に還元的な雰囲気となることを防ぐことができるため、水生生物の育成に悪影響を与え得る硫化水素の発生を抑制することができ、好ましい。
また過剰な有機物の溶出が抑制されることで、魚水槽において溶存酸素濃度の低下や雑菌の増殖を防ぐことができる。
なお、成形体を構成する全熱可塑性樹脂中の、ジカルボン酸由来の構成単位は、フーリエ変換核磁気共鳴装置(FT−NMR)により測定することができる。
In the environment in which the aquatic organism aquaculture apparatus 10 is operated, the concentration of nitric acid in water is lower than that of general wastewater treatment. Therefore, a small amount of organic matter is required for denitrification, and the elution of excess organic matter is dissolved oxygen. Can lead to a decrease in oxygen. Therefore, in the three-dimensional network molded body 15, the proportion of the dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded body is preferably 50% by mass or more, and more preferably 70% by mass or more. More preferably, it is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and most preferably 95% by mass or more. Further, in the three-dimensional network molded body 15, the proportion of the constituent units derived from dicarboxylic acid in the total thermoplastic resin constituting the molded body is high, so that the elution of excess organic substances is suppressed, which is excessively reducing. Since it is possible to prevent the atmosphere from becoming unpleasant, it is possible to suppress the generation of hydrogen sulfide which may adversely affect the growth of aquatic organisms, which is preferable.
In addition, by suppressing the elution of excess organic matter, it is possible to prevent a decrease in the dissolved oxygen concentration and the growth of various germs in the fish tank.
The dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded product can be measured by a Fourier transform nuclear magnetic resonance apparatus (FT-NMR).

立体網目状成形体15に含まれる生分解性樹脂はポリ乳酸、PHB、PHV、PCL等の他の樹脂と混合されてもよい。ジカルボン酸由来の構成単位を含む生分解性樹脂と生分解性が異なるこれらの樹脂を混合することで、立体網目状成形体15を炭素源として使用する期間を調整することができる。立体網目状成形体15は炭酸カルシウム、ステアリン酸カルシウム等の樹脂以外の成分を含んでいてもよい。これらの成分が合成生分解性樹脂に対して40質量%以下であれば、これらの成分に起因する微細な粉末が成形体より脱落することによりポリマーの表面積がふえ、脱窒を効率的に行うことができる。 The biodegradable resin contained in the three-dimensional network molded body 15 may be mixed with other resins such as polylactic acid, PHB, PHV, and PCL. By mixing a biodegradable resin containing a structural unit derived from a dicarboxylic acid and these resins having different biodegradability, the period for which the three-dimensional network molded body 15 is used as a carbon source can be adjusted. The three-dimensional network molded body 15 may contain components other than the resin such as calcium carbonate and calcium stearate. When these components are 40% by mass or less with respect to the synthetic biodegradable resin, the surface area of the polymer is increased by the fine powder caused by these components falling off from the molded product, and denitrification is efficiently performed. be able to.

立体網目状成形体15は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で線材同士が融着されている立体網目状成形体である。本実施形態で用いる立体網目状成形体の製造方法は特段限定されず、射出成形で成形してもよく、押出成形で成形してもよいが、例えば以下のような方法が挙げられる。すなわち、溶融したPBSAなどの生分解性樹脂(熱可塑性樹脂)を押出成形機ダイスから複数本の線材として押し出すと、押し出された線材には湾曲する力が働いてループ状に屈曲する。そしてループ状に屈曲する複数本の線材は絡み合って線材同士が接触する部分で熱接着するので、これをロールに挟んで一定の厚みにしながら水槽内に通して冷却固化させることによって、三次元に線材がランダムに絡み合った立体網目状成形体を得ることができる。 The three-dimensional mesh-like molded body 15 is a three-dimensional network-shaped molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wire rods come into contact with each other. The method for producing the three-dimensional network molded body used in the present embodiment is not particularly limited, and may be molded by injection molding or extrusion molding, and examples thereof include the following methods. That is, when a molten biodegradable resin (thermoplastic resin) such as PBSA is extruded from an extruder die as a plurality of wire rods, a bending force acts on the extruded wire rod to bend it in a loop shape. Then, the multiple wires that bend in a loop are entangled and heat-bonded at the part where the wires come into contact with each other. It is possible to obtain a three-dimensional mesh-like molded body in which wire rods are randomly entangled.

線材同士が接触部で融着されてなる立体網目状成形体15は、生分解性樹脂が分解された際でも、成形体中に複数の融着部が存在することで、樹脂が分解することにより生じる樹脂破片の発生を抑制できる。樹脂が分解して樹脂破片が発生すると、水生生物の養殖装置においては、水生生物が樹脂の破片を誤飲するリスクが存在するが、本実施形態にかかる立体網目状成形体は、そのような誤飲リスクを抑制することができる。 In the three-dimensional mesh-like molded body 15 in which the wires are fused at the contact portions, the resin is decomposed due to the presence of a plurality of fused portions in the molded body even when the biodegradable resin is decomposed. It is possible to suppress the generation of resin debris generated by the above. When the resin is decomposed to generate resin fragments, there is a risk that the aquatic organisms accidentally swallow the resin fragments in the aquaculture apparatus. The risk of accidental ingestion can be suppressed.

立体網目状成形体15は、その形状は特段限定されず、球形状であってよく、円筒形状であってよく、板形状(マット形状)であってよく、円柱形状、角柱形状等の柱形状であってよく、不定形であってよい。なお、充填効率の観点からは、円筒構造のような、空洞部分を有する形状は好ましくない。 The shape of the three-dimensional mesh-shaped molded body 15 is not particularly limited, and may be spherical, cylindrical, plate-shaped (matte), columnar, prismatic, or the like. It may be irregular or irregular. From the viewpoint of filling efficiency, a shape having a hollow portion such as a cylindrical structure is not preferable.

溶融した生分解性樹脂を通過させる押出成形機のダイスの孔の径によって、線材の太さを調整することができ、また押出成形機のダイスから押し出す線材の本数の設定や、ロールに挟む厚みの設定によって、立体網目状成形体15の充填率を調整できる。線材の太さは、所望の立体網目状成形体の充填率により適宜設定できるが、例えば直径0.5mm以上であってよく、1mm以上であってよく、また10mm以下であってよく、5mm以下であってよい。 The thickness of the wire can be adjusted by adjusting the diameter of the hole in the die of the extruder that allows the molten biodegradable resin to pass through. The filling rate of the three-dimensional mesh-like molded body 15 can be adjusted by setting. The thickness of the wire can be appropriately set depending on the filling rate of the desired three-dimensional mesh-like molded body. For example, the diameter may be 0.5 mm or more, 1 mm or more, 10 mm or less, and 5 mm or less. May be.

本実施形態において立体網目状成形体15は、その見かけの体積に対する実体積×100で表される充填率(体積%)が通常7.5%以上であり、8%以上であることが好ましく、9%以上であることがより好ましく、10%以上であることが更に好ましく、12.5%以上であることが特に好ましい。また、上限は通常30%以下であり、27.5%以下であることが好ましく、25%以下であることがより好ましく、22.5%以下であることが更に好ましい。または、100%から充填率(%)を減じた空隙率(%)で表してもよい。空隙率の場合、通常92.5%以下であり、92%以下であることが好ましく、91%以下であることがより好ましく、90%以下であることが更に好ましく、87.5%以下であることが特に好ましい。また、下限は通常70%以上であり、72.5%以上であることが好ましく、75%以上であることがより好ましく、77.5%以上であることが更に好ましい。充填率が下限値以上であると、脱窒に必要な樹脂量を装置に充填する場合に充填容積が大きくならずにすみ、結果的に装置を小型にすることで、コストを低減できる。また取り扱う樹脂体積が大きくならずにすむので、入れ替えや追加の作業性が良くなる。充填率が上限値以上になると通水抵抗が高くなり、一部の流路だけを通るいわゆる「水みち」ができる可能性がある。充填率を上限以下とすることで、「水みち」を防ぐことができる。また充填率を上限値以下とすることで、バイオフィルムの肥大による目詰まりを防ぐことができる。
見かけの体積は、成形体を体積の求められる形状に切断し、その体積を見かけの体積とする。見かけの体積中の実際に樹脂が占めている体積を実体積とする。
In the present embodiment, the filling ratio (volume%) represented by the actual volume × 100 with respect to the apparent volume of the three-dimensional network molded body 15 is usually 7.5% or more, preferably 8% or more. It is more preferably 9% or more, further preferably 10% or more, and particularly preferably 12.5% or more. The upper limit is usually 30% or less, preferably 27.5% or less, more preferably 25% or less, and even more preferably 22.5% or less. Alternatively, it may be expressed as a porosity (%) obtained by subtracting the filling rate (%) from 100%. In the case of the porosity, it is usually 92.5% or less, preferably 92% or less, more preferably 91% or less, further preferably 90% or less, and 87.5% or less. Is particularly preferred. Further, the lower limit is usually 70% or more, preferably 72.5% or more, more preferably 75% or more, and further preferably 77.5% or more. When the filling rate is at least the lower limit value, the filling volume does not increase when the device is filled with the amount of resin required for denitrification, and as a result, the cost can be reduced by reducing the size of the device. In addition, since the volume of resin to be handled does not need to be large, the workability of replacement and addition is improved. When the filling rate exceeds the upper limit, the water flow resistance becomes high, and there is a possibility that a so-called "water path" that passes through only a part of the flow paths is formed. By setting the filling rate to the upper limit or less, "water path" can be prevented. Further, by setting the filling rate to the upper limit value or less, clogging due to the enlargement of the biofilm can be prevented.
The apparent volume is obtained by cutting the molded product into a shape for which the volume is required, and using that volume as the apparent volume. The volume actually occupied by the resin in the apparent volume is defined as the actual volume.

本実施形態では、立体網目状成形体15は、水生生物養殖装置において硝酸を脱窒することで窒素に還元するための菌を生育する基材である。そのため、一般排水を処理する場合と比較して、固形分により成形体の間隙が閉塞するリスクは低い。従って、本実施形態において立体網目状成形体を用いる場合、一般排水処理において立体網目状成形体を用いる場合よりも、充填率を高くすることができる。 In the present embodiment, the three-dimensional network molded body 15 is a base material for growing bacteria for reducing nitric acid to nitrogen by denitrifying nitric acid in an aquaculture apparatus. Therefore, the risk of clogging the gaps of the molded product due to the solid content is low as compared with the case of treating general wastewater. Therefore, when the three-dimensional mesh-shaped molded body is used in the present embodiment, the filling rate can be made higher than that when the three-dimensional mesh-shaped molded body is used in the general wastewater treatment.

一般的に水生生物養殖装置10における浄化槽11では、排水処理とは異なり、省スペースが求められることが多い。立体網目状成形体15が板形状(マット形状)である場合には、厚さ方向で積層させることで、多層の立体網目状成形体とすることができ、長さ方向にスペースが十分にとれない場合であっても、十分な脱窒能を提供できる。 Generally, in the septic tank 11 in the aquaculture apparatus 10, space saving is often required unlike wastewater treatment. When the three-dimensional mesh-shaped molded body 15 has a plate shape (mat shape), it can be laminated in the thickness direction to form a multi-layered three-dimensional mesh-shaped molded body, and sufficient space can be taken in the length direction. Even if it is not present, sufficient denitrification ability can be provided.

浄化槽13に配置する立体網目状成形体15の量は、水生生物養殖装置10内の水の量だけでなく、飼育する魚の種類、数量、生育段階などによって異なるが、水生生物養殖装置10内の水の量と水中に蓄積する窒素の濃度と、立体網目状成形体が有する窒素除去能力から適宜設定すればよい。
脱窒反応の進行に伴い、立体網目状成形体15は消費され、徐々に重量が少なくなる。質量が概ね半分になった時点で減少分を補充することで脱窒性能を維持することができる。また質量として減少していなくとも脱窒能力が不足した場合には適宜追加することによって脱窒性能を維持することができる。
The amount of the three-dimensional mesh-like molded body 15 arranged in the septic tank 13 varies depending not only on the amount of water in the aquatic organism aquaculture apparatus 10 but also on the type, quantity, growth stage, etc. of the fish to be bred, but in the aquatic organism aquaculture apparatus 10. It may be appropriately set from the amount of water, the concentration of nitrogen accumulated in water, and the nitrogen removing ability of the three-dimensional network molded body.
As the denitrification reaction progresses, the three-dimensional network molded body 15 is consumed, and the weight gradually decreases. The denitrification performance can be maintained by replenishing the reduced amount when the mass is approximately halved. Further, even if the mass is not reduced, if the denitrification ability is insufficient, the denitrification performance can be maintained by adding it as appropriate.

浄化槽13において、酸化手段である貝殻14と、脱窒手段である立体網目状成形体15とは、図1のように同一の浄化槽13中に配置されていてもよく、別の槽に配置されていてもよい。酸化手段である貝殻14と立体網目状成形体15とが同一の浄化槽13中に配置される場合には、繊維製セパレータ、ろ紙などで仕切られていてもよい。 In the septic tank 13, the shell 14 as an oxidizing means and the three-dimensional mesh-like molded body 15 as a denitrifying means may be arranged in the same septic tank 13 as shown in FIG. 1, and are arranged in different tanks. You may be. When the shell 14 as the oxidizing means and the three-dimensional network molded body 15 are arranged in the same septic tank 13, they may be separated by a fiber separator, filter paper, or the like.

以上、酸化手段である貝殻14と、脱窒手段である立体網目状成形体15とが一の流路上に配置された水生生物養殖装置10について説明したが、これらの槽は別々の流路上に配置されていてもよい。即ち、図2に示す水生生物養殖装置20のように、貝殻24を通過して硝化が行われる流路と、立体網目状成形体25を通過し、脱窒の行われる流路とが設けられていてもよい。 The aquaculture apparatus 10 in which the shell 14 as an oxidizing means and the three-dimensional network molded body 15 as a denitrifying means are arranged on one flow path has been described above, but these tanks are placed on separate flow paths. It may be arranged. That is, as in the aquaculture apparatus 20 shown in FIG. 2, a flow path through which the shell 24 is subjected to nitrification and a flow path through which the three-dimensional network molded body 25 is passed and denitrification is performed are provided. You may be.

図2は、水生生物養殖装置20の構成を示す模式図である。水生生物養殖装置20は、飼育槽21、ポンプ22、浄化槽23を備える。浄化槽23は、水に含まれるアンモニアを硝酸に酸化する酸化手段である貝殻24、及び硝酸を脱窒することで窒素に還元するPBSA樹脂の立体網目状成形体25を含む。
水生生物養殖装置20では、貝殻24と立体網目状成形体25とが別の浄化槽23に配置される形態である。このような形態の場合には、それぞれの槽で水の往来を可能とする機構を有していてもよい。
FIG. 2 is a schematic view showing the configuration of the aquaculture apparatus 20. The aquaculture apparatus 20 includes a breeding tank 21, a pump 22, and a septic tank 23. The septic tank 23 includes a shell 24 which is an oxidizing means for oxidizing ammonia contained in water to nitric acid, and a three-dimensional network molded body 25 of PBSA resin which reduces nitric acid to nitrogen by denitrifying it.
In the aquaculture apparatus 20, the shell 24 and the three-dimensional network molded body 25 are arranged in separate septic tanks 23. In the case of such a form, each tank may have a mechanism for allowing water to flow in and out.

本実施形態においては、硫化水素発生を抑制するために、立体網目状成形体を定期的に大気中に暴露させて、過度な還元状態を防止することが好ましい。立体網目状成形体を定期的に大気中に暴露するための方法は特段限定されないが、例えば散水方式、サイフォン方式、定期抜液方式、などがあげられる。サイフォン方式を用いる例を図3に示す。 In the present embodiment, in order to suppress the generation of hydrogen sulfide, it is preferable to periodically expose the three-dimensional network molded product to the atmosphere to prevent an excessive reduction state. The method for periodically exposing the three-dimensional network-shaped molded product to the atmosphere is not particularly limited, and examples thereof include a watering method, a siphon method, and a periodic liquid draining method. An example of using the siphon method is shown in FIG.

図3は、水生生物養殖装置30の構成を示す模式図である。水生生物養殖装置30は、飼育槽31、ポンプ32、浄化槽33を備える。浄化槽33は、水に含まれるアンモニアを硝酸に酸化する酸化手段である貝殻34、及び硝酸を脱窒することで窒素に還元するPBSA樹脂の立体網目状成形体35を含む。
水生生物養殖装置30では、酸化手段である貝殻34が上方、立体網目状成形体35が下方に配置されるが、この順番は逆であってよく、また隣接して配置されていてもよい。
FIG. 3 is a schematic view showing the configuration of the aquaculture apparatus 30. The aquaculture apparatus 30 includes a breeding tank 31, a pump 32, and a septic tank 33. The septic tank 33 includes a shell 34 which is an oxidizing means for oxidizing ammonia contained in water to nitric acid, and a three-dimensional network molded body 35 of PBSA resin which reduces nitric acid to nitrogen by denitrifying it.
In the aquaculture apparatus 30, the shell 34 as an oxidizing means is arranged above and the three-dimensional network molded body 35 is arranged below, but the order may be reversed, or they may be arranged adjacent to each other.

図3において、サイフォン36は、浄化槽33から飼育槽31への水の移送を可能とする移送手段であるとともに、立体網目状成形体35を大気中に暴露する機構である。サイフォン36は、浄化槽33の水位がサイフォン36の最上部よりも高くなることで、浄化槽33内の水が飼育槽31へ移送され、立体網目状成形体35が大気中に曝露される。立体網目状成形体35が大気中に暴露されることで、脱窒速度が速く、高い脱窒性能を示す傾向がある。 In FIG. 3, the siphon 36 is a transfer means that enables the transfer of water from the septic tank 33 to the breeding tank 31, and is a mechanism that exposes the three-dimensional network molded body 35 to the atmosphere. In the siphon 36, when the water level in the septic tank 33 is higher than the uppermost part of the siphon 36, the water in the septic tank 33 is transferred to the breeding tank 31, and the three-dimensional network molded body 35 is exposed to the atmosphere. When the three-dimensional network molded body 35 is exposed to the atmosphere, the denitrification rate is high and the denitrification performance tends to be high.

浄化槽33から飼育槽31へ水を移送する手段としては、サイフォンを用いる以外に、ポンプを使用して浄化槽33から飼育槽31へ水を移送してもよい。また、飼育槽31から飼育水をポンプアップして浄化槽33の上部からシャワーリングにより供給することで水を移送してもよい。浄化槽33の水中に空気や酸素を供給することで立体網目状成形体35を大気と接触させてもよい。 As a means for transferring water from the septic tank 33 to the breeding tank 31, instead of using a siphon, water may be transferred from the septic tank 33 to the breeding tank 31 using a pump. Further, the breeding water may be pumped up from the breeding tank 31 and supplied from the upper part of the septic tank 33 by a shower ring to transfer the water. The three-dimensional network molded body 35 may be brought into contact with the atmosphere by supplying air or oxygen into the water of the septic tank 33.

水生生物養殖装置10、20、30等は、その他泡沫分離装置を備えてもよいが、本実施形態では備える必要はない。泡沫分離装置を備えることで、化学的酸素要求量(COD)を低下させることができるが、本実施形態では泡沫分離装置を備えなくとも、CODを低下させることができる。 The aquaculture apparatus 10, 20, 30, and the like may be provided with other foam separation apparatus, but it is not necessary to provide the aquaculture apparatus 10, 20, 30, and the like in the present embodiment. The chemical oxygen demand (COD) can be reduced by providing the foam separation device, but in the present embodiment, the COD can be reduced even if the foam separation device is not provided.

以下、実施例により本発明をさらに詳細に説明するが、本発明の範囲が、以下の実施例で示す態様に限定されないことは言うまでもない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the scope of the present invention is not limited to the embodiments shown in the following Examples.

<実施例1>
まず、立体網目状成形体を準備した。準備した立体網目状成形体の模式図を図4に示す。
立体網目状成形体は、PBSA(三菱ケミカル製、ジカルボン酸由来の構成単位50質量%以上)を押出成形機を用いて横幅50cm×奥行50cm×厚み1.8cmとなるように加工した。このとき線材の直径は1.1ミリメートルであり、立体網目状成形体の重量は0.7kgであり、PBSAの比重は1.24g/cmであった。成形体の見かけの体積(50cm(横幅)×50cm(奥行)×1.8cm(厚み))当たりの表面積は0.45m/L、重量当たり表面積は2.9m/kgであり、間隙率は87.5%(充填率12.5%)であった。なお、間隙率は見かけ体積に対する空隙体積の割合、充填率は見かけ体積に対する実体積の割合を示す。
<Example 1>
First, a three-dimensional network molded body was prepared. A schematic diagram of the prepared three-dimensional mesh-like molded body is shown in FIG.
The three-dimensional network molded product was processed by using an extrusion molding machine using PBSA (manufactured by Mitsubishi Chemical Corporation, a constituent unit derived from dicarboxylic acid of 50% by mass or more) so as to have a width of 50 cm, a depth of 50 cm, and a thickness of 1.8 cm. At this time, the diameter of the wire was 1.1 mm, the weight of the three-dimensional network molded body was 0.7 kg, and the specific gravity of PBSA was 1.24 g / cm 3 . The surface area per apparent volume (50 cm (width) x 50 cm (depth) x 1.8 cm (thickness)) of the molded body is 0.45 m 2 / L, the surface area per weight is 2.9 m 2 / kg, and the porosity. Was 87.5% (filling rate 12.5%). The porosity indicates the ratio of the void volume to the apparent volume, and the filling rate indicates the ratio of the actual volume to the apparent volume.

次に、図5に模式的に示す実験装置を準備した。図5に示す実験装置50は、模擬排水が充填された水槽51と、カラム53とをチューブポンプ52で接続した構造を有する。
内径20mmの樹脂製カラム53には、PBSA製の立体網目状成形体55を17.2g充填した。このときの成形体の総表面積は0.05mであった。
Next, the experimental device schematically shown in FIG. 5 was prepared. The experimental device 50 shown in FIG. 5 has a structure in which a water tank 51 filled with simulated drainage and a column 53 are connected by a tube pump 52.
The resin column 53 having an inner diameter of 20 mm was filled with 17.2 g of a three-dimensional network molded product 55 made of PBSA. The total surface area of the molded product at this time was 0.05 m 2 .

チューブポンプ52を用いて模擬排水をカラム53底部から流量6.5mL/minで通水し、カラム53上部からのオーバーフロー水を水槽51に戻した。模擬排水の組成を表1に示す。なお、模擬排水の温度は室温(23℃)とした。 The simulated drainage was passed from the bottom of the column 53 at a flow rate of 6.5 mL / min using a tube pump 52, and the overflow water from the top of the column 53 was returned to the water tank 51. The composition of the simulated wastewater is shown in Table 1. The temperature of the simulated drainage was set to room temperature (23 ° C.).

Figure 2020122168
Figure 2020122168

馴養のため15日間通水したのちに模擬排水を容器内からサンプリングして水質分析をおこなった。水質は全有機炭素量(TOC)、全窒素量(TN)および溶存酸素濃度(DO)を測定した。なお、模擬排水には窒素源として硝酸態窒素しか含まれていないため、全窒素濃度は硝酸態窒素濃度とみなせばよい。
水質測定の結果、TOCの増加とともに、溶存酸素とTNが減少した。これはPBSA成形体に付着した微生物によってPBSAがモノマー/オリゴマーに分解されてTOCが上昇し、TOCによって溶存酸素が消費されていることを示している。溶存酸素が低下するとともに、PBSA成形体に付着した脱窒菌によって模擬排水中の硝酸態窒素が窒素ガスに還元されたためにTNが減少した。
After passing water for 15 days for acclimatization, simulated wastewater was sampled from the inside of the container and water quality analysis was performed. For water quality, total organic carbon amount (TOC), total nitrogen amount (TN) and dissolved oxygen concentration (DO) were measured. Since the simulated wastewater contains only nitrate nitrogen as a nitrogen source, the total nitrogen concentration can be regarded as the nitrate nitrogen concentration.
As a result of water quality measurement, dissolved oxygen and TN decreased as TOC increased. This indicates that the microorganisms attached to the PBSA compact decompose PBSA into monomers / oligomers to increase the TOC, and the TOC consumes dissolved oxygen. As the dissolved oxygen decreased, the nitrate nitrogen in the simulated wastewater was reduced to nitrogen gas by the denitrifying bacteria adhering to the PBSA molded body, so that the TN decreased.

TN減少速度(脱窒速度)と試験に供したPBSA成形体量から、単位質量あたりの脱窒速度を計算すると4.80g−N/kg/dayであった。また単位表面積あたりの脱窒速度は1.65g−N/m/dayであった。また試験期間において、PBSA成形体は薄黄色に着色しておりPBSA分解菌および脱窒菌が付着していた。これらの菌がわずかに剥離する現象も見られたがPBSA成形体を目詰まりさせる事態にはならなかった。測定結果を図6に示す。The denitrification rate per unit mass was calculated to be 4.80 g-N / kg / day from the TN reduction rate (denitrification rate) and the amount of PBSA molded body subjected to the test. The denitrification rate per unit surface area was 1.65 g-N / m 2 / day. In addition, during the test period, the PBSA molded product was colored pale yellow, and PBSA-degrading bacteria and denitrifying bacteria were attached. Although a phenomenon was observed in which these bacteria were slightly exfoliated, the PBSA molded product was not clogged. The measurement results are shown in FIG.

<比較例1>
立体網目状成形体のかわりに、連通孔を有さないPBSA樹脂ペレットを用いたこと以外は実施例1と同条件の試験をおこなった。内径20mmの樹脂製カラムにPBSA製のペレットを20g充填した。このときのペレットの総表面積は0.05mとなる。PBSA樹脂ペレットの形状は、長径5mm、短径3mm、厚さ1.2mmの薄い楕円盤形状であり、樹脂ペレットの見かけの体積当たり表面積は2.1m/L、重量当たり表面積は2.7m/kgとなり、間隙率は34%(充填率66%)であった。
<Comparative example 1>
The test under the same conditions as in Example 1 was carried out except that PBSA resin pellets having no communication holes were used instead of the three-dimensional network molded body. A resin column having an inner diameter of 20 mm was filled with 20 g of PBSA pellets. The total surface area of the pellets at this time is 0.05 m 2 . The shape of the PBSA resin pellet is a thin elliptical disk with a major axis of 5 mm, a minor axis of 3 mm, and a thickness of 1.2 mm. The apparent surface area of the resin pellet is 2.1 m 2 / L, and the surface area per weight is 2.7 m. It was 2 / kg, and the porosity was 34% (filling rate 66%).

実施例1と同様の試験を実施したところ、同様にTOCの増加とともにDOとTNの低下が確認された。
TN減少速度(脱窒速度)と試験に供したPBSAペレット量から、単位質量あたりの脱窒速度を計算すると1.55g−N/kg/dayであった。また単位表面積あたりの脱窒速度は0.59g−N/m/dayであった。なお、PBSAペレットに付着した微生物が肥大化し、ペレットの間隙の一部を塞いでいる部分も確認された。
When the same test as in Example 1 was carried out, it was confirmed that DO and TN decreased as TOC increased.
From the TN reduction rate (denitrification rate) and the amount of PBSA pellets used in the test, the denitrification rate per unit mass was calculated to be 1.55 g-N / kg / day. The denitrification rate per unit surface area was 0.59 g-N / m 2 / day. In addition, it was confirmed that the microorganisms attached to the PBSA pellets were enlarged and blocked a part of the gap between the pellets.

実施例、比較例の結果を表2に示す。
網目状成形体の方が、ペレットよりも単位質量あたり脱窒速度、単位表面積あたり脱窒速度ともに高い数値であった。一般的に本法のように担体の表面に微生物を付着させて、いわゆるバイオフィルムを形成して処理をする方法は、バイオフィルムの表面積が処理能力に比例すると考えられる。よって素材や排水条件が同じであれば、単位表面積あたり脱窒速度は同じ値になると考えられるが、今回の実施例と比較例では単位表面積あたりの脱窒速度は、網目状成形体の方が高い数値であった。これはペレットでは肥大化した微生物がペレット間隙の一部を閉塞したことによって、ペレットの表面が全て有効に利用されなかったことが原因の一つといえる。
Table 2 shows the results of Examples and Comparative Examples.
The mesh-like molded body had higher denitrification rates per unit mass and denitrification rate per unit surface area than the pellets. Generally, in the method of adhering microorganisms to the surface of a carrier to form a so-called biofilm and treating it as in this method, it is considered that the surface area of the biofilm is proportional to the processing capacity. Therefore, if the materials and drainage conditions are the same, the denitrification rate per unit surface area is considered to be the same value, but in this example and the comparative example, the denitrification rate per unit surface area is higher in the mesh-like molded body. It was a high number. It can be said that one of the reasons for this is that the entire surface of the pellet was not effectively utilized because the enlarged microorganisms blocked a part of the pellet gap in the pellet.

Figure 2020122168
Figure 2020122168

なお、本発明については、具体的な実施例を参照して詳細に説明されるが、本発明の趣旨及び範囲から離れることなく、種々の変更、改変を施すことができることは当業者には明らかである。 Although the present invention will be described in detail with reference to specific examples, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention. Is.

10、20、30 水生生物養殖装置
11、21、31 飼育槽
12、22、32、52 ポンプ
13、23、33 浄化槽
14、24、34 貝殻
15、25、35 立体網目状成形体
50 実験装置
51 水槽
52 チューブポンプ
53 カラム
55 PBSA樹脂立体網目状成形体
10, 20, 30 Aquaculture equipment 11, 21, 31 Breeding tanks 12, 22, 32, 52 Pumps 13, 23, 33 Septic tanks 14, 24, 34 Shells 15, 25, 35 Three-dimensional network molded body 50 Experimental equipment 51 Water tank 52 Tube pump 53 Column 55 PBSA resin three-dimensional network molded body

Claims (20)

水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える水生生物養殖装置であって、
前記浄化槽は、熱可塑性樹脂からなり連通孔を有する成形体を備え、
前記成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、水生生物養殖装置。
It is an aquatic organism aquaculture device equipped with a culture tank for cultivating aquatic organisms and a septic tank for purifying water used for cultivating aquatic organisms.
The septic tank is made of a thermoplastic resin and includes a molded body having communication holes.
The molded product is an aquatic organism culture apparatus containing 50% by mass or more of a dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded product.
前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、請求項1に記載の水生生物養殖装置。 The aquaculture apparatus according to claim 1, wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other. 水生生物を養殖する養殖槽と、水生生物の養殖に使用される水を浄化する浄化槽と、を備える、水生生物を養殖するための水生生物養殖装置であって、
前記浄化槽は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体を備え、該立体網目状成形体を形成する該線材が生分解性樹脂を含む、水生生物養殖装置。
An aquaculture device for cultivating aquatic organisms, which is provided with a culturing tank for cultivating aquatic organisms and a septic tank for purifying water used for cultivating aquatic organisms.
The septic tank includes a three-dimensional mesh-like molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wires are in contact with each other. An aquatic organism culture device in which the wire rod forming the body contains a biodegradable resin.
前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、請求項3に記載の水生生物養殖装置。 The aquatic organism culture apparatus according to claim 3, wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid. 前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、請求項1から4のいずれか一項に記載の水生生物養殖装置。 The aquaculture apparatus according to any one of claims 1 to 4, wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less. 水生生物の養殖に使用される水を浄化する浄化装置であって、
アンモニアを硝酸にする酸化手段と、硝酸を脱窒する脱窒手段と、を備え、
前記脱窒手段は、熱可塑性樹脂からなり連通孔を有する成形体に脱窒菌を担持させた脱窒菌担体であって、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、浄化装置。
A purification device that purifies water used for aquatic aquaculture.
It is equipped with an oxidizing means that converts ammonia into nitric acid and a denitrifying means that denitrifies nitric acid.
The denitrification means is a denitrifying bacterium carrier in which a denitrifying bacterium is carried on a molded body made of a thermoplastic resin and having communication holes, and the molded body is a dicarboxylic acid in the total thermoplastic resin constituting the molded body. A purification device containing 50% by mass or more of the derived building blocks.
前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、請求項6に記載の浄化装置。 The purifying apparatus according to claim 6, wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other. 水生生物の養殖に使用される水を浄化する浄化装置であって、
アンモニアを硝酸にする酸化手段と、硝酸を脱窒する脱窒手段と、を備え、
前記脱窒手段は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体に、脱窒菌を担持させた脱窒菌担体であって、該線材が生分解性樹脂を含む、浄化装置。
A purification device that purifies water used for aquatic aquaculture.
It is equipped with an oxidizing means that converts ammonia into nitric acid and a denitrifying means that denitrifies nitric acid.
The denitrification means carries denitrifying bacteria on a three-dimensional network-like molded body in which wires made of a thermoplastic resin are bent and entangled, and the wires are fused to each other at a contact portion where the wires are in contact with each other. A purification device which is a denitrified bacterium carrier and the wire rod contains a biodegradable resin.
前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、請求項8に記載の浄化装置。 The purification apparatus according to claim 8, wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid. 前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、請求項6から9のいずれか一項に記載の浄化装置。 The purifying device according to any one of claims 6 to 9, wherein the molded body or the three-dimensional network-shaped molded body has a filling rate of 7.5% by volume or more and 30% by volume or less. 水生生物の養殖に使用される水を浄化する浄化方法であって、
水に含まれるアンモニアを硝酸に酸化し、その後、硝酸を脱窒することで窒素に還元する工程を含み、
前記硝酸の脱窒は、熱可塑性樹脂からなり連通孔を有する成形体に担持された脱窒菌により行われ、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、浄化方法。
It is a purification method that purifies the water used for aquatic aquaculture.
It includes a step of oxidizing ammonia contained in water to nitric acid and then reducing it to nitrogen by denitrifying nitric acid.
The denitrification of nitrate is carried out by denitrifying bacteria carried on a molded body made of a thermoplastic resin and having communication holes, and the molded body is composed of a dicarboxylic acid in the total thermoplastic resin constituting the molded body. A purification method containing 50% by mass or more of units.
前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、請求項11に記載の浄化方法。 The purification method according to claim 11, wherein the molded body is a molded body in which the wires are adhered to each other at a contact portion where the wires are in contact with each other. 水生生物の養殖に使用される水を浄化する浄化方法であって、
水に含まれるアンモニアを硝酸に酸化し、その後、硝酸を脱窒することで窒素に還元する工程を含み、
前記硝酸の脱窒は、熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている、立体網目状成形体に担持された脱窒菌により行われ、該線材が生分解性樹脂を含む、浄化方法。
It is a purification method that purifies the water used for aquatic aquaculture.
It includes a step of oxidizing ammonia contained in water to nitric acid and then reducing it to nitrogen by denitrifying nitric acid.
The denitrification of nitric acid was carried out on a three-dimensional network molded body in which the wires made of a thermoplastic resin were bent and entangled, and the wires were fused to each other at a contact portion where the wires were in contact with each other. A purification method performed by denitrifying bacteria, wherein the wire contains a biodegradable resin.
前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、請求項13に記載の浄化方法。 The purification method according to claim 13, wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid. 前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、請求項11から14のいずれか一項に記載の浄化方法。 The purification method according to any one of claims 11 to 14, wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less. 熱可塑性樹脂からなり連通孔を有する成形体であって、該成形体は、該成形体を構成する全熱可塑性樹脂中にジカルボン酸由来の構成単位を50質量%以上含む、成形体。 A molded product made of a thermoplastic resin and having communication holes, wherein the molded product contains 50% by mass or more of a dicarboxylic acid-derived structural unit in the total thermoplastic resin constituting the molded product. 前記成形体が、線材を含み、前記線材同士が接触する接触部で、該線材同士が接着されている成形体である、請求項16に記載の成形体。 The molded product according to claim 16, wherein the molded product is a molded product in which the wires are adhered to each other at a contact portion where the wires are in contact with each other. 熱可塑性樹脂からなる線材が屈曲して絡まり合い、かつ、該線材同士が接触する接触部で該線材同士が融着されている立体網目状成形体であって、該線材が生分解性樹脂を含む、成形体。 A three-dimensional mesh-like molded body in which wire rods made of a thermoplastic resin are bent and entangled, and the wire rods are fused to each other at a contact portion where the wires are in contact with each other, and the wire rods form a biodegradable resin. Including, molded body. 前記生分解性樹脂がジカルボン酸由来の構成単位を含む生分解性樹脂である、請求項18に記載の成形体。 The molded product according to claim 18, wherein the biodegradable resin is a biodegradable resin containing a structural unit derived from a dicarboxylic acid. 前記成形体または前記立体網目状成形体は、充填率が、7.5体積%以上30体積%以下である、請求項16から19のいずれか一項に記載の成形体。 The molded product according to any one of claims 16 to 19, wherein the molded product or the three-dimensional network-shaped molded product has a filling rate of 7.5% by volume or more and 30% by volume or less.
JP2020559308A 2018-12-12 2019-12-12 Aquaculture equipment, purification equipment, purification methods and moldings Pending JPWO2020122168A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018232820 2018-12-12
JP2018232820 2018-12-12
PCT/JP2019/048651 WO2020122168A1 (en) 2018-12-12 2019-12-12 Aquatic creature cultivation device, purification device, purification method, and molded article

Publications (1)

Publication Number Publication Date
JPWO2020122168A1 true JPWO2020122168A1 (en) 2021-10-28

Family

ID=71076476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020559308A Pending JPWO2020122168A1 (en) 2018-12-12 2019-12-12 Aquaculture equipment, purification equipment, purification methods and moldings

Country Status (3)

Country Link
JP (1) JPWO2020122168A1 (en)
TW (1) TW202034764A (en)
WO (1) WO2020122168A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE543951C2 (en) * 2019-06-19 2021-10-05 Wallenius Water Innovation Ab An aquaculture system and methods for circulating and treating fluid in such a system
CN114027245A (en) * 2021-11-18 2022-02-11 湖南文理学院 Rural happy circulation ecological planting and breeding simulation experiment system and design method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242800Y2 (en) * 1980-07-09 1987-11-02
JPH10165177A (en) * 1996-12-13 1998-06-23 Susumu Maruyama Bacteria implanting tool and its production
US6447681B1 (en) * 2000-08-07 2002-09-10 Kent Sea Tech Corporation Aquaculture wastewater treatment system and method of making same
JP2004136182A (en) * 2002-10-16 2004-05-13 Dainippon Plastics Co Ltd Biodegradable microorganism carrier for treating sewage, its manufacturing method and sewage treatment method using the carrier
JP2017074041A (en) * 2015-10-16 2017-04-20 株式会社グリーン有機資材 Water microbial carrier material as well as water microbial induced proliferation method using the same and water area fertilization method
JP6480015B2 (en) * 2015-12-22 2019-03-06 国立大学法人東京海洋大学 Denitrification device and aquatic animal breeding system

Also Published As

Publication number Publication date
TW202034764A (en) 2020-10-01
WO2020122168A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP5254834B2 (en) Land culture system
EP3284344B1 (en) Purification device and aquarium comprising same
JP5994253B2 (en) Biological treatment apparatus and method for organic wastewater
JP2023021429A (en) Water purification method, water purification device and use of the device under low water temperature
JPWO2020122168A1 (en) Aquaculture equipment, purification equipment, purification methods and moldings
WO2020004635A1 (en) Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism
JPH1085782A (en) Bacterium implantation tool
Thanh et al. Effects of hydraulic retention time on organic and nitrogen removal in a sponge-membrane bioreactor
JP2012192396A (en) Method and apparatus for biologically treating organic wastewater
WO2010137971A1 (en) System and method for treating an aqueous waste stream
KR101448892B1 (en) Process and mothod of aquaculture Nitrogen and organic loadingwastewater Removal
JP2022153873A (en) Microorganism carrier and denitrification treatment method
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
Sánchez-O et al. Performance of different biofilters in a recirculating system for rainbow trout farming
JP3114046B2 (en) Algae treatment equipment for ponds etc.
Yamamoto Characteristics of closed recirculating systems
Fredricks Literature review of the potential effects of formalin on nitrogen oxidation efficiency of the biofilters of recirculating aquaculture systems (RAS) for freshwater finfish
KR20030094810A (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
CN105578875A (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
CN216918751U (en) Aquaculture normal position water treatment facilities
Greensword Rice Hull Bioreactor for Recirculating Aquaculture
JPH0440842A (en) Filtration device
Kulkarni Chief Editor Dr. KR Chavan Principal
JP4908533B2 (en) Biological treatment method and apparatus using fish
JP2023111655A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913