JPWO2020067090A1 - Release film for manufacturing ceramic green sheets - Google Patents

Release film for manufacturing ceramic green sheets Download PDF

Info

Publication number
JPWO2020067090A1
JPWO2020067090A1 JP2020504251A JP2020504251A JPWO2020067090A1 JP WO2020067090 A1 JPWO2020067090 A1 JP WO2020067090A1 JP 2020504251 A JP2020504251 A JP 2020504251A JP 2020504251 A JP2020504251 A JP 2020504251A JP WO2020067090 A1 JPWO2020067090 A1 JP WO2020067090A1
Authority
JP
Japan
Prior art keywords
ceramic green
green sheet
release
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020504251A
Other languages
Japanese (ja)
Other versions
JP6702520B1 (en
Inventor
有加 松尾
有加 松尾
明紀 寺田
明紀 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Application granted granted Critical
Publication of JP6702520B1 publication Critical patent/JP6702520B1/en
Publication of JPWO2020067090A1 publication Critical patent/JPWO2020067090A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Abstract

【課題】剥離性に優れ、成型される極薄のセラミックグリーンシートについて、ハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート成型用離型フィルムを提供すること。【解決手段】ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂(II)、及び離型成分(III)を少なくとも含む塗膜が硬化されてなり、前記ポリエステル樹脂(II)が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有するセラミックグリーンシート製造用離型フィルム。【選択図】なしPROBLEM TO BE SOLVED: To provide a release film for molding a ceramic green sheet, which has excellent peelability and is less likely to cause damage such as cracks in a half-cut test for an ultrathin ceramic green sheet to be molded. A release film in which a release layer is laminated directly on at least one surface of a polyester film or via another layer, and the release layer is an energy ray-curable compound (I), a polyester resin ( The coating film containing at least the release component (II) and the release component (III) is cured, and the polyester resin (II) is a mold release for producing a ceramic green sheet containing an ester constituent unit derived from the 5-sodium sulfoisophthalic acid component. the film. [Selection diagram] None

Description

本発明は、超薄層のセラミックグリーンシート製造用離型フィルムに関するものであり、詳しくは超薄層のセラミックグリーンシート製造時にピンホール及び厚みムラや剥離不良による工程不良の発生を抑制したものを製造し得る、超薄層のセラミックグリーンシート製造用離型フィルムに関するものである。 The present invention relates to a release film for manufacturing an ultra-thin layer ceramic green sheet, and more specifically, a film that suppresses the occurrence of process defects due to pinholes, uneven thickness, and poor peeling during the production of an ultra-thin layer ceramic green sheet. It relates to a mold release film for manufacturing an ultra-thin ceramic green sheet that can be manufactured.

従来ポリエステルフィルムを基材とし、その上に離型層を積層した離型フィルムは、積層セラミックコンデンサ(以下MLCCとする)、セラミック基板等のセラミックグリーンシート成型用に使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、離型フィルムに、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離したのち、セラミックグリーンシートを積層、プレスし裁断後、焼成、外部電極を塗布することで積層セラミックコンデンサが製造される。これまで、ポリエステルフィルムの離型層表面にセラミックグリーンシートを成型する場合、離型層表面の微小な突起が成型したセラミックグリーンシートに影響を与え、ハジキやピンホール等の欠点が生じやすくなるといった問題点があった。そのため、優れた平坦性を有する離型層表面を実現するための手法が種々開発されてきた(例えば、特許文献1参照)。 Conventionally, a release film obtained by laminating a release layer on a polyester film as a base material is used for molding a ceramic green sheet such as a laminated ceramic capacitor (hereinafter referred to as MLCC) and a ceramic substrate. In recent years, with the miniaturization and large capacity of multilayer ceramic capacitors, the thickness of the ceramic green sheet tends to be reduced. The ceramic green sheet is molded by applying a slurry containing a ceramic component such as barium titanate and a binder resin to a release film and drying it. A laminated ceramic capacitor is manufactured by printing an electrode on a molded ceramic green sheet, peeling it from a release film, laminating the ceramic green sheet, pressing and cutting, firing, and applying an external electrode. Until now, when a ceramic green sheet was molded on the surface of the release layer of a polyester film, minute protrusions on the surface of the release layer affected the molded ceramic green sheet, and defects such as cissing and pinholes were likely to occur. There was a problem. Therefore, various methods for realizing a release layer surface having excellent flatness have been developed (see, for example, Patent Document 1).

しかしながら近年、さらなるセラミックグリーンシートの薄膜化が進み、1.0μm以下、より詳しくは0.2μm〜1.0μmの厚みのセラミックグリーンシートが要求されるようになってきた。そのため、離型層表面により高い平滑性が求められるようになってきている。また、セラミックグリーンシートの薄膜化に伴い、セラミックグリーンシートの強度が低下するため、離型層表面の平滑化だけではなく、セラミックグリーンシートを離型フィルムから剥離するときの剥離力を低くかつ均一にすることが好ましく、離型フィルムからセラミックグリーンシートを剥離するときにセラミックグリーンシートにかかる負荷を極力少なくし、セラミックグリーンシートにダメージを与えないようにすることが好ましくなってきている。 However, in recent years, further thinning of the ceramic green sheet has progressed, and a ceramic green sheet having a thickness of 1.0 μm or less, more specifically 0.2 μm to 1.0 μm, has been required. Therefore, higher smoothness is required for the surface of the release layer. In addition, since the strength of the ceramic green sheet decreases as the ceramic green sheet becomes thinner, not only the surface of the release layer is smoothed, but also the peeling force when the ceramic green sheet is peeled from the release film is low and uniform. It has become preferable to minimize the load applied to the ceramic green sheet when peeling the ceramic green sheet from the release film so as not to damage the ceramic green sheet.

離型層表面の平滑化と剥離時のセラミックグリーンシートへの負荷を抑制する離型層側からの方法としては、離型フィルムの離型層に活性エネルギー線硬化成分を用いることで離型層の架橋密度を高め、弾性率を向上させることで、セラミックグリーンシート剥離時における離型層の弾性変形を抑制し剥離力を軽くする方策が検討されている(例えば、特許文献2、3参照)。しかしながらこの方法では、平滑性が高すぎるため面剥離となり、剥離力が重くなり、グリーンシートにクラックが入ることがあった。さらに超薄膜のセラミックグリーンシートを加工時に、平滑面が塗工設備の張力制御するための平滑ロールやゴムロールに接すると、ロールと平滑面のすべり性が不十分で張力制御が不安定になり、グリーンシート塗布面の平滑性が低下する問題があった。 As a method from the release layer side to smooth the surface of the release layer and suppress the load on the ceramic green sheet at the time of peeling, the release layer is formed by using an active energy ray-curable component for the release layer of the release film. Measures to suppress elastic deformation of the release layer at the time of peeling of the ceramic green sheet and reduce the peeling force by increasing the cross-linking density and the elastic modulus of the ceramic green sheet have been studied (see, for example, Patent Documents 2 and 3). .. However, in this method, since the smoothness is too high, surface peeling occurs, the peeling force becomes heavy, and the green sheet may be cracked. Furthermore, when the ultra-thin ceramic green sheet is processed, if the smooth surface comes into contact with a smooth roll or rubber roll for controlling the tension of the coating equipment, the slipperiness of the roll and the smooth surface becomes insufficient and the tension control becomes unstable. There is a problem that the smoothness of the green sheet coated surface is lowered.

そこで、剥離開始時のきっかけ(剥離開始点)となる適度な大突起を有するポリエステルフィルムとすることで、平滑性と均一な剥離性とのバランスに優れた離型フィルムが報告されている(例えば、特許文献4)。しかしながら、PETに練りこまれたフィラーの場合、フィラー凝集による粗大突起が完全に無くすことができず、製品の欠点要因となる問題があった。特に、超薄層セラミックグリーンシートでは、セラミック材料として用いられる無機フィラーは60nm〜800nm程度の粒径であるため(例えば、特許文献5、6参照)、特許文献4に記載されるようなフィルムを用いると、剥離面で局所的な穴が発生する問題があった。 Therefore, a release film having an excellent balance between smoothness and uniform peelability has been reported by using a polyester film having an appropriate large protrusion that serves as a trigger (peeling start point) at the start of peeling (for example). , Patent Document 4). However, in the case of the filler kneaded into PET, there is a problem that the coarse protrusions due to the aggregation of the filler cannot be completely eliminated, which causes a defect of the product. In particular, in the ultrathin ceramic green sheet, since the inorganic filler used as the ceramic material has a particle size of about 60 nm to 800 nm (see, for example, Patent Documents 5 and 6), a film as described in Patent Document 4 is used. When used, there was a problem that local holes were generated on the peeled surface.

特開2000−117899号公報Japanese Unexamined Patent Publication No. 2000-117899 国際公開第2013/145864号International Publication No. 2013/145864 国際公開第2013/145865号International Publication No. 2013/145856 国際公開第2014/203702号International Publication No. 2014/203702 特開2016−127120号公報Japanese Unexamined Patent Publication No. 2016-127120 特開2017−081805号公報Japanese Unexamined Patent Publication No. 2017-081805

そこで、本発明者らは、鋭意検討を行った結果、離型層表面に低突起による表面凹凸を形成させることで、上記重剥離化、加工適性低下と欠点要因の発生を同時に抑制できることを見極めた。そして、本発明の課題は、剥離性に優れ、成型される極薄のセラミックグリーンシートについて、ハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート成型用離型フィルムを提供することである。 Therefore, as a result of diligent studies, the present inventors have determined that by forming surface irregularities due to low protrusions on the surface of the release layer, it is possible to simultaneously suppress the above-mentioned heavy peeling, deterioration of processing suitability, and occurrence of defect factors. It was. An object of the present invention is to provide a release film for molding a ceramic green sheet, which has excellent peelability and is less likely to cause damage such as cracks in a half-cut test for an ultrathin ceramic green sheet to be molded.

即ち、本発明は以下の構成よりなる。
1. ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂(II)、及び離型成分(III)を少なくとも含む塗膜が硬化されてなり、前記ポリエステル樹脂(II)が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有するセラミックグリーンシート製造用離型フィルム。
2. 離型層が、エネルギー線硬化型化合物(I)を海成分とし、ポリエステル樹脂(II)を島成分とする相分離構造を有し、表面凹凸を有する上記第1に記載のセラミックグリーンシート製造用離型フィルム。
3. 離型層が実質的に無機粒子を含有しない上記第1又は第2に記載のセラミックグリーンシート製造用離型フィルム。
4. 前記エネルギー線硬化型化合物(I)が、1分子内に3以上のアクリロイル基を有する(メタ)アクリル酸エステルである上記第1〜第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
5. 離型層の厚みが、0.2〜3.5μmである上記第1〜第4のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
6. 離型層の領域表面平均粗さ(Sa)が、5〜40nmである上記第1〜第5のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
7. 離型層表面の最大突起高さ(Rp)が、60nm以下である上記第1〜第6のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
8. 上記第1〜第7のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm〜1.0μmの厚みであるセラミックグリーンシートの製造方法。
That is, the present invention has the following configuration.
1. 1. A release film in which a release layer is laminated directly on at least one side of the polyester film or via another layer, and the release layer is an energy ray-curable compound (I), a polyester resin (II), and A release film for producing a ceramic green sheet, wherein the coating film containing at least the release component (III) is cured, and the polyester resin (II) contains an ester structural unit derived from the 5-sodium sulfoisophthalic acid component.
2. 2. The mold release layer has a phase-separated structure in which the energy ray-curable compound (I) is a sea component and the polyester resin (II) is an island component, and has surface irregularities. Release film.
3. 3. The release film for producing a ceramic green sheet according to the first or second above, wherein the release layer does not substantially contain inorganic particles.
4. The release film for producing a ceramic green sheet according to any one of the above 1 to 3, wherein the energy ray-curable compound (I) is a (meth) acrylic acid ester having 3 or more acryloyl groups in one molecule. ..
5. The release film for producing a ceramic green sheet according to any one of the first to fourth above, wherein the release layer has a thickness of 0.2 to 3.5 μm.
6. The release film for producing a ceramic green sheet according to any one of the first to fifth above, wherein the region surface average roughness (Sa) of the release layer is 5 to 40 nm.
7. The release film for producing a ceramic green sheet according to any one of the first to sixth above, wherein the maximum protrusion height (Rp) on the surface of the release layer is 60 nm or less.
8. A method for producing a ceramic green sheet by molding a ceramic green sheet using the release film for producing a ceramic green sheet according to any one of the above 1 to 7, wherein the molded ceramic green sheet is 0.2 μm to A method for manufacturing a ceramic green sheet having a thickness of 1.0 μm.

本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重過ぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートについて、ハーフカット試験におけるクラック等のダメージを生じ難いセラミックグリーンシート製造用離型フィルムの提供が可能となった。 According to the release film for producing a ceramic green sheet of the present invention, the release force is not too heavy, the workability is excellent, and large protrusions are formed on the release layer as compared with the conventional release film for producing a ceramic green sheet. Therefore, it has become possible to provide a release film for manufacturing a ceramic green sheet that is less likely to cause damage such as cracks in a half-cut test for an ultra-thin ceramic green sheet having a thickness of 1 μm or less to be molded.

本発明品(実施例1)離型層表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the release layer of the product of the present invention (Example 1). 本発明品(実施例2)離型層表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the release layer of the product of the present invention (Example 2).

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

(ポリエステルフィルム)
本発明の離型フィルムにおいて基材として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム基材として通常一般に使用されているポリエステルをフィルム成型したものを使用することが出来るが、好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであるのが良く、例えば、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成されたポリエステルフィルムが好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよいが、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明のフィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸延伸されたポリエステルフィルムであることが好ましい。
(Polyester film)
The polyester constituting the polyester film used as the base material in the release film of the present invention is not particularly limited, and a film-molded polyester usually generally used as the release film base material can be used. Preferably, it is a crystalline linear saturated polyester composed of an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or these. A copolymer containing the constituent components of the resin as a main component is more preferable, and a polyester film formed from polyethylene terephthalate is particularly preferable. The repeating unit of ethylene terephthalate is preferably 90 mol% or more, more preferably 95 mol% or more, and other dicarboxylic acid components and diol components may be copolymerized in a small amount, but from the viewpoint of cost. , Preferably made only from terephthalic acid and ethylene glycol. Further, known additives such as antioxidants, light stabilizers, ultraviolet absorbers, crystallization agents and the like may be added as long as the effects of the film of the present invention are not impaired. The polyester film is preferably a biaxially stretched polyester film because of its high bidirectional elastic modulus and the like.

上記ポリエチレンテレフタレートフィルムの固有粘度は0.50〜0.70dl/gが好ましく、0.52〜0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が発生しづらく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料は十分に真空乾燥することが好ましい。 The intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g. When the intrinsic viscosity is 0.50 dl / g or more, it is preferable that breakage does not easily occur in the stretching step. On the contrary, when it is 0.70 dl / g or less, it is preferable because the cutability when cutting to a predetermined product width is good and dimensional defects do not occur. Further, it is preferable that the raw material is sufficiently vacuum dried.

本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを一軸又は二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。 The method for producing the polyester film in the present invention is not particularly limited, and a method generally used in the past can be used. For example, the polyester can be melted by an extruder, extruded into a film, cooled by a rotary cooling drum to obtain an unstretched film, and the unstretched film can be obtained by uniaxially or biaxially stretching. You can. The biaxially stretched film can be obtained by a method of sequentially biaxially stretching a longitudinally or laterally uniaxially stretched film in the lateral or longitudinal direction, or a method of simultaneously biaxially stretching an unstretched film in the longitudinal and horizontal directions. You can.

本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横各々の方向に1〜8倍、特に2〜6倍の延伸をすることが好ましい。 In the present invention, the stretching temperature at the time of stretching the polyester film is preferably set to be equal to or higher than the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, particularly 2 to 6 times in each of the vertical and horizontal directions.

上記ポリエステルフィルムは、厚みが12〜50μmであることが好ましく、さらに好ましくは12〜38μmであり、より好ましくは、15μm〜31μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や離型層の加工工程、セラミックグリーンシートの成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましく、さらには、使用する離型フィルムの面積当たりの材料が少なくなるため経済的観点からも好ましい。 The thickness of the polyester film is preferably 12 to 50 μm, more preferably 12 to 38 μm, and even more preferably 15 μm to 31 μm. When the thickness of the film is 12 μm or more, it is preferable because there is no possibility of deformation due to heat during film production, the processing process of the release layer, and the molding of the ceramic green sheet. On the other hand, when the thickness of the film is 50 μm or less, the amount of film discarded after use does not become extremely large, which is preferable in reducing the environmental load, and moreover, the material per area of the release film used is small. Therefore, it is also preferable from an economic point of view.

上記ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わないが、少なくとも片面には実質的に無機粒子を含まない表面層Aを有する積層ポリエステルフィルムであることが好ましい。2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、粒子などを含有することができる表面層Bを有することが好ましい。積層構成としては、離型層を塗布する側の層を表面層A、その反対面の層を表面層B、これら以外の芯層を芯層Cとすると、厚み方向の層構成は離型層/表面層A/表面層B、あるいは離型層/表面層A/芯層C/表面層B等の積層構造が挙げられる。当然ながら芯層Cは複数の層構成であっても構わない。また、表面層Bには粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性を付与するため、表面層B上には粒子とバインダーを含んだコート層(D)を設けることが好ましい。 The polyester film base material may be a single layer or a multilayer of two or more layers, but it may be a laminated polyester film having a surface layer A substantially free of inorganic particles on at least one side. preferable. In the case of a laminated polyester film having a multilayer structure of two or more layers, it is preferable to have a surface layer B capable of containing particles or the like on the opposite surface of the surface layer A which does not substantially contain inorganic particles. As for the laminated structure, if the layer to which the release layer is applied is the surface layer A, the layer on the opposite surface is the surface layer B, and the core layers other than these are the core layer C, the layer structure in the thickness direction is the release layer. A laminated structure such as / surface layer A / surface layer B or release layer / surface layer A / core layer C / surface layer B can be mentioned. As a matter of course, the core layer C may have a plurality of layer configurations. Further, the surface layer B may not contain particles. In that case, it is preferable to provide a coat layer (D) containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film in a roll shape.

本発明におけるポリエステルフィルム基材において、離型層を塗布する面を形成する表面層Aは、実質的に無機粒子を含有しないことが好ましい。このとき、表面層Aの領域表面平均粗さ(Sa)は、7nm以下が好ましい。Saが7nm以下であると、離型層の膜厚が2.0μm以下、更に薄く0.5μm以下のような薄膜でも、積層する超薄層セラミックグリーンシートの成型時にピンホールなどの発生が起こりにくく好ましい。表面層Aの領域表面平均粗さ(Sa)は小さいほど好まシート言えるが、0.1nm以上であって構わない。但し表面層A上に後述のアンカーコート層などを設ける場合は、コート層に実質的に無機粒子を含まないことが好ましく、コート層積層後の領域表面平均粗さ(Sa)が前記範囲内であることが好ましい。本発明において「無機粒子を実質的に含有しない」とは、ケイ光X線分析で無機元素を定量した場合に50ppm以下であることにより定義され、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量である。これは積極的に無機粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 In the polyester film base material of the present invention, it is preferable that the surface layer A forming the surface to which the release layer is applied does not substantially contain inorganic particles. At this time, the region surface average roughness (Sa) of the surface layer A is preferably 7 nm or less. When Sa is 7 nm or less, pinholes and the like occur during molding of the ultra-thin ceramic green sheet to be laminated even if the release layer has a film thickness of 2.0 μm or less and is even thinner and 0.5 μm or less. Difficult and preferable. The smaller the region surface average roughness (Sa) of the surface layer A, the more preferable the sheet, but it may be 0.1 nm or more. However, when an anchor coat layer or the like described later is provided on the surface layer A, it is preferable that the coat layer does not substantially contain inorganic particles, and the region surface average roughness (Sa) after laminating the coat layer is within the above range. It is preferable to have. In the present invention, "substantially free of inorganic particles" is defined as 50 ppm or less when the inorganic element is quantified by Kay light X-ray analysis, preferably 10 ppm or less, and most preferably below the detection limit. The content is. This means that even if inorganic particles are not actively added to the film, contaminant components derived from foreign substances and stains attached to the raw material resin or the line or device in the film manufacturing process are peeled off and mixed into the film. This is because there are cases.

本発明におけるポリエステルフィルム基材が積層フィルムである場合において、離型層を塗布する表面層Aと反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を含有することが好ましい。含有される粒子含有量は、表面層B中に粒子の合計で5000〜15000ppmであることが好ましい。このとき、表面層Bの領域表面平均粗さ(Sa)は、1〜40nmの範囲であることが好ましい。より好ましくは、5〜35nmの範囲である。表面層Bのシリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシートを成型後に巻き取った場合でもセラミックグリーンシートにピンホールなどの欠点を発生させることがなく好ましい。 When the polyester film base material in the present invention is a laminated film, the surface layer B forming the opposite surface to the surface layer A to which the release layer is applied is a particle from the viewpoint of the slipperiness of the film and the ease with which air can escape. Is preferable, and silica particles and / or calcium carbonate particles are particularly preferable. The total amount of particles contained in the surface layer B is preferably 5000 to 15000 ppm. At this time, the region surface average roughness (Sa) of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm. When the total amount of silica particles and / or calcium carbonate particles in the surface layer B is 5000 ppm or more and Sa is 1 nm or more, air can be uniformly released when the film is rolled up in a roll shape, and the rolled shape is good. The good flatness makes it suitable for manufacturing ultra-thin ceramic green sheets. Further, when the total amount of silica particles and / or calcium carbonate particles is 15,000 ppm or less and Sa is 40 nm or less, the lubricant is unlikely to aggregate and coarse protrusions cannot be formed. Therefore, the ultrathin ceramic green sheet is wound up after molding. Even in this case, it is preferable that the ceramic green sheet does not cause defects such as pinholes.

上記表面層Bに含有する粒子としては、透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子などを用いることができ、他に使用できる無機粒子としては、アルミナ−シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。 As the particles contained in the surface layer B, it is more preferable to use silica particles and / or calcium carbonate particles from the viewpoint of transparency and cost. Inorganic particles and / or heat-resistant organic particles other than silica and / or calcium carbonate can be used, and examples of other inorganic particles that can be used include alumina-silica composite oxide particles and hydroxyapatite particles. Be done. Examples of the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles. When silica particles are used, porous colloidal silica is preferable, and when calcium carbonate particles are used, light calcium carbonate surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. ..

上記表面層Bに添加する粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面に粗大粒子によるピンホールが発生するおそれがなく好ましい。なお、粒子の平均粒子径の測定方法は、加工後のフィルムの断面の粒子を走査型電子顕微鏡で観察を行い、粒子100個を観察し、その平均値をもって平均粒子径とする方法で行うことができる。本発明の目的を満たすものであれば、粒子の形状は特に限定されるものでなく、球状粒子、不定形の球状でない粒子を使用できる。不定形の粒子の粒子径は円相当径として計算することができる。円相当径は、観察された粒子の面積を円周率(π)で除し、平方根を算出し2倍した値である。 The average particle size of the particles added to the surface layer B is preferably 0.1 μm or more and 2.0 μm or less, and particularly preferably 0.5 μm or more and 1.0 μm or less. When the average particle size of the particles is 0.1 μm or more, the slipperiness of the release film is good, which is preferable. Further, when the average particle size is 2.0 μm or less, pinholes due to coarse particles are not likely to occur on the surface of the release layer, which is preferable. The average particle size of the particles is measured by observing the particles in the cross section of the processed film with a scanning electron microscope, observing 100 particles, and using the average value as the average particle size. Can be done. The shape of the particles is not particularly limited as long as it satisfies the object of the present invention, and spherical particles and irregular non-spherical particles can be used. The particle size of the amorphous particles can be calculated as the equivalent circle diameter. The equivalent circle diameter is a value obtained by dividing the observed particle area by the pi (π), calculating the square root, and doubling it.

表面層Bには素材の異なる粒子を2種類以上含有させてもよい。また、同種の粒子で平均粒子径の異なるものを含有させてもよい。 The surface layer B may contain two or more types of particles having different materials. Further, particles of the same type having different average particle diameters may be contained.

表面層Bに粒子を含まない場合は、表面層B上に粒子を含んだコート層で易滑性を持たせることも好ましい。本コート層を設ける手段は、特に限定されないが、ポリエステルフィルムの製膜中に塗工する所謂インラインコート法で設けることが好ましい。また、ポリエステルフィルムの離型層を積層しない側の表面に易滑性を持たせるコート層を設ける場合には、ポリエステルフィルムは表面層A及びBを有している必要はなく、無機粒子を実質的に含有しない単層のポリエステルフィルムからなっていてもよい。 When the surface layer B does not contain particles, it is also preferable that a coat layer containing particles on the surface layer B has slipperiness. The means for providing the coating layer is not particularly limited, but it is preferable to provide the coating layer by a so-called in-line coating method in which the coating is applied during the film formation of the polyester film. Further, when a coat layer having a slipperiness is provided on the surface of the polyester film on the side where the release layer is not laminated, the polyester film does not need to have the surface layers A and B, and the inorganic particles are substantially contained. It may consist of a single-layer polyester film that does not contain the material.

表面層Bの領域表面平均粗さ(Sa)は、40nm以下が好ましく、35nm以下がより好ましく、さらに好ましくは30nm以下である。また、表面層Bあるいは単層ポリエステルフィルムの離型層を積層しない側の表面にコート層(D)で易滑性を持たせる場合は、その表面のSaは、コート層を積層した表面を測定するものとし、前記の表面層Bの領域表面平均粗さ(Sa)と同等範囲であることが好ましい。 The region surface average roughness (Sa) of the surface layer B is preferably 40 nm or less, more preferably 35 nm or less, and further preferably 30 nm or less. Further, when the surface layer B or the surface on the side where the release layer of the single-layer polyester film is not laminated is provided with the slipperiness by the coat layer (D), the surface Sa of the surface is measured by measuring the surface on which the coat layer is laminated. It is preferable that the surface layer B is in the same range as the region surface average roughness (Sa).

(コート層D)
前記のポリエステルフィルムについて離型層を積層しない側の表面のコート層D中には、少なくともバインダー樹脂及び粒子が含まれていることが好ましい。
(Coat layer D)
It is preferable that at least a binder resin and particles are contained in the coat layer D on the surface of the polyester film on the side where the release layer is not laminated.

(コート層Dのバインダー樹脂)
易滑塗布層を構成するバインダー樹脂としては特に限定されないが、ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル系樹脂(ポリビニルアルコール等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でも粒子の保持、密着性の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、ポリエステルフィルムとのなじみを考慮した場合、ポリエステル樹脂が特に好ましい。溶剤への溶解性、分散性、さらには基材フィルムや他の層との接着性を達成させるため、バインダーのポリエステルは共重合ポリエステルであることが好ましい。なお、ポリエステル樹脂はポリウレタン変性されていても良い。また、ポリエステル基材フィルム上の易滑塗布層を構成する他の好ましいバインダー樹脂としてはウレタン樹脂が挙げられる。ウレタン樹脂としてはポリカーボネートポリウレタン樹脂が挙げられる。さらに、ポリエステル樹脂、ポリウレタン樹脂は併用しても良く、上記の他のバインダー樹脂を併用してもよい。
(Binder resin of coat layer D)
The binder resin constituting the slippery coating layer is not particularly limited, but specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyvinyl-based resin (polyvinyl alcohol, etc.), polyalkylene glycol, polyalkyleneimine, and methyl cellulose. , Hydroxycellulose, starches and the like. Among these, it is preferable to use polyester resin, acrylic resin, or urethane resin from the viewpoint of particle retention and adhesion. Further, a polyester resin is particularly preferable in consideration of compatibility with a polyester film. The polyester of the binder is preferably a copolymerized polyester in order to achieve solubility in a solvent, dispersibility, and adhesion to a base film and other layers. The polyester resin may be modified with polyurethane. Further, as another preferable binder resin constituting the I Ching coating layer on the polyester base film, urethane resin can be mentioned. Examples of the urethane resin include polycarbonate polyurethane resin. Further, the polyester resin and the polyurethane resin may be used in combination, or the other binder resin described above may be used in combination.

(コート層Dの架橋剤)
本発明において、易滑塗布層中に架橋構造を形成させるために、易滑塗布層は架橋剤が含まれて形成されていてもよい。架橋剤を含有させることにより、高温高湿下での密着性を更に向上させることが可能になる。具体的な架橋剤としては、尿素系、エポキシ系、メラミン系、イソシアネート系、オキサゾリン系、カルボジイミド系、アジリジン等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用することができる。
(Crosslinking agent for coat layer D)
In the present invention, in order to form a crosslinked structure in the easy-slip coating layer, the easy-slip coating layer may be formed by containing a cross-linking agent. By containing a cross-linking agent, it becomes possible to further improve the adhesion under high temperature and high humidity. Specific examples of the cross-linking agent include urea-based, epoxy-based, melamine-based, isocyanate-based, oxazoline-based, carbodiimide-based, and aziridine. Further, in order to promote the cross-linking reaction, a catalyst or the like can be appropriately used as needed.

(コート層D中の粒子)
易滑塗布層は、表面にすべり性を付与するために、滑剤粒子を含むことが好ましい。粒子は、無機粒子であっても、有機粒子であってもよく、特に限定されるものではないが、(1)シリカ、カオリナイト、タルク、軽質炭酸カルシウム、重質炭酸カルシウム、ゼオライト、アルミナ、硫酸バリウム、カーボンブラック、酸化亜鉛、硫酸亜鉛、炭酸亜鉛、酸化ジルコニウム、二酸化チタン、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、水酸化アルミニウム、加水ハロイサイト、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、水酸化マグネシウム、硫酸バリウム等の無機粒子、(2)アクリルあるいはメタアクリル系、塩化ビニル系、酢酸ビニル系、ナイロン、スチレン/アクリル系、スチレン/ブタジエン系、ポリスチレン/アクリル系、ポリスチレン/イソプレン系、ポリスチレン/イソプレン系、メチルメタアクリレート/ブチルメタアクリレート系、メラミン系、ポリカーボネート系、尿素系、エポキシ系、ウレタン系、フェノール系、ジアリルフタレート系、ポリエステル系等の有機粒子が挙げられるが、塗布層に適度な滑り性を与えるために、シリカが特に好ましく使用される。
(Particles in coat layer D)
The slippery coating layer preferably contains lubricant particles in order to impart slipperiness to the surface. The particles may be inorganic particles or organic particles, and are not particularly limited. (1) Silica, kaolinite, talc, light calcium carbonate, heavy calcium carbonate, zeolite, alumina, Barium Sulfate, Carbon Black, Zinc Oxide, Zinc Sulfate, Zinc Carbonate, Zinc Oxide, Titanium Dioxide, Satin White, Aluminum Silate, Kaiso Soil, Calcium Sirate, Aluminum Hydroxide, Hydrate Halloysite, Calcium Carbonate, Magnesium Carbonate, Calcium Phosphate Inorganic particles such as magnesium and barium sulfate, (2) Acrylic or methacrylic, vinyl chloride, vinyl acetate, nylon, styrene / acrylic, styrene / butadiene, polystyrene / acrylic, polystyrene / isoprene, polystyrene / Organic particles such as isoprene-based, methyl methacrylate / butyl methacrylate-based, melamine-based, polycarbonate-based, urea-based, epoxy-based, urethane-based, phenol-based, diallyl phthalate-based, and polyester-based are suitable for the coating layer. Silica is particularly preferably used to provide slipperiness.

粒子の平均粒径は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは30nm以上である。粒子の平均粒径は10nm以上であると、凝集しにくく、滑り性が確保できて好ましい。 The average particle size of the particles is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more. It is preferable that the average particle size of the particles is 10 nm or more because it is difficult to aggregate and slipperiness can be ensured.

粒子の平均粒径は1000nm以下であることが好ましく、より好ましくは800nm以下であり、さらに好ましくは600nm以下である。粒子の平均粒径が1000nm以下であると、透明性が保たれ、また、粒子が脱落することがなく好ましい。 The average particle size of the particles is preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 600 nm or less. When the average particle size of the particles is 1000 nm or less, transparency is maintained and the particles do not fall off, which is preferable.

また、例えば、平均粒径が10〜270nm程度の小さい粒子と、平均粒径が300〜1000nm程度の大きい粒子を混用することも、後述の領域表面平均粗さ(Sa)、最大突起高さ(Rp)を小さく保ちながら、粗さ曲線要素の平均長さ(RSm)を小さくして、すべり性と平滑性を両立させる上で好ましく、特に好ましくは、30nm以上250nm以下の小さい粒子と、平均粒径が350〜600nmの大きい粒子を併用することである。小さい粒子と大きい粒子を混用する場合、塗布層固形分全体に対して、小さい粒子の質量含有率を大きい粒子の質量含有率より大きくしておくことが好ましい。 Further, for example, it is also possible to mix small particles having an average particle size of about 10 to 270 nm and large particles having an average particle size of about 300 to 1000 nm, which will be described later in terms of region surface average roughness (Sa) and maximum protrusion height (Sa). It is preferable to reduce the average length (RSm) of the roughness curve element while keeping Rp) small to achieve both slipperiness and smoothness, and particularly preferably, small particles of 30 nm or more and 250 nm or less and average particles. Large particles with a diameter of 350 to 600 nm are used in combination. When small particles and large particles are mixed, it is preferable that the mass content of the small particles is larger than the mass content of the large particles with respect to the total solid content of the coating layer.

上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。 From the viewpoint of reducing pinholes, it is preferable not to use a recycled raw material or the like in the surface layer A, which is the layer on which the release layer is provided, in order to prevent particles such as lubricant from being mixed.

上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さく好ましい。 The thickness ratio of the surface layer A, which is the layer on which the release layer is provided, is preferably 20% or more and 50% or less of the total thickness of the base film. If it is 20% or more, it is not easily affected by the particles contained in the surface layer B or the like from the inside of the film, and it is easy for the region surface average roughness Sa to satisfy the above range, which is preferable. When it is 50% or less of the thickness of all the layers of the base film, the ratio of the recycled raw material used in the surface layer B can be increased, and the environmental load is small, which is preferable.

また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の芯層C)には、50〜90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、表面層Bに含まれる滑剤の種類や量、粒子径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。 Further, from the viewpoint of economy, 50 to 90% by mass of film waste or a recycled raw material for PET bottles can be used for the layers other than the surface layer A (surface layer B or the core layer C described above). Even in this case, it is preferable that the type and amount of the lubricant contained in the surface layer B, the particle size, and the region surface average roughness (Sa) satisfy the above ranges.

また、後に塗布する離型層などの密着性を向上させたり、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。コート層も設ける場合は、各層の(Sa)はコート層表面の測定値で代用する。また、表面層Aの表面にこれらコート層を設ける場合は、粒子を含有しないことが好ましい。 In addition, a film before or after uniaxial stretching in the film forming process on the surface of the surface layer A and / or the surface layer B in order to improve the adhesion of the release layer to be applied later and prevent charging. A coat layer may be provided on the surface, or a corona treatment or the like may be applied. When a coat layer is also provided, the (Sa) of each layer is substituted by the measured value on the surface of the coat layer. Further, when these coat layers are provided on the surface of the surface layer A, it is preferable that they do not contain particles.

(離型層)
本発明における離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂(II)、及び離型成分(III)を少なくとも含む塗膜を硬化されてなることが好ましい。エネルギー線硬化型化合物(I)とポリエステル樹脂(II)が相分離して海島構造を形成することで、低突起による適度な高さの凹凸を簡便に形成でき、粗大突起が発生しないことから、成型されるグリーンシートにピンホールなどが発生しない。また、適度な凹凸により平面部分が少なくなるので、グリーンシートのハーフカット試験時に、カット時の応力が逃げやすく、カット端部にて点剥離(端部の自然に生じる小剥離)となるため、端部のクラックや変形などのダメージを抑制することができるとともに、次工程の剥離工程の剥離きっかけとなり剥離がスムーズに行える。
(Release layer)
The release layer in the present invention is preferably formed by curing a coating film containing at least an energy ray-curable compound (I), a polyester resin (II), and a release component (III). Since the energy ray-curable compound (I) and the polyester resin (II) are phase-separated to form a sea-island structure, unevenness of an appropriate height due to low protrusions can be easily formed, and coarse protrusions do not occur. No pinholes are generated on the molded green sheet. In addition, since the flat surface is reduced due to the appropriate unevenness, the stress at the time of cutting is easily released during the half-cut test of the green sheet, and point peeling (small peeling that naturally occurs at the end) occurs at the cut end. Damage such as cracks and deformation at the end can be suppressed, and peeling can be performed smoothly by triggering peeling in the peeling step of the next step.

(エネルギー線硬化型化合物(I))
本発明で用いるエネルギー線硬化型化合物(I)としては、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物を用いることができる。1分子内に3以上の反応性基を有することで、高弾性率の離型層となり、グリーンシート剥離時の離型層の変形を抑制し、重剥離化を抑制することができて好ましい。また、離型層の耐溶剤性を向上させることができるためスラリー塗工時に溶剤による離型層の浸食なども防げるため好ましい。また、1分子内に3以上の反応性基を有するエネルギー線硬化型化合物としては、エネルギー線により直接的に反応するか、または間接的に発生した活性種により反応するかは特に限定しない。エネルギー線硬化型化合物(I)の離型層形成用塗布液中の固形分中の含有量としては、60〜98質量%が好ましく、75〜97質量%が好ましい。60質量%以上添加することで架橋度を維持し、高弾性率を得ることができる。
(Energy ray-curable compound (I))
As the energy ray-curable compound (I) used in the present invention, an energy ray-curable compound having 3 or more reactive groups in one molecule can be used. By having 3 or more reactive groups in one molecule, it becomes a release layer having a high elastic modulus, deformation of the release layer at the time of peeling the green sheet can be suppressed, and heavy peeling can be suppressed, which is preferable. Further, since the solvent resistance of the release layer can be improved, erosion of the release layer by the solvent during slurry coating can be prevented, which is preferable. Further, the energy ray-curable compound having 3 or more reactive groups in one molecule is not particularly limited as to whether it reacts directly with energy rays or with an indirectly generated active species. The content of the energy ray-curable compound (I) in the solid content in the coating liquid for forming the release layer is preferably 60 to 98% by mass, preferably 75 to 97% by mass. By adding 60% by mass or more, the degree of cross-linking can be maintained and a high elastic modulus can be obtained.

エネルギー線硬化型化合物(I)の反応性基としては、(メタ)アクリロイル基、アルケニル基、アクリルアミド基、マレイミド基、エポキシ基、シクロヘキセンオキシド基などが挙げられる。その中でも、加工性に優れる(メタ)アクリロイル基を有するエネルギー線硬化型化合物が好ましい。 Examples of the reactive group of the energy ray-curable compound (I) include (meth) acryloyl group, alkenyl group, acrylamide group, maleimide group, epoxy group, cyclohexene oxide group and the like. Among them, an energy ray-curable compound having a (meth) acryloyl group having excellent processability is preferable.

(メタ)アクリロイル基を有するエネルギー線硬化型化合物としては、モノマー、オリゴマー、ポリマーに限定されず使用できる。また、少なくとも1分子内に3以上の反応性基を有する化合物を含有していることが好ましいが、分子内に1〜2の反応性基を有する化合物など2以上の化合物を混合して使用することもできる。これら反応基数が少ない化合物を混合することで、カールなどを抑制することができる。 The energy ray-curable compound having a (meth) acryloyl group is not limited to a monomer, an oligomer, and a polymer, and can be used. Further, it is preferable that at least one molecule contains a compound having 3 or more reactive groups, but 2 or more compounds such as a compound having 1 to 2 reactive groups in the molecule are mixed and used. You can also do it. By mixing these compounds having a small number of reactive groups, curling and the like can be suppressed.

分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型モノマーとしては、イソシアヌル酸トリアクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレートとそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。 Examples of the energy ray-curable monomer having 3 or more (meth) acryloyl groups in the molecule include isocyanuric acid triacrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and tri. Methylolpropantri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) ) Polyfunctional (meth) acrylates such as acrylates and their ethylene oxide modified products, propylene oxide modified products, caprolactone modified products and the like can be mentioned.

分子内に1〜2の反応性基を有するエネルギー線硬化型モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、環状トリメチロールプロパンホールマール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレートなどのモノマー類とそれらのエチレンオキサイド変性物、プロピレンオキサイド変性物、カプロラクトン変性物等が挙げられる。 Examples of the energy ray-curable monomer having 1 to 2 reactive groups in the molecule include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, and butyl (meth) acrylate. Isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, cyclopentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, Nonyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, isobornyl (meth) acrylate, cyclic trimethylolpropaneholemar (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxybutyl (Meta) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, Tetrahydrofurfuryl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, polyethylene glycol Monomers such as di (meth) acrylate, nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, neopentyl glycol di (meth) acrylate, cyclohexanediol di (meth) acrylate and their ethylene oxide modified products, Examples thereof include propylene oxide modified products and caprolactone modified products.

分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型オリゴマー類としては、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシアクリレート、シリコーン変性アクリレートなどが挙げられ、一般に市販されているものが使用できる。例えば、荒川化学工業社製ビームセット(登録商標)シリーズ、新中村化学社製NKオリゴシリーズ、ダイセル・オルネクス社製EBECRYLシリーズ、大阪有機化学工業社製ビスコートシリーズ、共栄社化学社製ウレタンアクリレートシリーズ、DIC社製ユニディックシリーズなどが挙げられる。 Examples of energy ray-curable oligomers having 3 or more (meth) acryloyl groups in the molecule include urethane acrylates, polyester acrylates, polyether acrylates, epoxy acrylates, silicone-modified acrylates, and the like, which are generally commercially available. Can be used. For example, Arakawa Chemical Industry Co., Ltd. Beam Set (registered trademark) series, Shin Nakamura Chemical Industry Co., Ltd. NK Oligo series, Dicelle Ornex Co., Ltd. EBECRYL series, Osaka Organic Chemical Industry Co., Ltd. Viscoat series, Kyoei Co., Ltd. Chemical Company urethane acrylate series, Examples include the Unidic series manufactured by DIC.

分子内に3以上の(メタ)アクリロイル基を有するエネルギー線硬化型ポリマー類としては、ポリマーに(メタ)アクリロイル基をグラフトしたグラフトポリマーや、多官能アクリルモノマーをポリマー末端に付加させたブロックポリマーなどが挙げられる。前記のようなポリマー類としては、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリオルガノシロキサンなど使用でき、特に限定されるものではない。 Examples of energy ray-curable polymers having three or more (meth) acryloyl groups in the molecule include graft polymers obtained by grafting (meth) acryloyl groups on the polymers, and block polymers in which a polyfunctional acrylic monomer is added to the polymer ends. Can be mentioned. As the polymers as described above, acrylic resin, epoxy resin, polyester resin, polyorganosiloxane and the like can be used, and the present invention is not particularly limited.

(ポリエステル樹脂(II))
本発明で用いるポリエステル樹脂(II)としては、5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有するポリエステル樹脂を使用することができる。この5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位とは、5−ナトリウムスルホイソフタル酸と、エチレングリコール、ジエチレングリコール、プロパンジオール、1,4−ブタンジオール、オペンチルグリコール、1.4−シクロヘキサンジメタノール、1,6−ヘキサンジオールなどに代表される任意のジオール、グリコール成分とから構成されるエステル構成単位であり、このエステル構成単位がポリエステル樹脂中に含有されていることを意味している。ポリエステル樹脂中の5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位の含有の態様は、他のエステル構成単位やポリエステルとの混合状態でもよいし、他のエステル構成単位との共重合状態でもよく、ポリエステル樹脂(II)が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含む共重合ポリエステルであることは特に好ましい態様である。ポリエステル樹脂(II)が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有することで、エネルギー線硬化型化合物(I)との相溶性が低下し離型層に適度な海島構造による表面凹凸を形成が容易となるため好ましい。ポリエステル樹脂(II)中における5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位の含有量としては、ポリエステル樹脂(II)を構成するの全エステル構成単位を100モル%するとき、0.5モル%以上12モル%以下であることが好ましい。0.5モル%以上であれば、エネルギー線硬化型化合物(I)との相溶性が低下し離型層に適度な海島構造による表面凹凸を形成が容易となるため好ましい。一方、12モル%以下であれば、ポリエステル樹脂(II)が溶解可能な溶媒のSP値が高くなり過ぎず、エネルギー線硬化型化合物(I)の溶媒への溶解が比較的容易であり、塗液の調製が容易なため好ましい。ポリエステル樹脂(II)中における5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位の含有量は、より好ましくは、1モル%以上10モル%以下である。
(Polyester resin (II))
As the polyester resin (II) used in the present invention, a polyester resin containing an ester structural unit derived from the 5-sodium sulfoisophthalic acid component can be used. The ester constituent units derived from the 5-sodium sulfoisophthalic acid component are 5-sodium sulfoisophthalic acid, ethylene glycol, diethylene glycol, propanediol, 1,4-butanediol, opentyl glycol, and 1.4-cyclohexanedimethanol. , 1,6-Hexanediol or the like, which is an ester constituent unit composed of any diol and glycol component, and means that this ester constituent unit is contained in the polyester resin. The mode of containing the ester constituent unit derived from the 5-sodium sulfoisophthalic acid component in the polyester resin may be a mixed state with another ester constituent unit or polyester, or a copolymerized state with another ester constituent unit. It is a particularly preferable embodiment that the polyester resin (II) is a copolymerized polyester containing an ester structural unit derived from a 5-sodium sulfoisophthalic acid component. Since the polyester resin (II) contains an ester structural unit derived from the 5-sodium sulfoisophthalic acid component, the compatibility with the energy ray-curable compound (I) is reduced, and the surface unevenness due to the sea-island structure suitable for the release layer is reduced. Is preferable because it facilitates formation. The content of the ester constituent unit derived from the 5-sodium sulfoisophthalic acid component in the polyester resin (II) is 0.5 mol% when all the ester constituent units constituting the polyester resin (II) are 100 mol%. It is preferably 12 mol% or more and 12 mol% or less. When it is 0.5 mol% or more, the compatibility with the energy ray-curable compound (I) is lowered, and surface unevenness due to an appropriate sea-island structure is easily formed on the release layer, which is preferable. On the other hand, when it is 12 mol% or less, the SP value of the solvent in which the polyester resin (II) can be dissolved does not become too high, the energy ray-curable compound (I) is relatively easy to dissolve in the solvent, and the coating is applied. It is preferable because the liquid can be easily prepared. The content of the ester constituent unit derived from the 5-sodium sulfoisophthalic acid component in the polyester resin (II) is more preferably 1 mol% or more and 10 mol% or less.

ポリエステル樹脂(II)としては、単一のポリエステル樹脂であってもよいし、2種類以上のポリエステル樹脂を同時に用いることもできる。2種類以上のポリエステル樹脂を使用する場合は、少なくとも1種のポリエステル樹脂が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有すれば、その他のポリエステル樹脂は特に限定されない。ポリエステル樹脂(II)の離型層形成用塗布液中の固形分中の含有量として、1〜40質量%が好ましく、1〜10質量%がより好ましい。1質量%以上含有させることで十分な表面凹凸を形成することができ、40質量%以下にすることで離型層のエネルギー線硬化型化合物(I)による架橋度が高くなり、剥離時の温度依存性が低く好ましい。 The polyester resin (II) may be a single polyester resin, or two or more types of polyester resins may be used at the same time. When two or more kinds of polyester resins are used, the other polyester resins are not particularly limited as long as at least one kind of polyester resin contains an ester structural unit derived from the 5-sodium sulfoisophthalic acid component. The content of the polyester resin (II) in the coating liquid for forming a release layer is preferably 1 to 40% by mass, more preferably 1 to 10% by mass. Sufficient surface unevenness can be formed by containing 1% by mass or more, and the degree of cross-linking of the release layer by the energy ray-curable compound (I) increases by containing 40% by mass or less, and the temperature at the time of peeling. It has low dependence and is preferable.

ポリエステル樹脂(II)しては、5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有していれば、市販のものも使用することができる。例えば、東洋紡社製バイロン(登録商標)シリーズ、日本合成化学工業社製ニチゴーポリエスター(登録商標)シリーズなどが挙げられる。 As the polyester resin (II), a commercially available one can be used as long as it contains an ester constituent unit derived from the 5-sodium sulfoisophthalic acid component. For example, Toyobo Co., Ltd.'s Byron (registered trademark) series and Nippon Synthetic Chemical Industry Co., Ltd.'s Nichigo Polyester (registered trademark) series can be mentioned.

(離型成分(III))
本発明で用いる離型成分(III)としては、ポリオルガノシロキサン、フッ素化合物、長鎖アルキル化合物、ワックス類などグリーンシートとの間で離型性を発揮できる材料であればよく特に限定はない。またこれらの材料に(メタ)アクリロイル基などを有するエネルギー線硬化型化合物(I)と反応して結合できる官能基を有する材料が好ましい。また2種以上の材料を混合して用いることもできる。離型成分(III)の離型層形成用塗布液中の固形分中の含有量としては、0.05〜10質量%が好ましく、0.1〜5質量%がさらに好ましい。0.05質量%以上添加されていれば剥離力が軽くでき、10質量%以下であれば離型成分のセラミックグリーンシート等への移行が抑えられるため好ましい。
(Release component (III))
The release component (III) used in the present invention is not particularly limited as long as it is a material capable of exhibiting releasability with a green sheet such as polyorganosiloxane, fluorine compound, long-chain alkyl compound, and waxes. Further, a material having a functional group capable of reacting with and binding to the energy ray-curable compound (I) having a (meth) acryloyl group or the like is preferable. It is also possible to use a mixture of two or more kinds of materials. The content of the release component (III) in the solid content of the release layer forming coating liquid is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass. If it is added in an amount of 0.05% by mass or more, the peeling force can be lightened, and if it is 10% by mass or less, the transfer of the release component to a ceramic green sheet or the like can be suppressed, which is preferable.

ポリオルガノシロキサンとしては、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリフェニルシロキサンなどの他、一部を有機変性したシロキサン系化合物や、ポリオルガノシロキサンを有するブロックポリマーや、ポリオルガノシロキサンをグラフトしたポリマーなども使用できる。市販のものとしては、例えば、ビックケミージャパン社製BYK(登録商標)シリーズ、日油社製モディパー(登録商標)シリーズなど使用できる。 Examples of polyorganosiloxane include polydimethylsiloxane, polydiethylsiloxane, polyphenylsiloxane, and other siloxane-based compounds that are partially organically modified, block polymers that have polyorganosiloxane, and polymers that are grafted with polyorganosiloxane. Can be used. As commercially available products, for example, BYK (registered trademark) series manufactured by Big Chemie Japan, Modiper (registered trademark) series manufactured by NOF Corporation, and the like can be used.

フッ素化合物としては、特に限定されず、市販のものを使用することができる。例えば、DIC社製メガファック(登録商標)シリーズなどが挙げられる。 The fluorine compound is not particularly limited, and commercially available ones can be used. For example, the Mega Fvck (registered trademark) series manufactured by DIC Corporation can be mentioned.

長鎖アルキル化合物としては、長鎖アルキルアクリレートを共重合したアクリルポリマーや、長鎖アルキルをグラフトしたグラフトポリマー、長鎖アルキルを末端に付加させたブロックポリマーなどが挙げられる。また特に限定されず、市販のものを使用することができる。例えば、日立化成社製テスファイン(登録商標)シリーズ、ライオン・スペシャリティ・ケミカルズ社製ピーロイル(登録商標)などが挙げられる。 Examples of the long-chain alkyl compound include an acrylic polymer copolymerized with a long-chain alkyl acrylate, a graft polymer grafted with a long-chain alkyl, and a block polymer having a long-chain alkyl added to the end. Further, the product is not particularly limited, and a commercially available product can be used. For example, Tessfine (registered trademark) series manufactured by Hitachi Kasei Co., Ltd. and Piroyl (registered trademark) manufactured by Lion Specialty Chemicals Co., Ltd. can be mentioned.

活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線のような電磁波、電子線、イオンビーム、中性子線およびα線のような粒子線等が挙げられ、これらの中でも、製造コストに優れる紫外線を用いるのが好ましい。 Examples of the active energy ray include electromagnetic waves such as infrared rays, visible rays, ultraviolet rays, and X-rays, electron beams, ion beams, neutron beams, particle beams such as α rays, and the like. It is preferable to use excellent ultraviolet rays.

前記活性エネルギー線を照射するときの雰囲気は、一般的な空気中でも窒素ガス雰囲気下でも構わない。窒素ガス雰囲気では、酸素濃度を減少させることでラジカル反応がスムーズに進行し離型層の弾性率を向上させることができるが、空気中で照射しても実用上問題なければ、空気中で照射する方が経済的観点から好ましい。 The atmosphere when irradiating the active energy rays may be general air or a nitrogen gas atmosphere. In a nitrogen gas atmosphere, the radical reaction proceeds smoothly and the elastic modulus of the release layer can be improved by reducing the oxygen concentration, but if there is no practical problem even if it is irradiated in air, it is irradiated in air. It is preferable from an economic point of view.

(光重合開始剤)
本発明の離型層にラジカル重合系化合物を用いる場合は、光重合開始剤を添加することが好ましい。光重合開始剤としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4−ジエチルチオキサンソン、1−ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β−クロールアンスラキノン、(2,4,6−トリメチルベンジルジフェニル)フォスフィンオキサイド、2−ベンゾチアゾール−N,N−ジエチルジチオカルバメート等が挙げられる。特に、表面硬化性に優れるとされる、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチルプロパン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オンが好ましく、中でも2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オンが特に好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Photopolymerization initiator)
When a radical polymerization compound is used for the release layer of the present invention, it is preferable to add a photopolymerization initiator. Specific examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4. -Diethylthioxanson, 1-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4,6-trimethyl) Benzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate and the like can be mentioned. In particular, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methylpropan-1-one, which is said to have excellent surface curability, 1-Hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -On is preferable, and 2-hydroxy-2-methyl-1-phenyl-propane-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one are particularly preferable. preferable. These may be used alone or in combination of two or more.

光重合開始剤の添加量は、特に限定されないが、例えば、離型層形成用塗布液中の固形分として0.1から20質量%程度含有させることが好ましい。 The amount of the photopolymerization initiator added is not particularly limited, but for example, it is preferably contained in an amount of about 0.1 to 20% by mass as the solid content in the coating liquid for forming a release layer.

本発明における離型層には、粒子径が1μm以下の粒子などを含有することができるが、ピンホール発生の観点から粒子など突起を形成するものは含有しないほうが好ましい。 The release layer in the present invention may contain particles having a particle diameter of 1 μm or less, but it is preferable not to contain particles or other particles that form protrusions from the viewpoint of pinhole generation.

本発明における離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。 An adhesion improver, an additive such as an antistatic agent, or the like may be added to the release layer in the present invention as long as the effect of the present invention is not impaired. Further, in order to improve the adhesion to the base material, it is also preferable to perform pretreatment such as anchor coating, corona treatment, plasma treatment, and atmospheric pressure plasma treatment on the surface of the polyester film before providing the release coating layer.

本発明において、離型層の厚みは、その使用目的に応じて設定すれば良く、特に限定されないが、好ましくは、硬化後の離型層が0.2〜3.5μmとなる範囲がよく、より好ましくは、0.5〜3.0μmである。離型層の厚みが0.2μm以上であるとエネルギー線硬化型共重合ポリマーの硬化性が良く、離型層の弾性率が向上するため良好な剥離性能が得られ好ましい。また、3.5μm以下であると、離型フィルムの厚みが薄くなってもカールを起こしにくくセラミックグリーンシートを成型、乾燥する過程で走行性不良を起こさず好ましい。 In the present invention, the thickness of the release layer may be set according to the purpose of use and is not particularly limited, but preferably, the release layer after curing is preferably in the range of 0.2 to 3.5 μm. More preferably, it is 0.5 to 3.0 μm. When the thickness of the release layer is 0.2 μm or more, the curability of the energy ray-curable copolymer polymer is good, and the elastic modulus of the release layer is improved, so that good peeling performance can be obtained, which is preferable. Further, when the thickness is 3.5 μm or less, curling is unlikely to occur even if the thickness of the release film is thin, and the ceramic green sheet is preferably formed and dried without causing poor running performance.

本発明の離型フィルムは、離型層表面が適度な凹凸があることが好ましい。そのため、離型層表面の領域表面平均粗さ(Sa)が5〜40nmであることが好ましい。また、前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であることが更に好ましい。領域表面平均粗さ(Sa)は5〜20nmが好ましく、その際同時に最大突起高さ(Rp)が50nm以下であることが更に好ましい。領域表面平均粗さ(Sa)は8.1〜18nmであることが特に好ましく、8.5〜17nmであることが最も好ましい。領域表面平均粗さ(Sa)が5nm以上であれば、セラミックグリーンシート剥離時に、ジッピングが軽減され、超薄層のグリーンシートであってもダメージ無く容易に剥離することができる。また領域表面平均粗さ(Sa)が40nm以下であれば、セラミックの粒径よりも十分に小さく、グリーンシートの表面形状に影響を及ぼすことが無い。前記のSaを満足し、且つ離型層表面の最大突起高さ(Rp)が60nm以下であれば、更にピンホール欠点を生じるおそれが少なくなり好ましい。最大突起高さ(Rp)は小さいことが好ましいが、領域表面平均粗さ(Sa)を5nm以上に調節する関係で、最大突起高さ(Rp)も5nm以上であっても構わず、10nm以上であっても構わない。前記のような離型層の領域表面平均粗さ(Sa)や最大突起高さ(Rp)の範囲に調節するためには、種々の要因が関連しているが、主に、ポリエステルフィルムの表面層A又は単層のポリエステルフィルムが無機粒子を実質的に含有しないため、離型層を積層する表面の粗さが小さいことと、離型層が1分子内に3以上の反応性基を有するエネルギー線硬化型化合物(I)と、前記エネルギー線硬化型化合物(I)を海成分とし、前記エネルギー線硬化型化合物(I)と非相溶であり島成分となる樹脂(II)を含有して硬化されていることが関係していると言える。離型層の領域表面平均粗さ(Sa)や最大突起高さ(Rp)を上記のような適度な範囲に調節する方法は特に限定されないが、主に、エネルギー線硬化型化合物(I)と樹脂(II)の材質の組合せや含有割合を調節することにより好ましく達成できる。 In the release film of the present invention, it is preferable that the surface of the release layer has appropriate irregularities. Therefore, the region surface average roughness (Sa) on the surface of the release layer is preferably 5 to 40 nm. Further, it is more preferable that the Sa is satisfied and the maximum protrusion height (Rp) on the surface of the release layer is 60 nm or less. The region surface average roughness (Sa) is preferably 5 to 20 nm, and at the same time, the maximum protrusion height (Rp) is more preferably 50 nm or less. The region surface average roughness (Sa) is particularly preferably 8.1 to 18 nm, and most preferably 8.5 to 17 nm. When the region surface average roughness (Sa) is 5 nm or more, zipping is reduced when the ceramic green sheet is peeled off, and even an ultrathin layer green sheet can be easily peeled off without damage. Further, when the region surface average roughness (Sa) is 40 nm or less, it is sufficiently smaller than the particle size of the ceramic and does not affect the surface shape of the green sheet. When the Sa is satisfied and the maximum protrusion height (Rp) of the release layer surface is 60 nm or less, the possibility of further pinhole defects is further reduced, which is preferable. The maximum protrusion height (Rp) is preferably small, but the maximum protrusion height (Rp) may be 5 nm or more in relation to adjusting the region surface average roughness (Sa) to 5 nm or more, and is 10 nm or more. It doesn't matter. Various factors are involved in adjusting the range of the region surface average roughness (Sa) and the maximum protrusion height (Rp) of the release layer as described above, but mainly the surface of the polyester film. Since the layer A or the single-layer polyester film does not substantially contain inorganic particles, the surface roughness on which the release layer is laminated is small, and the release layer has three or more reactive groups in one molecule. It contains an energy ray-curable compound (I) and a resin (II) containing the energy ray-curable compound (I) as a sea component and being incompatible with the energy ray-curable compound (I) and serving as an island component. It can be said that it is related to being cured. The method of adjusting the region surface average roughness (Sa) and the maximum protrusion height (Rp) of the release layer to an appropriate range as described above is not particularly limited, but mainly with the energy ray-curable compound (I). This can be preferably achieved by adjusting the combination of the materials of the resin (II) and the content ratio.

本発明において、離型層の形成方法は、特に限定されず、離型性の化合物を溶解もしくは分散させた塗液を、基材のポリエステルフィルムの一方の面に塗布等により展開し、溶媒等を乾燥により除去後、硬化させる方法が用いられる。 In the present invention, the method for forming the release layer is not particularly limited, and a coating liquid in which a releaseable compound is dissolved or dispersed is developed by coating or the like on one surface of a polyester film of a base material, and a solvent or the like is formed. Is removed by drying and then cured.

本発明の離型層を基材フィルム上に溶液塗布により塗布する場合の溶媒乾燥の乾燥温度は、50℃以上、120℃以下であることが好ましく、60℃以上、100℃以下であることがより好ましい。その乾燥時間は、30秒以下が好ましく、20秒以下がより好ましい。さらに溶剤乾燥後、活性エネルギー線を照射し硬化反応を進行させることが好ましい。この時用いる活性エネルギー線としては、紫外線、電子線、X線などを使用することができるが、紫外線が使用しやすく好ましい。照射する紫外線量としては光量で30〜300mJ/cmが好ましく、より好ましくは、30〜200mJ/cmである。30mJ/cm以上とすることで組成物の硬化が十分進行し、300mJ/cm以下とするこ
とで加工時の速度を向上させることができるため経済的に離型フィルムを作成することができ好ましい。
When the release layer of the present invention is applied onto the base film by solution coating, the drying temperature of solvent drying is preferably 50 ° C. or higher and 120 ° C. or lower, and 60 ° C. or higher and 100 ° C. or lower. More preferred. The drying time is preferably 30 seconds or less, more preferably 20 seconds or less. Further, after drying with a solvent, it is preferable to irradiate with active energy rays to proceed with the curing reaction. As the active energy beam used at this time, ultraviolet rays, electron beams, X-rays and the like can be used, but ultraviolet rays are preferable because they are easy to use. The amount of ultraviolet rays to be irradiated is preferably 30 to 300 mJ / cm 2 in terms of the amount of light, and more preferably 30 to 200 mJ / cm 2 . When the temperature is 30 mJ / cm 2 or more, the composition is sufficiently cured, and when the temperature is 300 mJ / cm 2 or less, the processing speed can be improved, so that a release film can be economically produced. preferable.

本発明において、離型層を塗布するときの塗液の表面張力は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。 In the present invention, the surface tension of the coating liquid when the release layer is applied is not particularly limited, but is preferably 30 mN / m or less. By setting the surface tension as described above, the coatability after coating can be improved, and the unevenness of the coating film surface after drying can be reduced.

上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 Any known coating method can be applied as the coating method, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, or an air knife. Conventionally known methods such as the coating method can be used.

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した。なお、以下、重量平均分子量を単にMwと記載することがある。 In order to explain the present invention in detail, examples will be given below, but the present invention is not limited to these examples. The characteristic values used in the present invention were evaluated using the following method. Hereinafter, the weight average molecular weight may be simply referred to as Mw.

(1)基材フィルム厚み
ミリトロン(電子マイクロインジケーター)を用い、測定すべきフィルムの任意の4箇所より5cm角サンプル4枚を切り取り、一枚あたり各5点(計20点)測定して平均値を厚みとした。
(1) Base film thickness Using a millitron (electronic micro-indicator), cut four 5 cm square samples from any four points of the film to be measured, measure each five points (20 points in total), and measure the average value. Was taken as the thickness.

(2)離型層厚み
離型層の厚みは、光干渉式膜厚計(F20、フィルメトリクス社製)を用いて測定した。(離型層の屈折率は1.52として算出)
(2) Thickness of release layer The thickness of the release layer was measured using a light interference type film thickness meter (F20, manufactured by Filmometry). (The refractive index of the release layer is calculated as 1.52)

(3)領域表面平均粗さ(Sa)、最大突起高さ(Rp)
非接触表面形状計測システム(VertScan R550H−M100、菱化システム社製)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(Rp)は7回測定し最大値と最小値を除いた5回の最大値を使用した。
(測定条件)
・測定モ−ド:WAVEモード
・対物レンズ:50倍
・0.5×Tubeレンズ
(解析条件)
・面補正: 4次補正
・補間処理: 完全補間
(3) Area surface average roughness (Sa), maximum protrusion height (Rp)
It is a value measured under the following conditions using a non-contact surface shape measurement system (VertScan R550H-M100, manufactured by Ryoka System Co., Ltd.). The region surface average roughness (Sa) was measured 5 times, and the maximum protrusion height (Rp) was measured 7 times, and the maximum value of 5 times excluding the maximum value and the minimum value was used.
(Measurement condition)
・ Measurement mode: WAVE mode ・ Objective lens: 50x ・ 0.5 × Tube lens (analysis conditions)
・ Surface correction: 4th order correction ・ Interpolation processing: Complete interpolation

(4)相分離構造
電子顕微鏡(VE−8800、キーエンス社製)を用いて、5000倍にて離型層表面を観察し、相分離の形成の有無を評価した。

○:相分離の形成している(相分離による凹凸構造が確認できる)
×:相分離しない(相分離による凹凸構造が見られない)
(4) Phase Separation Structure Using an electron microscope (VE-8800, manufactured by KEYENCE CORPORATION), the surface of the release layer was observed at 5000 times to evaluate the presence or absence of phase separation.

◯: Phase separation is formed (concave and convex structure due to phase separation can be confirmed)
X: No phase separation (no uneven structure due to phase separation)

(5)セラミックグリーンシートのハーフカット評価
下記、材料からなる組成物を攪拌混合し、直径0.5mmのジルコニアビーズを分散媒とするビーズミルを用いて60分間分散し、セラミックスラリーを調製した。
トルエン 76.3質量部
エタノール 76.3質量部
チタン酸バリウム(富士チタン社製 HPBT−1) 35.0質量部
ポリビニルブチラール 3.5質量部
(積水化学工業社製 エスレック(登録商標)BM−S)
DOP(フタル酸ジオクチル) 1.8質量部
次いで離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のセラミックグリーンシートが1.0μmになるように塗工し90℃で2分乾燥した。
得られたセラミックグリーンシート付離型フィルムをロータリーダイカッター(R.D.C(FB)−A4、塚谷刄物製作所社製)を用い、セラミックグリーンシート面側から両刃50°にて16mm×32mm角、深さ3μmになるようハーフカットした。グリーンシートが剥離した部分について、フィルムの端部から剥離した部分までの距離をレーザー顕微鏡にて測定し、下記基準で判定した。測定は5回測定し平均値を採用した。
○:端部にクラック等の欠点がなく、剥離部が十分にあり(目安:剥離が達している距離が端部から4mm以上)
△:端部にクラック等の欠点がなく、剥離部が少しあり(目安:剥離が達している距離が端部から1mm以上、4mmより小さい)
×:端部にクラック等の欠点があるか、又は剥離部がない(目安:剥離が達している距離が端部から1mmより小さい)
(5) Half-cut evaluation of ceramic green sheet The composition consisting of the following materials was stirred and mixed, and dispersed for 60 minutes using a bead mill using zirconia beads having a diameter of 0.5 mm as a dispersion medium to prepare a ceramic slurry.
Toluene 76.3 parts by mass Ethanol 76.3 parts by mass Barium titanate (HPBT-1 manufactured by Fuji Titanium Industry Co., Ltd.) 35.0 parts by mass Polyvinyl butyral 3.5 parts by mass (Sekisui Chemical Co., Ltd. Eslek (registered trademark) BM-S )
DOP (Dioctyl Phthalate) 1.8 parts by mass Then, the release surface of the release film sample was coated with an applicator so that the dried ceramic green sheet was 1.0 μm, and dried at 90 ° C. for 2 minutes.
Using a rotary die cutter (RDC (FB) -A4, manufactured by Tsukaya Komono Seisakusho Co., Ltd.), the obtained release film with a ceramic green sheet was 16 mm x 32 mm at 50 ° on both blades from the surface side of the ceramic green sheet. It was half-cut so that the angle and depth were 3 μm. For the portion where the green sheet was peeled off, the distance from the edge portion of the film to the peeled portion was measured with a laser microscope and determined according to the following criteria. The measurement was performed 5 times and the average value was adopted.
◯: There are no defects such as cracks at the end, and there is a sufficient peeling part (reference: the distance reached by the peeling is 4 mm or more from the end).
Δ: There are no defects such as cracks at the end, and there is a little peeling part (reference: the distance reached by the peeling is 1 mm or more and less than 4 mm from the end).
X: There is a defect such as a crack at the end, or there is no peeling part (reference: the distance reached by the peeling is less than 1 mm from the end)

(ポリエチレンテレフタレートペレット(PET(1))の調製)
エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm2)の圧力で平均処理回数5パスの分散処理をした平均粒子径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒子径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(1)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(Preparation of polyethylene terephthalate pellets (PET (1)))
As the esterification reaction device, a continuous esterification reaction device consisting of a stirrer, a splitter, a raw material charging port, and a three-stage complete mixing tank having a raw material charging port and a product outlet was used. TPA (terephthalic acid) was set to 2 tons / hour, EG (ethylene glycol) was set to 2 mol per 1 mol of TPA, antimony trioxide was set to an amount of 160 ppm of Sb atoms with respect to the PET produced, and these slurries were esterified. It was continuously supplied to the first esterification reaction can of the chemical reaction apparatus and reacted at normal pressure for an average residence time of 4 hours and 255 ° C. Next, the reaction product in the first esterification reaction can is continuously taken out of the system and supplied to the second esterification reaction can, and distilled off from the first esterification reaction can in the second esterification reaction can. EG is supplied in an amount of 8% by mass with respect to the produced PET, and an EG solution containing an amount of magnesium acetate tetrahydrate having an amount of Mg atoms of 65 ppm with respect to the produced PET and 40 ppm of P atoms with respect to the produced PET. An EG solution containing an amount of TMPA (trimethyl phosphate) was added, and the reaction was carried out at normal pressure for an average residence time of 1 hour and 260 ° C. Next, the reaction product of the second esterification reaction can is continuously taken out of the system and supplied to the third esterification reaction can, and is 39 MPa (400 kg / cm2) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.). 0.2% by mass of porous colloidal silica having an average particle size of 0.9 μm after dispersion treatment with an average number of treatments of 5 passes under pressure, and 1% by mass of ammonium salt of polyacrylic acid attached per calcium carbonate. The reaction was carried out at normal pressure for an average residence time of 0.5 hours and 260 ° C. while adding 0.4% by mass of synthetic calcium carbonate having an ester value of 0.6 μm as a 10% EG slurry. The esterification reaction product produced in the third esterification reaction can was continuously supplied to a three-stage continuous polycondensation reaction apparatus to carry out polycondensation, and a stainless steel fiber having a 95% cut diameter of 20 μm was sintered. After filtering with a filter, ultrafiltration was performed, extruded into water, cooled, and then cut into chips to obtain PET chips having an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (1)). .. The lubricant content in the PET chip was 0.6% by mass.

(ポリエチレンテレフタレートペレット(PET(2))の調製)
一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(2)と略す。)
(Preparation of polyethylene terephthalate pellets (PET (2)))
On the other hand, in the production of the PET chip, a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter, abbreviated as PET (2)).

(積層フィルムX1の製造)
これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(1)を表面層B(反離型面側層)、PET(2)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(1)/(2)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは2nm、表面層BのSaは29nmであった。
(Manufacturing of laminated film X1)
After drying these PET chips, they are melted at 285 ° C., melted at 290 ° C. by a separate melt extruder extruder, and a filter obtained by sintering stainless steel fibers having a 95% cut diameter of 15 μm and a 95% cut diameter are obtained. Two-stage filtration of a filter obtained by sintering 15 μm stainless steel particles is performed, and the PET (1) is combined with the surface layer B (extrusion type surface side layer) and the PET (2) is surfaced. It is laminated so as to be layer A (separation surface side layer), extruded (casting) into a sheet at a speed of 45 m / min, and electrostatically adhered and cooled on a casting drum at 30 ° C. by the electrostatic adhesion method. An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained. The layer ratio was adjusted so that PET (1) / (2) = 60% / 40% in the discharge amount calculation of each extruder. Next, the unstretched sheet was heated with an infrared heater and then stretched 3.5 times in the vertical direction at a roll temperature of 80 ° C. due to the speed difference between the rolls. Then, it was guided to a tenter and stretched 4.2 times in the lateral direction at 140 ° C. Then, in the heat fixing zone, heat treatment was performed at 210 ° C. Then, a 2.3% relaxation treatment was carried out in the transverse direction at 170 ° C. to obtain a biaxially stretched polyethylene terephthalate film X1 having a thickness of 31 μm. The Sa of the surface layer A of the obtained film X1 was 2 nm, and the Sa of the surface layer B was 29 nm.

(実施例1)
積層フィルムX1の表面層A上に以下組成の塗布液1をリバースグラビアを用いて乾燥後の離型層膜厚が2.5μmになるように塗工し、90℃で30秒乾燥後、高圧水銀ランプを用いて200mJ/cmとなるように紫外線を照射することで超薄層セラミックグリーンシート製造用離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液1)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(A) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(A)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ナトリウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール=49/48.5/2.5//50/50(mol%)
(Example 1)
A coating liquid 1 having the following composition is applied onto the surface layer A of the laminated film X1 using reverse gravure so that the release layer thickness after drying is 2.5 μm, dried at 90 ° C. for 30 seconds, and then subjected to high pressure. A release film for producing an ultrathin ceramic green sheet was obtained by irradiating ultraviolet rays at 200 mJ / cm 2 using a mercury lamp. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 1)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (A) 9.45 parts by mass Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass %)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (A), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / diethylene glycol = 49 / 48.5 / 2.5 // 50/50 (mol%)

(実施例2)
実施例1に比べ、ポリエステル樹脂(B)を変更し、下記塗布液2を使用した。塗布液2を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液2)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(B) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、ビックケミージャパン社製BYK−UV3505、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(B)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/5−ナトリウムスルホイソフタル酸//(ジオール成分)エチレングリコール/プロパンジオール/トリメチロールプロパン=97.5/2.5//20/79.2/0.8(mol%)
(Example 2)
Compared with Example 1, the polyester resin (B) was changed and the following coating liquid 2 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 2 was used. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 2)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (B) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505 manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (B), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / propanediol / trimethylolpropane = 97.5 / 2.5 // 20/79.2 / 0.8 (Mol%)

(実施例3)
実施例1に比べ、ポリエステル樹脂(II)と希釈溶剤を変更し、下記塗布液3を使用した。塗布液3を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液3)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(C) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(シクロペンタノン) 431.30質量部

ポリエステル樹脂(C)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ナトリウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール=48/48/4//80/20(mol%)
(Example 3)
Compared with Example 1, the polyester resin (II) and the diluting solvent were changed, and the following coating liquid 3 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 3 was used. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 3)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (C) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (cyclopentanone) 431.30 parts by mass

As the polyester resin (C), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / diethylene glycol = 48/48/4 // 80/20 (mol%)

(実施例4)
実施例1に比べ、ポリエステル樹脂(II)と希釈溶剤を変更し、下記塗布液4を使用した。塗布液4を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液4)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(D) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(シクロペンタノン) 431.30質量部

ポリエステル樹脂(D)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)イソフタル酸/5−ナトリウムスルホイソフタル酸//(ジオール成分)ジエチレングリコール=93/7//100(mol%)
(Example 4)
Compared with Example 1, the polyester resin (II) and the diluting solvent were changed, and the following coating liquid 4 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 4 was used. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 4)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (D) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (cyclopentanone) 431.30 parts by mass

As the polyester resin (D), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) diethylene glycol = 93/7 // 100 (mol%)

(比較例1)
実施例1に比べ、ポリエステル樹脂(II)を変更し、下記塗布液5を使用した。塗布液5を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液5)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(E) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(E)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸//(ジオール成分)エチレングリコール/ネオペンチルグリコール=50/50//50/50(mol%)
(Comparative Example 1)
Compared with Example 1, the polyester resin (II) was changed and the following coating liquid 5 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 5 was used. The obtained release film was evaluated for the release layer thickness, the region surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the peeling trigger at the time of half-cutting of the ceramic green sheet.

(Coating liquid 5)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (E) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (E), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid // (diol component) ethylene glycol / neopentyl glycol = 50/50 // 50/50 (mol%)

(比較例2)
実施例1に比べ、ポリエステル樹脂(II)を変更し、下記塗布液5を使用した。塗布液5を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液5)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(F) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(F)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/セバシン酸//(ジオール成分)エチレングリコール/ネオペンチルグリコール=52/18/30//54/46(mol%)
(Comparative Example 2)
Compared with Example 1, the polyester resin (II) was changed and the following coating liquid 5 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 5 was used. With respect to the obtained release film, the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting were evaluated.

(Coating liquid 5)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (F) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (F), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / sebacic acid // (diol component) ethylene glycol / neopentyl glycol = 52/18/30 // 54/46 (mol%)

(比較例3)
実施例1に比べ、ポリエステル樹脂(II)を変更し、下記塗布液6を使用した。塗布液6を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液6)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(G) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、ビックケミージャパン社製、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(G)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/アジピン酸/トリメリット酸//(ジオール成分)2−メチル−1,3−プロパンジオール/ブタンジオール=40/39/20/1//60/40(mol%)
(Comparative Example 3)
Compared with Example 1, the polyester resin (II) was changed and the following coating liquid 6 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 6 was used. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 6)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (G) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, manufactured by Big Chemie Japan, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (G), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / adipic acid / trimellitic acid // (diol component) 2-methyl-1,3-propanediol / butanediol = 40/39/20/1 // 60 / 40 (mol%)

(比較例4)
実施例1に比べ、ポリエステル樹脂(II)を変更し、下記塗布液7を使用した。塗布液7を用いた点を除いては、実施例1と同様にして、離型フィルムを得た。得られた離型フィルムについて、離型層厚み、領域表面平均粗さSa、最大突起高さRp、相分離構造、セラミックグリーンシートのハーフカット時の剥離きっかけの評価を行った。

(塗布液7)
化合物(I)ジペンタエリスリトールヘキサアクリレート
100.00質量部
(NKエステル(登録商標)A−DPH、新中村化学工業社製、6官能アクリレート、固形分濃度100%)
樹脂(II) ポリエステル樹脂(H) 9.45質量部
離型剤(III) 1.26質量部
(アクリロイル基を有する変性ポリジメチルシロキサン、BYK−UV3505、固形分濃度40質量%)
光重合開始剤 5.25質量部
(OMNIRAD(登録商標)907、IGM Japan GK社製、固形分濃度100質量%)
希釈溶剤(MEK/トルエン=1/1) 431.30質量部

ポリエステル樹脂(F)は下記組成で共重合したポリエステル樹脂を使用した。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/アゼライン酸//(ジオール成分)エチレングリコール/ネオペンチルグリコール=30/20/50//65/35(mol%)
(Comparative Example 4)
Compared with Example 1, the polyester resin (II) was changed and the following coating liquid 7 was used. A release film was obtained in the same manner as in Example 1 except that the coating liquid 7 was used. The obtained release film was evaluated for the thickness of the release layer, the area surface average roughness Sa, the maximum protrusion height Rp, the phase separation structure, and the trigger for peeling of the ceramic green sheet at the time of half-cutting.

(Coating liquid 7)
Compound (I) Dipentaerythritol Hexaacrylate
100.00 parts by mass
(NK ester (registered trademark) A-DPH, manufactured by Shin-Nakamura Chemical Industry Co., Ltd., hexafunctional acrylate, solid content concentration 100%)
Resin (II) Polyester resin (H) 9.45 parts by mass
Release agent (III) 1.26 parts by mass (modified polydimethylsiloxane having an acryloyl group, BYK-UV3505, solid content concentration 40% by mass)
Photopolymerization initiator 5.25 parts by mass (OMNIRAD (registered trademark) 907, manufactured by IGM Japan GK, solid content concentration 100% by mass)
Diluting solvent (MEK / toluene = 1/1) 431.30 parts by mass

As the polyester resin (F), a polyester resin copolymerized with the following composition was used.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / azelaic acid // (diol component) ethylene glycol / neopentyl glycol = 30/20/50 // 65/35 (mol%)

相分離構造による離型層表面凹凸の状態評価に使用した実施例1、2の離型層表面の電子顕微鏡写真を図1、2に示す。 The electron micrographs of the release layer surface of Examples 1 and 2 used for evaluating the state of the release layer surface unevenness by the phase-separated structure are shown in FIGS. 1 and 2.

本発明のセラミックグリーンシート製造用離型フィルムによれば、従来のセラミックグリーンシート製造用離型フィルムと比較して、剥離力が重くなりすぎることがなく、加工性に優れ、離型層に大突起が無いため、成型される厚み1μm以下といった超薄膜セラミックグリーンシートにピンホールなどの欠点を少なくできるセラミックグリーンシート製造用離型フィルムの提供が可能となった。 According to the release film for producing a ceramic green sheet of the present invention, the release force does not become too heavy as compared with the conventional release film for producing a ceramic green sheet, the workability is excellent, and the release layer is large. Since there are no protrusions, it has become possible to provide a release film for manufacturing a ceramic green sheet that can reduce defects such as pinholes in an ultra-thin ceramic green sheet having a thickness of 1 μm or less.

Claims (8)

ポリエステルフィルムの少なくとも片面に直接又は他の層を介して離型層が積層された離型フィルムであって、前記離型層は、エネルギー線硬化型化合物(I)、ポリエステル樹脂(II)、及び離型成分(III)を少なくとも含む塗膜が硬化されてなり、前記ポリエステル樹脂(II)が5−ナトリウムスルホイソフタル酸成分由来のエステル構成単位を含有するセラミックグリーンシート製造用離型フィルム。 A release film in which a release layer is laminated directly on at least one side of the polyester film or via another layer, and the release layer is an energy ray-curable compound (I), a polyester resin (II), and A release film for producing a ceramic green sheet, wherein the coating film containing at least the release component (III) is cured, and the polyester resin (II) contains an ester structural unit derived from the 5-sodium sulfoisophthalic acid component. 離型層が、エネルギー線硬化型化合物(I)を海成分とし、ポリエステル樹脂(II)を島成分とする相分離構造を有し、表面凹凸を有する請求項1に記載のセラミックグリーンシート製造用離型フィルム。 The ceramic green sheet for producing the ceramic green sheet according to claim 1, wherein the release layer has a phase-separated structure in which the energy ray-curable compound (I) is a sea component and the polyester resin (II) is an island component, and has surface irregularities. Release film. 離型層が実質的に無機粒子を含有しない請求項1又は2に記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to claim 1 or 2, wherein the release layer does not substantially contain inorganic particles. 前記エネルギー線硬化型化合物(I)が、1分子内に3以上のアクリロイル基を有する(メタ)アクリル酸エステルである請求項1〜3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to any one of claims 1 to 3, wherein the energy ray-curable compound (I) is a (meth) acrylic acid ester having 3 or more acryloyl groups in one molecule. 離型層の厚みが、0.2〜3.5μmである請求項1〜4のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to any one of claims 1 to 4, wherein the release layer has a thickness of 0.2 to 3.5 μm. 離型層の領域表面平均粗さ(Sa)が、5〜40nmである請求項1〜5のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to any one of claims 1 to 5, wherein the region surface average roughness (Sa) of the release layer is 5 to 40 nm. 離型層表面の最大突起高さ(Rp)が、60nm以下である請求項1〜6のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to any one of claims 1 to 6, wherein the maximum protrusion height (Rp) on the surface of the release layer is 60 nm or less. 請求項1〜7のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm〜1.0μmの厚みであるセラミックグリーンシートの製造方法。 A method for manufacturing a ceramic green sheet using the release film for manufacturing a ceramic green sheet according to any one of claims 1 to 7, wherein the molded ceramic green sheet is 0.2 μm to 1 A method for producing a ceramic green sheet having a thickness of 0.0 μm.
JP2020504251A 2018-09-27 2019-09-25 Release film for manufacturing ceramic green sheets Active JP6702520B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018181783 2018-09-27
JP2018181783 2018-09-27
PCT/JP2019/037457 WO2020067090A1 (en) 2018-09-27 2019-09-25 Release film for ceramic green sheet production

Publications (2)

Publication Number Publication Date
JP6702520B1 JP6702520B1 (en) 2020-06-03
JPWO2020067090A1 true JPWO2020067090A1 (en) 2021-01-07

Family

ID=69950082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504251A Active JP6702520B1 (en) 2018-09-27 2019-09-25 Release film for manufacturing ceramic green sheets

Country Status (7)

Country Link
JP (1) JP6702520B1 (en)
KR (1) KR102333059B1 (en)
CN (1) CN112770885B (en)
MY (1) MY194552A (en)
PH (1) PH12021550642A1 (en)
SG (1) SG11202102850UA (en)
WO (1) WO2020067090A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300895A (en) * 1998-04-17 1999-11-02 Toyobo Co Ltd Release film
JP2000117899A (en) * 1998-10-15 2000-04-25 Teijin Ltd Release film
JP2002301790A (en) * 2001-02-01 2002-10-15 Toray Ind Inc Release film
WO2011078265A1 (en) * 2009-12-24 2011-06-30 三菱レイヨン株式会社 Method for evaluating performance of organic release agent, process for producing mold, and process for producing transparent film with finely roughened structure on surface
WO2013145865A1 (en) 2012-03-28 2013-10-03 リンテック株式会社 Parting film for step for producing ceramic green sheet
SG11201406065QA (en) * 2012-03-28 2014-11-27 Lintec Corp Peeling film for step for producing ceramic green sheet
KR20140000598A (en) * 2012-06-25 2014-01-03 에스케이씨 주식회사 Polyester base film for release film of green sheet
WO2014007187A1 (en) * 2012-07-02 2014-01-09 ユニチカ株式会社 Biaxially stretched polyester film for mold release
EP2944464B1 (en) * 2013-01-11 2018-12-19 Unitika, Ltd. Mold release film and production method for same
KR102151465B1 (en) 2013-06-18 2020-09-03 도레이 카부시키가이샤 Biaxially-oriented laminated polyester film for mold release applications
KR102204965B1 (en) * 2013-09-30 2021-01-19 코오롱인더스트리 주식회사 Release film and manufacturing method thereof
JP6502092B2 (en) * 2014-12-26 2019-04-17 太陽誘電株式会社 Multilayer ceramic capacitor
JP6781540B2 (en) 2015-10-30 2020-11-04 太陽誘電株式会社 Barium titanate powder, additive manufacturing capacitors and their manufacturing methods
KR102518776B1 (en) * 2017-12-27 2023-04-10 도요보 가부시키가이샤 Release Film for Ceramic Green Sheet Manufacturing
KR102281250B1 (en) * 2017-12-28 2021-07-22 코오롱인더스트리 주식회사 Polyester resin and polyester film using the same
KR20200121326A (en) * 2018-02-15 2020-10-23 미쯔비시 케미컬 주식회사 Polyester film for dry film resist substrate

Also Published As

Publication number Publication date
CN112770885B (en) 2022-01-21
CN112770885A (en) 2021-05-07
WO2020067090A1 (en) 2020-04-02
MY194552A (en) 2022-12-01
JP6702520B1 (en) 2020-06-03
PH12021550642A1 (en) 2021-10-11
KR20210036416A (en) 2021-04-02
SG11202102850UA (en) 2021-04-29
KR102333059B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP7017168B2 (en) Release film for manufacturing ceramic green sheets
JP6973555B2 (en) Release film for manufacturing ceramic green sheets
JP7017183B2 (en) Release film for manufacturing ceramic green sheets
JP6962217B2 (en) Release film for manufacturing ceramic green sheets
JP7427359B2 (en) Release film for ceramic green sheet production and its evaluation method
JP7367810B2 (en) Release film for ceramic green sheet production
JP6702520B1 (en) Release film for manufacturing ceramic green sheets
JP2018062105A (en) Easily-adhesive laminated polyester film
JP6973054B2 (en) Release film for manufacturing ceramic green sheets
JP7180064B2 (en) Release film for manufacturing ceramic green sheets
JP7188536B2 (en) Release film for manufacturing ceramic green sheets
JP7188537B2 (en) Release film for manufacturing ceramic green sheets
JP7188535B2 (en) Release film for manufacturing ceramic green sheets
JP2019166656A (en) Release film for ceramic green sheet production
WO2023032793A1 (en) Mold release film for resin sheet molding
JP4899314B2 (en) Method for producing release film roll for producing thin film ceramic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6702520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350