JPH10165177A - Bacteria implanting tool and its production - Google Patents

Bacteria implanting tool and its production

Info

Publication number
JPH10165177A
JPH10165177A JP8359466A JP35946696A JPH10165177A JP H10165177 A JPH10165177 A JP H10165177A JP 8359466 A JP8359466 A JP 8359466A JP 35946696 A JP35946696 A JP 35946696A JP H10165177 A JPH10165177 A JP H10165177A
Authority
JP
Japan
Prior art keywords
synthetic resin
biodegradable polymer
tube
bacteria
bacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8359466A
Other languages
Japanese (ja)
Inventor
Susumu Maruyama
進 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8359466A priority Critical patent/JPH10165177A/en
Publication of JPH10165177A publication Critical patent/JPH10165177A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To obtain an implanting tool for a denitrifying bacterium, etc., capable of removing a nitrate salt exerting an evil influence on culturing fishes by housing a biodegradable polymer in a tube made from a synthetic resin membrane and provided with plural small holes, melt-cutting the tube for adhering the tube ends closely. SOLUTION: This bacteria implanting tool for a denitrifying bacterium, etc., formed by packing a biodegradable polymer material 1 with a synthetic resin membrane 3 provided with >=2 holes 2 or by coating the same, capable of removing a nitrate salt having a low toxicity to fishes but exerting an evil influence on culturing fishes on accumulation thereof or preventing the accumulation of the nitrate salt, improving the living environment of the fishes, simplifying the culturing work for a long period of culturing fishes by a culturing worker and reducing a cost therefor, is obtained by housing the biodegradable polymer 1 in a tube 4 made from the synthetic resin membrane 3 and provided with >=2 small holes 2, and melt-cutting the tube for adhering the tube ends closely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水生動植物飼育、
特に観賞魚飼育における飼育水中に含有する飼育水汚染
物質である、窒素酸化物の硝酸塩、亜硝酸塩を、生分解
高分子を基質あるいは水素供与体とし成育、増殖する通
性嫌気性微生物である脱窒細菌によって低減、除去し、
および蓄積防止に係るものであり、詳しくは、通性嫌気
性微生物であり、従属(有機)栄養細菌である脱窒細菌
の脱窒作用を効率よく発揮させる、脱窒細菌の棲息環境
の確保と維持を目的とした細菌着床具に関するものであ
る。
The present invention relates to aquatic animal and plant breeding,
In particular, nitrate and nitrite of nitrogen oxides, which are pollutants contained in breeding water in ornamental fish breeding, are converted to facultative anaerobic microorganisms that grow and proliferate using biodegradable polymers as substrates or hydrogen donors. Reduced and eliminated by nitrifying bacteria,
And the prevention of accumulation. More specifically, it is necessary to secure the habitat of denitrifying bacteria, which is a facultative anaerobic microorganism and efficiently exerts the denitrifying action of the denitrifying bacteria, which are heterotrophic (organic) vegetative bacteria. It relates to a bacterial implantation tool for maintenance.

【0002】[0002]

【従来の技術】従来から観賞魚飼育水中の硝酸塩や、亜
硝酸塩の低減、除去および蓄積防止は、通性嫌気性微生
物であり、従属(有機)栄養細菌である、脱窒細菌の基
質として球形の複雑形状とした生分解型樹脂(商品名、
デニボール (有)野辺商会)が生分解高分子単体とし
て硝酸塩の除去用に市販されている。なお市販されてい
る球形で複雑形状とした生分解高分子単体(商品名、デ
ニボール (有)野辺商会)は拡散反射法による分析
(日本電子(株)製FT−IRJIR3510)の結
果、エステル結合を含む合成樹脂である確認を得た。
2. Description of the Related Art Conventionally, nitrate and nitrite in ornamental fish breeding water have been reduced, eliminated and prevented from accumulating by using a spherical substrate as a substrate for a denitrifying bacterium, which is a facultative anaerobic microorganism and a dependent (organic) vegetative bacterium. Biodegradable resin (commercial name,
Deniball (Nobe Shokai) is commercially available as a biodegradable polymer alone for removing nitrate. A commercially available spherical biodegradable polymer having a complex shape (trade name: Deniball Nobe Shokai) was analyzed by a diffuse reflection method (FT-IRJIR3510, manufactured by JEOL Ltd.). It was confirmed that it was a synthetic resin containing.

【0003】[0003]

【発明が解決しようとする課題】観賞魚飼育水の最終汚
染物質としては、硝化作用で生成された窒素酸化物の硝
酸塩であり、硝酸塩の飼育水に含有する事によっておこ
る弊害は魚毒性は低いが蓄積されると共に魚を飼育する
上で硝酸塩に敏感な魚にストレスを与えてしまうこと
や、硝酸塩に敏感なサンゴ類等の無脊椎類全般の体調に
悪影響を及ぼす。さらに硝酸塩が蓄積されるとコケ等藻
類の異常発生が起こり観賞としての美観が損なわれ、緑
藻の後に表れるラン藻類には魚毒物質を生産する有害な
コケも発生すると言われている。この現象は海洋におけ
る赤潮的状況が水槽内でも起こりえることであり、この
ため硝酸塩の低減、除去が必要である。この硝酸塩の水
中の含有量の低減、除去は重労働である頻繁な飼育水の
水替えによって行われている。
The final pollutant of ornamental fish breeding water is nitrate of nitrogen oxide generated by nitrification, and the adverse effect caused by the inclusion of nitrate in the breeding water is low fish toxicity. Is accumulated and stresses fish that are sensitive to nitrate when breeding fish, and adversely affects the physical condition of invertebrates such as corals that are sensitive to nitrate. Further, it is said that the accumulation of nitrate causes abnormal occurrence of algae such as moss, thereby impairing the aesthetic appearance, and harmful moss that produces fish poisonous substances is also generated in cyanobacteria appearing after green algae. This phenomenon is that red tides in the ocean can occur in aquariums, and it is necessary to reduce and remove nitrates. The reduction and removal of the nitrate content in water is carried out by frequent water change of breeding water, which is a heavy labor.

【0004】現在、市販されている脱窒細菌の基質とな
る複雑な球形状の生分解高分子単体は、使用説明書で使
用説明の記載もされ、飼育水中に溶存する酸素のきわめ
て少ない、あるいは無い状態での使用を訴えているが、
生分解高分子単体のみの使用方策または使用場所が確立
されておらず、使用者各人の工夫にまかされている状況
のため、使用場所等の確保を間違えれば基質となる生分
解高分子単体の使用が無意味となり、有効に利用できな
い可能性が大きく、また飼育水の汚染を助長してしまう
こととなる。市販されている生分解高分子単体を利用す
る専用容器が別に市販されているが、この専用容器を使
用しても、この専用容器の構造が単に生分解高分子単体
を収容する空間が多孔板で仕切られ、飼育水が生分解高
分子単体に万遍なく接触するようになっているだけであ
り、飼育水の流量を少量に調節するだけなので、飼育水
中に溶存する酸素のきわめて少ない、あるいは無い状態
の飼育水を維持し確保させることは困難である。観賞魚
飼育者は硝酸塩の除去は必要と認識しているが上記理由
のため普及しにくい状況にある。
[0004] At present, a simple spherical biodegradable polymer serving as a substrate for a denitrifying bacterium that is commercially available is also described in the instruction manual for use, and contains very little oxygen dissolved in the breeding water. Complaining of using it without it,
The use of biodegradable polymer alone or the place of use has not been established, and the situation is left to the ingenuity of each user. The use of a single substance becomes meaningless, and there is a high possibility that it cannot be used effectively, and the contamination of breeding water will be promoted. Although a dedicated container that uses a commercially available biodegradable polymer alone is commercially available separately, even if this dedicated container is used, the structure of this dedicated container is simply a perforated plate that holds the biodegradable polymer alone. The breeding water is only contacted uniformly with the biodegradable polymer alone, and the flow rate of the breeding water is only adjusted to a small amount, so the amount of oxygen dissolved in the breeding water is extremely small, or It is difficult to maintain and secure breeding water without water. Ornamental fish breeders recognize that nitrate removal is necessary, but it is difficult to spread for the above reasons.

【0005】生物濾過における濾過槽形式、方式では、
いかに早く有機物を分解させるか、さらに硝化作用によ
る、魚毒であるアンモニアと亜硝酸塩を比較的有害な硝
酸塩に効率よく変成させるかに重点が置かれており、硝
酸塩に変成させる必要のため飼育水中に空気を送り、飼
育水中に酸素を十分に溶け込ませる曝気が行われる。こ
のことが魚等の水生動物の飼育法として一般に飼育指導
されている。
[0005] In biological filtration, the type of filtration tank,
The emphasis is on how to quickly decompose organic matter and efficiently convert fish poison ammonia and nitrite into relatively harmful nitrates by nitrification. Aeration is performed to send oxygen into the breeding water to sufficiently dissolve oxygen. This is generally instructed as a method of breeding aquatic animals such as fish.

【0006】自然界においては脱窒作用によって硝酸塩
を順次還元し、窒素ガスあるいは亜酸化窒素ガスとして
大気放出する能力をもつ反硝化微生物である脱窒細菌が
存在し、この脱窒細菌の脱窒作用が行われる棲息環境は
基質となる有機物の存在と飼育水中に溶存する酸素のき
わめて少ない、あるいは無い状態で有効に発揮され、窒
素酸化物の構成酸素を脱窒細菌が呼吸に利用し、すなわ
ち窒素酸化物を還元し、このため硝酸塩の低減、除去が
行われる。
In the natural world, there are denitrifying bacteria, which are antinitrifying microorganisms capable of sequentially reducing nitrate by a denitrifying action and releasing them to the atmosphere as nitrogen gas or nitrous oxide gas. The habitat in which denitrification takes place is effective when the presence of organic matter as a substrate and the amount of oxygen dissolved in the breeding water is extremely low or no, and the denitrifying bacteria use the oxygen constituting nitrogen oxides for respiration, The oxides are reduced, thus reducing and removing nitrates.

【0007】一度硝化作用によって硝酸塩に変成した窒
素酸化物を、逆に脱窒作用で大気放出させるということ
は、飼育水中の溶存酸素の問題や、基質あるいは水素供
与体として有機物を脱窒細菌に与えなければならないと
いう硝化作用と逆な矛盾点がある。
[0007] Conversely, nitrogen oxides that have been converted into nitrates by nitrification are released to the atmosphere by denitrification, which means that there is a problem of dissolved oxygen in breeding water and that organic substances as substrates or hydrogen donors are denitrified by denitrifying bacteria. There is an opposite contradiction to the nitrification action that must be given.

【0008】飼育水の溶存酸素のきわめて少なくする場
所を作り出すことは、現状の一般的な観賞用とした家庭
の魚飼育水槽の生物濾過形式、方式の濾過槽では難し
く、意識的に嫌気領域を造ったり、濾過槽が日時経過に
伴い濾過材がヘドロで詰まって部分的な嫌気領域ができ
てしまった場合は、絶対嫌気性微生物の棲息環境にもな
り得るため、硫酸還元菌等が繁殖し猛毒物質である硫化
水素が生成し飼育中の生物を全滅させてしまう可能性
や、同化型還元作用によって硝酸塩が亜硝酸塩に、さら
にアンモニアまで還元されて、やはり飼育中の生物を全
滅させてしまう可能性もあり恐い。一般観賞的飼育者で
はこれらの知識が乏しく理解しにくいため硝酸塩の低
減、除去効果を発揮する脱窒細菌の棲息環境である、溶
存酸素量のきわめて少ない飼育水を確保することの難し
い問題を抱えている。
[0008] It is difficult to create a place where the amount of dissolved oxygen in the breeding water is extremely low by using a biological filtration type and a type of filtration tank of a home fish breeding aquarium which is currently used for general ornamentation. If the filter is clogged with sludge with the passage of date and time, and a partial anaerobic area has been created, the sulphate-reducing bacteria, etc. will proliferate because they can also serve as habitat for absolute anaerobic microorganisms. Hydrogen sulfide, a highly toxic substance, may be produced and annihilate living organisms.Nitrate is reduced to nitrite and then to ammonia by assimilation-type reduction, which also destroys all living organisms. It is possible and scary. Ordinary ornamental breeders have poor knowledge and are difficult to understand, so it is difficult to secure breeding water with extremely low dissolved oxygen, which is the habitat for denitrifying bacteria that reduce and remove nitrate. ing.

【0009】本発明は魚類等水生生物飼育における脱窒
細菌の棲息環境の確保と脱窒作用効果を考え、溶存酸素
量の少ない飼育水の確保と維持、使用方策や使用場所の
問題点を解決し、さらに重労働である水替え作業と海水
性動植物飼育の場合の人工海水費等の軽減、削減を目的
とし、また脱窒素を必要とする廃水処理設備等、水処理
設備一般の脱窒素行程においては、従来から使用される
微生物固定化担体に代わる物として、細菌着床具を使用
し、従来から脱窒細菌の基質として一般的なメタノール
等、危険物であり毒物の使用を排除し、また取扱い作業
を削減することを可能とし、さらに従来の廃水処理設備
等の脱窒行程における脱窒槽の広大な設置所要面積の問
題を解消し、より効果的な窒素酸化物の低減、除去、ま
たは硝酸塩の蓄積防止の確立をはかった細菌着床具を提
供しようとするものである。
The present invention is intended to secure the habitat of denitrifying bacteria and the effect of denitrification in breeding aquatic organisms such as fish, and to secure and maintain breeding water with a low dissolved oxygen content, and to solve the problems of the use method and place of use. In addition, for the purpose of reducing and reducing artificial seawater costs in case of heavy labor such as water replacement work and breeding seawater animals and plants, in the denitrification process of general water treatment equipment such as wastewater treatment equipment that requires denitrification. As a substitute for the conventionally used microorganism-immobilized carrier, a bacterial implantation tool is used, and the use of dangerous and toxic substances such as methanol, which is conventionally used as a substrate for denitrifying bacteria, is eliminated. It is possible to reduce the handling work, and also to solve the problem of the large installation area of the denitrification tank in the denitrification process of the conventional wastewater treatment equipment etc., and to reduce or remove nitrogen oxides or nitrate more effectively. Accumulation of It is intended to provide a bacterial implantation instrument measured the establishment of the stop.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明における細菌着床具は、脱窒素を必要とする
飼育水や廃水が容易に流通しないよう、また気体が容易
に排気できるように形成された細孔2を2個以上設けて
いる硬質、軟質を問わない合成樹脂膜3内に、生分解性
高分子体1を包覆うように収容したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a bacterial implantation device which prevents breeding water and wastewater requiring denitrification from easily flowing and allows gas to be easily exhausted. The biodegradable polymer 1 is housed in a hard or soft synthetic resin film 3 having two or more pores 2 formed as described above.

【0011】[0011]

【発明の実施の形態】生分解性高分子体1は、従属(有
機)栄養細菌の生育、増殖する上での基質あるいは水素
供与体となる。そして水中の溶存酸素の極めて少ない状
況において窒素酸化物である亜硝酸塩、および硝酸塩の
存在化で、窒素酸化物の構成酸素を呼吸に利用し、窒素
酸化物を還元除去する通性嫌気性微生物である脱窒細菌
が生分解性高分子上に群がり着床する。
BEST MODE FOR CARRYING OUT THE INVENTION The biodegradable polymer 1 serves as a substrate or a hydrogen donor for the growth and growth of heterotrophic (organo) trophic bacteria. In a situation where dissolved oxygen in water is extremely low, the presence of nitrite and nitrate, which are nitrogen oxides, is a facultative anaerobic microorganism that uses the constituent oxygen of nitrogen oxides for respiration and reduces and removes nitrogen oxides. Certain denitrifying bacteria swarm and land on the biodegradable polymer.

【0012】脱窒細菌を利用し、窒素酸化物である硝酸
塩、亜硝酸塩の低減、除去を行わせるためには、窒素酸
化物が含有する飼育水(以後、原飼育水とする)や廃水
(以後、原廃水とする)中の溶存酸素の少ない、あるい
は無い状態の原飼育水や原廃水の確保が必要である。
In order to reduce and remove nitrate and nitrite, which are nitrogen oxides, by using denitrifying bacteria, it is necessary to raise breeding water (hereinafter referred to as original breeding water) and wastewater containing nitrogen oxides (hereinafter referred to as original breeding water). Hereafter, it is necessary to secure raw breeding water and raw wastewater with little or no dissolved oxygen in the raw wastewater.

【0013】以下、本発明の細菌着床具を観賞魚飼育水
に限定して説明すれば、生分解性高分子体1に脱窒素を
必要とし溶存酸素を含む原飼育水が容易に接触しないよ
うに包覆い、あるいはコーティングしている合成樹脂膜
3と、さらに脱窒素を必要とする原飼育水が容易に流通
しないように合成樹脂膜3の周面に2個以上設けた細孔
2のため細菌着床具を流入出する飼育水の通水が阻害さ
れ、流入出量が制限され、飼育水は浸流入出状態での飼
育水交換となる。このため細菌着床具内の飼育水が入れ
替わる喚水の時間が長くなり、細菌着床具内の飼育水は
一時、経時的な止水的淀み状態に置かれる。止水的淀み
状態に置かれた飼育水は、種々の好気性微生物によって
原飼育水中の溶存酸素が消費され、溶存酸素量が極めて
少ない状態となり、好気性微生物は死滅し、その後、通
性嫌気性微生物である脱窒細菌の棲息環境ができる。
In the following, the bacterial implantation tool of the present invention is limited to ornamental fish breeding water. If the biodegradable polymer 1 requires denitrification and does not easily come into contact with the original breeding water containing dissolved oxygen. And two or more pores 2 provided on the peripheral surface of the synthetic resin film 3 so that the original breeding water requiring further denitrification is not easily circulated. Therefore, the flow of the breeding water flowing in and out of the bacterial implantation equipment is impeded, the amount of inflow and outflow is restricted, and the breeding water is replaced with the breeding water in a state of infiltration and inflow. For this reason, the watering time in which the breeding water in the bacterial implantation tool is replaced becomes longer, and the breeding water in the bacterial implantation tool is temporarily placed in a stagnant state with time. In breeding water placed in a still-water stagnation state, dissolved oxygen in the original breeding water is consumed by various aerobic microorganisms, the amount of dissolved oxygen becomes extremely small, aerobic microorganisms die, and thereafter facultative anaerobic A habitat for denitrifying bacteria, which are germ-free microorganisms.

【0014】細菌着床具内に、生分解性高分子体1の体
表面は、好気性微生物の棲息環境となるが生分解性高分
子体1の体表面下、大部分の生分解性高分子体1の体内
部は溶存酸素量が極めて少ない状態となり通性嫌気性微
生物である脱窒細菌の棲息環境となり、脱窒細菌が生分
解性高分子体1上に着床することになる。この結果、原
飼育水中の窒素酸化物である硝酸塩、亜硝酸塩は、生分
解性高分子上に着床した通性嫌気性微生物である脱窒細
菌の脱窒作用によって還元消費されるに従い低減、除去
される。低減、除去された飼育水と原飼育水が細菌着床
具内から少量づつ連続的に浸流入出し喚水されることと
なる。
In the bacterial implant, the body surface of the biodegradable polymer 1 provides a habitat for aerobic microorganisms, but is below the body surface of the biodegradable polymer 1 and is mostly biodegradable. The inside of the body of the molecular body 1 has a very small amount of dissolved oxygen, which becomes a habitat for the denitrifying bacteria, which are facultatively anaerobic microorganisms, and the denitrifying bacteria land on the biodegradable polymer 1. As a result, the nitrate and nitrite, which are nitrogen oxides in the original breeding water, are reduced as they are reduced and consumed by the denitrifying action of the denitrifying bacteria, which are facultative anaerobic microorganisms implanted on the biodegradable polymer, Removed. The reduced and removed breeding water and original breeding water are continuously leached in and out of the bacteria implanting device in small amounts, and are agitated.

【0015】本発明の細菌着床具に浸流入する飼育水
は、完全に溶存酸素が無い飼育水ではないため絶対嫌気
性微生物であり、特に海水生物飼育における硫酸塩を還
元し、猛毒である硫化水素を生成する硫酸還元菌は細菌
着床具内に着床しにくい。
The breeding water that infiltrates into the bacterial implantation device of the present invention is an absolutely anaerobic microorganism because it is not breeding water completely free of dissolved oxygen, and is particularly toxic by reducing sulfates in breeding marine organisms. Sulfate-reducing bacteria that produce hydrogen sulfide are difficult to implant in bacterial implants.

【0016】合成樹脂膜3の材料は、熱可塑性樹脂や熱
硬化性樹脂、ゴム等があるが、熱可塑性樹脂が適してお
り硬質、軟質を問わない。合成樹脂膜3の材料物性や諸
性質は、力学的には程度問題としての強さを必要とする
が、劣化や脆化のしやすい性状の方が適し、熱的には脆
化や軟化温度の低く、各種の劣化に対する耐久性、特に
耐候性、耐水性、耐湿性、耐熱性、耐寒性、耐光性、耐
紫外線性等は、低い方がよい。また水酸基やカルボキシ
ル基等の構成基を含む親水性や吸水性のある樹脂がよ
い。微生物類の生育、繁殖を阻害する可能性のあるとい
われる、合成樹脂に添加する可塑剤や滑剤等の添加剤の
溶出のない、また添加剤を含まない合成樹脂が最適であ
る。他、合成樹脂膜3の材料として生分解性合成樹脂で
もかまわない、しかしこの場合、生分解性高分子体1よ
り難分解性の生分解性合成樹脂とする。
The material of the synthetic resin film 3 includes a thermoplastic resin, a thermosetting resin, a rubber, and the like, and a thermoplastic resin is suitable and may be either hard or soft. The material properties and various properties of the synthetic resin film 3 mechanically require strength as a matter of degree, but properties that are easily deteriorated or embrittled are more suitable, and thermal embrittlement or softening temperature is more appropriate. And the durability against various types of deterioration, particularly the weather resistance, water resistance, moisture resistance, heat resistance, cold resistance, light resistance, ultraviolet resistance, etc., should be as low as possible. Further, a hydrophilic or water-absorbing resin containing constituent groups such as a hydroxyl group and a carboxyl group is preferable. Synthetic resins which are said to have the potential to inhibit the growth and propagation of microorganisms and which do not elute additives such as plasticizers and lubricants added to the synthetic resin and contain no additives are most suitable. In addition, a biodegradable synthetic resin may be used as the material of the synthetic resin film 3. However, in this case, the biodegradable synthetic resin is more difficult to decompose than the biodegradable polymer 1.

【0017】合成樹脂膜3の膜厚は、種々の熱可塑性樹
脂の引っ張り強さや衝撃強さ等の力学的機械的特質を考
慮し30μm〜5mmの厚みとする。合成樹脂膜3とし
て合成繊維の織布やフェルト、また微細孔をもつ不織布
や空胞が隣接空胞と小孔で通じている連続気泡樹脂シー
トの利用も考えられる。
The thickness of the synthetic resin film 3 is set to 30 μm to 5 mm in consideration of mechanical properties such as tensile strength and impact strength of various thermoplastic resins. It is also conceivable to use a synthetic fiber woven fabric or felt, a nonwoven fabric having micropores, or an open-cell resin sheet in which small cells are connected to adjacent cells by small holes as the synthetic resin film 3.

【0018】合成樹脂膜3は不用な微生物の棲息を防ぐ
ため、たとえば光合成細菌の繁殖を防ぐために遮光性の
ある合成樹脂膜3や有色とした合成樹脂膜3とする。た
だし遮光性がある場所での細菌着床具の使用は透明とし
た合成樹脂膜3でもかまわない。
The synthetic resin film 3 is a light-shielding synthetic resin film 3 or a colored synthetic resin film 3 for preventing the inhabitation of unnecessary microorganisms, for example, for preventing the growth of photosynthetic bacteria. However, the use of a bacterial implantation tool in a place having a light-shielding property may be achieved by using a transparent synthetic resin film 3.

【0019】合成樹脂膜3の材料に、水酸化カルシウム
や炭酸カルシウム、または酸化マグネシウム、水酸化マ
グネシウム等の粉末を、合成樹脂膜3が容易に破損しな
い強度に任意重量配合し、無機・有機複合型合成樹脂、
あるいは無機・有機複合型生分解合成樹脂として合成樹
脂膜3に形成すれば、飼育生物に悪影響がある硝化反応
の進行に伴う酸性化の酸の中和作用を付加することがで
きる上に、脱窒細菌の脱窒素活性がPH9付近で最高と
言われておりこれに近づけることができる。特にイソブ
チレン−無水マレイン酸共重合樹脂は無機物質に対し優
れた分散性能があるといわれている。
Powder of calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide or the like is added to the material of the synthetic resin film 3 at an arbitrary weight so that the synthetic resin film 3 is not easily damaged. Mold synthetic resin,
Alternatively, when formed on the synthetic resin film 3 as an inorganic / organic hybrid biodegradable synthetic resin, a neutralizing action of acidification accompanying the progress of the nitrification reaction, which has an adverse effect on breeding organisms, can be added, and dehydration can be achieved. It is said that the denitrifying activity of the nitrifying bacteria is the highest around PH9, which can be approached. In particular, it is said that an isobutylene-maleic anhydride copolymer resin has excellent dispersibility in inorganic substances.

【0020】合成樹脂膜3の周面に設ける、細孔2は2
個以上であり、孔径は毛管引力が作用せず水分保持力が
低く、透水性のよい6μm以上2mmとする。
The pores 2 provided on the peripheral surface of the synthetic resin film 3
The pore diameter is set to 6 μm or more and 2 mm, which is low in water holding power without capillary attraction and good in water permeability.

【0021】合成樹脂膜3内に収容される生分解性高分
子体1とする生分解性高分子としては、微生物によって
分解され、微生物資化される完全分解性高分子や生物崩
壊性高分子があり、完全分解性高分子としては、微生物
によって生産されるポリヒドロキシ酪酸およびその誘導
体やプルラン、天然物系高分子のキチン、キトサン、で
んぷん、セルロース、カンテン等、およびその混合体や
複合体、そして低分子量の生分解性合成樹脂のポリ酪酸
等の脂肪族ポリエステル系高分子であり、他、脂肪族ポ
リウレタン等のウレタン結合共重合体、ポリエチレング
リコール等のエーテル結合共重合体であり、生物崩壊性
高分子としては完全分解性高分子を任意重量割合で含む
合成樹脂であり、また高分子量生分解性合成樹脂のポリ
酪酸等の脂肪族ポリエステル系高分子であり、他、脂肪
族ポリウレタン等のウレタン結合共重合体、ポリエチレ
ングリコール等のエーテル結合共重合体がある。脱窒素
という目的上、生分解性高分子体1の構成原子に窒素原
子を含まない生分解性高分子が好ましい。
The biodegradable polymer contained in the synthetic resin film 3 as the biodegradable polymer 1 is a completely degradable polymer or a biodegradable polymer which is decomposed by microorganisms and assimilated by microorganisms. There are, as the completely degradable polymer, polyhydroxybutyric acid and its derivatives and pullulan produced by microorganisms, chitin of natural products, chitosan, starch, cellulose, agar and the like, and mixtures and complexes thereof, It is an aliphatic polyester-based polymer such as polybutyric acid, a low molecular weight biodegradable synthetic resin, a urethane-bonded copolymer such as an aliphatic polyurethane, and an ether-bonded copolymer such as polyethylene glycol. The synthetic polymer is a synthetic resin containing a completely degradable polymer in an arbitrary weight ratio, and is a high molecular weight biodegradable synthetic resin such as polybutyric acid. An ester-based polymer, other, a urethane bond copolymers and aliphatic polyurethane, is an ether bond copolymers such as polyethylene glycol. For the purpose of denitrification, a biodegradable polymer containing no nitrogen atom as a constituent atom of the biodegradable polymer 1 is preferable.

【0022】脱窒素効果速度を考えた場合の生分解性高
分子体1は、海水の脱窒素として海水中で生分解性が良
いポリブチレン・サクシネート・アジペート(PBSU
・AD)、また淡水の脱窒素として淡水中で生分解性が
良いポリエチレン・サクシネート(PESU)、また海
水、淡水双方には、ポリヒドコキシ・ブチレート・バリ
レート(PHB/V)(高分子1996年3月号45巻
143ページ)の素材が好適である。
Considering the denitrification effect rate, the biodegradable polymer 1 is polybutylene succinate adipate (PBSU) having good biodegradability in seawater as denitrification of seawater.
AD), polyethylene succinate (PESU) having good biodegradability in fresh water as denitrification of fresh water, and polyhydroxy butylate valerate (PHB / V) (Polymer in March 1996) for both seawater and freshwater No. 45, page 143) is suitable.

【0023】ポリヒドロキシブチレートは多くの微生物
の体内栄養物質であり、なお酸素のない環境でより生物
分解性が高いため通性嫌気性微生物である脱窒細菌着床
の生分解高分子体2の素材のひとつとして、最好適であ
る。
Polyhydroxybutyrate is a nutrient substance in the body of many microorganisms, and is more biodegradable in an oxygen-free environment. It is most suitable as one of the materials.

【0024】細菌着床具の生分解性高分子体1は、完全
分解性高分子や生物崩壊性高分子であり、態状としては
固体や液体、またはゲル状を含み、固体状の完全分解性
高分子や生物崩壊性高分子は、空胞が隣接空胞と小孔で
通じている連続気泡の多孔をもつ連続多孔樹脂を粒状体
や粉末状体さらに紐状体に整形したり、完全分解性高分
子や生物崩壊性高分子をそのまま粒状体や粉末状体さら
に長繊維の紡糸状体や紐状体として、または粒状体や粉
末状体さらに長繊維の紡糸状体を圧縮固化や接着固化さ
せ球体、卵状体、正方体、長方体、正四面体、筒状体、
ラセン状体等の形状としたり、さらに固体、液体、また
はゲル状の混合や複合体として合成樹脂膜3に収容す
る。固体の生分解性高分子体1を連続多孔樹脂とした場
合は、毛管引力が作用せず水分保持力が低く、透水性の
よい6μm以上の孔隙とする。
The biodegradable polymer 1 of the bacterial implantation device is a completely degradable polymer or a biodegradable polymer, and includes a solid, liquid, or gel state, and a solid degradable polymer. For porous polymers and biodegradable polymers, continuous porous resin with open pores in which vacuoles communicate with adjacent vacuoles through small pores can be shaped into granules, powders, or strings, or completely Degradable polymers and biodegradable polymers can be used as granules, powders, and long-fiber spun or corded materials as they are, or granules, powders, and long-fiber spun materials can be compacted and adhered. Solidified sphere, oval, square, rectangular, tetrahedral, cylindrical,
The synthetic resin film 3 is formed into a shape such as a helical body or the like, and is further accommodated in the synthetic resin film 3 as a solid, liquid, or gel mixture or composite. When the solid biodegradable polymer 1 is made of a continuous porous resin, the pores are 6 μm or more having good water permeability and low water retention without capillary attraction.

【0025】生分解性高分子体1に着床する脱窒細菌等
の微生物は、生育や繁殖のために生物学的に活性な酸
素、ビタミン、ホルモン等の化合物の成分であり、細胞
内の代謝過程にとって微量元素(ミネラル)が必要と言
われている。このため生体の必須元素を珪酸塩類や酸化
物類として含む麦飯石等の石英斑岩や花崗岩等の火成岩
粒体や粉体を生分解性高分子体1に混配合することも考
えられる。
Microorganisms such as denitrifying bacteria that are implanted on the biodegradable polymer 1 are components of compounds such as oxygen, vitamins and hormones that are biologically active for growth and reproduction, It is said that metabolic processes require trace elements (minerals). Therefore, it is conceivable to mix igneous rock particles or powders such as quartz porphyry or granite, such as barley stone, and granite, which contain essential elements of the living body as silicates or oxides, with the biodegradable polymer 1.

【0026】本発明の細菌着床具は汚染水中のアンモニ
ア除去にも効果があることが実験によって確認(特願平
8−279842、細菌着床具)でき、またアンモニア
が亜硝酸型硝化作用のみを受け、その後脱窒素作用で亜
硝酸塩の還元除去も確認された。アンモニアが亜硝酸塩
に酸化変成され、その後亜硝酸塩からの酸化変成される
べき硝酸塩のテスト試薬による反応がなかったものであ
り、亜硝酸塩から直接、脱窒素作用によって亜酸化窒素
ガスあるいは窒素ガスとなり大気放出されたものと思わ
れ、アンモニアが亜硝酸型硝化作用により亜硝酸塩に酸
化変成すると同時進行的に脱窒素作用によって亜硝酸塩
が亜酸化窒素ガスあるいは窒素ガスとなり大気放出され
たものと判断する。
Experiments have confirmed that the bacterial implant of the present invention is also effective in removing ammonia from contaminated water (Japanese Patent Application No. 8-279842, bacterial implant), and that ammonia has only nitrite-type nitrification action. After that, reduction and removal of nitrite were confirmed by denitrification. Ammonia is oxidized and converted to nitrite, and there is no reaction of nitrate to be oxidized and converted from nitrite with a test reagent.Nitrite directly converts nitrite into nitrous oxide gas or nitrogen gas by denitrification. It is considered that the nitrite was released to the atmosphere when the ammonia was oxidized and converted to nitrite by nitrite-type nitrification, and simultaneously the nitrite became nitrous oxide gas or nitrogen gas by denitrification.

【0027】本発明の細菌着床具は、水中に溶存酸素が
存在しても、通性嫌気性微生物である脱窒細菌が着床し
得る環境の確保と保持ができ、脱窒細菌の脱窒作用によ
る窒素酸化物の除去が可能のため、水生動植物飼育愛好
家の飼育水用途に限定するものでなく、硝酸塩、亜硝酸
塩の窒素酸化物除去具として脱窒素を必要とする水族館
等大規模な水槽設備や通常脱窒素を伴う廃水処理設備、
さらに分離接触曝気方式、嫌気濾床接触曝気方式等の合
併浄化槽と水処理設備でも利用が可能である。
The bacterial implantation device of the present invention can secure and maintain an environment where denitrifying bacteria, which are facultatively anaerobic microorganisms, can be implanted even if dissolved oxygen is present in water, and denitrification bacteria can be removed. Because it can remove nitrogen oxides by nitrification, it is not limited to breeding water for aquatic animals and plants lovers, but large-scale aquariums such as aquariums that require denitrification as nitrate and nitrite nitrogen oxide removal tools Water tank equipment and wastewater treatment equipment that usually involves denitrification,
Further, the present invention can be used in a combined septic tank and a water treatment facility of a separation contact aeration system, an anaerobic filter bed contact aeration system, and the like.

【0028】本発明の細菌着床具は、生分解性高分子体
1を、2個以上の細孔2を設けてある合成樹脂膜3によ
って包覆い、あるいはコーティングよって形成されるも
のであり、この様態は海苔巻き寿司や電線ケーブルのよ
うな、ご飯や銅線を海苔や合成樹脂によって被覆した状
態にし、端を潰し切断した後、両端の被覆物各端を密着
させた状態や、米やセメントの袋詰め状態、また飴やチ
ョコレート、ガム等の味覚と違った他の味覚品で包覆っ
た状態である。これを製造する手段としては、
The bacterial implantation device of the present invention is formed by enclosing a biodegradable polymer 1 with a synthetic resin film 3 having two or more pores 2 or by coating. In this mode, rice or copper wire, such as laver rolled sushi or electric cable, is covered with laver or synthetic resin, crushed and cut, and then the coated material at both ends is in close contact with each other. Or in a bag of cement, or in a state of being wrapped in another taste product different from the taste, such as candy, chocolate, or gum. As a means of manufacturing this,

【0029】製造する手段1として図6を参考に説明す
れば、多数の細孔2を設けてある熱可塑性合成繊維であ
るフィルムやシート状または織布やフェルト、また微細
孔をもつ不織布や空胞が隣接空胞と小孔で通じている連
続気泡樹脂シート等を熱器具溶接、高周波溶接、超音波
溶接、あるいは接着剤によって管状や筒状に溶接や接着
しつつ、この溶接や接着の行程で、管状や筒状になった
合成樹脂膜製管4内に粒状体や粉末状体さらに液状体や
ゲル状体の生分解性高分子体1を充填収容する。その後
生分解性高分子体1が充填収容された合成樹脂膜製管4
の両端の合成樹脂膜3各端を熱器具溶接、高周波溶接、
超音波溶接等で密着させ溶断し細菌着床具を完成させ
る。
Referring to FIG. 6 as a means 1 for producing, a thermoplastic synthetic fiber film or sheet having a large number of pores 2 or a woven fabric or felt, a nonwoven fabric having fine pores or an empty The process of welding and bonding is performed by welding or bonding the open-cell resin sheet, etc., in which the cells communicate with the adjacent vacuoles through small holes, in the form of a tube or a tube using heat appliance welding, high-frequency welding, ultrasonic welding, or an adhesive. Then, the biodegradable polymer 1 in the form of a granular material, a powder, a liquid, or a gel is filled and housed in the tube 4 made of a synthetic resin film having a tubular or cylindrical shape. Thereafter, a synthetic resin film tube 4 filled with the biodegradable polymer 1
Heating equipment welding, high frequency welding,
Fusing by ultrasonic welding etc. to complete the bacterial implantation tool.

【0030】製造する手段2として図5を参考に説明す
れば、連続多孔樹脂を製造するため、プロパン、ブタン
やペンタン等の炭化水素系発泡剤やアゾジカルボンアミ
ド、クエン酸ソーダ、重曹、炭酸アンモニウム、重炭酸
アンモニウム等の化学発泡剤を混配合させた熱可塑性合
成樹脂の融液を押出し成形機等の適応加工によって管状
や筒状に加工しつつ、この加工行程で加工された管状や
筒状内に粒状体や粉末状体さらに液状体やゲル状体の生
分解性高分子体1を充填収容する。その後生分解性高分
子体1が充填収容された合成樹脂膜製管4の両端の合成
樹脂膜3各端を熱器具溶接、高周波溶接、超音波溶接等
で密着させ溶断し細菌着床具を完成させる。
Referring to FIG. 5 as means 2 for producing, referring to FIG. 5, in order to produce a continuous porous resin, hydrocarbon foaming agents such as propane, butane and pentane, azodicarbonamide, sodium citrate, sodium bicarbonate, ammonium carbonate While processing a melt of a thermoplastic synthetic resin mixed with a chemical foaming agent such as ammonium bicarbonate into a tube or tube by an adaptive process such as an extrusion molding machine, the tube or tube processed in this process is processed. The biodegradable polymer 1 in the form of granules, powders, liquids or gels is filled and accommodated therein. After that, the ends of the synthetic resin film 3 at both ends of the synthetic resin film tube 4 filled with the biodegradable polymer 1 are adhered to each other by heat appliance welding, high frequency welding, ultrasonic welding or the like, and blown off to obtain a bacterial implantation tool. Finalize.

【0031】製造する手段3として、連続多孔樹脂を製
造するためプロパン、ブタンやペンタン等の炭化水素系
発泡剤やアゾジカルボンアミド、クエン酸ソーダ、重
曹、炭酸アンモニウム、重炭酸アンモニウム等の化学発
泡剤を混配合させた熱可塑性合成樹脂の融液や溶剤に溶
かした溶解液中に、必要とする紡糸状体や紐状体または
球体、卵状体、正方体、長方体、正四面体、筒状体、ラ
セン板状体等の形状に整形された生分解性高分子体1を
数秒〜数分没しつけ込み、あるいは数回没しつけ込み、
その後冷却、あるいは乾燥させ細菌着床具を完成させ
る。
As means 3 for producing, for producing a continuous porous resin, a hydrocarbon foaming agent such as propane, butane or pentane or a chemical foaming agent such as azodicarbonamide, sodium citrate, sodium bicarbonate, ammonium carbonate or ammonium bicarbonate is used. In a melt of a thermoplastic synthetic resin mixed with or dissolved in a solvent, a required spun body, string-like body or sphere, egg-like body, cuboid, rectangular body, tetrahedron, cylinder The biodegradable polymer 1 shaped into a shape such as a helical plate-like body for several seconds to several minutes, or several times,
After that, it is cooled or dried to complete the bacterial implantation device.

【0032】製造する手段4として、紡糸状体や紐状体
または球体、卵状体、正方体、長方体、正四面体、筒状
体、ラセン状体等の形状に整形された生分解性高分子体
1を、熱可塑性合成樹脂の融液や溶剤に溶かした溶解液
中に数秒〜数分没しつけ込み、あるいは数回没しつけ込
み、その後冷却、あるいは乾燥させ、熱可塑性合成樹脂
を生分解性高分子体1に塗布された状態で、周表面に炭
酸ガスレーザや剣板等の針状鋭具を具備する板具や回転
具で2個以上の細孔を設けて細菌着床具を完成させる。
As means 4 for producing, a biodegradable material shaped into a spun body, a string body or a sphere, an ovoid body, a cuboid, a rectangular body, a tetrahedron, a tubular body, a helical body, etc. The polymer 1 is immersed in a melt of a thermoplastic synthetic resin or a solution dissolved in a solvent for several seconds to several minutes, or immersed several times, and then cooled or dried to produce a thermoplastic synthetic resin. In the state of being applied to the degradable polymer 1, two or more pores are provided on the peripheral surface with a plate tool or a rotating tool having a needle-like sharp tool such as a carbon dioxide laser or a sword plate to provide a bacterial implantation tool. Finalize.

【0033】製造する手段5として、紡状糸体や紐状体
または球体、卵状体、正方体、長方体、正四面体、筒状
体、ラセン状体等の形状に整形された生分解性高分子体
1に熱可塑性合成樹脂の融液や溶剤に溶かした溶解液を
噴霧器によって塗布し、その後冷却、あるいは乾燥させ
周面に炭酸ガスレーザや剣板等の針状鋭具を具備する板
具や回転具で2個以上の細孔を設けて細菌着床具を完成
させる。
As means 5 for producing, biodegradation shaped into a spun yarn, string, sphere, egg, square, rectangular, rectangular, tetrahedral, cylindrical, spiral, etc. A plate having a needle-like sharp tool such as a carbon dioxide laser or a sword plate on its peripheral surface is coated with a melt of a thermoplastic synthetic resin or a solution dissolved in a solvent by a sprayer, and then cooled or dried. A bacterial implantation tool is completed by providing two or more pores with a tool or rotating tool.

【0034】他の細菌着床具を製造する手段として、米
の袋詰めやセメントの袋詰め等の袋詰め、海苔巻き寿司
製造、電線被覆成形における電線ケーブル製造、異なる
味覚を含包した飴製造装置システム等を利用し、このよ
うな装置システムを利用し細菌着床具の製造を行う方法
も考えられる。
As means for producing other bacterial implantation tools, bagging such as rice bagging and cement bagging, laver sushi production, electric wire cable production in electric wire coating molding, candy production containing different tastes are included. It is also conceivable to use an apparatus system or the like to manufacture a bacterial implantation tool using such an apparatus system.

【0035】生分解性高分子体1を合成樹脂膜3で包覆
われた、あるいはコーティングされた細菌着床具の断面
形状は10mm〜20mmの内径とする、あるいは近似
内径とする合成樹脂製円筒体や多角筒体、さらに10m
m〜20mmの内径とする円周の卵型や小判型とする。
他、製造する手段の1,2で製造される細菌着床具にお
いて、両端を熱融着で連結し、ドーナツ型としたり、三
角形としたドーナツ変形型などが考えられる。
The biodegradable polymer 1 is covered with a synthetic resin film 3 or a cross-sectional shape of a bacterial implanter coated or coated with a synthetic resin cylinder having an inner diameter of 10 mm to 20 mm or an approximate inner diameter. Body and polygonal cylinder, further 10m
A circumferential egg shape or oval shape having an inner diameter of m to 20 mm is used.
In addition, in the bacterial implantation tool manufactured by the manufacturing means 1 and 2, the both ends may be connected by heat fusion to form a donut shape, or a triangular donut deformation type.

【0036】[0036]

【発明の効果】魚類等を飼育する上で、飼育水中に脱窒
作用を行う必要以上の溶存酸素が存在しても、脱窒素を
行うことが可能となり、魚毒性は低いが蓄積されると魚
類を飼育する上で弊害となる硝酸塩を還元処理すること
ができる。硝酸塩を還元処理することによって除去し魚
類等や水生および海水性生物の長期飼育を可能とさせ水
槽の頻繁な清掃作業や水槽飼育水の頻繁な水替作業の低
減等飼育および作業の簡便化がはかれる。また海水性動
植物飼育においては、人工海水費の削減がはかれる。
According to the present invention, when breeding fish and the like, it is possible to perform denitrification even if dissolved oxygen in the breeding water is higher than necessary for denitrification. It is possible to reduce nitrate, which is harmful to breeding fish. Nitrate is removed by reduction treatment to enable long-term breeding of fish, aquatic and marine organisms, and simplification of breeding and work such as frequent cleaning of aquariums and reduction of frequent water refilling of aquarium breeding water. To be peeled off. In breeding seawater animals and plants, the cost of artificial seawater can be reduced.

【0037】本発明の細菌着床具は、常に細菌着床具に
溶存酸素が存在した飼育水や廃水が接触するため、硫酸
還元菌やメタン生成菌等の絶対嫌気性微生物の繁殖が抑
えられる。特に海水飼育水の場合は、硫酸還元菌によっ
て硫酸塩が還元され猛毒である硫化水素の発生が少な
く、仮に発生しても、細菌着床具から浸流出した硫化水
素は、溶存酸素が存在する飼育水に触れ、また溶存酸素
が存在する周辺に存在する硫黄酸化細菌によって硫酸塩
に還元され無害化する。
In the bacterial implantation device of the present invention, the breeding of absolute anaerobic microorganisms such as sulfate-reducing bacteria and methane-producing bacteria is suppressed because the bacterial implantation device always comes into contact with breeding water or wastewater containing dissolved oxygen. . Especially in the case of seawater rearing water, sulfate is reduced by sulfate reducing bacteria, and the generation of highly toxic hydrogen sulfide is small, and even if it is generated, dissolved oxygen is present in the hydrogen sulfide leached out of the bacterial implantation tool It is exposed to breeding water and is reduced to sulphate by sulfur-oxidizing bacteria existing in the vicinity where dissolved oxygen is present, and rendered harmless.

【0038】従属(有機)栄養細菌の一種と思われる亜
硝酸硝化菌による亜硝酸型硝化と脱窒細菌による亜硝酸
塩の脱窒素作用の同時進行が確認(特願平8−2798
42、細菌着床具)されているので、魚類等が飼育では
濾過槽を小さくしたり、廃水処理設備等では硝化行程へ
供給すべき酸素量を少なくでき、経済的に有利であると
ともに硝化行程の硝化槽内での脱窒素もでき、装置の縮
小化することが可能となる。また本発明の細菌着床具を
使用し脱窒素活性汚泥処理等プロセスを設計する場合、
従来の脱窒素行程を省いたプロセスの設計が可能となり
得る。
Simultaneous progression of nitrite-type nitrification by nitrite-nitrifying bacteria, which is considered to be a kind of heterotrophic (organic) vegetative bacteria, and denitrification of nitrite by denitrifying bacteria was confirmed (Japanese Patent Application No. 8-2798).
42, bacterial implantation equipment), so that fish and the like can reduce the size of the filtration tank when breeding, and can reduce the amount of oxygen to be supplied to the nitrification process in wastewater treatment equipment and the like, which is economically advantageous and at the same time the nitrification process. Can be denitrified in the nitrification tank, and the size of the apparatus can be reduced. When designing a process such as denitrification activated sludge treatment using the bacterial implantation tool of the present invention,
It may be possible to design a process without the conventional denitrification step.

【0039】本発明の細菌着床具は、利用される目的に
よって形状、大きさ、長さが自由に成形可能であり、脱
窒素を必要とする廃水処理設備等にも利用可能であるの
で、従来から使用される脱窒細菌の基質として一般的な
メタノール等、危険物であり毒物の使用を排除し、また
取扱い作業を削減することが可能とし、さらに従来の廃
水処理設備等の脱窒素行程における脱窒槽の広大な設置
所要面積の問題を解消できる。
The bacterial implantation tool of the present invention can be freely formed in shape, size, and length depending on the purpose of use, and can be used for wastewater treatment equipment requiring denitrification. The use of dangerous and poisonous substances such as methanol, which is commonly used as a substrate for denitrifying bacteria, can be eliminated, handling can be reduced, and the denitrification process of conventional wastewater treatment facilities The problem of large installation area of the denitrification tank can be solved.

【0040】本発明の固体状生分解高分子をもちいた細
菌着床具を使用しアンモニア除去、および脱窒素作用の
効果期間は、生分解高分子体2の素材や重量によって、
少なくても1ヶ月から1年以上と任意にすることが可能
である。
The effective period of ammonia removal and denitrification by using a bacterial implant using the solid biodegradable polymer of the present invention depends on the material and weight of the biodegradable polymer 2.
At least one month to one year or more is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の細菌着床具部分断面斜視図FIG. 1 is a partial cross-sectional perspective view of a bacterial implantation tool of the present invention.

【図2】本発明の細菌着床具断面斜視図FIG. 2 is a sectional perspective view of a bacterial implantation tool of the present invention.

【図3】本発明の細菌着床具例1斜視図FIG. 3 is a perspective view of Example 1 of a bacterial implantation tool of the present invention.

【図4】本発明の細菌着床具例2部分断面斜視図FIG. 4 is a perspective view, partially in section, of a second example of a bacterial implantation tool of the present invention.

【図5】本発明の細菌着床具製造模式図1FIG. 5 is a schematic diagram of the production of a bacterial implantation tool of the present invention.

【図6】本発明の細菌着床具製造模式図2FIG. 6 is a schematic diagram 2 of the production of a bacterial implantation tool of the present invention.

【図7】本発明の合成樹脂の融液や溶解液中に、紡糸状
体や紐状体の生分解性高分子体1を没しつけ込みコーテ
ィングする、細菌着床具製造模式図3
FIG. 7 is a schematic diagram showing a method for manufacturing a bacterial implantation tool, in which a biodegradable polymer 1 of a spun or string-like body is immersed and coated in a melt or a solution of the synthetic resin of the present invention.

【図8】本発明の細菌着床具例3斜視図FIG. 8 is a perspective view of Example 3 of a bacterial implantation tool according to the present invention.

【図9】本発明の細菌着床具例4部分断面斜視図FIG. 9 is a perspective view, partially in section, of a fourth example of a bacterial implantation tool of the present invention.

【図10】本発明の細菌着床具例5部分断面斜視図FIG. 10 is a perspective view, partly in section, of a fifth example of a bacterial implantation tool of the present invention.

【図11】本発明の細菌着床具例6部分断面斜視図FIG. 11 is a perspective view, partly in section, of a bacterial implantation tool example 6 of the present invention.

【図12】本発明の細菌着床具例7部分断面斜視図FIG. 12 is a perspective view, partially in section, of Example 7 of a bacterial implantation tool of the present invention.

【符号の説明】[Explanation of symbols]

1 生分解性高分子体 2 細孔 3 合成樹脂膜 4 合成樹脂膜製管 5 パイプ押出し成形機 6 合成樹脂導入 7 生分解性高分子導入 8 冷却部 9 生分解性高分子充填管 10溶接、溶断 11細菌着床具 12溶接、接着 13合成樹脂液槽 14被覆生分解性高分子体 REFERENCE SIGNS LIST 1 biodegradable polymer 2 pores 3 synthetic resin film 4 synthetic resin film pipe 5 pipe extruder 6 synthetic resin introduction 7 biodegradable polymer introduction 8 cooling section 9 biodegradable polymer filled pipe 10 welding Fusing 11 Bacterial implants 12 Welding and bonding 13 Synthetic resin bath 14 Coated biodegradable polymer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生分解性高分子体(1)を、2個以上の
細孔(2)を設けてある合成樹脂膜(3)で包覆い、あ
るいはコーティング形成される細菌着床具。
1. A bacterial implantation device in which a biodegradable polymer (1) is covered with a synthetic resin film (3) provided with two or more pores (2) or a coating is formed.
【請求項2】 2個以上の細孔(2)を設けている合成
樹脂膜(3)製の管(4)内に生分解性高分子体(1)
を収容し、管(4)を溶断し管端を密着させたことによ
って製造される請求項1記載の細菌着床具。
2. A biodegradable polymer (1) in a tube (4) made of a synthetic resin film (3) provided with two or more pores (2).
The bacterial implanter according to claim 1, wherein the bacterial implanter is manufactured by fusing the tube (4) and bringing the tube ends into close contact.
【請求項3】 生分解性高分子体(1)を、連続気泡樹
脂を製造する手段をもつ合成樹脂融液や溶解液に没しつ
け込み、その後冷却や乾燥させて製造される請求項1記
載の細菌着床具。
3. The biodegradable polymer (1) is produced by immersing the biodegradable polymer (1) in a synthetic resin melt or solution having means for producing an open-cell resin, followed by cooling and drying. Bacteria implanter.
【請求項4】 合成樹脂融液や溶解液を塗布する手段で
もって、生分解性高分子体(1)に塗布し、周面に2個
以上の孔を設け、製造される請求項1記載の細菌着床
具。
4. The method according to claim 1, wherein the biodegradable polymer (1) is applied by means of applying a synthetic resin melt or solution, and two or more holes are provided on the peripheral surface. Bacteria implanter.
JP8359466A 1996-12-13 1996-12-13 Bacteria implanting tool and its production Pending JPH10165177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8359466A JPH10165177A (en) 1996-12-13 1996-12-13 Bacteria implanting tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8359466A JPH10165177A (en) 1996-12-13 1996-12-13 Bacteria implanting tool and its production

Publications (1)

Publication Number Publication Date
JPH10165177A true JPH10165177A (en) 1998-06-23

Family

ID=18464644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8359466A Pending JPH10165177A (en) 1996-12-13 1996-12-13 Bacteria implanting tool and its production

Country Status (1)

Country Link
JP (1) JPH10165177A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020570A1 (en) * 1997-10-21 1999-04-29 Senju Pharmaceutical Co., Ltd. Composite material comprising biodegradable plastic and fibrous material
WO2002094015A3 (en) * 2001-04-26 2004-01-22 Tetra Gmbh Denitrification of aquarium water with the aid of polycaprolactone
JP2006166741A (en) * 2004-12-14 2006-06-29 Taiho Ind Co Ltd Denitrification method of water for rearing aquatic animal, denitrification apparatus and filter medium for denitrification
JP2006231254A (en) * 2005-02-28 2006-09-07 Nitchitsu Co Ltd Denitrification matrix retaining material, nozzle for denitrification matrix and method for cleaning water quality
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
JP2008301787A (en) * 2007-06-11 2008-12-18 Iris Ohyama Inc Apparatus for purifying water in water tank
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
JP4625552B2 (en) * 1999-03-08 2011-02-02 大成建設株式会社 Groundwater purification method
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
WO2020122168A1 (en) * 2018-12-12 2020-06-18 三菱ケミカル株式会社 Aquatic creature cultivation device, purification device, purification method, and molded article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020570A1 (en) * 1997-10-21 1999-04-29 Senju Pharmaceutical Co., Ltd. Composite material comprising biodegradable plastic and fibrous material
JP4625552B2 (en) * 1999-03-08 2011-02-02 大成建設株式会社 Groundwater purification method
WO2002094015A3 (en) * 2001-04-26 2004-01-22 Tetra Gmbh Denitrification of aquarium water with the aid of polycaprolactone
JP2004526460A (en) * 2001-04-26 2004-09-02 テトラ・ゲーエムベーハー Denitrification of aquarium water
JP4733339B2 (en) * 2001-04-26 2011-07-27 テトラ・ゲーエムベーハー Denitrification of aquarium water
US7244358B2 (en) 2001-04-26 2007-07-17 Tetra Gmbh Denitrification of aquarium water
CZ302355B6 (en) * 2001-04-26 2011-03-30 Tetra Gmbh Agent for the aerobic removal of inorganic nitrogen compounds from biological aquarium water
US7604745B2 (en) 2004-02-06 2009-10-20 Takachiho Corp. Water-purifying solid material made of a natural raw material containing polysaccharides as principal components, and water-purifying method using the same
JP2006166741A (en) * 2004-12-14 2006-06-29 Taiho Ind Co Ltd Denitrification method of water for rearing aquatic animal, denitrification apparatus and filter medium for denitrification
JP2006231254A (en) * 2005-02-28 2006-09-07 Nitchitsu Co Ltd Denitrification matrix retaining material, nozzle for denitrification matrix and method for cleaning water quality
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
JP2008301787A (en) * 2007-06-11 2008-12-18 Iris Ohyama Inc Apparatus for purifying water in water tank
WO2020122168A1 (en) * 2018-12-12 2020-06-18 三菱ケミカル株式会社 Aquatic creature cultivation device, purification device, purification method, and molded article

Similar Documents

Publication Publication Date Title
US10342189B2 (en) Aerobic, bioremediation treatment system comprising floating inert media in an aqueous environment
US7384777B2 (en) Microbiological culture for triggering microbiological processes in water
CN102826657B (en) Carbon fiber wetland type ecological floating bed and arrangement method thereof
JP2003340482A (en) Water quality improver and method for improving water quality
JPH07124581A (en) Device and process for drainage treatment
JPH10165177A (en) Bacteria implanting tool and its production
JPH1085782A (en) Bacterium implantation tool
JPWO2005081641A1 (en) Water purification method and purification system
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
CN202322497U (en) Multifunctional clear water carrier system
JP2010094101A (en) Simplified hydroponics device and hydroponics method
US20090107410A1 (en) Aquarium cover
JPH10136980A (en) Support for bioreactor and its production
JP2599834B2 (en) Water quality improvement method
JPH09205922A (en) Aquiculture method for fish and shellfish
KR101249009B1 (en) Lck-system
JP4298382B2 (en) Water purification method and water purification apparatus used for the method
KR100753128B1 (en) Floating type light porous body for water purification and the manufacture method thereof
JPH06190385A (en) Bacteria carrier
US20200031699A1 (en) Filtration enhancement device for a circulating water culture system and method of making/maintaining same
JP2002233729A (en) Method and apparatus for deodorizing malodorous gas
JP2005323540A (en) Method for applying nitrogen-containing fertilizer and nitrifying bacterial formulation
JP3159394B2 (en) Method and apparatus for treating pesticides and wastewater containing nitrogen
JP2005328735A (en) Method for culturing fishes or shellfishes and fish or shellfish-culturing apparatus used for the method
CN215667361U (en) Water purifying material with multilayer structure