JP2023111655A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2023111655A
JP2023111655A JP2022013608A JP2022013608A JP2023111655A JP 2023111655 A JP2023111655 A JP 2023111655A JP 2022013608 A JP2022013608 A JP 2022013608A JP 2022013608 A JP2022013608 A JP 2022013608A JP 2023111655 A JP2023111655 A JP 2023111655A
Authority
JP
Japan
Prior art keywords
water
denitrification
tank
treated
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022013608A
Other languages
Japanese (ja)
Inventor
朋樹 川岸
Tomoki Kawagishi
久典 後藤
Hisanori Goto
順 小川
Jun Ogawa
晃規 安藤
Akinori Ando
敦一 佐藤
Nobukazu Sato
真人 宮本
Masato Miyamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022013608A priority Critical patent/JP2023111655A/en
Publication of JP2023111655A publication Critical patent/JP2023111655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a water treatment apparatus with low consumption of a denitrification carrier in a denitrification process and an improved denitrification rate per unit weight of the denitrification carrier.SOLUTION: A water treatment apparatus includes a water storage containing treated water, a denitrification tank containing a denitrification carrier loaded with denitrifying bacteria, and a microorganism reduction treatment part for reducing the number of aerobic heterotrophic bacteria in the treated water, the microorganism reduction treatment part being located in the middle of a transfer path of the treated water from the water storage to the denitrification tank.SELECTED DRAWING: Figure 2

Description

本発明は、脱窒菌を利用した水処理装置、及び水処理方法に関する。 TECHNICAL FIELD The present invention relates to a water treatment apparatus and a water treatment method using denitrifying bacteria.

農業、魚介の養殖等により生じる、アンモニア態窒素を含む排水の排水基準は、環境保護の観点から厳しくなる一方である。また、アンモニア態窒素を含む排水を川や海に流すことは、河川等の富栄養化などの点からも好ましくない。
この問題を解決するため、微生物の働きにより、アンモニア態窒素を、比較的毒性が低い硝酸態窒素に酸化する硝化反応が用いられてきた。しかし、硝酸態窒素もアンモニアに比べれば毒性は低いとはいえ、有害であることには違いなく、硝酸態窒素をさらに窒素まで還元することが望ましい。
From the standpoint of environmental protection, the standards for wastewater containing ammonium nitrogen generated from agriculture, fish farming, and the like are becoming stricter. In addition, it is not preferable from the viewpoint of eutrophication of rivers and the like to discharge wastewater containing ammonium nitrogen into rivers and seas.
In order to solve this problem, a nitrification reaction has been used in which ammonium nitrogen is oxidized into relatively less toxic nitrate nitrogen by the action of microorganisms. However, although nitrate nitrogen is less toxic than ammonia, it is undoubtedly harmful, and it is desirable to further reduce nitrate nitrogen to nitrogen.

このような観点から、近年は、微生物を用いた2段階の反応を用いてアンモニア態窒素を排水から除去する技術が開発されている。すなわちアンモニアを硝酸に変える硝化反応と、硝酸を窒素に分解する脱窒反応を用いる方法である。窒素まで分解されれば、環境に負担を与えることなく空気中に排出することができる。 From this point of view, in recent years, techniques have been developed for removing ammonium nitrogen from wastewater using a two-step reaction using microorganisms. That is, the method uses a nitrification reaction that converts ammonia into nitric acid and a denitrification reaction that decomposes nitric acid into nitrogen. If it is decomposed to nitrogen, it can be discharged into the air without imposing a burden on the environment.

上記微生物を用いた反応において、第1段階のアンモニアを硝酸に変える反応では、そのまま廃棄されるような貝殻などのカルシウム系の基材に自然に住み着く菌が用いられることが多い。一方で、第2段階の硝酸を窒素に変える脱窒反応では、セルロース等の高分子を基材として、ここに住み着く脱窒菌を使用することが多い。 Among the above reactions using microorganisms, in the reaction of converting ammonia into nitric acid in the first stage, bacteria that naturally settle in calcium-based substrates such as shells that are discarded as they are are often used. On the other hand, in the denitrification reaction in which nitric acid is converted to nitrogen in the second stage, denitrifying bacteria that live in a polymer such as cellulose are often used as a base material.

特許文献1では、脱窒反応にセルロース等が基材として使用されている。その原理は、「天然高分子や生分解合成樹脂等の生分解性高分子は、従属(有機)栄養細菌の生育、増殖するうえでの基質あるいは水素供与体となり、水中の溶存酸素の極めて少ない状況において窒素酸化物である亜硝酸塩、及び硝酸塩の存在下で窒素酸化物中の酸素を呼吸に利用し、窒素酸化物を還元除去する通性嫌気性微生物である脱窒細菌が生分解性高分子上に群がり着床する」と説明されている。 In Patent Document 1, cellulose or the like is used as a base material for the denitrification reaction. The principle is that "biodegradable polymers such as natural polymers and biodegradable synthetic resins serve as substrates or hydrogen donors for the growth and proliferation of dependent (organic) trophic bacteria, and the amount of dissolved oxygen in water is extremely low. In the presence of nitrogen oxides such as nitrite and nitrate, denitrifying bacteria, which are facultative anaerobic microorganisms that use oxygen in nitrogen oxides for respiration and reduce and remove nitrogen oxides, are highly biodegradable. It swarms on the molecule and implants.”

特許文献2及び3では、セルロースの他脱窒反応で使用可能な基材として、生分解性樹脂が例示された技術が開示されている。 Patent Documents 2 and 3 disclose techniques in which biodegradable resins are exemplified as substrates that can be used in the denitrification reaction in addition to cellulose.

特開平10-85782号公報JP-A-10-85782 特開2014-24000号公報Japanese Unexamined Patent Application Publication No. 2014-24000 特開2010-88307号公報JP 2010-88307 A

しかしながら、これらの特許文献に記載の技術では、水処理に伴い、セルロース、生分解性樹脂等の脱窒担体が微生物の炭素源として消費されるため、被処理水を連続的に浄化するためには、脱窒担体を補充して脱窒担体を必要量以上に維持する必要がある。また、脱窒担体の消費量が大きいことに起因し、脱窒担体の単位重量あたりの脱窒速度が低下している点においても、改善の余地がある。
そこで、本発明は、脱窒処理に伴う脱窒担体の消費が少なく、脱窒担体の単位重量あたりの脱窒速度の改善された水処理装置を提供することを課題とする。
However, in the techniques described in these patent documents, denitrification carriers such as cellulose and biodegradable resins are consumed as carbon sources by microorganisms during water treatment. requires replenishment of the denitrifying carrier to maintain the denitrifying carrier above the required amount. There is also room for improvement in that the denitrification rate per unit weight of the denitrification carrier is low due to the large consumption of the denitrification carrier.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a water treatment apparatus that consumes less denitrifying carrier during denitrifying treatment and that has an improved denitrifying rate per unit weight of the denitrifying carrier.

本発明者らは鋭意検討した結果、脱窒反応に先立って、被処理水中の好気性従属栄養細菌の数を低減させておくことで、上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、以下の通りである。 As a result of extensive studies, the present inventors have found that the above problems can be solved by reducing the number of aerobic heterotrophic bacteria in the water to be treated prior to the denitrification reaction, and have completed the present invention. . That is, the present invention is as follows.

[1]
被処理水が収容されている水貯蔵器と、
脱窒菌が担持された脱窒担体を含む脱窒槽と、
前記被処理水中の好気性従属栄養細菌の数を低減する微生物低減処理部とを備え、
前記微生物低減処理部が、前記水貯蔵器から前記脱窒槽に至る前記被処理水の移送経路の途中に配置されている、水処理装置。
[2]
前記微生物低減処理部が、前記被処理水に紫外線照射を行う紫外線照射部である、[1]に記載の水処理装置。
[3]
前記脱窒担体が、生分解性樹脂を含有する、[1]又は[2]に記載の水処理装置。
[4]
前記生分解性樹脂が、ジカルボン酸由来の構成単位を有する生分解性ポリエステルである、[3]に記載の水処理装置。
[5]
硝化菌が担持された硝化担体を含む硝化槽をさらに備える、[1]~[4]のいずれかに記載の水処理装置。
[6]
前記被処理水が水生生物の飼育水である、[1]~[5]のいずれかに記載の水処理装置。
[7]
被処理水中の好気性従属栄養細菌の数を低減する微生物低減工程と、
前記微生物低減工程を経た前記被処理水を、脱窒菌が担持された脱窒担体を含む脱窒槽に供給し、脱窒を行う脱窒工程と、
を含む、水処理方法。
[1]
a water reservoir containing water to be treated;
a denitrifying tank containing a denitrifying carrier carrying denitrifying bacteria;
a microorganism reduction treatment unit that reduces the number of aerobic heterotrophic bacteria in the water to be treated;
A water treatment apparatus, wherein the microorganism reduction treatment unit is arranged in the middle of a transfer route of the water to be treated from the water reservoir to the denitrification tank.
[2]
The water treatment apparatus according to [1], wherein the microorganism reduction treatment unit is an ultraviolet irradiation unit that irradiates the water to be treated with ultraviolet rays.
[3]
The water treatment device according to [1] or [2], wherein the denitrification carrier contains a biodegradable resin.
[4]
The water treatment device according to [3], wherein the biodegradable resin is a biodegradable polyester having a structural unit derived from dicarboxylic acid.
[5]
The water treatment apparatus according to any one of [1] to [4], further comprising a nitrification tank containing a nitrification carrier carrying nitrifying bacteria.
[6]
The water treatment apparatus according to any one of [1] to [5], wherein the water to be treated is breeding water for aquatic organisms.
[7]
A microorganism reduction step for reducing the number of aerobic heterotrophic bacteria in the water to be treated;
A denitrification step in which the water to be treated that has undergone the microorganism reduction step is supplied to a denitrification tank containing a denitrification carrier carrying denitrifying bacteria, and denitrification is performed;
A water treatment method, comprising:

本発明によれば、脱窒処理に伴う脱窒担体の消費が少なく、脱窒担体の単位重量あたりの脱窒速度の改善された水処理装置を提供することができる。
そして、本発明の目的及び効果は、具体的に上記に記載したものに限らず、明細書全体より当業者に明らかにされるものを含む。
ADVANTAGE OF THE INVENTION According to this invention, the consumption of the denitrification carrier accompanying denitrification treatment is small, and the water treatment apparatus with which the denitrification rate per unit weight of the denitrification carrier was improved can be provided.
The objects and effects of the present invention are not limited to those specifically described above, but include those that will be apparent to those skilled in the art from the entire specification.

(a)及び(b)は、それぞれ、本発明の第1の実施態様に係る水処理装置の一例を示す概略図である。(a) and (b) are schematic diagrams each showing an example of a water treatment apparatus according to a first embodiment of the present invention. 実施例1における飼育装置の概略図である。1 is a schematic diagram of a breeding apparatus in Example 1. FIG.

以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The present invention will be described in detail below, but the description of the constituent elements described below is an example (representative example) of embodiments of the present invention, and the present invention is not limited to these contents, and the Various modifications can be made within the scope of the gist.

<1.水処理装置>
本発明の第1の実施形態に係る水処理装置は、被処理水が収容されている水貯蔵器と、
脱窒菌が担持された脱窒担体を含む脱窒槽と、前記被処理水中の好気性従属栄養細菌の数を低減する微生物低減処理部とを備え、前記微生物低減処理部が、前記水貯蔵器から前記脱窒槽に至る前記被処理水の移送経路の途中に配置されている。
<1. Water treatment equipment>
A water treatment apparatus according to a first embodiment of the present invention includes a water reservoir in which water to be treated is stored,
A denitrifying tank containing a denitrifying carrier carrying denitrifying bacteria; and a microorganism reduction treatment section for reducing the number of aerobic heterotrophic bacteria in the water to be treated, wherein the microorganism reduction treatment section is provided with a It is arranged in the middle of the transfer route of the water to be treated leading to the denitrification tank.

本実施形態に係る水処理装置は、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素といった無機態窒素を含む被処理水から窒素分を除去するための装置である。被処理水がアンモニア態窒素を含む場合は、水処理装置に後述する硝化槽を設け、アンモニア態窒素を亜硝酸態窒素及び/又は硝酸態窒素に変換し、これを脱窒槽で処理することにより窒素分の除去を行う。無機態窒素を含む被処理水は、特に制限されず、例えば水生生物の飼育水であってよい。当該飼育水は、淡水であってもよく、海水であってもよい。海水に関しては、その塩分濃度は限定されない。 The water treatment apparatus according to this embodiment is an apparatus for removing nitrogen from water containing inorganic nitrogen such as ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen. When the water to be treated contains ammonium nitrogen, the water treatment apparatus is provided with a nitrification tank described later, the ammonium nitrogen is converted to nitrite nitrogen and/or nitrate nitrogen, and this is treated in a denitrification tank. Remove nitrogen. Water to be treated containing inorganic nitrogen is not particularly limited, and may be, for example, water for breeding aquatic organisms. The breeding water may be fresh water or sea water. As for seawater, its salinity is not limited.

以下、本実施態様に係る水処理装置の一例の好適な態様を、図1(a)を参照して説明する。図1(a)は、循環方式の水処理装置10を示す。図1(a)中の矢印は、水処理装置内での水の移送方向を示す。この循環方式の水処理装置10では、水貯蔵器11中の被処理水が、微生物低減処理部13及び脱窒槽14に順次移送され、浄化された後に水貯蔵器11に戻される。なお、本実施形態に係る水処理装置は、循環方式に限定されず、掛け流し方式であってもよい。 A preferred embodiment of an example of the water treatment apparatus according to this embodiment will be described below with reference to FIG. 1(a). FIG. 1(a) shows a circulation-type water treatment apparatus 10. FIG. Arrows in FIG. 1(a) indicate the direction of water transfer in the water treatment apparatus. In this circulation-type water treatment apparatus 10, the water to be treated in the water reservoir 11 is sequentially transferred to the microorganism reduction treatment unit 13 and the denitrification tank 14, and returned to the water reservoir 11 after being purified. In addition, the water treatment apparatus according to the present embodiment is not limited to a circulation system, and may be a free-flowing system.

(水貯蔵器)
水貯蔵器11は、被処理水を収容することができる限り、特に制限されず、例えば池、水槽等を挙げることができる。水貯蔵器のサイズ、形状等も、用途に応じて適宜選択することができる。
(water reservoir)
The water reservoir 11 is not particularly limited as long as it can store the water to be treated, and examples thereof include a pond and a water tank. The size, shape, etc. of the water reservoir can also be appropriately selected according to the application.

(脱窒槽)
脱窒槽14は、その内部に、硝酸態窒素及び亜硝酸態窒素を窒素に変換する脱窒菌が担持された脱窒担体を含む槽である。
(denitrification tank)
The denitrification tank 14 is a tank containing a denitrification carrier carrying denitrifying bacteria that convert nitrate nitrogen and nitrite nitrogen into nitrogen.

脱窒担体は、硝酸態窒素及び亜硝酸態窒素を、窒素に変換する脱窒菌を付着せしめ、脱窒に必要な炭素源を供給する基材である。なお、脱窒担体全てに脱窒菌が担持されている必要はなく、被処理水から硝酸態窒素を用途に応じて十分に窒素に変換できる程度に脱窒菌が担持されていればよい。
脱窒担体としては、脱窒菌が付着及び生育する基材を広く使用することができ、例えばセルロース、生分解性樹脂等の高分子を含有する基材が挙げられる。中でも、脱窒担体は、生分解性樹脂を含有するものであることが好ましい(以下、生分解性樹脂を含有する脱窒担体を「生分解性樹脂基材」と称することがある。)。
The denitrifying carrier is a base material that attaches denitrifying bacteria that convert nitrate nitrogen and nitrite nitrogen to nitrogen and supplies a carbon source necessary for denitrification. It is not necessary for all the denitrifying carriers to carry denitrifying bacteria, and it is sufficient that the denitrifying bacteria are carried to such an extent that nitrate nitrogen from the water to be treated can be sufficiently converted into nitrogen according to the application.
As the denitrifying carrier, a wide range of substrates on which denitrifying bacteria adhere and grow can be used, including substrates containing polymers such as cellulose and biodegradable resins. Among them, the denitrification carrier preferably contains a biodegradable resin (hereinafter, a denitrification carrier containing a biodegradable resin is sometimes referred to as a "biodegradable resin base material").

生分解性樹脂基材を形成する生分解性樹脂は、特に限定されず、公知の生分解性樹脂から適宜選択して用いることができる。公知の生分解性樹脂としては、一般に、PLA(polylactic acid)系、PBS(polybutylene succinate)系、PCL(polycaprolactone)系、PHB(polyhydroxybutyrate)系の樹脂が挙げられる。 The biodegradable resin forming the biodegradable resin substrate is not particularly limited, and can be appropriately selected from known biodegradable resins and used. Known biodegradable resins generally include PLA (polylactic acid), PBS (polybutylene succinate), PCL (polycaprolactone), and PHB (polyhydroxybutyrate) resins.

好ましい生分解性樹脂としては、生分解性ポリエステルが挙げられる。生分解性ポリエステルの中でも、ジカルボン酸由来の構成単位を有する生分解性ポリエステルが好ましく、ジカルボン酸由来の構成単位とジオール由来の構成単位とを有する生分解性ポリエステルがより好ましい。 Preferred biodegradable resins include biodegradable polyesters. Among biodegradable polyesters, biodegradable polyesters having dicarboxylic acid-derived structural units are preferred, and biodegradable polyesters having dicarboxylic acid-derived structural units and diol-derived structural units are more preferred.

ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、グルタル酸、スベリン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。生分解性樹脂は、ジカルボン酸由来の構成単位を2種以上有することが好ましい
。ジカルボン酸由来の構成単位を2種以上有する生分解性樹脂を用いた場合、ジカルボン酸由来の構成単位を1種類有する生分解性樹脂を用いた場合よりも脱窒速度が速く、高い脱窒性能を示す傾向があるからである。
Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, adipic acid, glutaric acid, suberic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and phthalic acid. The biodegradable resin preferably has two or more structural units derived from dicarboxylic acid. When using a biodegradable resin having two or more types of dicarboxylic acid-derived structural units, the denitrification rate is faster than when using a biodegradable resin having one type of dicarboxylic acid-derived structural unit, and high denitrification performance. This is because there is a tendency to show

生分解性樹脂は、上記ジカルボン酸のうち、コハク酸由来の構成単位を有することが好ましく、すなわち、ブチレンサクシネート単位を主たる繰り返し単位とするPBS系の生分解性樹脂が好ましい。PBS系の生分解性樹脂としては、具体的には、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)(PBSA)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(ブチレンアジペート/テレフタレート)(PBAT)、ポリ(エチレンテレフタレート/サクシネート)等が好ましい例として挙げられる。特に、PBSAが、生分解性が高い点から、また、脱窒に必要な炭素源を徐放的に供給できる点から好ましい。さらにPBSAは、その他の生分解性樹脂より分解し易いため、脱窒菌が生育、増殖する上での基質あるいは水素供与体として好ましい。 Among the above dicarboxylic acids, the biodegradable resin preferably has structural units derived from succinic acid, that is, PBS-based biodegradable resins having butylene succinate units as main repeating units are preferred. Specific examples of PBS-based biodegradable resins include polybutylene succinate, poly(butylene succinate/adipate) (PBSA), poly(butylene succinate/carbonate), poly(butylene adipate/terephthalate) (PBAT). ), poly(ethylene terephthalate/succinate) and the like are preferred examples. In particular, PBSA is preferable because it is highly biodegradable and because it can supply the carbon source necessary for denitrification in a sustained release manner. Furthermore, PBSA is more easily decomposed than other biodegradable resins, and is therefore preferable as a substrate or hydrogen donor for the growth and proliferation of denitrifying bacteria.

生分解性樹脂基材には、ポリ乳酸、PHA等の樹脂が混合されていてもよい。ジカルボン酸由来の構成単位を有する生分解性樹脂と生分解性が異なるこれらの樹脂とを混合することで、生分解性樹脂基材を炭素源として長期間にわたって使用することができるからである。
また、生分解性樹脂基材は、炭酸カルシウム、ステアリン酸カルシウム等の樹脂以外の成分を含んでいてもよい。これらの成分が生分解性樹脂に対して40質量%以下であれば、これらの成分に起因する微細な粉末が基材より脱落することによりポリマーの表面積が増え、脱窒を効率的に行うことができる。
Resins such as polylactic acid and PHA may be mixed in the biodegradable resin base material. This is because a biodegradable resin base material can be used as a carbon source for a long period of time by mixing a biodegradable resin having a structural unit derived from a dicarboxylic acid and these resins having different biodegradability.
Moreover, the biodegradable resin base material may contain components other than the resin, such as calcium carbonate and calcium stearate. If the content of these components is 40% by mass or less relative to the biodegradable resin, the fine powder resulting from these components will fall off from the base material, increasing the surface area of the polymer and effectively performing denitrification. can be done.

脱窒担体の形状は特に限定されず、ペレット状、バルク状(矩形状、球状、立体網目状など)、フレーク状、粒子状、繊維状などいずれの形状であってよい。充填のし易さを考慮すると、フレーク状、粒子状、繊維状などであることが好ましい。粒子状の場合、短径および長径はそれぞれ0.5mm以上7mm以下が好ましく、繊維状の場合、繊維断面の直径は1μm以上3000μm以下が好ましい。 The shape of the denitrification carrier is not particularly limited, and may be pellet-like, bulk-like (rectangular, spherical, three-dimensional network, etc.), flake-like, particulate, fibrous, or any other shape. Considering the ease of filling, it is preferably in the form of flakes, particles, fibers, or the like. In the case of particles, the short diameter and the long diameter are preferably 0.5 mm or more and 7 mm or less, respectively.

また、脱窒担体が生分解性樹脂基材である場合、生分解性樹脂基材は、例えば熱可塑性樹脂を含む線材が屈曲して絡まり合うと共に線材同士が接触する接触部で前記線材同士が融着して一体となった立体網目状成形体であって、該線材が生分解性樹脂を含む態様とすることができる。このような立体網目状成形体は、例えば次の方法により得ることができる。即ち、溶融したPBSAなどの生分解性樹脂(熱可塑性樹脂)を押出成形機ダイスから複数本の線材として押し出すと、押し出された線材には湾曲する力が働いてループ状に屈曲する。そしてループ状に屈曲する複数本の線材は絡み合って線材同士が接触する部分で熱融着するので、これをロールに挟んで一定の厚みにしながら水槽内に通して冷却固化させることによって、三次元に線材がランダムに絡み合った立体網目状成形体を得ることができる。 Further, when the denitrification carrier is a biodegradable resin base material, the biodegradable resin base material includes, for example, wires containing a thermoplastic resin that are bent and entangled and that the wires contact each other at a contact portion where the wires contact each other. It is possible to adopt a mode in which the three-dimensional net-like molded article is integrated by fusion bonding, and the wire rod contains a biodegradable resin. Such a three-dimensional network molded product can be obtained, for example, by the following method. That is, when a plurality of wires are extruded from a melted biodegradable resin (thermoplastic resin) such as PBSA through a die of an extruder, a bending force acts on the extruded wires to bend them into a loop shape. The looped wires are entwined and heat-sealed at the points where the wires come into contact with each other, so the wire is sandwiched between rolls and passed through a water bath to cool and solidify to a certain thickness. It is possible to obtain a three-dimensional network molded article in which the wires are randomly entangled.

脱窒槽内に配置する脱窒担体の量は、脱窒担体1kg当たりの脱窒速度及び水生生物から排出される1日当たりの窒素量に応じて決定すればよい。 The amount of denitrifying carrier placed in the denitrifying tank may be determined according to the denitrifying rate per 1 kg of denitrifying carrier and the amount of nitrogen discharged from aquatic organisms per day.

本実施形態においては、脱窒処理に伴う脱窒担体の消費は、従来技術よりも抑制されているが、長期的にみると脱窒担体の体積は徐々に少なくなる。脱窒担体の体積が、例えば概ね半分になったところで、減少分を補充することで、脱窒性能を維持することができる。
脱窒担体が繊維状の場合は、脱窒反応の進行に伴い繊維状の構造を保てなくなり、脱窒担体が小片化する。このような状態になった場合、新たな繊維を補充することで、脱窒性能を維持することができる。
In this embodiment, the consumption of the denitrifying carrier accompanying the denitrifying treatment is suppressed as compared with the conventional technology, but the volume of the denitrifying carrier gradually decreases over the long term. For example, when the volume of the denitrifying carrier is approximately halved, the denitrifying performance can be maintained by replenishing the decreased volume.
When the denitrification carrier is fibrous, it loses its fibrous structure as the denitrification reaction progresses, and the denitrification carrier breaks into small pieces. In such a state, the denitrification performance can be maintained by replenishing with new fibers.

脱窒菌としては、特に制限されず、脱窒能を有する公知の菌から適宜選択して用いることができるが、例えば通性嫌気性従属栄養細菌のような従属栄養細菌であることが好ましい。 The denitrifying bacteria are not particularly limited, and can be appropriately selected from known bacteria having denitrifying ability, but heterotrophic bacteria such as facultative anaerobic heterotrophic bacteria are preferred.

脱窒担体は、脱窒菌に加え、生分解性樹脂分解菌がさらに担持されていることが好ましい。生分解性樹脂分解菌は、生分解性樹脂基材に付着して生分解性樹脂を分解する。これにより、脱窒担体が生分解性樹脂分解菌を担持していない場合よりも多くの炭素源が脱窒菌に供給され、脱窒菌の増殖又は活動が促進される結果、脱窒速度及び脱窒量を向上し得るからである。生分解性樹脂分解菌としては、生分解性樹脂の分解能を有する公知の菌を適宜用いることができる。 The denitrifying carrier preferably further carries biodegradable resin-decomposing bacteria in addition to denitrifying bacteria. The biodegradable resin-degrading bacteria adhere to the biodegradable resin substrate and decompose the biodegradable resin. As a result, more carbon sources are supplied to the denitrifying bacteria than when the denitrifying carrier does not carry biodegradable resin-degrading bacteria, and the growth or activity of the denitrifying bacteria is promoted, resulting in denitrification speed and denitrification. This is because the amount can be improved. As the biodegradable resin-degrading bacteria, known bacteria capable of decomposing biodegradable resins can be appropriately used.

(硝化槽)
本実施形態に係る水処理装置を、アンモニア態窒素を含む被処理水の浄化に用いる場合、当該水処理装置は、アンモニアを硝酸に変換するための硝化槽12を備えることが好ましい。硝化槽12は、好適には、その内部に、アンモニアを硝酸に変換する硝化菌が担持された硝化担体を含む槽である。アンモニアが硝酸に変換されることで、この硝酸が脱窒槽で窒素まで還元されるため、被処理水からより多くの窒素分を除去することができる。
(Nitrification tank)
When the water treatment apparatus according to this embodiment is used for purifying water to be treated containing ammonia nitrogen, the water treatment apparatus preferably includes a nitrification tank 12 for converting ammonia into nitric acid. The nitrification tank 12 is preferably a tank containing a nitrification carrier in which nitrification bacteria that convert ammonia to nitric acid are supported. By converting ammonia into nitric acid, this nitric acid is reduced to nitrogen in the denitrification tank, so more nitrogen content can be removed from the water to be treated.

硝化担体としては、特に限定されず、例えばカルシウムのようなアルカリ土類金属を含有する基材、ポリウレタンスポンジ等が挙げられる。これらのうち、硝化担体としては、アルカリ土類金属を含有する基材が好ましい。硝化槽では、硝化菌により産出される硝酸により硝化槽内の水のpHが低くなるところ、アルカリ土類金属を含有する基材を用いることで、pHを調整し硝化菌の育成を促すことができるからである。アルカリ土類金属を含有する基材としては、例えばカルシウムを含有する貝殻、珊瑚砂等が挙げられる。貝殻、珊瑚砂等は、そのまま浄化装置に配置してもよく、粗粉砕した後に配置してもよく、微粉砕した後に配置してもよい。 The nitrification carrier is not particularly limited, and includes, for example, base materials containing alkaline earth metals such as calcium, polyurethane sponges, and the like. Among these, base materials containing alkaline earth metals are preferred as nitrification carriers. In the nitrification tank, the pH of the water in the nitrification tank becomes low due to the nitric acid produced by the nitrifying bacteria. By using a base material containing an alkaline earth metal, the pH can be adjusted to promote the growth of the nitrifying bacteria. Because you can. Substrates containing alkaline earth metals include, for example, shells containing calcium, coral sand, and the like. Shells, coral sand, etc. may be placed in the purifying device as they are, may be placed after being roughly pulverized, or may be placed after being finely pulverized.

硝化菌としては、特に制限されず、硝化能を有する公知の菌から適宜選択して用いることができる Nitrifying bacteria are not particularly limited, and can be appropriately selected and used from known bacteria having nitrifying ability.

なお、図1(a)は、硝化槽12と脱窒槽14とが1つの流路上に配置されている態様を示したものであるが、硝化槽と脱窒槽とが別々の流路上に配置されていてもよい。硝化槽12と脱窒槽14とが1つの流路上に配置されている態様では、硝化槽12は、水貯蔵器11から脱窒槽14に至る被処理水の移送経路の途中に配置されていることが好ましい。
また、図1(a)は、硝化槽12と脱窒槽14とが別々の槽として設けられているが、硝化槽と脱窒槽とは同一の槽であってもよい。この場合、一つの槽中に硝化菌が担持された硝化担体と脱窒菌が担持された脱窒担体とが配置され、硝化担体と脱窒担体とが繊維製セパレータ、ろ紙等で仕切られていてもよい。
FIG. 1(a) shows a mode in which the nitrification tank 12 and the denitrification tank 14 are arranged on one channel, but the nitrification tank and the denitrification tank are arranged on separate channels. may be In the embodiment in which the nitrification tank 12 and the denitrification tank 14 are arranged on one channel, the nitrification tank 12 is arranged in the middle of the transfer route of the water to be treated from the water reservoir 11 to the denitrification tank 14. is preferred.
In addition, although the nitrification tank 12 and the denitrification tank 14 are provided as separate tanks in FIG. 1(a), the nitrification tank and the denitrification tank may be the same tank. In this case, a nitrifying carrier carrying nitrifying bacteria and a denitrifying carrier carrying denitrifying bacteria are arranged in one tank, and the nitrifying carrier and the denitrifying carrier are separated by a fiber separator, filter paper, or the like. good too.

(微生物低減処理部)
本実施形態に係る水処理装置は、被処理水中の好気性従属栄養細菌の数を低減する微生物低減処理部13を有する。微生物低減処理部13は、水貯蔵器11から脱窒槽14に至る被処理水の移送経路の途中に配置されており、脱窒槽14に好気性従属栄養細菌の少ない水を供給するための機構である。被処理水が、脱窒槽14に供給される前に微生物低減処理部13を通過することで、被処理水中の好気性従属栄養細菌を除去又は不活性化し、脱窒槽14において脱窒菌が優先的に脱窒担体を炭素源として消費することができる。また、脱窒槽14において、脱窒菌以外の好気性従属栄養細菌による脱窒担体の消費、脱窒反応の阻害等の不都合を抑制することもできる。これにより、脱窒担体の消費の大部分が
脱窒菌によるものとなるため、脱窒担体の消費量が低減され、また、脱窒担体の単位重量あたりの脱窒速度が向上すると考えられる。
(Microorganism reduction processing unit)
The water treatment apparatus according to this embodiment has a microorganism reduction treatment unit 13 that reduces the number of aerobic heterotrophic bacteria in the water to be treated. The microorganism reduction treatment unit 13 is arranged in the middle of the transfer route of the water to be treated from the water reservoir 11 to the denitrification tank 14, and is a mechanism for supplying water containing few aerobic heterotrophic bacteria to the denitrification tank 14. be. By passing the water to be treated through the microorganism reduction treatment unit 13 before being supplied to the denitrification tank 14, the aerobic heterotrophic bacteria in the water to be treated are removed or inactivated, and the denitrifying bacteria are preferentially in the denitrification tank 14. denitrification support can be consumed as a carbon source. In addition, in the denitrification tank 14, it is possible to suppress inconveniences such as consumption of the denitrification carrier by aerobic heterotrophic bacteria other than the denitrifying bacteria and inhibition of the denitrification reaction. As a result, most of the denitrifying carrier is consumed by the denitrifying bacteria, so it is thought that the consumption of the denitrifying carrier is reduced and the denitrifying rate per unit weight of the denitrifying carrier is improved.

ここで、本明細書において、好気性従属栄養細菌とは、炭素源を消費して育成及び/又は増殖する微生物であって、有機物を電子供与体、酸素を電子受容体とすることによってエネルギー獲得する微生物である。好気性従属栄養細菌は、脱窒菌と競合して生分解性樹脂分解物を酸化分解してしまうため、脱窒反応の阻害や、生分解性樹脂の無駄な消費につながる。
また、被処理水中の好気性従属栄養細菌の数を低減するとは、被処理水中の好気性従属栄養細菌の数が、微生物低減処理部に供給される前よりも微生物低減処理部から排出される時点で減少していることを意味する。
Here, in the present specification, an aerobic heterotrophic bacterium is a microorganism that grows and / or proliferates by consuming a carbon source, and acquires energy by using organic matter as an electron donor and oxygen as an electron acceptor. Microorganisms that Aerobic heterotrophic bacteria compete with denitrifying bacteria to oxidatively decompose the biodegradable resin, leading to inhibition of the denitrifying reaction and wasteful consumption of the biodegradable resin.
Further, reducing the number of aerobic heterotrophic bacteria in the water to be treated means that the number of aerobic heterotrophic bacteria in the water to be treated is more than before it is supplied to the microorganism reduction treatment part. means that it decreases over time.

微生物低減処理部13は、被処理水中の好気性従属栄養細菌を除去又は不活性化して脱窒槽14に入る好気性従属栄養細菌の数を抑制することができる限り特段制限されず、種々の態様であってよい。具体的な微生物低減処理部13としては、被処理水に紫外線(UV)照射を行うUV照射部;オゾンを含有する気体を被処理水に供給するオゾン殺菌装置;酸化チタン等の光触媒を含有する反応容器;物理的に微生物を除去するろ過床;等が挙げられ、これらは1種単独で用いてもよく、2種以上を組み合わせて用いることもできる。これらのうち、微生物低減処理部13は、低コストであり、微生物不活性化効率が高く、ウィルスまで死滅させることも可能であることから、UV照射部であることが好ましい。 The microorganism reduction treatment unit 13 is not particularly limited as long as the aerobic heterotrophic bacteria in the water to be treated can be removed or inactivated to suppress the number of aerobic heterotrophic bacteria entering the denitrification tank 14, and various aspects are possible. can be Specific microorganism reduction processing unit 13 includes a UV irradiation unit that irradiates the water to be treated with ultraviolet (UV) light; an ozone sterilization device that supplies gas containing ozone to the water to be treated; and a photocatalyst such as titanium oxide. reaction vessel; filtration bed for physically removing microorganisms; Of these, the microorganism reduction processing unit 13 is preferably a UV irradiation unit because it is low cost, has a high efficiency of inactivating microorganisms, and can even kill viruses.

UV照射部が照射するUVとしては、微生物の細胞膜やDNAに吸収されやすいUV-C(波長100~280nm)が適している。UV照射部としては、特に殺菌力が高いとされる波長254nmのUVを照射できる低圧水銀UVランプ(石英放電管など)が主に使用されるが、より長寿命であるLEDランプを用いてもよい。 UV-C (wavelength 100 to 280 nm), which is easily absorbed by the cell membranes and DNA of microorganisms, is suitable for the UV emitted by the UV irradiation unit. As the UV irradiation part, a low-pressure mercury UV lamp (such as a quartz discharge tube) that can irradiate UV with a wavelength of 254 nm, which is said to have particularly high sterilization power, is mainly used, but a longer-life LED lamp can also be used. good.

微生物低減処理部13としてUV照射部を用いる場合、好気性従属栄養細菌の除去又は不活性化に必要な紫外線照射量は、被処理水中の好気性従属栄養細菌の種類にもよるが、例えば、1,000~100,000μW・SEC/cmであることが好ましい。また、紫外線照射度は、上記紫外線照射量を、殺菌装置の水力学的滞留時間(被処理水がUV照射部のUV照射空間を通過する時間)で除した値である。例えば、被処理水の水力学的滞留時間が1秒で、20,000μW・SEC/cmの紫外線照射量が必要な場合は、紫外線照射度を20,000μW/cmとすればよい。 When a UV irradiation unit is used as the microorganism reduction processing unit 13, the amount of ultraviolet irradiation necessary for removing or inactivating aerobic heterotrophic bacteria depends on the type of aerobic heterotrophic bacteria in the water to be treated. It is preferably 1,000 to 100,000 μW·SEC/cm 2 . Further, the ultraviolet irradiation intensity is a value obtained by dividing the above-mentioned ultraviolet irradiation amount by the hydraulic residence time of the sterilizer (the time for the water to be treated to pass through the UV irradiation space of the UV irradiation unit). For example, if the water to be treated has a hydraulic retention time of 1 second and an ultraviolet irradiation amount of 20,000 μW·SEC/cm 2 is required, the ultraviolet irradiation intensity should be 20,000 μW/cm 2 .

なお、図1(a)では、微生物低減処理部13は、硝化槽12から脱窒槽14に至る被処理水の移送経路の途中に配置されているが、微生物低減処理部13は、被処理水中の好気性従属栄養細菌を除去又は不活性化して脱窒槽に入る好気性従属栄養細菌の数を抑制するという目的を達成できる限り、配置に制限はない。すなわち、微生物低減処理部13は、水貯蔵器11から脱窒槽14に至る被処理水の移送経路の途中に設けられていればよい。したがって、例えば図(b)に示すように、水貯蔵器11中の被処理水が微生物低減処理部13、硝化槽12、及び脱窒槽14に順に通水されるよう、水貯蔵器11から硝化槽12に至る被処理水の移送経路の途中に微生物低減処理部13が配置されていてもよい(図1(b)中の矢印は、水処理装置内での水の移送方向を示す。)。 In FIG. 1(a), the microorganism reduction treatment unit 13 is arranged in the middle of the transfer route of the water to be treated from the nitrification tank 12 to the denitrification tank 14, but the microorganism reduction treatment unit 13 As long as the purpose of removing or inactivating the aerobic heterotrophic bacteria and suppressing the number of aerobic heterotrophic bacteria entering the denitrification tank can be achieved, the arrangement is not limited. That is, the microorganism reduction treatment unit 13 may be provided in the middle of the transfer route of the water to be treated from the water reservoir 11 to the denitrification tank 14 . Therefore, for example, as shown in FIG. The microorganism reduction treatment section 13 may be arranged in the middle of the transfer route of the water to be treated reaching the tank 12 (the arrow in FIG. 1(b) indicates the transfer direction of the water in the water treatment apparatus.) .

(その他の構成)
本実施形態に係る水処理装置は、図1(a)に示されていないその他の構成を有していてもよい。その他の機構としては、例えば、ポンプ、サイフォン等のように、被処理水が微生物低減処理部及び脱窒槽をこの順に流れるように移送するための移送手段が挙げられる。
また、本実施形態に係る水処理装置を循環方式の水生生物の飼育装置に適用する場合、その他の機構として、飼育槽に戻す水の酸素濃度を高めるためのエアポンプ;飼育槽に水を戻す前に水中の雑菌、ウィルス等を死滅させるための紫外線照射装置;被処理水の温度を調整するためのヒーター及び/又は冷却器;等を備えていてもよい。
(Other configurations)
The water treatment apparatus according to this embodiment may have other configurations not shown in FIG. 1(a). Other mechanisms include transfer means, such as a pump and a siphon, for transferring the water to be treated so that it flows through the microorganism reduction treatment section and the denitrification tank in this order.
When the water treatment apparatus according to the present embodiment is applied to a circulation system breeding apparatus for aquatic organisms, other mechanisms include an air pump for increasing the oxygen concentration of the water returned to the breeding tank; An ultraviolet irradiator for killing bacteria, viruses, etc. in water; a heater and/or cooler for adjusting the temperature of the water to be treated; and the like.

<2.水処理方法>
本発明の第2の実施形態は、被処理水中の好気性従属栄養細菌の数を低減する微生物低減工程と、微生物低減工程を経た被処理水を、脱窒菌が担持された脱窒担体を含む脱窒槽に供給し、脱窒を行う脱窒工程とを含む水処理方法である。本実施形態に係る水処理方法は、第1の実施形態に係る水処理装置を用いることにより実施することができる。
本実施形態に係る水処理方法は、被処理水を硝化菌が担持された硝化担体を含む硝化槽に供給し、硝化を行う硝化工程を含んでいてもよい。硝化工程を行う段階は、特に限定されないが、好適には微生物低減工程の前、又は微生物低減工程と脱窒工程との間である。
<2. Water treatment method>
A second embodiment of the present invention includes a microorganism reduction step for reducing the number of aerobic heterotrophic bacteria in the water to be treated, and a denitrifying carrier carrying denitrifying bacteria in the water to be treated that has undergone the microorganism reduction step. and a denitrification step of supplying the water to a denitrification tank for denitrification. The water treatment method according to this embodiment can be carried out by using the water treatment apparatus according to the first embodiment.
The water treatment method according to the present embodiment may include a nitrification step in which water to be treated is supplied to a nitrification tank containing a nitrification carrier supporting nitrifying bacteria, and nitrification is performed. The step of performing the nitrification step is not particularly limited, but is preferably before the microorganism reduction step or between the microorganism reduction step and the denitrification step.

本発明の第1の実施形態に係る水処理装置、及び本発明の第2の実施形態に係る水処理方法は、水生生物の飼育水の浄化に好適に使用することができる。飼育する水生生物は水中に生息する生物であればよく、典型的にはサケ、マス、アユ、イワナなどの淡水魚;カニ、エビなどの甲殻類;等が挙げられる。本発明の第1及び第2の実施形態により飼育水を浄化しながら魚介等の水生生物の飼育を行うことで、日間成長率(SGR)及び飼料効率(FE)が向上し得る。 The water treatment apparatus according to the first embodiment of the present invention and the water treatment method according to the second embodiment of the present invention can be suitably used for purifying breeding water for aquatic organisms. Aquatic organisms to be bred may be organisms that live in water, and typical examples include freshwater fish such as salmon, trout, sweetfish, and char; crustaceans such as crabs and shrimp; By breeding aquatic organisms such as seafood while purifying breeding water according to the first and second embodiments of the present invention, daily growth rate (SGR) and feed efficiency (FE) can be improved.

本明細書において、日間成長率(SGR)とは、任意の飼育期間内における水生生物の成長の程度であり、式(I)によって算出される。
日間成長率(%体重/日)=
(ln W-ln W)×100/飼育期間(日) (I)
:飼育期間終了時の水生生物の体重
:飼育期間開始時の水生生物の体重
As used herein, daily growth rate (SGR) is the extent of growth of an aquatic organism within a given breeding period and is calculated according to formula (I).
Daily growth rate (% body weight/day) =
(ln W 1 −ln W 2 )×100/rearing period (days) (I)
W 1 : Weight of aquatic organism at the end of the breeding period W 2 : Weight of the aquatic organism at the start of the breeding period

また、本明細書において、飼料効率(FE)とは、任意の飼育期間内における給餌量に対する水生生物の体重増加量の比率であり、式(II)によって算出される。飼料効率の値が大きいほど、餌が効率的に水生生物の成長のために消費されたことを意味する。
飼料効率(%)=
水生生物の体重増加量(g)/乾物給餌量又は乾物摂餌量(g)×100 (II)
Further, as used herein, feed efficiency (FE) is the ratio of the weight gain of aquatic organisms to the amount of feed supplied during an arbitrary breeding period, and is calculated according to formula (II). A higher feed efficiency value means that the feed was efficiently consumed for the growth of aquatic organisms.
Feed efficiency (%) =
Body weight gain of aquatic organisms (g) / dry matter feeding amount or dry matter feeding amount (g) × 100 (II)

以下、実施例により本発明をさらに詳細に説明するが、本発明の範囲が、以下の実施例で示す態様に限定されないことは言うまでもない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but it goes without saying that the scope of the present invention is not limited to the embodiments shown in the examples below.

<実施例1>
(飼育装置の設置)
図2に示される閉鎖循環方式の飼育装置20を設置した。飼育装置20において、飼育槽21中の飼育水は、循環ラインを通って、ろ過槽22、硝化槽23、UV照射部24、及び脱窒槽25、UV殺菌装置26に順次通水されることで浄化され、飼育槽21に戻される。なお、飼育水を脱窒槽25に移送する際、飼育水をシャワーにより脱窒槽内の脱窒担体上に散水して脱窒槽に供給した。
飼育装置20の各部の詳細は、下記の通りである。
<Example 1>
(Installation of rearing equipment)
A breeding apparatus 20 of closed circulation system shown in FIG. 2 was installed. In the breeding apparatus 20, the breeding water in the breeding tank 21 is passed through the circulation line to the filter tank 22, the nitrification tank 23, the UV irradiation unit 24, the denitrification tank 25, and the UV sterilizer 26 in sequence. It is cleaned and returned to the breeding tank 21 . Incidentally, when the breeding water was transferred to the denitrification tank 25, the breeding water was sprayed on the denitrification carrier in the denitrification tank by a shower and supplied to the denitrification tank.
Details of each part of the breeding apparatus 20 are as follows.

・ろ過槽22
グラスウールを水槽に充填したものをろ過槽22として用いた。
・Filtration tank 22
A water tank filled with glass wool was used as the filter tank 22 .

・飼育槽21
容量200Lの水槽を飼育槽21として用いた。
・ Breeding tank 21
A water tank with a capacity of 200 L was used as the breeding tank 21 .

・硝化槽23
硝化菌が担持されたウニ殻10kgを硝化担体として用いた。この硝化担体を容量200Lの水槽に充填し、アンモニアを含むニジマス飼育排水を用いてウニ殻を2か月間馴養することで、硝化槽23を作製した。硝化槽23内は、通気を250mL/秒の条件で行うことにより、好気的条件を維持した。
・Nitrification tank 23
10 kg of sea urchin shells carrying nitrifying bacteria was used as a nitrification carrier. A nitrification tank 23 was prepared by filling this nitrification carrier into a water tank with a capacity of 200 L and acclimating sea urchin shells for two months using ammonia-containing rainbow trout breeding wastewater. Aerobic conditions were maintained in the nitrification tank 23 by performing ventilation at a rate of 250 mL/sec.

・脱窒槽25
300gのPBSA樹脂のマット状成形体を脱窒担体として用いた。この脱窒担体を容量20Lの水槽内に充填した。脱窒槽25は、この水槽に被処理水が通水されることにより脱窒菌が脱窒担体に担持されてなるものである。
・Denitrification tank 25
A 300 g PBSA resin mat-like compact was used as a denitrification carrier. This denitrifying carrier was filled in a 20 L capacity water tank. The denitrification tank 25 is formed by carrying denitrification bacteria on the denitrification carrier by passing the water to be treated through this tank.

・UV照射部24及びUV殺菌装置26
UV照射部24及びUV殺菌装置26として、株式会社イワキ製UV殺菌灯「レイシーUV殺菌灯 UVF-1000型」(UVランプ:オゾンレス石英放電管(U字管)、紫外線波長:254nm、紫外線照射度:22,000μW/cm)を用いた。
・UV irradiation unit 24 and UV sterilizer 26
As the UV irradiation unit 24 and the UV sterilization device 26, Iwaki Co., Ltd. UV sterilization lamp "Lacey UV sterilization lamp UVF-1000 type" (UV lamp: ozoneless quartz discharge tube (U-shaped tube), ultraviolet wavelength: 254 nm, ultraviolet irradiation intensity : 22,000 μW/cm 2 ) was used.

(ニジマスの飼育)
飼育装置20の飼育槽21に、平均体重107.2gのニジマス17匹を入れ、水温14℃で100日間飼育した。この飼育期間中、飼育水を8,640L/日の通水流量で循環し、水処理装置を通すことで飼育水を浄化しながら飼育を行った。飼育期間中は、UV照射部24及びUV殺菌装置26により常時UV照射を行った。また、飼育期間中、ニジマスの体重に対する1日当たりの餌の量(日間給餌率)は0.6~1.0%とし、飼育期間の総給餌量は2355gであった。
(Raising rainbow trout)
Seventeen rainbow trout with an average body weight of 107.2 g were placed in the breeding tank 21 of the breeding apparatus 20 and kept at a water temperature of 14°C for 100 days. During this breeding period, the breeding water was circulated at a water flow rate of 8,640 L/day and passed through a water treatment device to purify the breeding water. During the breeding period, UV irradiation was constantly performed by the UV irradiation unit 24 and the UV sterilization device 26 . During the breeding period, the amount of feed per day (daily feeding rate) was 0.6 to 1.0% of the weight of the rainbow trout, and the total amount of feed during the breeding period was 2355 g.

<比較例1>
水処理装置にUV照射部を設けなかった以外は、実施例1と同様に飼育装置を作製し、ニジマスの飼育を行った。
<Comparative Example 1>
Rainbow trout were raised in a rearing apparatus in the same manner as in Example 1, except that the water treatment apparatus was not provided with a UV irradiation unit.

<参考例1>
脱窒槽内に、脱窒菌が担持されたPBSA樹脂のマット状成形体を配置しなかった以外は、比較例1と同様に飼育装置を作製し、ニジマスの飼育を行った。
<Reference example 1>
Rainbow trout were raised in a rearing apparatus in the same manner as in Comparative Example 1, except that the denitrifying bacteria-carrying molded PBSA resin mat was not placed in the denitrifying tank.

<硝酸態窒素及び亜硝酸態窒素の評価>
実施例1、比較例1、及び参考例1において、飼育期間中、定期的に飼育槽内の飼育水をサンプリングし、飼育水中の硝酸態窒素及び亜硝酸態窒素を測定した。
具体的には、JIS K 0102 43.1.5に準拠し、東ソー株式会社製イオンクロマトグラフィーシステム「IC-2010」及び東ソー株式会社製カラム「TSKgel SuperIC-Anion HS」を用い、イオンクロマトグラフ法により硝酸態窒素及び亜硝酸態窒素を測定した。
亜硝酸態窒素は飼育期間を通してほぼ検出されなかった。試験開始前後の硝酸態窒素濃度を表1に示す。
<Evaluation of nitrate nitrogen and nitrite nitrogen>
In Example 1, Comparative Example 1, and Reference Example 1, the breeding water in the breeding tank was periodically sampled during the breeding period, and nitrate nitrogen and nitrite nitrogen in the breeding water were measured.
Specifically, in accordance with JIS K 0102 43.1.5, using Tosoh Corporation ion chromatography system "IC-2010" and Tosoh Corporation column "TSKgel SuperIC-Anion HS", ion chromatography method Nitrate nitrogen and nitrite nitrogen were measured by
Nitrite nitrogen was hardly detected throughout the breeding period. Table 1 shows the concentrations of nitrate nitrogen before and after the start of the test.

<生分解性樹脂の消費量及び脱窒速度の評価>
下記式に従い、生分解性樹脂の消費量及び脱窒速度を求めた。結果を表1に示す。
(1)硝酸態窒素蓄積量=(飼育期間終了後の硝酸態窒素濃度-飼育期間開始時の硝酸態窒素濃度)×水槽総容量
(2)硝酸態窒素処理量=参考例1の硝酸態窒素蓄積量-実施例1又は比較例1での硝酸
態窒素蓄積量
(3)生分解性樹脂の消費量=飼育期間終了時の生分解性樹脂の重量-飼育期間開始時の生分解性樹脂の重量
(4)生分解性樹脂1kg及び1日あたりの脱窒速度=硝酸態窒素処理量÷((飼育期間開始時の生分解性樹脂の重量+飼育期間終了時の生分解性樹脂の重量)/2)÷試験日数
<Evaluation of biodegradable resin consumption and denitrification rate>
The biodegradable resin consumption and denitrification rate were determined according to the following formula. Table 1 shows the results.
(1) Nitrate nitrogen accumulation = (nitrate nitrogen concentration at the end of the breeding period - nitrate nitrogen concentration at the start of the breeding period) x total tank capacity (2) nitrate nitrogen treatment amount = nitrate nitrogen of Reference Example 1 Accumulation amount - Nitrate nitrogen accumulation amount in Example 1 or Comparative Example 1 (3) Consumption amount of biodegradable resin = Weight of biodegradable resin at the end of the breeding period - Biodegradable resin at the start of the breeding period Weight (4) 1 kg of biodegradable resin and denitrification rate per day = nitrate nitrogen treatment amount ÷ ((weight of biodegradable resin at start of breeding period + weight of biodegradable resin at end of breeding period) /2) ÷ test days

ここで、水槽総容量は、420L(飼育槽容量200L+硝化槽容量200L+脱窒槽容量20L)とした。
また、飼育期間開始時及び終了時の生分解性樹脂の重量は、それぞれ、飼育期間開始時及び終了時の脱窒担体の重量である。飼育期間終了時の生分解性樹脂の重量は、飼育期間終了時に残存している脱窒担体を水道水で洗浄して付着している生物膜等を除去し、常温で乾燥させてから測定した。
Here, the total tank capacity was 420 L (breeding tank capacity 200 L + nitrification tank capacity 200 L + denitrification tank capacity 20 L).
The weights of the biodegradable resin at the start and end of the breeding period are the weights of the denitrifying carrier at the start and end of the breeding period, respectively. The weight of the biodegradable resin at the end of the breeding period was measured after washing the denitrification carrier remaining at the end of the breeding period with tap water to remove the attached biofilm, etc., and drying at room temperature. .

<ニジマスの日間成長率及び飼料効率の評価>
飼育期間前後におけるニジマスの体重を測定し、上記式(I)に従い日間成長率(SGR)を、上記式(II)に従い飼料効率(FE)を算出した。結果を表1に示す。
<Evaluation of daily growth rate and feed efficiency of rainbow trout>
The weight of the rainbow trout was measured before and after the breeding period, and the daily growth rate (SGR) was calculated according to the above formula (I), and the feed efficiency (FE) was calculated according to the above formula (II). Table 1 shows the results.

Figure 2023111655000002
Figure 2023111655000002

実施例1と参考例1との比較により、実施例1では、脱窒が行われたことにより硝酸態窒素濃度が低減され、水処理後の水質は、水生生物の飼育に適したものとなったことがわかる。また、飼育槽から脱窒槽に至る飼育水の移送経路の途中にUV照射部が配置されている実施例1では、飼育槽から脱窒槽に至る飼育水の移送経路の途中にUV照射部が配置
されていない比較例1よりも、脱窒による生分解性樹脂の消費量が抑制されており、なおかつ、生分解性樹脂の単位重量あたりの脱窒速度が向上していた。さらに、実施例1では、生分解性樹脂の消費量が少ないため、水処理期間中に、生分解性樹脂を補充する必要性が生じる頻度を低減することができ、作業効率も高い。これは、実施例1において、脱窒槽での脱窒に供される前に、飼育水中の脱窒菌以外の好気性従属栄養細菌の数がUV照射により低減され、脱窒菌以外の好気性従属栄養細菌が生分解性樹脂を炭素源として消費することを抑制できたためであると考えられる。
A comparison between Example 1 and Reference Example 1 shows that in Example 1, nitrate nitrogen concentration was reduced due to denitrification, and the water quality after water treatment was suitable for rearing aquatic organisms. I understand that. Further, in Example 1, in which the UV irradiation unit is arranged in the middle of the breeding water transfer route from the breeding tank to the denitrification tank, the UV irradiation unit is arranged in the middle of the breeding water transfer route from the breeding tank to the denitrification tank. The consumption of the biodegradable resin due to denitrification was suppressed, and the denitrification rate per unit weight of the biodegradable resin was improved as compared with Comparative Example 1 in which the denitrification was not performed. Furthermore, in Example 1, since the amount of biodegradable resin consumed is small, it is possible to reduce the frequency with which the biodegradable resin needs to be replenished during water treatment, and work efficiency is high. This is because, in Example 1, before denitrification in the denitrification tank, the number of aerobic heterotrophic bacteria other than denitrifying bacteria in the breeding water was reduced by UV irradiation, and the number of aerobic heterotrophic bacteria other than denitrifying bacteria was reduced. It is believed that this is because the consumption of the biodegradable resin as a carbon source by bacteria could be suppressed.

また、表1より、飼育槽から脱窒槽に至る飼育水の移送経路の途中にUV照射部が配置された実施例1の水処理装置を用いて飼育水を浄化しながら水生生物の飼育を行うと、飼育槽から脱窒槽に至る飼育水の移送経路の途中にUV照射部が配置されていない比較例1の水処理装置を用いた場合よりも、日間成長率及び飼料効率が向上することが示された。これは、飼育槽から脱窒槽に至る飼育水の移送経路の途中にUV照射部を設置したことにより各水槽内の微生物菌叢バランスが変化したことなど、硝酸態窒素濃度以外の要因によるものと推測される。 Further, from Table 1, aquatic organisms are bred while purifying the breeding water using the water treatment apparatus of Example 1 in which the UV irradiation unit is arranged in the middle of the breeding water transfer route from the breeding tank to the denitrification tank. As a result, the daily growth rate and feed efficiency are improved as compared with the case of using the water treatment apparatus of Comparative Example 1 in which the UV irradiation unit is not arranged in the middle of the transfer route of the breeding water from the breeding tank to the denitrification tank. shown. This is due to factors other than the concentration of nitrate nitrogen, such as the fact that the microbial flora balance in each tank changed due to the installation of the UV irradiation unit in the middle of the transfer route of the breeding water from the breeding tank to the denitrification tank. guessed.

10 水処理装置
11 水貯蔵器
12 硝化槽
13 微生物低減処理部
14 脱窒槽
20 飼育装置
21 飼育槽
22 ろ過槽
23 硝化槽
24 UV照射部
25 脱窒槽
26 UV殺菌装置
10 Water treatment device 11 Water reservoir 12 Nitrification tank 13 Microorganism reduction treatment unit 14 Denitrification tank 20 Breeding device 21 Breeding tank 22 Filtration tank 23 Nitrification tank 24 UV irradiation part 25 Denitrification tank 26 UV sterilizer

Claims (7)

被処理水が収容されている水貯蔵器と、
脱窒菌が担持された脱窒担体を含む脱窒槽と、
前記被処理水中の好気性従属栄養細菌の数を低減する微生物低減処理部とを備え、
前記微生物低減処理部が、前記水貯蔵器から前記脱窒槽に至る前記被処理水の移送経路の途中に配置されている、水処理装置。
a water reservoir containing water to be treated;
a denitrification tank containing a denitrification carrier carrying denitrifying bacteria;
a microorganism reduction treatment unit that reduces the number of aerobic heterotrophic bacteria in the water to be treated;
The water treatment apparatus, wherein the microorganism reduction treatment unit is arranged in the middle of the transfer route of the water to be treated from the water reservoir to the denitrification tank.
前記微生物低減処理部が、前記被処理水に紫外線照射を行う紫外線照射部である、請求項1に記載の水処理装置。 2. The water treatment apparatus according to claim 1, wherein the microorganism reduction treatment section is an ultraviolet irradiation section that applies ultraviolet rays to the water to be treated. 前記脱窒担体が、生分解性樹脂を含有する、請求項1又は2に記載の水処理装置。 The water treatment device according to claim 1 or 2, wherein the denitrification carrier contains a biodegradable resin. 前記生分解性樹脂が、ジカルボン酸由来の構成単位を有する生分解性ポリエステルである、請求項3に記載の水処理装置。 The water treatment device according to claim 3, wherein the biodegradable resin is a biodegradable polyester having structural units derived from dicarboxylic acid. 硝化菌が担持された硝化担体を含む硝化槽をさらに備える、請求項1~4のいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, further comprising a nitrification tank containing a nitrification carrier carrying nitrifying bacteria. 前記被処理水が水生生物の飼育水である、請求項1~5のいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 5, wherein the water to be treated is breeding water for aquatic organisms. 被処理水中の好気性従属栄養細菌の数を低減する微生物低減工程と、
前記微生物低減工程を経た前記被処理水を、脱窒菌が担持された脱窒担体を含む脱窒槽に供給し、脱窒を行う脱窒工程と、
を含む、水処理方法。
A microorganism reduction step for reducing the number of aerobic heterotrophic bacteria in the water to be treated;
A denitrification step in which the water to be treated that has undergone the microorganism reduction step is supplied to a denitrification tank containing a denitrification carrier carrying denitrifying bacteria for denitrification;
A water treatment method, comprising:
JP2022013608A 2022-01-31 2022-01-31 Water treatment apparatus and water treatment method Pending JP2023111655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022013608A JP2023111655A (en) 2022-01-31 2022-01-31 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022013608A JP2023111655A (en) 2022-01-31 2022-01-31 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2023111655A true JP2023111655A (en) 2023-08-10

Family

ID=87551764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022013608A Pending JP2023111655A (en) 2022-01-31 2022-01-31 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2023111655A (en)

Similar Documents

Publication Publication Date Title
TW201204647A (en) Process for biological treatment of organic waste water and apparatus therefor
US10584046B2 (en) Nitrogen removal method, nitrification-reaction promoting agent for water treatment, and water treatment method
CN112209573B (en) Breeding tail water treatment system
CA3015268C (en) Biological removal of micropollutants from wastewater
JP2000245297A (en) Device for culturing fish or shellfish
KR102448376B1 (en) Recirculating aquaculture system using probiotics and management method thereof
US20210101812A1 (en) Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism
JP5028566B2 (en) Seawater purification device for surviving marine seafood and seawater purification method
JP2004230225A (en) Method for treating ammonia-containing water
US11185059B2 (en) Purification method for water, purification device for water, and use of said purification device at low water temperature
JP5915643B2 (en) Biological treatment method and apparatus for organic wastewater
JP2000334492A (en) Denitrication accelerating agent and water treatment using the same
JP2023111655A (en) Water treatment apparatus and water treatment method
WO2020122168A1 (en) Aquatic creature cultivation device, purification device, purification method, and molded article
US8997694B2 (en) Microbial mediated chemical sequestering of phosphate in a closed-loop recirculating aquaculture system
JP2020198846A (en) Eel rearing method and eel rearing apparatus
JP4562935B2 (en) Apparatus and method for treating nitrate nitrogen in sea water
JP7416335B1 (en) Microbial carrier and water treatment method
JP4038808B2 (en) Purifying agent for septic tank using butyric acid bacteria, septic tank, and purification method thereof
JP2695610B2 (en) Fish and shellfish cultivation method using purified livestock wastewater
JP2002159985A (en) Microorganism stuck carrier and waste water treatment method using the same
KR101729317B1 (en) Circulation filtering method of seawater
JP2007069113A (en) Excreta treatment apparatus
KR100292284B1 (en) Fish breeding circulation filtration tank and circulation filtration system
JP4908533B2 (en) Biological treatment method and apparatus using fish