JPWO2020121949A1 - Polyimide resin composition and polyimide film - Google Patents

Polyimide resin composition and polyimide film Download PDF

Info

Publication number
JPWO2020121949A1
JPWO2020121949A1 JP2020560034A JP2020560034A JPWO2020121949A1 JP WO2020121949 A1 JPWO2020121949 A1 JP WO2020121949A1 JP 2020560034 A JP2020560034 A JP 2020560034A JP 2020560034 A JP2020560034 A JP 2020560034A JP WO2020121949 A1 JPWO2020121949 A1 JP WO2020121949A1
Authority
JP
Japan
Prior art keywords
structural unit
polyimide resin
mol
resin composition
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020560034A
Other languages
Japanese (ja)
Other versions
JP7392657B2 (en
Inventor
洋平 安孫子
慎司 関口
貴文 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2020121949A1 publication Critical patent/JPWO2020121949A1/en
Application granted granted Critical
Publication of JP7392657B2 publication Critical patent/JP7392657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ポリイミド樹脂と、少なくとも2つのオキサゾリル基を有する架橋剤とを含むポリイミド樹脂組成物であって、前記ポリイミド樹脂が、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、構成単位Aが、下記式(a−1)で表される化合物に由来する構成単位(A−1)を含み、構成単位Bが、下記式(b−1)で表される化合物に由来する構成単位(B−1)と、下記式(b−2)で表される化合物に由来する構成単位(B−2)と、下記式(b−3)で表される化合物に由来する構成単位(B−3)とを含む、ポリイミド樹脂組成物、並びに該ポリイミド樹脂組成物中の前記ポリイミド樹脂が前記架橋剤により架橋されてなるポリイミドフィルム。(式(b−1)中、Xは単結合又は特定の基であり、pは0〜2の整数であり、m1は0〜4の整数であり、m2は0〜4の整数である;式(b−2)中、R1〜R4は、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、Z1及びZ2は、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、rは正の整数である。)A polyimide resin composition containing a polyimide resin and a cross-linking agent having at least two oxazolyl groups, wherein the polyimide resin contains a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine. The constituent unit A includes the constituent unit (A-1) derived from the compound represented by the following formula (a-1), and the constituent unit B is the compound represented by the following formula (b-1). Derived from the structural unit (B-1) derived from, the structural unit (B-2) derived from the compound represented by the following formula (b-2), and the compound represented by the following formula (b-3). A polyimide resin composition containing the structural unit (B-3), and a polyimide film obtained by cross-linking the polyimide resin in the polyimide resin composition with the cross-linking agent. (In equation (b-1), X is a single bond or a specific group, p is an integer from 0 to 2, m1 is an integer from 0 to 4, and m2 is an integer from 0 to 4; In formula (b-2), R1 to R4 are independently monovalent aliphatic groups or monovalent aromatic groups, and Z1 and Z2 are independently divalent aliphatic groups, respectively. Or a divalent aromatic group, where r is a positive integer.)

Description

本発明はポリイミド樹脂組成物及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin composition and a polyimide film.

ポリイミド樹脂は、優れた機械的特性及び耐熱性を有することから、電気・電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。このような用途のポリイミドフィルムには無色透明性が求められる。 Since the polyimide resin has excellent mechanical properties and heat resistance, various uses are being studied in the fields of electrical and electronic parts and the like. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is underway. Colorless transparency is required for polyimide films for such applications.

上記用途に適したポリイミドフィルムとして、ポリイミド樹脂に架橋剤を添加して製造されたポリイミドフィルムが提案されている。特許文献1には、カルボキシル基を有するポリイミド樹脂と少なくとも2つのオキサゾリル基を有する架橋剤とを含むポリイミド樹脂組成物が開示され、当該ポリイミド樹脂組成物によって、良好な透明性と高硬度を有する膜の形成が可能であると記載されている。 As a polyimide film suitable for the above application, a polyimide film produced by adding a cross-linking agent to a polyimide resin has been proposed. Patent Document 1 discloses a polyimide resin composition containing a polyimide resin having a carboxyl group and a cross-linking agent having at least two oxazolyl groups, and the polyimide resin composition provides a film having good transparency and high hardness. It is stated that the formation of is possible.

特開2016−222797号公報Japanese Unexamined Patent Publication No. 2016-222777

画像表示装置において、表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求され、さらに、位相差フィルムや偏光板を光が通過する場合(例えば、液晶ディスプレイ、タッチパネルなど)は、無色透明性に加えて、光学的等方性が高いことも要求される。しかし、特許文献1には、光学的等方性について何ら記載されていない。 In an image display device, when light emitted from a display element is emitted through a plastic substrate, colorless transparency is required for the plastic substrate, and light passes through a retardation film or a polarizing plate ( For example, liquid crystal displays, touch panels, etc.) are required to have high optical isotropic properties in addition to colorless transparency. However, Patent Document 1 does not describe any optical isotropic property.

さらに、ポリイミドフィルムが基板として適するためには、耐薬品性(耐溶剤性や耐酸性)も求められる。例えば、ポリイミドフィルムの上に別の樹脂層(例えば、カラーフィルター、レジスト)を形成するために当該樹脂層形成用のワニスをポリイミドフィルムに塗布する場合、ポリイミドフィルムには当該ワニス中に含まれる溶剤に対する耐性が求められる。ポリイミドフィルムの耐溶剤性が不十分であると、フィルムの溶解や膨潤により、基板として意味をなさなくなるおそれがある。
また、ポリイミドフィルムをITO(Indium Tin Oxide)膜形成用の基板として用いた場合、ポリイミドフィルムにはITO膜のエッチングに用いられる酸に対する耐性が求められる。ポリイミドフィルムの耐酸性が不十分であると、フィルムが黄変して無色透明性が損なわれるおそれがある。
特許文献1では、溶剤(N,N−ジメチルアセトアミド)に対する耐性は評価されているが、耐酸性は評価されていない。
Further, in order for the polyimide film to be suitable as a substrate, chemical resistance (solvent resistance and acid resistance) is also required. For example, when a varnish for forming the resin layer is applied to the polyimide film in order to form another resin layer (for example, a color filter or a resist) on the polyimide film, the polyimide film contains a solvent contained in the varnish. Resistance to is required. If the solvent resistance of the polyimide film is insufficient, it may become meaningless as a substrate due to dissolution or swelling of the film.
Further, when the polyimide film is used as a substrate for forming an ITO (Indium Tin Oxide) film, the polyimide film is required to have resistance to the acid used for etching the ITO film. If the acid resistance of the polyimide film is insufficient, the film may turn yellow and the colorless transparency may be impaired.
In Patent Document 1, resistance to a solvent (N, N-dimethylacetamide) has been evaluated, but acid resistance has not been evaluated.

また、ポリイミド樹脂と架橋剤とを含むポリイミド樹脂組成物は、ポリイミド樹脂と架橋剤との組み合わせによっては、常温で保存しても架橋によるゲル化が進行することがあり、その場合、長期保存に適さない。
さらに、ポリイミド樹脂組成物は、ポリイミド樹脂組成物の塗布等に使用した配管や装置に使用する洗浄液(例えば、東京応化工業株式会社製の「OK73シンナー」等)に対する溶解性も求められる。洗浄液に対する溶解性が低いと、洗浄液による配管や装置の洗浄が不十分になるおそれがある。
特許文献1には、ポリイミド樹脂組成物の保存安定性や洗浄性について何ら記載されていない。
Further, depending on the combination of the polyimide resin and the cross-linking agent, the polyimide resin composition containing the polyimide resin and the cross-linking agent may undergo gelation due to cross-linking even when stored at room temperature. Not suitable.
Further, the polyimide resin composition is also required to have solubility in a cleaning solution (for example, "OK73 thinner" manufactured by Tokyo Ohka Kogyo Co., Ltd.) used for piping and equipment used for coating the polyimide resin composition and the like. If the solubility in the cleaning solution is low, the cleaning of piping and equipment with the cleaning solution may be insufficient.
Patent Document 1 does not describe any storage stability or detergency of the polyimide resin composition.

本発明は上記の状況に鑑みてなされたものであり、本発明の課題は、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性及び耐酸性)に優れるフィルムの形成が可能であって、保存安定性及び洗浄性に優れるポリイミド樹脂組成物を提供すること、並びに前記ポリイミド樹脂組成物中のポリイミド樹脂が架橋剤により架橋されてなるポリイミドフィルムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is that it is possible to form a film having excellent colorless transparency, optical isotropic property, and chemical resistance (solvent resistance and acid resistance). It is an object of the present invention to provide a polyimide resin composition having excellent storage stability and cleanability, and to provide a polyimide film obtained by cross-linking the polyimide resin in the polyimide resin composition with a cross-linking agent.

本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂と特定の架橋剤とを含むポリイミド樹脂組成物が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyimide resin composition containing a combination of a specific structural unit and a specific cross-linking agent can solve the above-mentioned problems, and have completed the invention.

即ち、本発明は、下記の[1]〜[11]に関する。
[1]
ポリイミド樹脂と、少なくとも2つのオキサゾリル基を有する架橋剤とを含むポリイミド樹脂組成物であって、
前記ポリイミド樹脂が、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、
構成単位Aが、下記式(a−1)で表される化合物に由来する構成単位(A−1)を含み、
構成単位Bが、下記式(b−1)で表される化合物に由来する構成単位(B−1)と、下記式(b−2)で表される化合物に由来する構成単位(B−2)と、下記式(b−3)で表される化合物に由来する構成単位(B−3)とを含む、ポリイミド樹脂組成物。

Figure 2020121949

(式(b−1)中、
Xは単結合、置換若しくは無置換のアルキレン基、カルボニル基、エーテル基、下記式(b−1−i)で表される基、又は下記式(b−1−ii)で表される基であり、
pは0〜2の整数であり、
m1は0〜4の整数であり、
m2は0〜4の整数である。
Figure 2020121949

[式(b−1−i)中、m3は0〜5の整数であり、式(b−1−ii)中、m4は0〜5の整数である。]
ただし、
m1+m2+m3+m4は1以上であり、
pが0の場合、m1は1〜4の整数であり、
pが2の場合、2つのX及び2つのm2〜m4のそれぞれは独立して選択される;
式(b−2)中、
1〜R4は、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
1及びZ2は、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
rは正の整数である。)That is, the present invention relates to the following [1] to [11].
[1]
A polyimide resin composition containing a polyimide resin and a cross-linking agent having at least two oxazolyl groups.
The polyimide resin has a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine.
The structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1).
The structural unit B is a structural unit (B-1) derived from a compound represented by the following formula (b-1) and a structural unit (B-2) derived from a compound represented by the following formula (b-2). ) And the structural unit (B-3) derived from the compound represented by the following formula (b-3).
Figure 2020121949

(In equation (b-1),
X is a single bond, substituted or unsubstituted alkylene group, carbonyl group, ether group, a group represented by the following formula (b-1-i), or a group represented by the following formula (b-1-ii). can be,
p is an integer from 0 to 2
m1 is an integer from 0 to 4,
m2 is an integer from 0 to 4.
Figure 2020121949

[In the formula (b-1-i), m3 is an integer of 0 to 5, and in the formula (b-1-ii), m4 is an integer of 0 to 5. ]
However,
m1 + m2 + m3 + m4 is 1 or more,
When p is 0, m1 is an integer of 1 to 4.
When p is 2, each of the two Xs and the two m2 to m4 is independently selected;
In equation (b-2),
R 1 to R 4 are independently monovalent aliphatic groups or monovalent aromatic groups, respectively.
Z 1 and Z 2 are independently divalent aliphatic groups or divalent aromatic groups, respectively.
r is a positive integer. )

[2]
構成単位(B−1)が、下記式(b−11)で表される化合物に由来する構成単位(B−11)である、上記[1]に記載のポリイミド樹脂組成物。

Figure 2020121949

[3]
前記架橋剤が、少なくとも2つのオキサゾリル基が結合した芳香環又は芳香族複素環を含む化合物である、上記[1]又は[2]に記載のポリイミド樹脂組成物。
[4]
前記架橋剤が、少なくとも2つのオキサゾリル基が結合したベンゼン環を含む化合物である、上記[3]に記載のポリイミド樹脂組成物。
[5]
前記架橋剤が、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンである、上記[4]に記載のポリイミド樹脂組成物。
[6]
構成単位A中における構成単位(A−1)の比率が50モル%以上である、上記[1]〜[5]のいずれかに記載のポリイミド樹脂組成物。
[7]
構成単位B中における構成単位(B−1)の比率が20〜75モル%であり、
構成単位B中における構成単位(B−2)の比率が1〜25モル%であり、
構成単位B中における構成単位(B−3)の比率が20〜75モル%である、上記[1]〜[6]のいずれかに記載のポリイミド樹脂組成物。
[8]
構成単位Aが、下記式(a−2)で表される化合物に由来する構成単位(A−2)を更に含む、上記[1]〜[7]のいずれかに記載のポリイミド樹脂組成物。
Figure 2020121949

[9]
構成単位A中における構成単位(A−1)の比率が50〜99モル%であり、
構成単位A中における構成単位(A−2)の比率が1〜50モル%である、上記[8]に記載のポリイミド樹脂組成物。
[10]
上記[1]〜[9]のいずれかに記載のポリイミド樹脂組成物及び有機溶媒を含むポリアミドワニス。
[11]
上記[1]〜[9]のいずれかに記載のポリイミド樹脂組成物中の前記ポリイミド樹脂が前記架橋剤により架橋されてなるポリイミドフィルム。[2]
The polyimide resin composition according to the above [1], wherein the structural unit (B-1) is a structural unit (B-11) derived from a compound represented by the following formula (b-11).
Figure 2020121949

[3]
The polyimide resin composition according to the above [1] or [2], wherein the cross-linking agent is a compound containing an aromatic ring or an aromatic heterocycle having at least two oxazolyl groups bonded thereto.
[4]
The polyimide resin composition according to the above [3], wherein the cross-linking agent is a compound containing a benzene ring having at least two oxazolyl groups bonded thereto.
[5]
The polyimide resin composition according to the above [4], wherein the cross-linking agent is 1,3-bis (4,5-dihydro-2-oxazolyl) benzene.
[6]
The polyimide resin composition according to any one of the above [1] to [5], wherein the ratio of the structural unit (A-1) in the structural unit A is 50 mol% or more.
[7]
The ratio of the constituent unit (B-1) in the constituent unit B is 20 to 75 mol%.
The ratio of the constituent unit (B-2) in the constituent unit B is 1 to 25 mol%.
The polyimide resin composition according to any one of the above [1] to [6], wherein the ratio of the structural unit (B-3) in the structural unit B is 20 to 75 mol%.
[8]
The polyimide resin composition according to any one of the above [1] to [7], wherein the structural unit A further contains a structural unit (A-2) derived from a compound represented by the following formula (a-2).
Figure 2020121949

[9]
The ratio of the constituent unit (A-1) in the constituent unit A is 50 to 99 mol%.
The polyimide resin composition according to the above [8], wherein the ratio of the structural unit (A-2) in the structural unit A is 1 to 50 mol%.
[10]
A polyamide varnish containing the polyimide resin composition according to any one of [1] to [9] above and an organic solvent.
[11]
A polyimide film obtained by cross-linking the polyimide resin in the polyimide resin composition according to any one of [1] to [9] with the cross-linking agent.

本発明のポリイミド樹脂組成物は保存安定性及び洗浄性に優れており、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性及び耐酸性)に優れるフィルムを形成することができる。 The polyimide resin composition of the present invention is excellent in storage stability and detergency, and can form a film having excellent colorless transparency, optical isotropic property, and chemical resistance (solvent resistance and acid resistance). ..

[ポリイミド樹脂組成物]
本発明のポリイミド樹脂組成物はポリイミド樹脂と架橋剤とを含む。以下、本発明におけるポリイミド樹脂及び架橋剤について説明する。
[Polyimide resin composition]
The polyimide resin composition of the present invention contains a polyimide resin and a cross-linking agent. Hereinafter, the polyimide resin and the cross-linking agent in the present invention will be described.

<ポリイミド樹脂>
本発明において、ポリイミド樹脂はテトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、構成単位Aが下記式(a−1)で表される化合物に由来する構成単位(A−1)を含み、構成単位Bが下記式(b−1)で表される化合物に由来する構成単位(B−1)と、下記式(b−2)で表される化合物に由来する構成単位(B−2)と、下記式(b−3)で表される化合物に由来する構成単位(B−3)とを含む。

Figure 2020121949
<Polyimide resin>
In the present invention, the polyimide resin has a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine, and the structural unit A is derived from a compound represented by the following formula (a-1). A structural unit (B-1) containing a structural unit (A-1) and whose structural unit B is derived from a compound represented by the following formula (b-1) and a compound represented by the following formula (b-2). The structural unit (B-2) derived from the above and the structural unit (B-3) derived from the compound represented by the following formula (b-3) are included.
Figure 2020121949

式(b−1)中、
Xは単結合、置換若しくは無置換のアルキレン基、カルボニル基、エーテル基、下記式(b−1−i)で表される基、又は下記式(b−1−ii)で表される基であり、
pは0〜2の整数であり、
m1は0〜4の整数であり、
m2は0〜4の整数である。

Figure 2020121949

(式(b−1−i)中、m3は0〜5の整数であり、式(b−1−ii)中、m4は0〜5の整数である。)
ただし、
m1+m2+m3+m4は1以上であり、
pが0の場合、m1は1〜4の整数であり、
pが2の場合、2つのX及び2つのm2〜m4のそれぞれは独立して選択される。In equation (b-1),
X is a single bond, substituted or unsubstituted alkylene group, carbonyl group, ether group, a group represented by the following formula (b-1-i), or a group represented by the following formula (b-1-ii). can be,
p is an integer from 0 to 2
m1 is an integer from 0 to 4,
m2 is an integer from 0 to 4.
Figure 2020121949

(In the formula (b-1-i), m3 is an integer of 0 to 5, and in the formula (b-1-ii), m4 is an integer of 0 to 5.)
However,
m1 + m2 + m3 + m4 is 1 or more,
When p is 0, m1 is an integer of 1 to 4.
When p is 2, each of the two Xs and the two m2 to m4 is independently selected.

式(b−2)中、
1〜R4は、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
1及びZ2は、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
rは正の整数である。
In equation (b-2),
R 1 to R 4 are independently monovalent aliphatic groups or monovalent aromatic groups, respectively.
Z 1 and Z 2 are independently divalent aliphatic groups or divalent aromatic groups, respectively.
r is a positive integer.

(構成単位A)
構成単位Aは、ポリイミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位であって、下記式(a−1)で表される化合物に由来する構成単位(A−1)を含む。

Figure 2020121949
(Structural unit A)
The structural unit A is a structural unit derived from the tetracarboxylic dianhydride in the polyimide resin, and includes a structural unit (A-1) derived from the compound represented by the following formula (a-1).
Figure 2020121949

式(a−1)で表される化合物は、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物である。
構成単位Aが構成単位(A−1)を含むことによって、フィルムの無色透明性及び光学的等方性を向上させることができる。
The compound represented by the formula (a-1) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
When the structural unit A includes the structural unit (A-1), the colorless transparency and optical isotropic property of the film can be improved.

構成単位A中における構成単位(A−1)の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは85モル%以上である。構成単位(A−1)の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A−1)のみからなっていてもよい。 The ratio of the structural unit (A-1) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 85 mol% or more. The upper limit of the ratio of the structural unit (A-1) is not particularly limited, that is, 100 mol%. The structural unit A may consist of only the structural unit (A-1).

構成単位Aは、構成単位(A−1)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、9,9’−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物、及び4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物;1,2,3,4−シクロブタンテトラカルボン酸二無水物及びノルボルナン−2−スピロ−α−シクロペンタノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a−1)で表される化合物を除く);並びに1,2,3,4−ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
構成単位Aに任意に含まれる構成単位(即ち、構成単位(A−1)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit A may include a structural unit other than the structural unit (A-1). The tetracarboxylic acid dianhydride giving such a structural unit is not particularly limited, but is pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 9,9'. Aromatic tetracarboxylic acid dianhydrides such as −bis (3,4-dicarboxyphenyl) fluorene dianhydride and 4,4′- (hexafluoroisopropyridene) diphthalic anhydride; 1,2,3,4 -Cyclobutanetetracarboxylic dianhydride and norbornan-2-spiro-α-cyclopentanone-α'-spiro-2 "-norbornan-5,5", 6,6 "-tetracarboxylic acid dianhydride Etc., alicyclic tetracarboxylic acid dianhydride (excluding the compound represented by the formula (a-1)); and aliphatic tetra, such as 1,2,3,4-butanetetracarboxylic acid dianhydride. Carous acid dianhydride can be mentioned.
In the present specification, the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring, and the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
The structural unit arbitrarily included in the structural unit A (that is, the structural unit other than the structural unit (A-1)) may be one type or two or more types.

構成単位Aに任意に含まれる構成単位を与えるテトラカルボン酸二無水物として上述した例示化合物の中でも、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物が好ましい。即ち、本発明の一態様のポリイミド樹脂組成物においては、ポリイミド樹脂の構成単位Aが下記式(a−2)で表される化合物に由来する構成単位(A−2)を更に含む。

Figure 2020121949
Among the above-mentioned exemplified compounds as the tetracarboxylic dianhydride which gives the structural unit arbitrarily contained in the structural unit A, 4,4'-(hexafluoroisopropyridene) diphthalic anhydride is preferable. That is, in the polyimide resin composition of one aspect of the present invention, the structural unit A of the polyimide resin further contains the structural unit (A-2) derived from the compound represented by the following formula (a-2).
Figure 2020121949

構成単位Aが構成単位(A−2)を含むことによって、フィルムの光学的等方性をより一層向上させることができる。 When the structural unit A includes the structural unit (A-2), the optical isotropic property of the film can be further improved.

構成単位Aが構成単位(A−1)及び構成単位(A−2)を含む場合、構成単位A中における構成単位(A−1)の比率は、好ましくは50〜99モル%であり、より好ましくは50〜95モル%であり、更に好ましくは70〜95モル%であり、特に好ましくは85〜95モル%であり、構成単位A中における構成単位(A−2)の比率は、好ましくは1〜50モル%であり、より好ましくは5〜50モル%であり、更に好ましくは5〜30モル%であり、特に好ましくは5〜15モル%である。
構成単位A中における構成単位(A−1)と構成単位(A−2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(A−1)と構成単位(A−2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A−1)と構成単位(A−2)とのみからなっていてもよい。
When the constituent unit A includes the constituent unit (A-1) and the constituent unit (A-2), the ratio of the constituent unit (A-1) in the constituent unit A is preferably 50 to 99 mol%, and more. It is preferably 50 to 95 mol%, more preferably 70 to 95 mol%, particularly preferably 85 to 95 mol%, and the ratio of the constituent unit (A-2) in the constituent unit A is preferably. It is 1 to 50 mol%, more preferably 5 to 50 mol%, further preferably 5 to 30 mol%, and particularly preferably 5 to 15 mol%.
The total ratio of the structural unit (A-1) and the structural unit (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol. % Or more, particularly preferably 99 mol% or more. The upper limit of the ratio of the total of the constituent units (A-1) and the constituent units (A-2) is not particularly limited, that is, 100 mol%. The structural unit A may consist only of the structural unit (A-1) and the structural unit (A-2).

(構成単位B)
構成単位Bは、ポリイミド樹脂に占めるジアミンに由来する構成単位であって、下記式(b−1)で表される化合物に由来する構成単位(B−1)と、下記式(b−2)で表される化合物に由来する構成単位(B−2)と、下記式(b−3)で表される化合物に由来する構成単位(B−3)とを含む。

Figure 2020121949
(Structural unit B)
The structural unit B is a structural unit derived from a diamine in the polyimide resin, and is a structural unit (B-1) derived from a compound represented by the following formula (b-1) and the following formula (b-2). It contains a structural unit (B-2) derived from the compound represented by the following formula (b-3) and a structural unit (B-3) derived from the compound represented by the following formula (b-3).
Figure 2020121949

式(b−1)中、
Xは単結合、置換若しくは無置換のアルキレン基、カルボニル基、エーテル基、下記式(b−1−i)で表される基、又は下記式(b−1−ii)で表される基であり、
pは0〜2の整数であり、
m1は0〜4の整数であり、
m2は0〜4の整数である。

Figure 2020121949

(式(b−1−i)中、m3は0〜5の整数であり、式(b−1−ii)中、m4は0〜5の整数である。)
ただし、
m1+m2+m3+m4は1以上であり、
pが0の場合、m1は1〜4の整数であり、
pが2の場合、2つのX及び2つのm2〜m4のそれぞれは独立して選択される。In equation (b-1),
X is a single bond, substituted or unsubstituted alkylene group, carbonyl group, ether group, a group represented by the following formula (b-1-i), or a group represented by the following formula (b-1-ii). can be,
p is an integer from 0 to 2
m1 is an integer from 0 to 4,
m2 is an integer from 0 to 4.
Figure 2020121949

(In the formula (b-1-i), m3 is an integer of 0 to 5, and in the formula (b-1-ii), m4 is an integer of 0 to 5.)
However,
m1 + m2 + m3 + m4 is 1 or more,
When p is 0, m1 is an integer of 1 to 4.
When p is 2, each of the two Xs and the two m2 to m4 is independently selected.

式(b−2)中、
1〜R4は、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
1及びZ2は、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
rは正の整数である。
In equation (b-2),
R 1 to R 4 are independently monovalent aliphatic groups or monovalent aromatic groups, respectively.
Z 1 and Z 2 are independently divalent aliphatic groups or divalent aromatic groups, respectively.
r is a positive integer.

式(b−1)で表される化合物の具体例としては、下記式(b−11)〜(b−17)で表される化合物が挙げられる。 Specific examples of the compound represented by the formula (b-1) include compounds represented by the following formulas (b-11) to (b-17).

Figure 2020121949
Figure 2020121949

上記化合物の中でも式(b−11)で表される化合物が好ましく、下記式(b−111)で表される化合物、即ち、3,5−ジアミノ安息香酸がより好ましい。

Figure 2020121949
Among the above compounds, the compound represented by the formula (b-11) is preferable, and the compound represented by the following formula (b-111), that is, 3,5-diaminobenzoic acid is more preferable.
Figure 2020121949

構成単位(B−1)は、ポリイミド樹脂にカルボキシル基を与える構成単位である。ポリイミド樹脂がカルボキシル基を有することによって、後述する架橋剤を介したポリイミド樹脂同士の架橋が可能となる。構成単位Bが構成単位(B−1)を含むことによって、フィルムの耐薬品性を向上させることができる。 The structural unit (B-1) is a structural unit that imparts a carboxyl group to the polyimide resin. When the polyimide resin has a carboxyl group, the polyimide resins can be crosslinked with each other via a cross-linking agent described later. When the structural unit B includes the structural unit (B-1), the chemical resistance of the film can be improved.

式(b−2)におけるR1、R2、R3及びR4は、それぞれ独立に一価の脂肪族基又は一価の芳香族基を示し、これらはフッ素原子で置換されていてもよい。一価の脂肪族基としては、一価の飽和炭化水素基又は一価の不飽和炭化水素基が挙げられる。一価の飽和炭化水素基としては炭素数1〜22のアルキル基が挙げられ、例えば、メチル基、エチル基、プロピル基が例示できる。一価の不飽和炭化水素基としては炭素数2〜22のアルケニル基が挙げられ、例えば、ビニル基、プロペニル基が例示できる。一価の芳香族基としては、炭素数6〜24のアリール基、アラルキル基等が例示できる。R1、R2、R3及びR4としては、特に、メチル基又はフェニル基が好ましい。
また、Z1及びZ2は、それぞれ独立に二価の脂肪族基又は二価の芳香族基を示し、これらの基はフッ素原子で置換されていてもよく、酸素原子を含んでいてもよい。エーテル結合として酸素原子を含んでいる場合、以下に示す炭素数は、脂肪族基又は芳香族基に含まれる全ての炭素数のことをいう。二価の脂肪族基としては、二価の飽和炭化水素基又は二価の不飽和炭化水素基が挙げられる。二価の飽和炭化水素基としては炭素数1〜22のアルキレン基、アルキレンオキシ基、エーテル結合を有する飽和炭化水素基が挙げられ、アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基が例示でき、アルキレンオキシ基としては、例えば、プロピレンオキシ基、トリメチレンオキシ基等が例示できる。二価の不飽和炭化水素基としては、炭素数2〜22の不飽和炭素水素基が挙げられ、例えば、ビニレン基、プロペニレン基、末端に不飽和二重結合を有するアルキレン基が例示できる。二価の芳香族基としては炭素数6〜24のフェニレン基、アルキル基で置換されたフェニレン基、アラルキレン基等が例示できる。Z1及びZ2としては、特に、プロピレン基、フェニレン基、アラルキレン基が好ましい。
また、rは正の整数を示し、10〜10,000の整数であることが好ましい。
R 1 , R 2 , R 3 and R 4 in the formula (b-2) independently represent a monovalent aliphatic group or a monovalent aromatic group, which may be substituted with a fluorine atom. .. Examples of the monovalent aliphatic group include a monovalent saturated hydrocarbon group and a monovalent unsaturated hydrocarbon group. Examples of the monovalent saturated hydrocarbon group include an alkyl group having 1 to 22 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group. Examples of the monovalent unsaturated hydrocarbon group include an alkenyl group having 2 to 22 carbon atoms, and examples thereof include a vinyl group and a propenyl group. Examples of the monovalent aromatic group include an aryl group having 6 to 24 carbon atoms and an aralkyl group. As R 1 , R 2 , R 3 and R 4 , a methyl group or a phenyl group is particularly preferable.
Further, Z 1 and Z 2 independently represent a divalent aliphatic group or a divalent aromatic group, and these groups may be substituted with a fluorine atom or may contain an oxygen atom. .. When an oxygen atom is contained as an ether bond, the carbon number shown below means all the carbon numbers contained in the aliphatic group or the aromatic group. Examples of the divalent aliphatic group include a divalent saturated hydrocarbon group and a divalent unsaturated hydrocarbon group. Examples of the divalent saturated hydrocarbon group include an alkylene group having 1 to 22 carbon atoms, an alkyleneoxy group, and a saturated hydrocarbon group having an ether bond. Examples of the alkylene group include a methylene group, an ethylene group, and a propylene group. Examples of the alkyleneoxy group include a propyleneoxy group and a trimethyleneoxy group. Examples of the divalent unsaturated hydrocarbon group include an unsaturated carbon hydrogen group having 2 to 22 carbon atoms, and examples thereof include a vinylene group, a propenylene group, and an alkylene group having an unsaturated double bond at the terminal. Examples of the divalent aromatic group include a phenylene group having 6 to 24 carbon atoms, a phenylene group substituted with an alkyl group, and an aralkylene group. As Z 1 and Z 2 , a propylene group, a phenylene group, and an aralkylene group are particularly preferable.
Further, r represents a positive integer, and is preferably an integer of 10 to 10,000.

以上のように、式(b−2)で表される化合物のなかでも、下記式(b−21)で表される化合物が好ましい。 As described above, among the compounds represented by the formula (b-2), the compound represented by the following formula (b-21) is preferable.

Figure 2020121949

(式(b−21)中、m及びnはそれぞれ独立に1以上の整数を示し、mとnとの和は10〜10,000の整数である。)
Figure 2020121949

(In equation (b-21), m and n each independently represent an integer of 1 or more, and the sum of m and n is an integer of 10 to 10,000.)

m及びnの和(m+n)は好ましくは10〜1,000、より好ましくは10〜500、より好ましくは10〜100、更に好ましくは10〜50である。
m/nの比は、好ましくは5/95〜50/50、より好ましくは10/90〜40/60、更に好ましくは20/80〜30/70である。
The sum of m and n (m + n) is preferably 10 to 1,000, more preferably 10 to 500, more preferably 10 to 100, and even more preferably 10 to 50.
The ratio of m / n is preferably 5/95 to 50/50, more preferably 10/90 to 40/60, and even more preferably 20/80 to 30/70.

式(b−2)で表される化合物としては、1,3−ビス(3−アミノプロピル)−1,1,2,2−テトラメチルジシロキサン、1,3−ビス(3−アミノブチル)−1,1,2,2−テトラメチルジシロキサン、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)テトラメチルジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(4−アミノブチル)ジシロキサン、1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサン等が挙げられる。上記の化合物は単独で用いてもよく、又は2種類以上組み合わせて用いてもよい。
式(b−2)で表される化合物の市販品として入手できるものとしては、信越化学工業株式会社製の「X−22−9409」、「X−22−1660B」、「X−22−161A」、「X−22−161B」等が挙げられる。
Examples of the compound represented by the formula (b-2) include 1,3-bis (3-aminopropyl) -1,1,2,2-tetramethyldisiloxane and 1,3-bis (3-aminobutyl). -1,1,2,2-tetramethyldisiloxane, bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4-aminophenoxy) tetramethyldisiloxane, 1,1,3,3-tetramethyl -1,3-bis (4-aminophenyl) disiloxane, 1,1,3,3-tetraphenoxy-1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl -1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetraphenyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl -1,3-bis (2-aminoethyl) disiloxane, 1,1,3,3-tetramethyl-1,3-bis (3-aminopropyl) disiloxane, 1,1,3,3-tetramethyl -1,3-bis (4-aminobutyl) disiloxane, 1,3-dimethyl-1,3-dimethoxy-1,3-bis (4-aminobutyl) disiloxane, 1,1,3,3,5 , 5-Hexamethyl-1,5-bis (4-aminophenyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1,5,5-tetraphenyl-3,3-dimethoxy-1, 5-bis (5-aminopentyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis (2-aminoethyl) trisiloxane, 1,1,5,5 -Tetramethyl-3,3-dimethoxy-1,5-bis (4-aminobutyl) trisiloxane, 1,1,5,5-tetramethyl-3,3-dimethoxy-1,5-bis (5-amino) Pentyl) trisiloxane, 1,1,3,3,5,5-hexamethyl-1,5-bis (3-aminopropyl) trisiloxane, 1,1,3,3,5,5-hexaethyl-1,5 Examples thereof include −bis (3-aminopropyl) trisiloxane, 1,1,3,3,5,5-hexapropyl-1,5-bis (3-aminopropyl) trisiloxane and the like. The above compounds may be used alone or in combination of two or more.
Commercially available products of the compound represented by the formula (b-2) include "X-22-9409", "X-22-1660B" and "X-22-161A" manufactured by Shin-Etsu Chemical Co., Ltd. , "X-22-161B" and the like.

構成単位Bが構成単位(B−2)を含むことによって、フィルムの無色透明性及び光学的等方性、並びにポリイミド樹脂組成物の洗浄性を向上させることができる。 When the structural unit B includes the structural unit (B-2), the colorless transparency and optical isotropic property of the film and the detergency of the polyimide resin composition can be improved.

式(b−3)で表される化合物は、4,4’−ジアミノ−2,2’−ビストリフルオロメチルジフェニルエーテルである。
構成単位Bが構成単位(B−3)を含むことによって、フィルムの光学的等方性、並びにポリイミド樹脂組成物の保存安定性及び洗浄性を向上させることができる。
The compound represented by the formula (b-3) is 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether.
When the structural unit B includes the structural unit (B-3), the optical isotropic property of the film and the storage stability and detergency of the polyimide resin composition can be improved.

構成単位B中における構成単位(B−1)の比率は、好ましくは20〜75モル%であり、より好ましくは25〜70モル%であり、更に好ましくは30〜60モル%である。
構成単位B中における構成単位(B−2)の比率は、好ましくは1〜25モル%であり、より好ましくは2〜20モル%であり、更に好ましくは3〜15モル%である。
構成単位B中における構成単位(B−3)の比率は、好ましくは20〜75モル%であり、より好ましくは25〜70モル%であり、更に好ましくは30〜60モル%である。
構成単位B中における構成単位(B−1)〜(B−3)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(B−1)〜(B−3)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B−1)と構成単位(B−2)と構成単位(B−3)とのみからなっていてもよい。
The ratio of the structural unit (B-1) in the structural unit B is preferably 20 to 75 mol%, more preferably 25 to 70 mol%, and further preferably 30 to 60 mol%.
The ratio of the structural unit (B-2) in the structural unit B is preferably 1 to 25 mol%, more preferably 2 to 20 mol%, and further preferably 3 to 15 mol%.
The ratio of the structural unit (B-3) in the structural unit B is preferably 20 to 75 mol%, more preferably 25 to 70 mol%, and further preferably 30 to 60 mol%.
The total ratio of the constituent units (B-1) to (B-3) in the constituent unit B is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. It is particularly preferably 99 mol% or more. The upper limit of the total ratio of the structural units (B-1) to (B-3) is not particularly limited, that is, 100 mol%. The structural unit B may be composed of only the structural unit (B-1), the structural unit (B-2), and the structural unit (B-3).

構成単位Bは構成単位(B−1)〜(B−3)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4−フェニレンジアミン、p−キシリレンジアミン、1,5−ジアミノナフタレン、2,2’−ジメチルビフェニル−4,4’−ジアミン、2,2’−ビス(トリフルオロメチル)ベンジジン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンズアニリド、1−(4−アミノフェニル)−2,3−ジヒドロ−1,3,3−トリメチル−1H−インデン−5−アミン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、N,N’−ビス(4−アミノフェニル)テレフタルアミド、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び9,9−ビス(4−アミノフェニル)フルオレン等の芳香族ジアミン(ただし、式(b−1)で表される化合物、式(b−2)で表される化合物、及び式(b−3)で表される化合物を除く);1,3−ビス(アミノメチル)シクロヘキサン及び1,4−ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミン(ただし、式(b−2)で表される化合物を除く)が挙げられる。
なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
構成単位Bに任意に含まれる構成単位(即ち、構成単位(B−1)〜(B−3)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural units (B-1) to (B-3). The diamine that gives such a structural unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 1,5-diaminonaphthalene, 2,2'-dimethylbiphenyl-4,4'-diamine. , 2,2'-bis (trifluoromethyl) benzidine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'- Diaminodiphenylsulfone, 4,4'-diaminobenzanilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, α, α'-bis (4-Aminophenyl) -1,4-diisopropylbenzene, N, N'-bis (4-aminophenyl) terephthalamide, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2-bis [4 Aromatic diamines such as-(4-aminophenoxy) phenyl] propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, and 9,9-bis (4-aminophenyl) fluorene. However, the compound represented by the formula (b-1), the compound represented by the formula (b-2), and the compound represented by the formula (b-3) are excluded); 1,3-bis (aminomethyl). ) Alicyclic diamines such as cyclohexane and 1,4-bis (aminomethyl) cyclohexane; and aliphatic diamines such as ethylenediamine and hexamethylenediamine (excluding compounds represented by the formula (b-2)). Be done.
In the present specification, the aromatic diamine means a diamine containing one or more aromatic rings, and the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat. The group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
The structural unit arbitrarily included in the structural unit B (that is, the structural unit other than the structural units (B-1) to (B-3)) may be one type or two or more types.

本発明において、ポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000〜100,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。 In the present invention, the number average molecular weight of the polyimide resin is preferably 5,000 to 100,000 from the viewpoint of the mechanical strength of the obtained polyimide film. The number average molecular weight of the polyimide resin can be obtained from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.

<ポリイミド樹脂の製造方法>
本発明において、ポリイミド樹脂は、上述の構成単位(A−1)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B−1)を与える化合物、上述の構成単位(B−2)を与える化合物、及び上述の構成単位(B−3)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
<Manufacturing method of polyimide resin>
In the present invention, the polyimide resin includes a tetracarboxylic acid component containing the compound giving the above-mentioned structural unit (A-1), a compound giving the above-mentioned structural unit (B-1), and the above-mentioned structural unit (B-2). It can be produced by reacting with a compound which gives the above-mentioned structural unit (B-3) and a diamine component containing the compound which gives the above-mentioned structural unit (B-3).

構成単位(A−1)を与える化合物としては、式(a−1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a−1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5−シクロヘキサンテトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A−1)を与える化合物としては、式(a−1)で表される化合物(即ち、二無水物)が好ましい。 Examples of the compound giving the structural unit (A-1) include, but are not limited to, the compound represented by the formula (a-1), and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-1) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid), and the tetracarboxylic acid. Alkyl esters can be mentioned. As the compound giving the structural unit (A-1), the compound represented by the formula (a-1) (that is, dianhydride) is preferable.

テトラカルボン酸成分は、構成単位(A−1)を与える化合物を、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは85モル%以上含む。構成単位(A−1)を与える化合物の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A−1)を与える化合物のみからなっていてもよい。 The tetracarboxylic acid component preferably contains 50 mol% or more, more preferably 70 mol% or more, and further preferably 85 mol% or more of the compound giving the constituent unit (A-1). The upper limit of the content ratio of the compound giving the structural unit (A-1) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of the compound giving the constituent unit (A-1).

テトラカルボン酸成分は、構成単位(A−1)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A−1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A-1), and examples of the compound include the above-mentioned aromatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride. And aliphatic tetracarboxylic acid dianhydrides, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
The compound arbitrarily contained in the tetracarboxylic acid component (that is, the compound other than the compound giving the constituent unit (A-1)) may be one kind or two or more kinds.

テトラカルボン酸成分に任意に含まれる化合物としては、構成単位(A−2)を与える化合物が好ましい。
構成単位(A−2)を与える化合物としては、式(a−2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a−2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A−2)を与える化合物としては、式(a−2)で表される化合物(即ち、二無水物)が好ましい。
As the compound arbitrarily contained in the tetracarboxylic acid component, a compound giving a structural unit (A-2) is preferable.
Examples of the compound giving the structural unit (A-2) include the compound represented by the formula (a-2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) and an alkyl ester of the tetracarboxylic acid. As the compound giving the structural unit (A-2), the compound represented by the formula (a-2) (that is, dianhydride) is preferable.

テトラカルボン酸成分が構成単位(A−1)を与える化合物及び構成単位(A−2)を与える化合物を含む場合、テトラカルボン酸成分は構成単位(A−1)を与える化合物を、好ましくは50〜99モル%含み、より好ましくは50〜95モル%含み、更に好ましくは70〜95モル%含み、特に好ましくは85〜95モル%含み、構成単位(A−2)を与える化合物を、好ましくは1〜50モル%含み、より好ましくは5〜50モル%含み、更に好ましくは5〜30モル%含み、特に好ましくは5〜15モル%含む。
テトラカルボン酸成分は、構成単位(A−1)を与える化合物と構成単位(A−2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(A−1)を与える化合物と構成単位(A−2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A−1)を与える化合物と構成単位(A−2)を与える化合物とのみからなっていてもよい。
When the tetracarboxylic acid component contains a compound giving a structural unit (A-1) and a compound giving a structural unit (A-2), the tetracarboxylic acid component is a compound giving a structural unit (A-1), preferably 50. A compound containing ~ 99 mol%, more preferably 50 to 95 mol%, still more preferably 70 to 95 mol%, particularly preferably 85 to 95 mol%, and giving a constituent unit (A-2) is preferable. It contains 1 to 50 mol%, more preferably 5 to 50 mol%, still more preferably 5 to 30 mol%, and particularly preferably 5 to 15 mol%.
The tetracarboxylic acid component contains, in total, a compound giving the constituent unit (A-1) and a compound giving the constituent unit (A-2) in an amount of preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably. Contains 90 mol% or more, particularly preferably 99 mol% or more. The upper limit of the total content ratio of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of a compound that gives a constituent unit (A-1) and a compound that gives a constituent unit (A-2).

構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物としては、それぞれ式(b−1)で表される化合物、式(b−2)で表される化合物、及び式(b−3)で表される化合物が挙げられるが、それらに限られず、同じ構成単位を与える範囲でそれらの誘導体であってもよい。当該誘導体としては、式(b−1)〜(b−3)で表されるジアミンに対応するジイソシアネートが挙げられる。
構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物としては、それぞれ式(b−1)で表される化合物(即ち、ジアミン)、式(b−2)で表される化合物(即ち、ジアミン)、及び式(b−3)で表される化合物(即ち、ジアミン)が好ましい。
The compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3) are the compound represented by the formula (b-1) and the formula, respectively. Examples thereof include the compound represented by (b-2) and the compound represented by the formula (b-3), but the present invention is not limited to these, and derivatives thereof may be used as long as the same structural unit is given. Examples of the derivative include diisocyanates corresponding to diamines represented by the formulas (b-1) to (b-3).
The compound that gives the structural unit (B-1), the compound that gives the structural unit (B-2), and the compound that gives the structural unit (B-3) are compounds represented by the formula (b-1) (that is, each of them). , Diamine), the compound represented by the formula (b-2) (ie, diamine), and the compound represented by the formula (b-3) (ie, diamine) are preferable.

ジアミン成分は、構成単位(B−1)を与える化合物を、好ましくは20〜75モル%含み、より好ましくは25〜70モル%含み、更に好ましくは30〜60モル%含む。
ジアミン成分は、構成単位(B−2)を与える化合物を、好ましくは1〜25モル%含み、より好ましくは2〜20モル%含み、更に好ましくは3〜15モル%含む。
ジアミン成分は、構成単位(B−3)を与える化合物を、好ましくは20〜75モル%含み、より好ましくは25〜70モル%含み、更に好ましくは30〜60モル%含む。
ジアミン成分は、構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B−1)を与える化合物と構成単位(B−2)を与える化合物と構成単位(B−3)を与える化合物とのみからなっていてもよい。
The diamine component preferably contains the compound giving the structural unit (B-1) in an amount of 20 to 75 mol%, more preferably 25 to 70 mol%, still more preferably 30 to 60 mol%.
The diamine component preferably contains 1 to 25 mol%, more preferably 2 to 20 mol%, and further preferably 3 to 15 mol% of the compound giving the structural unit (B-2).
The diamine component preferably contains the compound giving the structural unit (B-3) in an amount of 20 to 75 mol%, more preferably 25 to 70 mol%, still more preferably 30 to 60 mol%.
The diamine component contains a compound that gives the structural unit (B-1), a compound that gives the structural unit (B-2), and a compound that gives the structural unit (B-3) in total, preferably 50 mol% or more, and more. It preferably contains 70 mol% or more, more preferably 90 mol% or more, and particularly preferably 99 mol% or more. The upper limit of the total content ratio of the compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3) is not particularly limited, that is, 100. Mol%. The diamine component may consist only of a compound giving a structural unit (B-1), a compound giving a structural unit (B-2), and a compound giving a structural unit (B-3).

ジアミン成分は、構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
ジアミン成分に任意に含まれる化合物(即ち、構成単位(B−1)を与える化合物、構成単位(B−2)を与える化合物、及び構成単位(B−3)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The diamine component may contain a compound other than the compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3). Examples thereof include the above-mentioned aromatic diamines, alicyclic diamines, and aliphatic diamines, and derivatives thereof (diisocyanate and the like).
Compounds arbitrarily contained in the diamine component (that is, compounds other than the compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3)) are It may be one kind or two or more kinds.

本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9〜1.1モルであることが好ましい。 In the present invention, the ratio of the amount of the tetracarboxylic acid component to the diamine component charged in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.

また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001〜0.1モルが好ましく、特に0.001〜0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4−メチルベンジルアミン、4−エチルベンジルアミン、4−ドデシルベンジルアミン、3−メチルベンジルアミン、3−エチルベンジルアミン、アニリン、3−メチルアニリン、4−メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4−クロロフタル酸、テトラフルオロフタル酸、2,3−ベンゾフェノンジカルボン酸、3,4−ベンゾフェノンジカルボン酸、シクロヘキサン−1,2−ジカルボン酸、シクロペンタン−1,2−ジカルボン酸、4−シクロヘキセン−1,2−ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。 Further, in the present invention, in addition to the above-mentioned tetracarboxylic acid component and diamine component, an end-capping agent may be used for producing the polyimide resin. As the terminal encapsulant, monoamines or dicarboxylic acids are preferable. The amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component. Examples of monoamine terminal sealants include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used. As the dicarboxylic acid terminal encapsulant, dicarboxylic acids are preferable, and a part thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended. Of these, phthalic acid and phthalic anhydride can be preferably used.

前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温(約20℃)〜80℃で0.5〜30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温(約20℃)〜80℃で0.5〜30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
The method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at room temperature (about 20 ° C.) to 80 ° C. for 0.5 to 30 hours, and then ascending. Method of warming to carry out imidization reaction, (2) After charging the diamine component and reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component is charged and, if necessary, at room temperature (about 20 ° C.) to 80 ° C. A method of stirring for 0.5 to 30 hours and then raising the temperature to carry out the imidization reaction. (3) The tetracarboxylic acid component, the diamine component, and the reaction solvent are charged into the reactor, and the temperature is immediately raised to carry out the imidization reaction. And the like.

ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used in the production of the polyimide resin may be any one that does not inhibit the imidization reaction and can dissolve the produced polyimide. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.

非プロトン性溶剤の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、1,3−ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ−ブチロラクトン、γ−バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2−メトキシ−1−メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotonic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like. Amide-based solvents, lactone-based solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide-based solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples thereof include based solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picolin and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).

フェノール系溶剤の具体例としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等が挙げられる。
エーテル系溶剤の具体例としては、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、1,2−ビス(2−メトキシエトキシ)エタン、ビス〔2−(2−メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。
また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of the ether solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above reaction solvents, an amide solvent or a lactone solvent is preferable. Moreover, the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.

イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.

上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
塩基触媒としては、ピリジン、キノリン、イソキノリン、α−ピコリン、β−ピコリン、2,4−ルチジン、2,6−ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N−ジメチルアニリン、N,N−ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
また、酸触媒としては、クロトン酸、アクリル酸、トランス−3−ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いること特に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N, N. Examples thereof include organic base catalysts such as -dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned. The above-mentioned imidization catalyst may be used alone or in combination of two or more.
Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, further preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.

イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120〜250℃、より好ましくは160〜200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5〜10時間である。 The temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.

<架橋剤>
本発明において、架橋剤は少なくとも2つのオキサゾリル基を有する。即ち、本発明における架橋剤は、分子内に2以上のオキサゾリル基(オキサゾリン環)を有する多官能オキサゾリン化合物である。
オキサゾリル基はカルボキシル基との反応性を有しており、カルボキシル基とオキサゾリル基とが反応すると、以下に示すようにアミドエステル結合が形成される。この反応は、80℃以上に加熱すると特に進行しやすい。
<Crosslinking agent>
In the present invention, the cross-linking agent has at least two oxazolyl groups. That is, the cross-linking agent in the present invention is a polyfunctional oxazoline compound having two or more oxazoline groups (oxazoline rings) in the molecule.
The oxazolyl group has reactivity with the carboxyl group, and when the carboxyl group reacts with the oxazolyl group, an amide ester bond is formed as shown below. This reaction is particularly easy to proceed when heated to 80 ° C. or higher.

Figure 2020121949
Figure 2020121949

本発明のポリイミド樹脂組成物に含まれるポリイミド樹脂はカルボキシル基を有することから、本発明のポリイミド樹脂組成物を加熱すると、架橋剤を介してポリイミド樹脂同士が架橋して、架橋ポリイミド樹脂が形成される。このような理由から、フィルムの耐薬品性が向上する。 Since the polyimide resin contained in the polyimide resin composition of the present invention has a carboxyl group, when the polyimide resin composition of the present invention is heated, the polyimide resins are crosslinked with each other via a cross-linking agent to form a crosslinked polyimide resin. NS. For this reason, the chemical resistance of the film is improved.

架橋剤は、分子内に2以上のオキサゾリル基を有する多官能オキサゾリン化合物であれば特に限定されず、その具体例としては、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,2’−ビス(2−オキサゾリン)、株式会社日本触媒製のK−2010E、K−2020E、K−2030E、2,6−ビス(4−イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,6−ビス(4−フェニル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−ターシャルブチル−2−オキサゾリン)などが挙げられる。
架橋剤は、好ましくは少なくとも2つのオキサゾリル基が結合した芳香環又は芳香族複素環を含む化合物であり、より好ましくは少なくとも2つのオキサゾリル基が結合したベンゼン環又はピリジン環を含む化合物であり、更に好ましくは少なくとも2つのオキサゾリル基が結合したベンゼン環を含む化合物であり、特に好ましくは1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンである。
架橋剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
The cross-linking agent is not particularly limited as long as it is a polyfunctional oxazoline compound having two or more oxazoline groups in the molecule, and specific examples thereof include 1,3-bis (4,5-dihydro-2-oxazoline) benzene. 1,4-Bis (4,5-dihydro-2-oxazoline) benzene, 2,2'-bis (2-oxazoline), K-2010E, K-2020E, K-2030E, 2, manufactured by Nippon Catalyst Co., Ltd. 6-bis (4-isopropyl-2-oxazoline-2-yl) pyridine, 2,6-bis (4-phenyl-2-oxazoline-2-yl) pyridine, 2,2'-isopropyridenebis (4-phenyl) -2-Oxazoline), 2,2'-isopropylidenebis (4-talshalbutyl-2-oxazoline) and the like.
The cross-linking agent is preferably a compound containing an aromatic ring or an aromatic heterocycle having at least two oxazolyl groups bonded thereto, more preferably a compound containing a benzene ring or a pyridine ring having at least two oxazolyl groups bonded thereto, and further. A compound containing a benzene ring in which at least two oxazolyl groups are bonded is preferable, and 1,3-bis (4,5-dihydro-2-oxazolyl) benzene is particularly preferable.
The cross-linking agent may be used alone or in combination of two or more.

本発明のポリイミド樹脂組成物は、架橋剤中のオキサゾリル基とポリイミド樹脂中のカルボキシル基とのモル比(オキサゾリル基/カルボキシル基)が1/4〜1/0.5の範囲となるような比率で、ポリイミド樹脂と架橋剤とを含むことが好ましい。前記モル比は、より好ましくは1/4〜1/1であり、更に好ましくは1/2〜1/1であり、より更に好ましくは1/2〜1/1.5であり、より更に好ましくは1/2〜1/1.7である。
なお、上記のモル比は、架橋剤に含まれるオキサゾリル基と、ポリイミド樹脂の製造に用いる構成単位(B−1)を与える化合物に含まれるカルボキシル基とのモル比を意味し、架橋剤の添加量と構成単位(B−1)を与える化合物の添加量に基づいて計算される。
In the polyimide resin composition of the present invention, the molar ratio (oxazolyl group / carboxyl group) of the oxazolyl group in the cross-linking agent to the carboxyl group in the polyimide resin is in the range of 1/4 to 1 / 0.5. Therefore, it is preferable to contain a polyimide resin and a cross-linking agent. The molar ratio is more preferably 1/4 to 1/1, still more preferably 1/2 to 1/1, even more preferably 1/2 to 1 / 1.5, and even more preferably. Is 1/2 to 1 / 1.7.
The above molar ratio means the molar ratio of the oxazolyl group contained in the cross-linking agent to the carboxyl group contained in the compound giving the structural unit (B-1) used for producing the polyimide resin, and the addition of the cross-linking agent. Calculated based on the amount and amount of compound added to give the building block (B-1).

また、本発明のポリイミド樹脂組成物は、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
本発明のポリイミド樹脂組成物の製造方法は特に限定されず、公知の方法を適用することができる。
Further, the polyimide resin composition of the present invention contains an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, as long as the required properties of the polyimide film are not impaired. Various additives such as a fluorescent whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
The method for producing the polyimide resin composition of the present invention is not particularly limited, and a known method can be applied.

本発明のポリイミド樹脂組成物は、無色透明性、光学的等方性、及び耐薬品性に優れるフィルムを形成することができる。本発明のポリイミド樹脂組成物を用いて形成することができるフィルムの好適な物性値は以下の通りである。
全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは90%以上であり、更に好ましくは91%以上である。
イエローインデックス(YI)は、厚さ10μmのフィルムとした際に、好ましくは2.5以下であり、より好ましくは2.3以下であり、更に好ましくは2.0以下である。
は、厚さ10μmのフィルムとした際に、好ましくは1.5以下であり、より好ましくは1.2以下であり、更に好ましくは1.0以下である。
ヘイズは、厚さ10μmのフィルムとした際に、好ましくは2.0%以下であり、より好ましくは1.0%以下であり、更に好ましくは0.6%以下である。
厚み位相差(Rth)の絶対値は、厚さ10μmのフィルムとした際に、好ましくは100nm以下であり、より好ましくは90nm以下であり、更に好ましく60nm以下である。
混酸ΔYIは、厚さ10μmのフィルムとした際に、好ましくは1.5以下であり、より好ましくは1.3以下であり、更に好ましくは1.2以下である。
なお、混酸ΔYIは、それぞれ、リン酸、硝酸及び酢酸の混合物にポリイミドフィルムを浸漬した際の、浸漬前後でのYIの差を意味し、具体的には実施例に記載の方法で測定することができる。ΔYIが小さいほど、耐酸性に優れることを意味する。本発明のポリイミド樹脂組成物を用いることで、耐薬品性に優れるフィルムを形成することができ、酸に対しても優れた耐性を示す。特に混酸(例えば、リン酸を50〜97質量%、硝酸を1〜20質量%、酢酸を1〜10質量%、及び水を1〜20質量%の混合溶液、好ましくはリン酸を63〜87質量%、硝酸を5〜15質量%、酢酸を3〜7質量%、及び水を5〜15質量%の混合溶液)に対して優れた耐性を示す。
The polyimide resin composition of the present invention can form a film having excellent colorless transparency, optical isotropic properties, and chemical resistance. Suitable physical property values of the film that can be formed by using the polyimide resin composition of the present invention are as follows.
The total light transmittance is preferably 88% or more, more preferably 90% or more, still more preferably 91% or more when the film has a thickness of 10 μm.
The yellow index (YI) is preferably 2.5 or less, more preferably 2.3 or less, and further preferably 2.0 or less when the film has a thickness of 10 μm.
b * is preferably 1.5 or less, more preferably 1.2 or less, and further preferably 1.0 or less when the film has a thickness of 10 μm.
The haze is preferably 2.0% or less, more preferably 1.0% or less, and further preferably 0.6% or less when the film has a thickness of 10 μm.
The absolute value of the thickness retardation (Rth) is preferably 100 nm or less, more preferably 90 nm or less, and further preferably 60 nm or less when the film has a thickness of 10 μm.
The mixed acid ΔYI is preferably 1.5 or less, more preferably 1.3 or less, and further preferably 1.2 or less when the film has a thickness of 10 μm.
The mixed acid ΔYI means the difference in YI before and after the immersion of the polyimide film in the mixture of phosphoric acid, nitric acid and acetic acid, respectively, and specifically, it shall be measured by the method described in Examples. Can be done. The smaller ΔYI, the better the acid resistance. By using the polyimide resin composition of the present invention, a film having excellent chemical resistance can be formed, and it also exhibits excellent resistance to acids. In particular, a mixed solution of 50 to 97% by mass of phosphoric acid, 1 to 20% by mass of nitrate, 1 to 10% by mass of acetic acid, and 1 to 20% by mass of water, preferably 63 to 87% by mass of phosphoric acid. It shows excellent resistance to a mixed solution of 5 to 15% by mass of mass%, 5 to 15% by mass of nitrate, 3 to 7% by mass of acetic acid, and 5 to 15% by mass of water.

本発明のポリイミド樹脂組成物を用いて形成することができるフィルムは機械的特性及び耐熱性も良好であり、以下のような好適な物性値を有する。
引張弾性率は、好ましくは2.0GPa以上であり、より好ましくは2.5GPa以上であり、更に好ましくは2.7GPa以上である。
引張強度は、好ましくは60MPa以上であり、より好ましくは70MPa以上であり、更に好ましくは80MPa以上である。
引張破断伸び率は、好ましくは5.0%以上であり、より好ましくは6.0%以上であり、更に好ましくは7.5%以上である。
ガラス転移温度(Tg)は、好ましくは230℃以上であり、より好ましくは250℃以上であり、更に好ましくは290℃以上である。
なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
The film that can be formed using the polyimide resin composition of the present invention has good mechanical properties and heat resistance, and has the following suitable physical property values.
The tensile elastic modulus is preferably 2.0 GPa or more, more preferably 2.5 GPa or more, and further preferably 2.7 GPa or more.
The tensile strength is preferably 60 MPa or more, more preferably 70 MPa or more, and further preferably 80 MPa or more.
The tensile elongation at break is preferably 5.0% or more, more preferably 6.0% or more, and further preferably 7.5% or more.
The glass transition temperature (Tg) is preferably 230 ° C. or higher, more preferably 250 ° C. or higher, and even more preferably 290 ° C. or higher.
The above-mentioned physical property values in the present invention can be specifically measured by the method described in Examples.

[ポリイミドワニス]
本発明のポリイミド樹脂組成物の好適な一態様として、上述のポリイミド樹脂及び上述の架橋剤に加えて、有機溶媒を更に含み、当該ポリイミド樹脂が当該有機溶媒に溶解しているポリイミド樹脂組成物(以後、“ポリイミドワニス”とも呼称する)が挙げられる。
すなわち、本発明のポリイミドワニスは、ポリイミド樹脂組成物及び有機溶媒を含む。
[Polyimide varnish]
As a preferred embodiment of the polyimide resin composition of the present invention, a polyimide resin composition containing an organic solvent in addition to the above-mentioned polyimide resin and the above-mentioned cross-linking agent, and the polyimide resin is dissolved in the organic solvent ( Hereinafter, it is also referred to as "polyimide varnish").
That is, the polyimide varnish of the present invention contains a polyimide resin composition and an organic solvent.

有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
有機溶媒としては、例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。
The organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
Examples of the organic solvent include an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like.

非プロトン性溶剤の具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、1,3−ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ−ブチロラクトン、γ−バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2−メトキシ−1−メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotonic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like. Amide-based solvents, lactone-based solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide-based solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples thereof include based solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picolin and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).

フェノール系溶剤の具体例としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等が挙げられる。
エーテル系溶剤の具体例としては、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、1,2−ビス(2−メトキシエトキシ)エタン、ビス〔2−(2−メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4−ジオキサン等が挙げられる。
また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
上記有機溶媒の中でも、アミド系溶剤又はラクトン系溶剤が好ましく、洗浄性の観点から、ラクトン系溶剤がより好ましい。ラクトン系溶剤のなかでもγ−ブチロラクトン、γ−バレロラクトンが好ましく、γ−ブチロラクトンがより好ましい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of the ether solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above organic solvents, an amide solvent or a lactone solvent is preferable, and a lactone solvent is more preferable from the viewpoint of detergency. Among the lactone-based solvents, γ-butyrolactone and γ-valerolactone are preferable, and γ-butyrolactone is more preferable.

有機溶媒にラクトン系溶剤を用いる場合、ポリイミドワニスに含まれる有機溶媒中のラクトン系溶剤の比率は70〜100質量%が好ましく、80〜100質量%以上がより好ましく、90〜100質量%が更に好ましく、ラクトン系溶剤のみからなっていてもよい。
ラクトン系溶剤は吸湿率が低いため、フィルム塗布時にワニスが環境中の水分を吸湿することなく、ポリイミドの析出による白化や膜面表面の荒れが起こりにくく、好ましい。また、環境中の湿度のコントロールが不要となるなど、プロセス性を良好にすることができるため、好ましい。
なお、上記の有機溶媒は単独で又は2種以上混合して用いてもよい。
When a lactone-based solvent is used as the organic solvent, the ratio of the lactone-based solvent in the organic solvent contained in the polyimide varnish is preferably 70 to 100% by mass, more preferably 80 to 100% by mass or more, and further 90 to 100% by mass. Preferably, it may consist only of a lactone-based solvent.
Since the lactone-based solvent has a low hygroscopicity, the varnish does not absorb moisture in the environment when the film is applied, and whitening due to the precipitation of polyimide and roughening of the film surface surface are unlikely to occur, which is preferable. In addition, it is preferable because the processability can be improved, such as eliminating the need to control the humidity in the environment.
The above-mentioned organic solvent may be used alone or in combination of two or more.

ポリイミドワニスは、重合法により得られるポリイミド樹脂が反応溶剤に溶解した溶液そのものに対して架橋剤を添加したものであってもよいし、又は当該溶液に対して希釈溶剤及び架橋剤を添加したものであってもよい。 The polyimide varnish may be a solution in which a polyimide resin obtained by a polymerization method is dissolved in a reaction solvent, to which a cross-linking agent is added, or a solution in which a diluting solvent and a cross-linking agent are added. It may be.

上述のポリイミド樹脂は溶媒溶解性を有しており、しかも、室温では架橋剤との架橋反応がほとんど進行しない。そのため、室温で安定なポリイミドワニスとすることができる。ポリイミドワニスは、ポリイミド樹脂を1〜40質量%含むことが好ましく、2〜40質量%含むことがより好ましい。
なかでも安定かつ高濃度で保存でき、フィルム形成も良好である点から、5〜40質量%含むことが更に好ましく、10〜30質量%含むことがより更に好ましく、15〜25質量%含むことがより更に好ましい。ポリイミドワニスの粘度は1〜200Pa・sが好ましく、2〜100Pa・sがより好ましい。ポリイミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
The above-mentioned polyimide resin has solvent solubility, and the cross-linking reaction with the cross-linking agent hardly proceeds at room temperature. Therefore, a polyimide varnish that is stable at room temperature can be obtained. The polyimide varnish preferably contains 1 to 40% by mass of the polyimide resin, and more preferably 2 to 40% by mass.
Among them, it is more preferably contained in an amount of 5 to 40% by mass, further preferably contained in an amount of 10 to 30% by mass, and further preferably contained in an amount of 15 to 25% by mass, because it can be stored in a stable and high concentration and the film formation is good. Even more preferable. The viscosity of the polyimide varnish is preferably 1 to 200 Pa · s, more preferably 2 to 100 Pa · s. The viscosity of the polyimide varnish is a value measured at 25 ° C. using an E-type viscometer.

また、フィルム塗布に際してはポリイミドワニス中のポリイミド樹脂の濃度をより低くすることも好ましく、前記有機溶媒で希釈して用いることも好ましい。装置の洗浄性を高める観点からは、フィルム塗布時に用いるポリイミドワニスは、ポリイミド樹脂を1〜10質量%含むことが更に好ましく、2〜8質量%含むことがより更に好ましく、4〜7質量%含むことがより更に好ましい。またその際の粘度は0.1〜15Pa・sが好ましく、1〜10Pa・sがより好ましく、2〜5Pa・sがさらに好ましい。ポリイミドワニスをこのような範囲のポリイミド樹脂濃度または粘度とすることで、洗浄液によるフィルム塗布に用いる装置内部のワニスの置換が容易になり洗浄性が良好となる。 Further, when applying the film, it is preferable to lower the concentration of the polyimide resin in the polyimide varnish, and it is also preferable to dilute it with the organic solvent. From the viewpoint of improving the detergency of the apparatus, the polyimide varnish used at the time of film coating preferably contains 1 to 10% by mass of the polyimide resin, more preferably 2 to 8% by mass, and 4 to 7% by mass. Is even more preferable. The viscosity at that time is preferably 0.1 to 15 Pa · s, more preferably 1 to 10 Pa · s, and even more preferably 2 to 5 Pa · s. By setting the polyimide resin concentration or viscosity within such a range, the varnish inside the apparatus used for film coating with the cleaning liquid can be easily replaced and the cleaning property is improved.

[ポリイミドフィルム]
本発明のポリイミドフィルムは、本発明のポリイミド樹脂組成物中に含まれる上述のポリイミド樹脂が上述の架橋剤により架橋されてなる。即ち、本発明のポリイミドフィルムは、架橋剤を介したポリイミド樹脂同士の架橋物である架橋ポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、無色透明性、光学的等方性、及び耐薬品性に優れる。本発明のポリイミドフィルムが有する好適な物性値は上述の通りである。
本発明のポリイミドフィルムの製造方法には、ポリイミド樹脂と架橋剤との架橋反応が進行する温度(好ましくは80℃以上、より好ましくは100℃以上、更に好ましくは150℃以上)で加熱する工程を含めば、特に制限はない。例えば、上述のポリイミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、加熱する方法が挙げられる。この加熱処理により、ポリイミドワニス中のポリイミド樹脂と架橋剤との架橋反応を進行させながら、ポリイミドワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を除去することができる。
[Polyimide film]
The polyimide film of the present invention is obtained by cross-linking the above-mentioned polyimide resin contained in the polyimide resin composition of the present invention with the above-mentioned cross-linking agent. That is, the polyimide film of the present invention contains a crosslinked polyimide resin which is a crosslinked product between polyimide resins via a crosslinking agent. Therefore, the polyimide film of the present invention is excellent in colorless transparency, optical isotropic property, and chemical resistance. Suitable physical property values of the polyimide film of the present invention are as described above.
In the method for producing a polyimide film of the present invention, a step of heating at a temperature at which the cross-linking reaction between the polyimide resin and the cross-linking agent proceeds (preferably 80 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 150 ° C. or higher) is performed. If included, there are no particular restrictions. For example, a method in which the above-mentioned polyimide varnish is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film and then heated. By this heat treatment, it is possible to remove organic solvents such as a reaction solvent and a diluting solvent contained in the polyimide varnish while advancing the cross-linking reaction between the polyimide resin in the polyimide varnish and the cross-linking agent.

塗布方法としては、スピンコート、スリットコート、ブレードコート等の公知の塗布方法が挙げられる。
加熱処理としては、60〜150℃の温度で有機溶媒を蒸発させタックフリーにした後、用いた有機溶媒の沸点以上の温度(特に限定されないが、好ましくは200〜500℃)で乾燥することが好ましい。また、空気雰囲気下又は窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。
支持体上に製膜されたポリイミドフィルムを支持体から剥離する方法は特に限定されないが、レーザーリフトオフ法や、剥離用犠牲層を使用する方法(支持体の表面に予め離形剤を塗布しておく方法)が挙げられる。
Examples of the coating method include known coating methods such as spin coating, slit coating, and blade coating.
As the heat treatment, the organic solvent is evaporated at a temperature of 60 to 150 ° C. to make it tack-free, and then dried at a temperature equal to or higher than the boiling point of the organic solvent used (preferably 200 to 500 ° C.). preferable. Further, it is preferable to dry in an air atmosphere or a nitrogen atmosphere. The pressure in the dry atmosphere may be reduced pressure, normal pressure, or pressurized.
The method of peeling the polyimide film formed on the support from the support is not particularly limited, but a laser lift-off method or a method of using a sacrificial layer for peeling (a mold release agent is applied to the surface of the support in advance). How to put) can be mentioned.

本発明のポリイミドフィルムの厚みは用途等に応じて適宜選択することができるが、好ましくは1〜250μm、より好ましくは5〜100μm、更に好ましくは10〜80μmの範囲である。厚みが1〜250μmであることで、自立膜としての実用的な使用が可能となる。
ポリイミドフィルムの厚みは、ポリイミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably in the range of 1 to 250 μm, more preferably 5 to 100 μm, and further preferably 10 to 80 μm. When the thickness is 1 to 250 μm, it can be practically used as a self-supporting film.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.

本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. The polyimide film of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.

以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.

実施例及び比較例において、各物性は以下に示す方法によって測定した。
(1)固形分濃度
ポリイミド樹脂溶液及びポリイミドワニスの固形分濃度の測定は、アズワン株式会社製の小型電気炉「MMF−1」で試料を320℃×120minで加熱し、加熱前後の試料の質量差から算出した。
(2)フィルム厚さ
フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(3)引張強度、引張弾性率、引張破断伸び率
引張強度、引張弾性率、及び引張破断伸び率は、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG−1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。
(4)ガラス転移温度(Tg)
株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定の測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。
(5)全光線透過率、イエローインデックス(YI)、b、ヘイズ
全光線透過率、YI、b、及びヘイズはJIS K7105:1981に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて測定した。
(6)厚み位相差(Rth)
厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M−220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚みをdとしたとき、下記式によって表されるものである。
Rth=[{(nx+ny)/2}−nz]×d
(7)耐溶剤性
ガラス板上に製膜したポリイミドフィルムに、室温で溶剤を滴下し、フィルム表面に変化がないかを確認した。なお、溶剤としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を使用した。
耐溶剤性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
(8)耐酸性(混酸ΔYI)
ガラス板上に製膜したポリイミドフィルムを40℃に温めた混酸(H3PO4(70質量%)+HNO3(10質量%)+CH3COOH(5質量%)+H2O(15質量%)の混合溶液)に4分間浸漬した後、水洗した。水洗後、水分をふき取り、ホットプレートにて240℃で50分加熱して、乾燥した。試験前後でYIを測定し、その変化(ΔYI)を求めた。なお、ここでのYI測定は、ガラス板にポリイミドフィルムを製膜した状態(ガラス板+ポリイミドフィルムの状態)で行った。
(9)保存安定性
ポリイミドワニスを室温(23℃)で1週間保管し、ワニスにHazeが出てくるかどうかを目視で確認した。1週間保管した後、Hazeが出なかったものをA、Hazeが出てきたものをCと評価した。具体的には、(5)ヘイズと同様の評価方法で5%未満となったものをHazeが出なかったものとしてA、(5)ヘイズと同様の評価方法で5%以上となったものをHazeが出てきたものとしてCとした。
(10)洗浄性
プロピレングリコールモノメチルエーテル(PGME)とプロピレングリコールモノメチルエーテルアセテート(PGMEA)とを、PGME/PGMEAの質量比が7/3の混合比となるように混合して、PGME/PGMEA混合液を調製した。ポリイミドワニスを前記PGME/PGMEA混合液と混合し、室温で均一に混ざるかどうかを確認した。均一に混ざらない場合、析出物が生じて混合液が白濁するため、(5)ヘイズと同様の評価方法で混合液のHazeを測定することで洗浄性を評価した。
洗浄性の評価基準は、以下の通りとした。
A:ポリイミドワニスとPGME/PGMEA混合液が均一に混合した。Hazeが1%以下であった。
C:ポリイミドワニスとPGME/PGMEA混合液が均一に混合せず、析出物が生じた。Hazeが1%より大きいものであった。
In Examples and Comparative Examples, each physical property was measured by the method shown below.
(1) Solid content concentration To measure the solid content concentration of the polyimide resin solution and the polyimide varnish, the sample is heated at 320 ° C. × 120 min in a small electric furnace “MMF-1” manufactured by AS ONE Co., Ltd., and the mass of the sample before and after heating. Calculated from the difference.
(2) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
(3) Tensile strength, tensile elastic modulus, tensile elongation at break Tensile strength, tensile elastic modulus, and tensile modulus at break are in accordance with JIS K7127: 1999, and the tensile tester "Strograph VG-" manufactured by Toyo Seiki Co., Ltd. 1E ”was used for measurement. The distance between the chucks was 50 mm, the size of the test piece was 10 mm × 70 mm, and the test speed was 20 mm / min.
(4) Glass transition temperature (Tg)
Using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Co., Ltd., residual stress is removed under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min in tensile mode. The temperature was raised to a sufficient temperature to remove residual stress, and then cooled to room temperature. Then, the measurement of the elongation of the test piece was carried out under the same conditions as the treatment for removing the residual stress, and the place where the inflection point of the elongation was observed was determined as the glass transition temperature.
(5) Total light transmittance, yellow index (YI), b * , haze Total light transmittance, YI, b * , and haze conform to JIS K7105: 1981, and are colored and turbid by Nippon Denshoku Industries Co., Ltd. The measurement was performed using a simultaneous measuring device "COH400".
(6) Thickness phase difference (Rth)
The thickness phase difference (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness phase difference at the measurement wavelength of 590 nm was measured. Rth is expressed by the following formula when the maximum in-plane refractive index of the polyimide film is nx, the minimum is ny, the refractive index in the thickness direction is nz, and the thickness of the film is d. It is a thing.
Rth = [{(nx + ny) / 2} -nz] × d
(7) Solvent resistance A solvent was dropped onto a polyimide film formed on a glass plate at room temperature, and it was confirmed whether or not there was any change in the film surface. As the solvent, propylene glycol monomethyl ether acetate (PGMEA) was used.
The evaluation criteria for solvent resistance were as follows.
A: There was no change on the film surface.
B: The film surface was slightly cracked.
C: The film surface was cracked or the film surface was melted.
(8) Acid resistance (mixed acid ΔYI)
A mixed acid (H 3 PO 4 (70% by mass) + HNO 3 (10% by mass) + CH 3 COOH (5% by mass) + H 2 O (15% by mass)) obtained by warming a polyimide film formed on a glass plate to 40 ° C. The mixture was immersed in a mixed solution for 4 minutes and then washed with water. After washing with water, the water was wiped off, and the mixture was heated on a hot plate at 240 ° C. for 50 minutes to dry. YI was measured before and after the test, and the change (ΔYI) was determined. The YI measurement here was performed in a state where a polyimide film was formed on a glass plate (a state of a glass plate + a polyimide film).
(9) Storage stability The polyimide varnish was stored at room temperature (23 ° C.) for 1 week, and it was visually confirmed whether or not Haze appeared in the varnish. After storage for one week, the one without Haze was evaluated as A, and the one with Haze was evaluated as C. Specifically, (5) those having less than 5% by the same evaluation method as haze are A as those without haze, and (5) those having 5% or more by the same evaluation method as haze. It was designated as C as Haze appeared.
(10) Detergency A PGME / PGMEA mixed solution is obtained by mixing propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA) so that the mass ratio of PGME / PGMEA is 7/3. Was prepared. The polyimide varnish was mixed with the PGME / PGMEA mixture, and it was confirmed whether or not the mixture was uniformly mixed at room temperature. If the mixture is not uniformly mixed, precipitates are generated and the mixed solution becomes cloudy. Therefore, the detergency was evaluated by measuring the haze of the mixed solution by the same evaluation method as in (5) Haze.
The evaluation criteria for detergency were as follows.
A: Polyimide varnish and PGME / PGMEA mixture were uniformly mixed. Haze was 1% or less.
C: The polyimide varnish and the PGME / PGMEA mixture were not uniformly mixed, and a precipitate was formed. Haze was greater than 1%.

実施例及び比較例にて使用したテトラカルボン酸成分、ジアミン成分、架橋剤の略号は以下の通りである。
<テトラカルボン酸成分>
HPMDA:1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製;式(a−1)で表される化合物)
6FDA:4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(ダイキン工業株式会社製;式(a−2)で表される化合物)
<ジアミン成分>
3,5−DABA:3,5−ジアミノ安息香酸(日本純良薬品株式会社製;式(b−1)で表される化合物)
X−22−9409:両末端アミノ変性シリコーンオイル「X−22−9409」(信越化学工業株式会社製;式(b−2)で表される化合物)
6FODA:4,4’−ジアミノ−2,2’−ビストリフルオロメチルジフェニルエーテル(ChinaTech Chemical (Tianjin) Co., Ltd.製;式(b−3)で表される化合物)
HFBAPP:2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン(セイカ株式会社製)
TFMB:2,2’−ビス(トリフルオロメチル)ベンジジン(セイカ株式会社製)
<架橋剤>
1,3−PBO:1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン(三國製薬工業株式会社製)
The abbreviations for the tetracarboxylic acid component, diamine component, and cross-linking agent used in Examples and Comparative Examples are as follows.
<Tetracarboxylic acid component>
HPMDA: 1,2,4,5-Cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (a-1))
6FDA: 4,4'-(hexafluoroisopropyridene) diphthalic anhydride (manufactured by Daikin Industries, Ltd .; compound represented by formula (a-2))
<Diamine component>
3,5-DABA: 3,5-diaminobenzoic acid (manufactured by Nippon Pure Chemical Industries, Ltd .; compound represented by formula (b-1))
X-22-9409: Bi-terminal amino-modified silicone oil "X-22-9409" (manufactured by Shin-Etsu Chemical Co., Ltd .; compound represented by formula (b-2))
6FODA: 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd; compound represented by formula (b-3))
HFBAPP: 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane (manufactured by Seika Co., Ltd.)
TFMB: 2,2'-bis (trifluoromethyl) benzidine (manufactured by Seika Co., Ltd.)
<Crosslinking agent>
1,3-PBO: 1,3-bis (4,5-dihydro-2-oxazolyl) benzene (manufactured by Mikuni Pharmaceutical Co., Ltd.)

<実施例1>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを8.518g(0.056モル)と、X−22−9409を13.709g(0.010モル)と、6FODAを18.833g(0.056モル)と、γ−ブチロラクトン(三菱化学株式会社製)を66.873g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを27.333g(0.122モル)と、γ−ブチロラクトン(三菱化学株式会社製)を16.718gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.617g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を172.409g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(1)を得た。
続いて、ポリイミド樹脂溶液(1)を200g中に、架橋剤として1,3−PBOを3.784g(0.0175モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 1>
8.518g (0) of 3,5-DABA in a 1L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .056 mol), 13.709 g (0.010 mol) of X-22-9409, 18.833 g (0.056 mol) of 6FODA, and 66.873 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation). The mixture was charged and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 27.333 g (0.122 mol) of HPMDA and 16.718 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 172.409 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (1) was obtained.
Subsequently, 3.784 g (0.0175 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (1), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<実施例2>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを8.173g(0.054モル)と、X−22−9409を13.155g(0.010モル)と、6FODAを18.071g(0.054モル)と、γ−ブチロラクトン(三菱化学株式会社製)を66.699g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを23.605g(0.105モル)と、γ−ブチロラクトン(三菱化学株式会社製)を8.338gとを一括で添加した後、10分間撹拌を続けた後、6FDAを5.211g(0.012モル)と、γ-ブチロラクトン(三菱化学株式会社製)を8.338gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.617g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を172.626g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20.0質量%のポリイミド樹脂溶液(2)を得た。
続いて、ポリイミド樹脂溶液(2)を200g中に、架橋剤として1,3−PBOを3.655g(0.0169モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 2>
8.173g (0) of 3,5-DABA in a 1L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .054 mol), 13.155 g (0.010 mol) of X-22-9409, 18.071 g (0.054 mol) of 6FODA, and 66.699 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation). The mixture was charged and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 23.605 g (0.105 mol) of HPMDA and 8.338 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and after stirring for 10 minutes, 6 FDA was added to 5. After adding .211 g (0.012 mol) and 8.338 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) in a batch, 0.617 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. , The temperature inside the reaction system was raised to 190 ° C. over about 20 minutes by heating with a mantle heater. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 172.626 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize, and the solid content concentration was 20.0 mass. % Polyimide resin solution (2) was obtained.
Subsequently, 3.655 g (0.0169 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (2), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<比較例1>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを28.625g(0.188モル)と、γ−ブチロラクトン(三菱化学株式会社製)を84.928g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを42.149g(0.188モル)と、γ−ブチロラクトン(三菱化学株式会社製)を21.232gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.951g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を149.840g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(3)を得た。
続いて、ポリイミド樹脂溶液(3)を200g中に、架橋剤として1,3−PBOを12.704g(0.059モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。その後、ポリイミドワニスを室温静置したところ、ポリイミドワニス中に白色の析出物が生じ、ポリイミドワニスの流動性がなくなった。そのため、フィルム化が困難であった。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
<Comparative example 1>
28.625g (0) of 3,5-DABA in a 1L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .188 mol) and 84.928 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 42.149 g (0.188 mol) of HPMDA and 21.232 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 149.840 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (3) was obtained.
Subsequently, 12.704 g (0.059 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (3), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. After that, when the polyimide varnish was allowed to stand at room temperature, white precipitates were formed in the polyimide varnish, and the fluidity of the polyimide varnish was lost. Therefore, it was difficult to make a film. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.

<比較例2>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、6FODAを41.034g(0.122モル)と、γ−ブチロラクトン(三菱化学株式会社製)を82.073g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを27.361g(0.122モル)と、γ−ブチロラクトン(三菱化学株式会社製)を20.518gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.617g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を153.408g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(4)を得た。
このポリイミド樹脂溶液(4)に架橋剤1,3−PBOを添加せず、そのままポリイミドワニスとして用いた。即ち、ガラス板上へ、得られたポリイミドワニス(ポリイミド樹脂溶液(4))をスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 2>
41.034 g (0.122 mol) of 6FODA in a 1 L 5-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. Then, 82.073 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 27.361 g (0.122 mol) of HPMDA and 20.518 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 153.408 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (4) was obtained.
No cross-linking agent 1,3-PBO was added to this polyimide resin solution (4), and the polyimide varnish was used as it was. That is, the obtained polyimide varnish (polyimide resin solution (4)) was applied onto a glass plate by spin coating, held at 80 ° C. for 20 minutes on a hot plate, and then kept at 260 ° C. in a hot air dryer under an air atmosphere. The solvent was evaporated by heating in 30 minutes to obtain a film. The results are shown in Table 1.

<比較例3>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、TFMBを24.160g(0.075モル)と、3,5−DABAを11.478g(0.075モル)と、γ−ブチロラクトン(三菱化学株式会社製)を83.318g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを33.794g(0.151モル)と、γ−ブチロラクトン(三菱化学株式会社製)を20.830gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.763g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を151.852g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(5)を得た。
続いて、ポリイミド樹脂溶液(5)を200g中に、架橋剤として1,3−PBOを5.069g(0.023モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.5質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 3>
24.160 g (0.075 mol) of TFMB in a 1 L 5-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 11.478 g (0.075 mol) of 3,5-DABA and 83.318 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the temperature inside the system was 70 ° C., in a nitrogen atmosphere, and the rotation speed was 200 rpm. The mixture was stirred to obtain a solution.
To this solution, 33.794 g (0.151 mol) of HPMDA and 20.830 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 151.852 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (5) was obtained.
Subsequently, 5.069 g (0.023 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (5), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.5% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the addition amount of 1,3-PBO and the addition amount of 3,5-DABA is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<比較例4>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、6FODAを24.894g(0.074モル)と、3,5−DABAを11.266g(0.074モル)と、γ−ブチロラクトン(三菱化学株式会社製)を83.198g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを33.172g(0.148モル)と、γ−ブチロラクトン(三菱化学株式会社製)を20.800gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.749g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を152.002g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(6)を得た。
続いて、ポリイミド樹脂溶液(6)を200g中に、架橋剤として1,3−PBOを5.000g(0.023モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.5質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 4>
24.894 g (0.074 mol) of 6FODA in a 1 L 5-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 11.266 g (0.074 mol) of 3,5-DABA and 83.198 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the temperature inside the system was 70 ° C., in a nitrogen atmosphere, and the rotation speed was 200 rpm. The mixture was stirred to obtain a solution.
To this solution, 33.172 g (0.148 mol) of HPMDA and 20.800 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 152.002 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (6) was obtained.
Subsequently, 5.000 g (0.023 mol) of 1,3-PBO as a cross-linking agent is added to 200 g of the polyimide resin solution (6), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin are contained. A polyimide varnish having a solid content concentration of 19.5% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<比較例5>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを6.994g(0.046モル)と、X−22−9409を13.688g(0.010モル)と、HFBAPPを23.951g(0.046モル)と、γ−ブチロラクトン(三菱化学株式会社製)を65.994g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを22.861g(0.102モル)と、γ−ブチロラクトン(三菱化学株式会社製)を16.498gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.516gと、テトラエチレンジアミン(東京化成工業株式会社製)を0.057g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を173.51g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(7)を得た。
続いて、ポリイミド樹脂溶液(7)を200g中に、架橋剤として1,3−PBOを3.784g(0.0175モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 5>
6.994 g (0) of 3,5-DABA in a 1 L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .046 mol), 13.688 g (0.010 mol) of X-22-9409, 23.951 g (0.046 mol) of HFBAPP, and 65.994 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation). The mixture was charged and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 22.861 g (0.102 mol) of HPMDA and 16.498 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) And 0.057 g of tetraethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and heated with a mantle heater to raise the temperature inside the reaction system to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 173.51 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (7) was obtained.
Subsequently, 3.784 g (0.0175 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (7), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<比較例6>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを8.640g(0.057モル)と、X−22−9409を13.906g(0.010モル)と、TFMBを18.861g(0.056モル)と、γ−ブチロラクトン(三菱化学株式会社製)を66.934g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを27.724g(0.124モル)と、γ−ブチロラクトン(三菱化学株式会社製)を16.734gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.625g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を172.332g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(8)を得た。
続いて、ポリイミド樹脂溶液(8)を200g中に、架橋剤として1,3−PBOを3.853g(0.0178モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative Example 6>
8.640g (0) of 3,5-DABA in a 1L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .057 mol), 13.906 g (0.010 mol) of X-22-9409, 18.861 g (0.056 mol) of TFMB, and 66.934 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation). The mixture was charged and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 27.724 g (0.124 mol) of HPMDA and 16.734 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and then triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. ) Was added and heated with a mantle heater, and the temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 172.332 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (8) was obtained.
Subsequently, 3.853 g (0.0178 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (8), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

<比較例7>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた1Lの5つ口丸底フラスコに、3,5−DABAを8.183g(0.054モル)と、X−22−9409を13.859g(0.010モル)と、TFMBを17.224g(0.054モル)と、γ−ブチロラクトン(三菱化学株式会社製)を66.721g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを23.733g(0.106モル)と、γ−ブチロラクトン(三菱化学株式会社製)を8.340gとを一括で添加した後、10分間撹拌を続けた後、6FDAを5.239g(0.012モル)と、γ-ブチロラクトン(三菱化学株式会社製)を8.340gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.595g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、γ−ブチロラクトン(三菱化学株式会社製)を172.598g添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化して、固形分濃度20質量%のポリイミド樹脂溶液(9)を得た。
続いて、ポリイミド樹脂溶液(9)を200g中に、架橋剤として1,3−PBOを3.650g(0.0169モル)添加し、室温で1時間撹拌後、架橋剤とポリイミド樹脂とを含む固形分濃度19.6質量%のポリイミドワニスを得た。なお、1,3−PBOの添加量と3,5−DABAの添加量に基づいて計算されるオキサゾリル基/カルボキシル基のモル比は、1/2である。
続いて、ガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative Example 7>
8.183g (0) of 3,5-DABA in a 1L 5-necked round-bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. .054 mol), 13.859 g (0.010 mol) of X-22-9409, 17.224 g (0.054 mol) of TFMB, and 66.721 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation). The mixture was charged and stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
To this solution, 23.733 g (0.106 mol) of HPMDA and 8.340 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch, and after stirring for 10 minutes, 6 FDA was added to 5. After adding 239 g (0.012 mol) and 8.340 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) in a batch, 0.595 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst. , The temperature inside the reaction system was raised to 190 ° C. over about 20 minutes by heating with a mantle heater. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 172.598 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to cool the temperature inside the reaction system to 120 ° C., and then the mixture was further stirred for about 3 hours to homogenize the solid content concentration of 20% by mass. A polyimide resin solution (9) was obtained.
Subsequently, 3.650 g (0.0169 mol) of 1,3-PBO as a cross-linking agent was added to 200 g of the polyimide resin solution (9), and after stirring at room temperature for 1 hour, the cross-linking agent and the polyimide resin were contained. A polyimide varnish having a solid content concentration of 19.6% by mass was obtained. The molar ratio of oxazolyl group / carboxyl group calculated based on the amount of 1,3-PBO added and the amount of 3,5-DABA added is 1/2.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to remove the solvent. Evaporation gave a film. The results are shown in Table 1.

Figure 2020121949
Figure 2020121949

表1に示されるように、実施例1及び2のポリイミドフィルムは、いずれも無色透明性、光学的等方性、及び耐薬品性(耐溶剤性及び耐酸性)に優れており、実施例1及び2のポリイミドワニスは保存安定性及び洗浄性に優れていた。
一方、比較例1では、ポリイミド樹脂溶液に架橋剤を添加して1時間撹拌することでポリイミドワニスを得たが、その後、当該ポリイミドワニスを室温静置したところ、ポリイミドワニス中に白色の析出物が生じ、ポリイミドワニスの流動性がなくなった。つまり、比較例1のポリイミドワニスは保存安定性及び洗浄性に劣っていた。
比較例2のポリイミドフィルムは、耐溶剤性に劣っていた。また、混酸ΔYIの値が1.57と大きく、耐酸性にも劣っていた。
比較例3のポリイミドフィルムは、光学的等方性に劣っていた。また、比較例3のポリイミドワニスは洗浄性に劣っていた。
比較例4のポリイミドワニスは洗浄性に劣っていた。
比較例5のポリイミドフィルムは、耐溶剤性が良好でなかった。また、比較例5のポリイミドワニスは洗浄性に劣っていた。
比較例6のポリイミドワニスは、保存安定性及び洗浄性に劣っていた。
比較例7のポリイミドワニスは、洗浄性に劣っていた。
As shown in Table 1, the polyimide films of Examples 1 and 2 are all excellent in colorless transparency, optical isotropic property, and chemical resistance (solvent resistance and acid resistance), and are excellent in Example 1. The polyimide varnishes of and 2 were excellent in storage stability and detergency.
On the other hand, in Comparative Example 1, a polyimide varnish was obtained by adding a cross-linking agent to a polyimide resin solution and stirring for 1 hour. After that, when the polyimide varnish was allowed to stand at room temperature, white precipitates were formed in the polyimide varnish. The fluidity of the polyimide varnish was lost. That is, the polyimide varnish of Comparative Example 1 was inferior in storage stability and detergency.
The polyimide film of Comparative Example 2 was inferior in solvent resistance. In addition, the mixed acid ΔYI value was as large as 1.57, and the acid resistance was also inferior.
The polyimide film of Comparative Example 3 was inferior in optical isotropic properties. Further, the polyimide varnish of Comparative Example 3 was inferior in detergency.
The polyimide varnish of Comparative Example 4 was inferior in detergency.
The polyimide film of Comparative Example 5 did not have good solvent resistance. Further, the polyimide varnish of Comparative Example 5 was inferior in detergency.
The polyimide varnish of Comparative Example 6 was inferior in storage stability and detergency.
The polyimide varnish of Comparative Example 7 was inferior in detergency.

Claims (11)

ポリイミド樹脂と、少なくとも2つのオキサゾリル基を有する架橋剤とを含むポリイミド樹脂組成物であって、
前記ポリイミド樹脂が、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、
構成単位Aが、下記式(a−1)で表される化合物に由来する構成単位(A−1)を含み、
構成単位Bが、下記式(b−1)で表される化合物に由来する構成単位(B−1)と、下記式(b−2)で表される化合物に由来する構成単位(B−2)と、下記式(b−3)で表される化合物に由来する構成単位(B−3)とを含む、ポリイミド樹脂組成物。
Figure 2020121949

(式(b−1)中、
Xは単結合、置換若しくは無置換のアルキレン基、カルボニル基、エーテル基、下記式(b−1−i)で表される基、又は下記式(b−1−ii)で表される基であり、
pは0〜2の整数であり、
m1は0〜4の整数であり、
m2は0〜4の整数である。
Figure 2020121949

[式(b−1−i)中、m3は0〜5の整数であり、式(b−1−ii)中、m4は0〜5の整数である。]
ただし、
m1+m2+m3+m4は1以上であり、
pが0の場合、m1は1〜4の整数であり、
pが2の場合、2つのX及び2つのm2〜m4のそれぞれは独立して選択される;
式(b−2)中、
1〜R4は、それぞれ独立して、一価の脂肪族基又は一価の芳香族基であり、
1及びZ2は、それぞれ独立して、二価の脂肪族基又は二価の芳香族基であり、
rは正の整数である。)
A polyimide resin composition containing a polyimide resin and a cross-linking agent having at least two oxazolyl groups.
The polyimide resin has a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine.
The structural unit A includes a structural unit (A-1) derived from a compound represented by the following formula (a-1).
The structural unit B is a structural unit (B-1) derived from a compound represented by the following formula (b-1) and a structural unit (B-2) derived from a compound represented by the following formula (b-2). ) And the structural unit (B-3) derived from the compound represented by the following formula (b-3).
Figure 2020121949

(In equation (b-1),
X is a single bond, substituted or unsubstituted alkylene group, carbonyl group, ether group, a group represented by the following formula (b-1-i), or a group represented by the following formula (b-1-ii). can be,
p is an integer from 0 to 2
m1 is an integer from 0 to 4,
m2 is an integer from 0 to 4.
Figure 2020121949

[In the formula (b-1-i), m3 is an integer of 0 to 5, and in the formula (b-1-ii), m4 is an integer of 0 to 5. ]
However,
m1 + m2 + m3 + m4 is 1 or more,
When p is 0, m1 is an integer of 1 to 4.
When p is 2, each of the two Xs and the two m2 to m4 is independently selected;
In equation (b-2),
R 1 to R 4 are independently monovalent aliphatic groups or monovalent aromatic groups, respectively.
Z 1 and Z 2 are independently divalent aliphatic groups or divalent aromatic groups, respectively.
r is a positive integer. )
構成単位(B−1)が、下記式(b−11)で表される化合物に由来する構成単位(B−11)である、請求項1に記載のポリイミド樹脂組成物。
Figure 2020121949
The polyimide resin composition according to claim 1, wherein the structural unit (B-1) is a structural unit (B-11) derived from a compound represented by the following formula (b-11).
Figure 2020121949
前記架橋剤が、少なくとも2つのオキサゾリル基が結合した芳香環又は芳香族複素環を含む化合物である、請求項1又は2に記載のポリイミド樹脂組成物。 The polyimide resin composition according to claim 1 or 2, wherein the cross-linking agent is a compound containing an aromatic ring or an aromatic heterocycle having at least two oxazolyl groups bonded thereto. 前記架橋剤が、少なくとも2つのオキサゾリル基が結合したベンゼン環を含む化合物である、請求項3に記載のポリイミド樹脂組成物。 The polyimide resin composition according to claim 3, wherein the cross-linking agent is a compound containing a benzene ring having at least two oxazolyl groups bonded thereto. 前記架橋剤が、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンである、請求項4に記載のポリイミド樹脂組成物。 The polyimide resin composition according to claim 4, wherein the cross-linking agent is 1,3-bis (4,5-dihydro-2-oxazolyl) benzene. 構成単位A中における構成単位(A−1)の比率が50モル%以上である、請求項1〜5のいずれかに記載のポリイミド樹脂組成物。 The polyimide resin composition according to any one of claims 1 to 5, wherein the ratio of the structural unit (A-1) in the structural unit A is 50 mol% or more. 構成単位B中における構成単位(B−1)の比率が20〜75モル%であり、
構成単位B中における構成単位(B−2)の比率が1〜25モル%であり、
構成単位B中における構成単位(B−3)の比率が20〜75モル%である、請求項1〜6のいずれかに記載のポリイミド樹脂組成物。
The ratio of the constituent unit (B-1) in the constituent unit B is 20 to 75 mol%.
The ratio of the constituent unit (B-2) in the constituent unit B is 1 to 25 mol%.
The polyimide resin composition according to any one of claims 1 to 6, wherein the ratio of the structural unit (B-3) in the structural unit B is 20 to 75 mol%.
構成単位Aが、下記式(a−2)で表される化合物に由来する構成単位(A−2)を更に含む、請求項1〜7のいずれかに記載のポリイミド樹脂組成物。
Figure 2020121949
The polyimide resin composition according to any one of claims 1 to 7, wherein the structural unit A further contains a structural unit (A-2) derived from a compound represented by the following formula (a-2).
Figure 2020121949
構成単位A中における構成単位(A−1)の比率が50〜99モル%であり、
構成単位A中における構成単位(A−2)の比率が1〜50モル%である、請求項8に記載のポリイミド樹脂組成物。
The ratio of the constituent unit (A-1) in the constituent unit A is 50 to 99 mol%.
The polyimide resin composition according to claim 8, wherein the ratio of the structural unit (A-2) in the structural unit A is 1 to 50 mol%.
請求項1〜9のいずれかに記載のポリイミド樹脂組成物及び有機溶媒を含むポリアミドワニス。 A polyamide varnish containing the polyimide resin composition according to any one of claims 1 to 9 and an organic solvent. 請求項1〜9のいずれかに記載のポリイミド樹脂組成物中の前記ポリイミド樹脂が前記架橋剤により架橋されてなるポリイミドフィルム。 A polyimide film obtained by cross-linking the polyimide resin in the polyimide resin composition according to any one of claims 1 to 9 with the cross-linking agent.
JP2020560034A 2018-12-13 2019-12-06 Polyimide resin composition and polyimide film Active JP7392657B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018233831 2018-12-13
JP2018233831 2018-12-13
PCT/JP2019/047728 WO2020121949A1 (en) 2018-12-13 2019-12-06 Polyimide resin composition and polyimide film

Publications (2)

Publication Number Publication Date
JPWO2020121949A1 true JPWO2020121949A1 (en) 2021-11-11
JP7392657B2 JP7392657B2 (en) 2023-12-06

Family

ID=71075321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560034A Active JP7392657B2 (en) 2018-12-13 2019-12-06 Polyimide resin composition and polyimide film

Country Status (5)

Country Link
JP (1) JP7392657B2 (en)
KR (1) KR20210102216A (en)
CN (1) CN113166413B (en)
TW (1) TWI844593B (en)
WO (1) WO2020121949A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022014667A1 (en) * 2020-07-16 2022-01-20
WO2022054765A1 (en) * 2020-09-10 2022-03-17 三菱瓦斯化学株式会社 Polymer composition, varnish, and polyimide film
CN112724434A (en) * 2020-12-23 2021-04-30 宁波长阳科技股份有限公司 Transparent polyimide film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209309A (en) * 2008-06-26 2010-09-24 Sanwa Kagaku Kogyo Kk Photosensitive polyimide, photosensitive polyimide ink composition and insulating film
JP2014524512A (en) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド Heat resistant low birefringence polyimide copolymer film
JP2016222797A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin composition
KR20180106212A (en) * 2017-03-17 2018-10-01 코오롱인더스트리 주식회사 Polyimide Resin, Polyimide Film and Display Device Comprising Thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109922956A (en) * 2016-11-11 2019-06-21 宇部兴产株式会社 Laminate comprising polyimide film and hard conating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209309A (en) * 2008-06-26 2010-09-24 Sanwa Kagaku Kogyo Kk Photosensitive polyimide, photosensitive polyimide ink composition and insulating film
JP2014524512A (en) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド Heat resistant low birefringence polyimide copolymer film
JP2016222797A (en) * 2015-05-29 2016-12-28 三菱瓦斯化学株式会社 Polyimide resin composition
KR20180106212A (en) * 2017-03-17 2018-10-01 코오롱인더스트리 주식회사 Polyimide Resin, Polyimide Film and Display Device Comprising Thereof

Also Published As

Publication number Publication date
TWI844593B (en) 2024-06-11
KR20210102216A (en) 2021-08-19
JP7392657B2 (en) 2023-12-06
TW202031728A (en) 2020-09-01
CN113166413A (en) 2021-07-23
WO2020121949A1 (en) 2020-06-18
CN113166413B (en) 2024-02-09

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7392660B2 (en) Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
TWI833836B (en) Polyimide resin, varnish, and polyimide film
JPWO2019069723A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7392657B2 (en) Polyimide resin composition and polyimide film
WO2019116940A1 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2020110947A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021070912A1 (en) Polyimide resin composition, polyimide varnish, and polyimide film
JP7306371B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020203264A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7548236B2 (en) Polyimide resin composition, polyimide varnish and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
TW202136393A (en) Method for producing polyimide film
WO2021006284A1 (en) Polyimide resin, polyimide varnish, and polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R151 Written notification of patent or utility model registration

Ref document number: 7392657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151