JPWO2020031290A1 - 負荷駆動装置、冷凍サイクル適用機器及び空気調和機 - Google Patents

負荷駆動装置、冷凍サイクル適用機器及び空気調和機 Download PDF

Info

Publication number
JPWO2020031290A1
JPWO2020031290A1 JP2020521386A JP2020521386A JPWO2020031290A1 JP WO2020031290 A1 JPWO2020031290 A1 JP WO2020031290A1 JP 2020521386 A JP2020521386 A JP 2020521386A JP 2020521386 A JP2020521386 A JP 2020521386A JP WO2020031290 A1 JPWO2020031290 A1 JP WO2020031290A1
Authority
JP
Japan
Prior art keywords
voltage
switching element
arm switching
upper arm
lower arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020521386A
Other languages
English (en)
Other versions
JP6768175B2 (ja
Inventor
和徳 畠山
和徳 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020031290A1 publication Critical patent/JPWO2020031290A1/ja
Application granted granted Critical
Publication of JP6768175B2 publication Critical patent/JP6768175B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本発明にかかる負荷駆動装置(100)は、平滑コンデンサ(30)と、インバータ(40)と、制御部(60)とを備える。インバータは、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを2つ以上備え、平滑コンデンサに蓄積された直流電力を交流電力に変換する。制御部は、平滑コンデンサの電圧が負電圧になることを防止するための電圧低下抑制制御を行う。制御部は、上アームスイッチング素子の第2端子と上アームスイッチング素子の第1端子との間の電位差である第1電圧と、上アームスイッチング素子と同一のレグにおける下アームスイッチング素子の第2端子と下アームスイッチング素子の第1端子との間の電位差である第2電圧との和よりも平滑コンデンサの電圧が高い状態のときに負荷に対する力行制御を停止する。

Description

本発明は、モータなどの負荷を駆動する負荷駆動装置、負荷駆動装置を備えた冷凍サイクル適用機器、及び冷凍サイクル適用機器を備えた空気調和機に関する。
一般的に、負荷駆動装置には、平滑コンデンサが設けられる。下記特許文献1には、負荷駆動装置の動作に関し、平滑コンデンサの帯電が負となる状態、即ち平滑コンデンサの電圧が負電圧になる状態が起こり得ることが記載されている。
平滑コンデンサに負電圧が生じると、平滑コンデンサの寿命が劣化し、平滑コンデンサに接続された機器が誤動作するなどの悪影響を及ぼすおそれがある。特許文献1では、平滑コンデンサの両端にダイオードを逆並列に接続することにより、平滑コンデンサの負電圧の印加量が、ダイオードの順方向電圧降下分を超えないように抑制している。
特開2013−240274号公報
しかしながら、特許文献1の技術では、平滑コンデンサの両端にダイオードを接続する必要があるので、部品点数が増加するという課題がある。また、特許文献1の技術は、平滑コンデンサの負電圧の印加量がダイオードの順方向電圧降下分を超えないように抑制する技術であり、平滑コンデンサの電圧が負電圧になることを許容している。即ち、特許文献1の技術は、平滑コンデンサの電圧が負電圧になることを防止する技術ではない。
本発明は、上記に鑑みてなされたものであって、付加的な部品を設けることなく、平滑コンデンサの電圧が負電圧になることを防止することができる負荷駆動装置を得ることを目的とする。
上述した課題を解決し、目的を達成するため、本発明に係る負荷駆動装置は、平滑コンデンサと、インバータと、制御部とを備え、交流電力を負荷に供給して負荷を駆動する。インバータは、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを2つ以上備え、平滑コンデンサに蓄積された直流電力を交流電力に変換する。制御部は、インバータを制御すると共に、平滑コンデンサの電圧が負電圧になることを防止するための電圧低下抑制制御を行う。制御部は、第1電圧と第2電圧との和よりも平滑コンデンサの電圧が高い状態のときに負荷に対する力行制御を停止する。なお、第1電圧とは、上アームスイッチング素子の第1端子を基準とし、上アームスイッチング素子の第2端子と上アームスイッチング素子の第1端子との間の電位差である。また、第2電圧とは、上アームスイッチング素子と同一のレグにおける下アームスイッチング素子の第1端子を基準とし、下アームスイッチング素子の第2端子と下アームスイッチング素子の第1端子との間の電位差である。
本発明に係る負荷駆動装置によれば、付加的な部品を設けることなく、平滑コンデンサの電圧が負電圧になることを防止することができるという効果を奏する。
実施の形態1に係る負荷駆動装置の構成例を示す回路図 図1に示す整流部の部分拡大図 図1に示すインバータの部分拡大図 図1に示す制御部の詳細構成を示すブロック図 実施の形態1における制御部の制御系の機能を実現するハードウェア構成の一例を示すブロック図 実施の形態1における制御部の制御系の機能を実現するハードウェア構成の他の例を示すブロック図 図1の負荷駆動装置における電源喪失時の動作の説明に供するタイムチャート 図7に示す動作を実施した際の各種の波形例を示す図 図8に両矢印で示した区間の部分拡大図 実施の形態1で問題視する負電圧の発生メカニズム説明に供する図 負電圧が発生した場合の図1に示す平滑コンデンサへの影響を説明するための図 負電圧が発生した場合の図1に示す制御電源生成部への影響を説明するための図 実施の形態1における電圧低下抑制制御による動作の説明に供するフローチャート 実施の形態1における電圧低下抑制制御部の構成例を示すブロック図 図14に示す電圧低下抑制制御部の回路動作の説明に供する第1のタイムチャート 図14に示す電圧低下抑制制御部の回路動作の説明に供する第2のタイムチャート 電圧低下抑制制御部が図15に示す動作をするときの電流経路の説明に供する図 電圧低下抑制制御部が図16に示す動作をするときの電流経路の説明に供する図 実施の形態2に係る負荷駆動装置の構成例を示す回路図
以下に添付図面を参照し、本発明の実施の形態に係る負荷駆動装置、冷凍サイクル適用機器及び空気調和機について、詳細に説明する。なお、以下に示す実施の形態により、本発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1に係る負荷駆動装置100の構成例を示す回路図である。図2は、図1に示す整流部20の部分拡大図である。図3は、図1に示すインバータ40の部分拡大図である。
実施の形態1に係る負荷駆動装置100は、図1に示されるように、単相電源である交流電源10から出力される交流電圧を直流電圧に一旦変換し、負荷駆動装置100の内部で再度交流電圧に変換して、負荷の一例である永久磁石同期モータ50を駆動するように構成される。永久磁石同期モータ50は、冷凍サイクル適用機器に備えられる圧縮機モータに適用可能である。
負荷駆動装置100は、図1に示されるように、整流部20と、平滑コンデンサ30と、電圧検出器80と、制御電源生成部90と、インバータ40と、制御部60と、電流検出器82とを備える。整流部20とインバータ40とは、直流母線25a,25bによって電気的に接続される。平滑コンデンサ30及び制御電源生成部90は、高電位側の直流母線25aと、低電位側の直流母線25bとの間に接続されている。
整流部20は、交流電源10から出力される交流電圧を整流して直流電圧に変換する。交流電圧及び直流電圧は、それぞれ「交流電力」及び「直流電力」と言い替えてもよい。
整流部20は、図2に示されるように、上アーム素子UCPと下アーム素子UCNとが直列に接続されたレグ20Aと、上アーム素子VCPと下アーム素子VCNとが直列に接続されたレグ20Bとを備える。レグ20Aとレグ20Bとは、互いに並列に接続されている。
図2では、上アーム素子UCP,VCP及び下アーム素子UCN,VCNが金属酸化膜半導体電界効果型トランジスタ(Metal−Oxide−Semiconductor Field−Effect Transistor:MOSFET)である場合を例示している。上アーム素子UCPは、トランジスタ20aと、トランジスタ20aに逆並列に接続されるダイオード20bとを含む。他の上アーム素子VCP、及び下アーム素子UCN,VCNについても同様の構成である。逆並列とは、MOSFETのソースに相当する第1端子にダイオードのアノード側が接続され、MOSFETのドレインに相当する第2端子にダイオードのカソード側が接続されることを意味する。
上アーム素子UCP,VCP及び下アーム素子UCN,VCNのトランジスタ20aがMOSFETである場合、逆並列に接続されるダイオード20bは、MOSFET自身が内部に有する寄生ダイオードを利用することができる。寄生ダイオードは、ボディダイオードとも呼ばれる。寄生ダイオードを利用すれば、個別のダイオードが不要になるので、部品点数を削減することができ、コスト低減につながる。
また、上アーム素子UCP,VCP及び下アーム素子UCN,VCNのトランジスタ20aがMOSFETである場合、上アーム素子UCP,VCP及び下アーム素子UCN,VCNのうちの少なくとも1つは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されていてもよい。ワイドバンドギャップ半導体としては、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドなどを例示できる。
一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、上アーム素子UCP,VCP及び下アーム素子UCN,VCNのうちの少なくとも1つにワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。
上アーム素子UCP,VCP及び下アーム素子UCN,VCNは、MOSFETに代えて、例えば絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。なお、IGBTには寄生ダイオードが形成されないので、IGBTを用いる場合には、逆並列に接続されるダイオード20bが必須となる。
また、図2では、上アーム素子UCP,VCP及び下アーム素子UCN,VCNは、同種の素子で構成されているが、この構成に限定されない。例えば、2つのレグ20A,20Bにおいて、それぞれの上アーム素子がスイッチング素子とされ、それぞれの下アーム素子がダイオードとされるものであってもよい。また、2つのレグ20A,20Bにおいて、何れか一方のレグの上アーム素子と下アーム素子とがスイッチング素子とされ、もう一方のレグの上アーム素子と下アーム素子とがダイオードとされるものであってもよい。
上アーム素子UCPと下アーム素子UCNとの接続点22は交流電源10の一端に接続され、上アーム素子VCPと下アーム素子VCNとの接続点23は交流電源10の他端に接続されている。整流部20において、接続点22,23は、交流端子を成す。
図1及び図2は、上アーム素子と下アーム素子とが直列に接続されるレグを2つ備える構成であるが、この構成は、単相電源である交流電源10に合わせたものである。交流電源10が三相電源の場合、整流部20も三相電源に対応した構成とされる。具体的には、上アーム素子と下アーム素子とが直列に接続されるレグを3つ備える構成となる。なお、交流電源10が単相電源及び三相電源の何れの場合も、1つのレグが複数対の上下アーム素子で構成されていてもよい。
図1に戻り、負荷駆動装置100の説明を続ける。整流部20によって変換された直流電力は、平滑コンデンサ30に蓄積される。
平滑コンデンサ30の一例は、アルミ電解コンデンサである。アルミ電解コンデンサは、サイズあたりの静電容量が大きいので、蓄電容量に対する部品サイズを小さくできる。このため、アルミ電解コンデンサは、装置の小型化に適している。なお、静電容量が大きい場合、交流電源10に流れる高調波電流が大きくなる場合がある。高調波電流が問題となる場合、アルミ電解コンデンサに代えて、フィルムコンデンサを用いてもよい。一般的に、フィルムコンデンサは、アルミ電解コンデンサよりも長寿命である。また、更なる高調波電流の抑制及び力率の改善のために、交流電源10と平滑コンデンサ30との間にリアクトルを挿入してもよい。
制御電源生成部90には、直流母線25a,25b間の電圧が印加される。以下、直流母線25a,25b間の電圧を、適宜「母線電圧」と呼ぶ。制御電源生成部90は、母線電圧を降圧して、制御部60、電圧検出器80などを動作させるための電源電圧を生成する。
インバータ40には、母線電圧が印加される。インバータ40は、直流母線25a,25bを通じて、平滑コンデンサ30に蓄積された直流電力を交流電力に変換し、変換した交流電力を負荷である永久磁石同期モータ50に供給する。
インバータ40は、図3に示されるように、上アームスイッチング素子UPと下アームスイッチング素子UNとが直列に接続されたレグ40Aと、上アームスイッチング素子VPと下アームスイッチング素子VNとが直列に接続されたレグ40Bと、上アームスイッチング素子WPと下アームスイッチング素子WNとが直列に接続されたレグ40Cと、を備える。レグ40A、レグ40B及びレグ40Cは、互いに並列に接続されている。
図3では、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNがMOSFETである場合を例示している。上アームスイッチング素子UPは、トランジスタ40aと、トランジスタ40aに逆並列に接続されるダイオード40bとを含む。他の上アームスイッチング素子VP,WP、及び下アームスイッチング素子UN,VN,WNについても同様の構成である。逆並列とは、整流部20の場合と同様に、MOSFETのソースに相当する第1端子にダイオードのアノード側が接続され、MOSFETのドレインに相当する第2端子にダイオードのカソード側が接続されることを意味する。
なお、図3は、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。また、図1及び図3の回路構成は、負荷の一例である三相の永久磁石同期モータ50に合わせたものである。負荷が単相モータの場合、インバータ40も単相モータに対応した構成とされる。具体的には、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを2つ備える構成となる。なお、負荷が単相モータ及び三相モータの何れの場合も、1つのレグが複数対の上下アームスイッチング素子で構成されていてもよい。
上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのトランジスタ40aがMOSFETである場合、逆並列に接続されるダイオード40bは、MOSFET自身が内部に有する寄生ダイオードを利用することができる。寄生ダイオードを利用すれば、個別のダイオードが不要になるので、部品点数を削減することができ、コスト低減につながる。
また、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのトランジスタ40aがMOSFETである場合、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのうちの少なくとも1つは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったワイドバンドギャップ半導体により形成されていてもよい。
一般的にワイドバンドギャップ半導体はシリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、上アーム素子UCP,VCP及び下アーム素子UCN,VCNのうちの少なくとも1つにワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。
上アームスイッチング素子UPと下アームスイッチング素子UNとの接続点42は永久磁石同期モータ50の第1の相(例えばU相)に接続され、上アームスイッチング素子VPと下アームスイッチング素子VNとの接続点43は永久磁石同期モータ50の第2の相(例えばV相)に接続され、上アームスイッチング素子WPと下アームスイッチング素子WNとの接続点44は永久磁石同期モータ50の第3の相(例えばW相)に接続されている。インバータ40において、接続点42,43,44は、交流端子を成す。
図1に戻り、負荷駆動装置100の説明を続ける。永久磁石同期モータ50は、インバータ40から供給される電力によって駆動される。永久磁石同期モータ50は、負荷の一例であり、回生電力を発生する構造のモータであれば、本実施の形態で言う負荷となり得る。
次に、インバータ40を制御するための制御部60を中心とした制御系の構成及び概略の動作について、図1及び図4を参照して説明する。図4は、図1に示す制御部60の詳細構成を示すブロック図である。
電圧検出器80は、母線電圧を検出する。図1の構成の場合、母線電圧は、インバータ40への入力電圧であり、平滑コンデンサ30の電圧でもある。以下、平滑コンデンサ30の電圧を、適宜「コンデンサ電圧」と呼ぶ。電圧検出器80によって検出されたコンデンサ電圧の検出値Vdcは、制御部60に入力される。
電流検出器82は、インバータ40と永久磁石同期モータ50との間の各相に流れる相電流を検出する。以下、この相電流を、適宜「モータ電流」と呼ぶ。電流検出器82によって検出されたモータ電流の検出値i,i,iは、制御部60に入力される。
制御部60は、コンデンサ電圧の検出値Vdcと、モータ電流の検出値i,i,iとに基づいて、インバータ40を動作又は停止させるための信号を生成する。図1では、この信号を「CS」と表記している。具体的に、信号CSは、永久磁石同期モータ50を力行制御するためのパルス幅変調(Pulse Width Modulation:PWM)信号である場合と、永久磁石同期モータ50の回転を停止させるための停止信号である場合とがある。
ここで、「力行」とは、インバータ40から永久磁石同期モータ50に電力が供給されている状態を意味し、「力行制御」は、永久磁石同期モータ50を力行状態にする制御である。例えばモータの加速時は、回転速度とトルクが同符号であり、力行状態である。また、力行の対義語は「回生」である。回生とは、永久磁石同期モータ50が保持している回転エネルギーがインバータ40に流れ込む状態を意味する。例えばモータの減速時は、回転速度とトルクが異符号であり、回生状態になる。
なお、図1では、電流検出器82がインバータ40と永久磁石同期モータ50との間に流れる相電流を検出する構成を採用しているが、これに限定されない。インバータ40における下アームスイッチング素子と低電位側の直流母線25bとの間に抵抗を設け、抵抗の両端電圧を計測することで電流を検出する構成を採用してもよい。
制御部60は、図4に示されるように、第1の座標変換部61と、モータ速度推定部62と、モータ制御部63と、積分器64と、第2の座標変換部65と、駆動信号生成部66と、電圧低下抑制制御部67とを備える。
第1の座標変換部61は、モータ電流の検出値i,i,iと、後述する積分器64によって生成された磁極位置推定値θmeと、に基づいてdq軸電流id_m,iq_mを算出する。具体的に、第1の座標変換部61は、UVW座標系の電流値である検出値i,i,iを、磁極位置推定値θmeを用いてdq座標系の電流値に変換する。変換された電流値は、dq軸電流id_m,iq_mとして、モータ速度推定部62と、モータ制御部63とに出力される。
モータ速度推定部62は、dq軸電流id_m,iq_m及びdq軸電圧指令値v ,v に基づいて永久磁石同期モータ50の回転速度推定値ωmeを推定する。dq軸電圧指令値v ,v は、後述するモータ制御部63によって生成されたdq軸上の電圧指令値である。
積分器64は、回転速度推定値ωmeに基づいて永久磁石同期モータ50の磁極位置推定値θmeを算出する。磁極位置推定値θmeは、積分器64において、回転速度推定値ωmeを積分することで算出される。
回転速度推定値ωme及び磁極位置推定値θmeは、公知の手法を用いて推定することができる。詳細は、例えば特許第4672236号公報に示されており、ここでの詳細な説明は割愛する。なお、本実施の形態では、制御部60において、回転速度推定値ωme及び磁極位置推定値θmeを推定しているが、回転速度及び磁極位置を推定、又は検出可能な手法であれば、どのような手法を用いてもよい。また、本実施の形態では、dq軸電流id_m,iq_m及びdq軸電圧指令値v ,v を用いて回転速度推定値ωme及び磁極位置推定値θmeを推定しているが、回転速度推定値ωme及び磁極位置推定値θmeを推定できるのであれば、今回示した情報を省いても、今回示した以外の情報を用いてもよい。
モータ制御部63は、dq軸電流id_m,iq_m及び回転速度推定値ωmeに基づいてdq軸電圧指令値v ,v を算出する。そして、第2の座標変換部65は、dq軸電圧指令値v ,v 及び磁極位置推定値θmeに基づいて、電圧指令値v ,v ,v を算出する。具体的に、第2の座標変換部65は、dq軸上の電圧指令値であるdq軸電圧指令値v ,v を、磁極位置推定値θmeを用いてUVW座標系の電圧指令値v ,v ,v に変換し、変換した電圧指令値v ,v ,v を駆動信号生成部66に出力する。
駆動信号生成部66は、電圧指令値v ,v ,v 及びコンデンサ電圧の検出値Vdcに基づいて駆動信号DSを生成する。駆動信号DSは、インバータ40のスイッチング素子を駆動するための信号である。インバータ40は駆動信号DSによって制御され、所望の電圧を永久磁石同期モータ50に印加する。なお、電圧指令値v ,v ,v については、一般的に、正弦波又は三次高調波を重畳させた波形が広く用いられるが、永久磁石同期モータ50を駆動可能であればどのような手法を用いてもよい。
駆動信号DSは、コンデンサ電圧の検出値Vdc及び閾値電圧Vthと共に電圧低下抑制制御部67に入力される。電圧低下抑制制御部67は、平滑コンデンサ30の電圧が負電圧になることを防止するための電圧低下抑制制御を行う。電圧低下抑制制御部67において、電圧低下抑制制御が実施されるとき、信号CSは、駆動信号DSがそのまま出力される。一方、電圧低下抑制制御が実施されないときは、コンデンサ電圧の検出値Vdc及び閾値電圧Vthに基づいて、前述した停止信号が生成される。即ち、電圧低下抑制制御部67において、電圧低下抑制制御が実施されるときは、信号CSの内容が停止信号となり、停止信号によって、インバータ40のスイッチング素子が駆動される。なお、電圧低下抑制制御の詳細は、後述する。
図5は、実施の形態1における制御部60の制御系の機能を実現するハードウェア構成の一例を示すブロック図である。また、図6は、実施の形態1における制御部60の制御系の機能を実現するハードウェア構成の他の例を示すブロック図である。
実施の形態1における制御部60の制御系の機能の全部又は一部を実現する場合には、図5に示されるように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。
プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。
メモリ202には、制御部60における制御系の機能の全部又は一部を実行するプログラムが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行することにより、インバータ40を制御する。
また、図5に示すプロセッサ200及びメモリ202は、図6のように処理回路203に置き換えてもよい。処理回路203は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)、又は、これらを組み合わせたものが該当する。その他にも、処理回路203は、アナログ回路、デジタル回路等の電気回路素子などで構成してもよい。
次に、交流電源10の停電などにより、負荷駆動装置100への電力供給が断たれたときの負荷駆動装置100の動作について説明する。以下、負荷駆動装置100への電力供給が断たれることを「電源喪失」などと呼ぶ。また、電源喪失後に、負荷駆動装置100への電力供給が再開されることを「復電」などと呼ぶ。
図7は、図1の負荷駆動装置100における電源喪失時の動作の説明に供するタイムチャートである。図7には、電源喪失時において、コンデンサ電圧が低下しても、インバータ40が動作を継続する様子が示されている。コンデンサ電圧が低下すると、永久磁石同期モータ50に供給可能な電圧が低下するので、永久磁石同期モータ50の回転速度は低下する。一方、永久磁石同期モータ50の回転速度が低下しても、永久磁石同期モータ50が回転した状態で、且つ、コンデンサ電圧がゼロ近くになるまでインバータ40が動作を継続すると、図示のようにコンデンサ電圧が負電圧に転じる現象が発生する。コンデンサ電圧の負電圧は、インバータ40の動作が停止することにより解消し、交流電源10の復電によって、インバータ40は起動され、永久磁石同期モータ50は再び回転する。
図8は、図7に示す動作を実施した際の各種の波形例を示す図である。図9は、図8に両矢印で示した区間の部分拡大図である。図8及び図9において、破線はコンデンサ電圧を表し、一点鎖線は第1の相(例えばU相)に流れるモータ電流を表し、実線は第1の相(例えばU相)と第2の相(例えばV相)との間の電圧である相間電圧を表している。図9において、楕円で囲んだ部分に示されるように、コンデンサ電圧が負電圧となる現象が発生している。
次に、負電圧の発生メカニズムについて、図10を参照して説明する。図10は、実施の形態1で問題視する負電圧の発生メカニズム説明に供する図である。
図10において、電源喪失が生起すると、平滑コンデンサ30への電力供給が絶たれるので、永久磁石同期モータ50に電力が供給されると、コンデンサ電圧は低下する。この状態でも、永久磁石同期モータ50は、慣性によって回転を継続しているので、インバータ40を通じて回生電流が流れる。種々のモータの中でも永久磁石同期モータは、外部からの電力供給がなくとも、ロータに内蔵されている永久磁石の磁束の働きにより、ロータの回転中は常にモータ端子に誘起電圧を発生し続ける。
図10は、U相の上アームスイッチング素子UPのMOSFETと、V相の上アームスイッチング素子VPのMOSFETと、W相の下アームスイッチング素子WNのMOSFETとがオンしている状態を示している。この場合、図10において実線で示される第1の電流72と、破線で示される第2の電流74とが流れる。第1の電流72は、永久磁石同期モータ50から出て、上アームスイッチング素子VPのMOSFET、上アームスイッチング素子UPのMOSFETの順序で永久磁石同期モータ50に戻る電流である。また、第2の電流74は、第1の電流72とは別経路の電流であり、永久磁石同期モータ50から出て、下アームスイッチング素子WNのMOSFET、下アームスイッチング素子UNのダイオードの順序で永久磁石同期モータ50に戻る電流である。
第1の電流72は、上アームスイッチング素子UPのMOSFETにおいて、ドレインからソースに流れる電流である。このため、第1端子であるソースを基準とする上アームスイッチング素子UPの電圧降下分Vswの値は正である。なお、本実施の形態では、典型的なSiC−MOSFETを使用すると仮定し、順方向電圧降下の値を「0.1V」とする。
また、第2の電流74は、下アームスイッチング素子UNのダイオードにおいて、アノードからカソードに流れる電流である。このため、第1端子であるMOSFETのソースを基準とする下アームスイッチング素子UNの電圧降下分Vdiの値は負である。なお、SiCの場合、バンドギャップがSiの3倍以上あるため、電圧降下の値は大きい。以下、本実施の形態では、典型的なSiC−MOSFETにおけるダイオードの順方向電圧降下の値を「4.0V」とする。
以上の動作により、インバータ40は、0.1+(−4.0)=−3.9Vの電圧を発生させ、この電圧を平滑コンデンサ30の両端に印加する。従って、平滑コンデンサ30の両端には、停電を繰り返す都度、−4V程度の負電圧が発生する可能性がある。
なお、上記では、上アームスイッチング素子UPと下アームスイッチング素子UNとからなるレグ40Aの電圧降下分について説明したが、レグ40B,40Cについても同様な負電圧が発生する。
また、上記では、上アームスイッチング素子UPのMOSFETに発生する電圧降下分Vswと、下アームスイッチング素子UNのダイオードに発生する電圧降下分Vdiとによって負電圧が発生することを説明したが、これとは逆の場合も起こり得る。即ち、上アームスイッチング素子UPのダイオードに発生する電圧降下分Vdiと、下アームスイッチング素子UNのMOSFETに発生する電圧降下分Vswとによって、負電圧が発生する場合もある。
次に、交流電源10が復電するときの整流部20の動作に起因する負電圧について説明する。
交流電源10が復電する際、交流電源10の電圧が例えば正極性のときは、上アーム素子VCPのダイオードと下アーム素子UCNのダイオードとが導通することで、平滑コンデンサ30の両端に整流された電圧が印加される。また、交流電源10の電圧が例えば負極性のときは、上アーム素子UCPのダイオードと下アーム素子VCNのダイオードとが導通することで、平滑コンデンサ30の両端に整流された電圧が印加される。従って、ダイオードでの順方向電圧降下を「Vf」で表すと、整流部20全体での電圧降下分は、「2Vf」となる。
ここで、整流部20の素子にワイドバンドギャップ半導体で形成されたMOSFETを用いたと仮定する。この場合、低電位側の直流母線25bを基準とする整流部20全体での電圧降下分は、−2Vf=−4.0+(−4.0)=−8.0Vとなる。従って、交流電源10が復電する際、交流電源10の電圧が8.0V以上にならないと整流部20は導通しない。このことは、電源喪失時における永久磁石同期モータ50の回転によって、平滑コンデンサ30の両端には、最大で−8V程度の負電圧が発生する可能性があることを意味する。
なお、整流部20の素子を例えばシリコンで形成されたSi−MOSFETを用いたとしても、Si−MOSFETの寄生ダイオードによる電圧降下は2V程度ある。このため、寄生ダイオード2つ分の4Vを超えないと印加電圧はクランプされない。従って、平滑コンデンサ30の両端には、−4V程度の負電圧が発生する可能性がある。これは、整流部20に一般的に用いられる整流ダイオードの電圧降下分である1Vに対して非常に高い。即ち、整流部20にMOSFETを用いた構成においては、ワイドバンドギャップ半導体を用いたインバータ40により発生する負電圧である約4Vがクランプされないため、負電圧による影響を受けやすくなるという問題がある。
以上の説明のように、平滑コンデンサ30の両端には、整流部20全体での電圧降下分(−2Vf)と、インバータ40の何れかのレグにおける上アームスイッチング素子の第2端子と第1端子との間の電位差である第1電圧(VswもしくはVdi)と、同一のレグにおける下アームスイッチング素子の第2端子と第1端子との間の電位差である第2電圧(VdiもしくはVsw)との和(Vsw+Vdi)のうちの大きい方の電圧が発生する可能性がある。
図11は、負電圧が発生した場合の図1に示す平滑コンデンサ30への影響を説明するための図である。なお、平滑コンデンサ30としては、電解コンデンサを想定している。図11において、横軸は電解コンデンサへの印加電圧を表し、縦軸は電解コンデンサに流れる漏れ電流を表している。図11に示されるように、比較的低い負電圧が印加された場合においても、過大な漏れ電流が発生するおそれがある。過大な漏れ電流が発生すると、電解コンデンサ内部の温度が上昇する。電解コンデンサの温度上昇が繰り返されると、電解コンデンサの寿命が低下するおそれがある。
図12は、負電圧が発生した場合の図1に示す制御電源生成部90への影響を説明するための図である。図12には、制御電源生成部90の一般的な回路構成が示されている。図12に示されるように、一般的な制御電源生成部90は、制御電源IC91と、トランス92と、逆流防止用のダイオード93と、平滑用のコンデンサ94と、電源電圧の印加先である制御回路95を備える。また、制御電源IC91は、制御電源IC制御部91aと、MOSFET91bとを備える。トランス92の1次巻線92aと、MOSFET91bとは直列に接続され、直列に接続された1次巻線92aとMOSFET91bとの両端には、母線電圧が印加される。そして、トランス92の2次巻線92bに誘起された降圧電圧が、コンデンサ94に印加される。
母線電圧が負電圧になると、MOSFET91bに形成される寄生ダイオードのアノード側に正電圧が印加される。このため、上述した−4V程度の負電圧が発生すると、MOSFET91bの寄生ダイオードが導通する。制御電源IC91が1チップの半導体で構成されていた場合、寄生ダイオードが導通すると、制御電源IC91の内部に形成される図示しない寄生トランジスタが誤動作するおそれがある。制御電源IC91の寄生トランジスタが誤動作すると、電源電圧を生成できなくなり、制御部60に電源電圧を供給できず、永久磁石同期モータ50を駆動できなくなるおそれがある。
そこで、実施の形態1の制御部60は、前述した電圧低下抑制制御を行う。図13は、実施の形態1における電圧低下抑制制御による動作の説明に供するフローチャートである。電源喪失が生起したときには、図13のフローチャートが起動される。電圧低下抑制制御部67は、図13のフローチャートに従って、以下の制御を実施する。
まず、比較部68は、コンデンサ電圧の検出値Vdcと、閾値電圧Vthとを比較する(ステップS11)。検出値Vdcが閾値電圧Vth以下の場合(ステップS11,Yes)、電圧低下抑制制御部67は、停止信号である信号CSを出力する(ステップS12)。
停止信号の一例は、ゼロベクトルである。ゼロベクトルは、永久磁石同期モータ50の図示しない巻線を電気的に短絡させる出力信号である。ゼロベクトルの一例は、下アームスイッチング素子UN,VN,WNをオン動作させ、上アームスイッチング素子UP,VP,WPをオフ動作させる駆動信号である。ゼロベクトルの他の例は、下アームスイッチング素子UN,VN,WNをオフ動作させ、上アームスイッチング素子UP,VP,WPをオン動作させる駆動信号である。なお、ゼロベクトルに代えて、駆動信号DS自体の出力を停止させてもよい。
また、図13のフローにおいて、検出値Vdcが閾値電圧Vthを超える場合(ステップS11,No)、電圧低下抑制制御部67は、駆動信号生成部66が生成した駆動信号DSをそのまま出力する(ステップS13)。
なお、上記のステップS11では、検出値Vdcと閾値電圧Vthとが等しい場合を“Yes”で判定しているが、“No”で判定してもよい。即ち、検出値Vdcと閾値電圧Vthとが等しい場合に、ステップS13の処理を実施してもよい。
図14は、実施の形態1における電圧低下抑制制御部67の構成例を示すブロック図である。図14は、実施の形態1における電圧低下抑制制御をハードウェア的に実施する場合の構成例を示している。電圧低下抑制制御部67は、図14に示すように、比較部68と、停止信号生成部69とを有する。
次に、図14に示す電圧低下抑制制御部67の動作について、図14から図18の図面を参照して説明する。図15は、図14に示す電圧低下抑制制御部67の動作を示す第1のタイムチャートである。図16は、図14に示す電圧低下抑制制御部67の動作を示す第2のタイムチャートである。図17は、電圧低下抑制制御部67が図15に示す動作をするときの電流経路の説明に供する図である。図18は、電圧低下抑制制御部67が図16に示す動作をするときの電流経路の説明に供する図である。
図14において、比較部68には、コンデンサ電圧の検出値Vdcと、閾値電圧Vthとが入力される。比較部68は、検出値Vdcが閾値電圧Vth以下のときに、検出信号Spを出力する。停止信号生成部69は、検出信号Spが入力された場合、信号CSとして、停止信号生成部69の内部で生成した停止信号を出力する。また、停止信号生成部69は、検出信号Spが入力されない場合、信号CSとして、入力された駆動信号DSをそのまま出力する。
なお、上記の説明では、検出値Vdcが閾値電圧Vth以下のときに検出信号Spを出力するとしているが、この例に限定されない。この例に代えて、例えば、検出値Vdcが閾値電圧Vth以下のときに「論理1」を出力し、検出値Vdcが閾値電圧Vthを超えるときに「論理0」を出力するような信号でもよい。
図15及び図16には、コンデンサ電圧が低下し、時刻t1において閾値電圧Vthを下回る様子が示されている。
図15において、ハッチングで示す時刻t1までの区間はPWM信号出力区間であり、時刻t1以降は出力停止区間である。PWM信号出力区間では、駆動信号DSによって上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNの何れかが動作している。また、出力停止区間では、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNの全てのスイッチング動作が停止している。
また、図16において、ハッチングで示す時刻t1までの区間はPWM信号出力区間であり、時刻t1以降はゼロベクトル出力区間である。PWM信号出力区間では、駆動信号DSによって上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNの何れかが動作している。また、ゼロベクトル出力区間では、上アームスイッチング素子UP,VP,WPはオフ動作であり、下アームスイッチング素子UN,VN,WNはオン動作している。
図17には、電圧低下抑制制御部67が図15に示す動作をするときの電流経路の一例が示されている。図17に示されるように、永久磁石同期モータ50の図示しないW相巻線から流れ出す電流のうちの1つは、上アームスイッチング素子WPのダイオード、平滑コンデンサ30、下アームスイッチング素子UNのダイオードの順序で永久磁石同期モータ50に戻る。また、永久磁石同期モータ50の図示しないW相巻線から流れ出す電流のうちのもう1つは、上アームスイッチング素子WPのMOSFET、平滑コンデンサ30、下アームスイッチング素子VNのダイオードの順序で永久磁石同期モータ50に戻る。これらの何れの電流も、平滑コンデンサ30を正電圧に充電する電流である。このため、電圧低下抑制制御部67が図15に示される電圧低下抑制制御を行うことで、平滑コンデンサ30が負電圧に陥るのを確実に防止することができる。
図18には、電圧低下抑制制御部67が図16に示す動作をするときの電流経路の一例が示されている。図18に示されるように、永久磁石同期モータ50の図示しないW相巻線から流れ出す電流のうちの1つは、下アームスイッチング素子WNのMOSFET、下アームスイッチング素子UNのMOSFETの順序で永久磁石同期モータ50に戻る。また、永久磁石同期モータ50の図示しないW相巻線から流れ出す電流のうちのもう1つは、下アームスイッチング素子WNのMOSFET、下アームスイッチング素子VNのMOSFETの順序で永久磁石同期モータ50に戻る。これらの電流が流れるとき、下アームスイッチング素子UNのMOSFET及び下アームスイッチング素子WNのMOSFETでは、順方向の電圧降下成分による第2電圧Vdiが発生する。しかしながら、下アームスイッチング素子UN及び下アームスイッチング素子WNの各MOSFETで発生する第2電圧Vdiは、平滑コンデンサ30との間では電気的に分離されるので、平滑コンデンサ30の電圧には影響を及ぼさない。
なお、図16では、ゼロベクトル出力区間において、上アームスイッチング素子UP,VP,WPをオフ動作させ、下アームスイッチング素子UN,VN,WNをオン動作させているが、上アームスイッチング素子UP,VP,WPと下アームスイッチング素子UN,VN,WNの動作を逆にしてもよい。即ち、ゼロベクトル出力区間では、上アームスイッチング素子UP,VP,WPをオン動作させ、下アームスイッチング素子UN,VN,WNをオフ動作させてもよい。
なお、閾値電圧Vthは、平滑コンデンサ30に負電圧が発生しない電圧値に設定されていればよく、どのような値を設定してもよい。但し、電源喪失の検出手段との関係で、適切な閾値電圧Vthを設定することが好ましい。例えば、交流電源が50Hzの商用電源である場合、電源周期の1周期は20msとなる。例えば電源喪失の検出手段が電源周期のゼロクロス点を検出して動作する方式である場合、電源喪失の検出が遅れ、その間、力行制御による駆動信号が印加されるおそれがある。このため、閾値電圧Vthは、電源喪失の検出の遅れ時間等を考慮して設定する必要がある。従って、平滑コンデンサの電圧が第1電圧(Vsw)と第2電圧(Vdi)との和(Vsw+Vdi)よりも高い状態のときに力行制御が停止されるように閾値電圧Vthを設定することが肝要である。なお、第1電圧(Vsw)は、何れかのレグの上アームスイッチング素子に発生する電圧であり、第2電圧は、第1電圧(Vsw)を発生するレグと同一のレグの下アームスイッチング素子に発生する第2電圧(Vdi)である。
以上説明したように、実施の形態1に係る負荷駆動装置100によれば、平滑コンデンサ30の電圧が第1電圧(Vsw)と第2電圧(Vdi)との和(Vsw+Vdi)がよりも高い状態のときに力行制御を停止することとしたので、付加的な部品を設けることなく、平滑コンデンサの電圧が負電圧になることを確実に防止することができる。
なお、前述したように、平滑コンデンサの負電圧は、整流部20のスイッチング素子、又はインバータ40のスイッチング素子がワイドバンドギャップ半導体で形成されている場合に顕著に現れる。このため、実施の形態1における電圧低下抑制制御は、整流部20又はインバータ40のスイッチング素子がワイドバンドギャップ半導体で形成されている場合に特に有効である。
実施の形態2.
図19は、実施の形態2に係る負荷駆動装置100Aの構成例を示す回路図である。図19に示す負荷駆動装置100Aは、空気調和機の室外機を想定した構成となっている。具体的に、永久磁石同期モータ50は圧縮機モータに適用され、第2の永久磁石同期モータ55はファンモータに適用されることを想定している。
図19に示す実施の形態2に係る負荷駆動装置100Aでは、図1に示す実施の形態1に係る負荷駆動装置100の構成において、第2の永久磁石同期モータ55に交流電力を供給する第2のインバータ45と、第2のインバータ45と第2の永久磁石同期モータ55との間に流れる第2のモータ電流を検出する第2の電流検出器84とが追加されている。第2のインバータ45の直流端子側は、直流母線25a,25bに接続されている。従って、インバータ40と第2のインバータ45とは、共用の直流母線25a,25bを通じて、平滑コンデンサ30の直流電圧が印加される構成となっている。第2の電流検出器84によって検出されたモータ電流の検出値iuf,ivf,iwfは、制御部60に入力される。制御部60は、コンデンサ電圧の検出値Vdcと、第2のモータ電流の検出値iuf,ivf,iwfとに基づいて、第2のインバータ45を動作又は停止させるための信号CS2を生成して第2のインバータ45に出力する。なお、その他の構成は、図1に示す実施の形態1の構成と同一又は同等であり、同一又は同等の構成部については、同一の符号を付して重複する説明は割愛する。
空気調和機において、圧縮機モータの消費電力は数百〜数kWに対して、ファンモータの消費電力は高々数十Wから百Wである。即ち、圧縮機モータは、ファンモータに比べて消費電力が大きい。このため、電源喪失が生起した場合、圧縮機モータを長く回し続けると、平滑コンデンサ30の電圧が急峻に低下し、実施の形態1で説明した負電圧が発生する可能性が高くなる。従って、ファンモータよりも先に圧縮機モータを停止させることが好ましい実施の形態となる。圧縮機モータを先に停止させれば、負電圧の発生を確実に防止することが可能となる。
また、ファンモータは、圧縮機モータに比べて慣性モーメントが大きい。このため、インバータ40及び第2のインバータ45への電圧供給を停止させても、ファンモータは長く回り続ける特性を有する。従って、圧縮機モータを先に停止させたとしても、ファンモータは回転して熱交換を継続するため、空気調和機を構成する冷凍サイクル上の圧力増加を抑制することが可能となり、空気調和機を安全に停止させることが可能となる。このように、ファンモータよりも先に圧縮機モータを停止させる電圧低下抑制制御は、空気調和機を安全に停止させる制御をより効果的にする作用があり、空気調和機にとってより好ましい実施の形態となる。
なお、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
10 交流電源、20 整流部、20A,20B,40A,40B,40C レグ、20a,40a トランジスタ、20b,40b,93 ダイオード、22,23,42,43,44 接続点、25a,25b 直流母線、30 平滑コンデンサ、40 インバータ、45 第2のインバータ、50 永久磁石同期モータ、55 第2の永久磁石同期モータ、60 制御部、61 第1の座標変換部、62 モータ速度推定部、63 モータ制御部、64 積分器、65 第2の座標変換部、66 駆動信号生成部、67 電圧低下抑制制御部、68 比較部、69 停止信号生成部、72 第1の電流、74 第2の電流、80 電圧検出器、82 電流検出器、84 第2の電流検出器、90 制御電源生成部、91 制御電源IC、91a 制御電源IC制御部、91b MOSFET、92 トランス、92a 1次巻線、92b 2次巻線、94 コンデンサ、95 制御回路、100,100A 負荷駆動装置、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース。

Claims (11)

  1. 交流電力を負荷に供給して前記負荷を駆動する負荷駆動装置であって、
    平滑コンデンサと、
    上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを2つ以上備え、前記平滑コンデンサに蓄積された直流電力を前記交流電力に変換するインバータと、
    前記インバータを制御すると共に、前記平滑コンデンサの電圧が負電圧になることを防止するための電圧低下抑制制御を行う制御部と、を備え、
    前記制御部は、前記上アームスイッチング素子の第1端子を基準とし、前記上アームスイッチング素子の第2端子と前記上アームスイッチング素子の前記第1端子との間の電位差である第1電圧と、前記上アームスイッチング素子と同一のレグにおける下アームスイッチング素子の第1端子を基準とし、前記下アームスイッチング素子の第2端子と前記下アームスイッチング素子の前記第1端子との間の電位差である第2電圧との和よりも前記平滑コンデンサの電圧が高い状態のときに前記負荷に対する力行制御を停止する
    負荷駆動装置。
  2. 前記第1電圧は、前記上アームスイッチング素子の寄生ダイオードに流れる電流による電圧降下分又は前記上アームスイッチング素子に並列接続されるダイオードに流れる電流による電圧降下分であり、
    前記第2電圧は、前記上アームスイッチング素子と同一のレグにおける前記下アームスイッチング素子のトランジスタに流れる電流による電圧降下分である
    請求項1に記載の負荷駆動装置。
  3. 前記第1電圧は、前記上アームスイッチング素子のトランジスタに流れる電流による電圧降下分であり、
    前記第2電圧は、前記上アームスイッチング素子と同一のレグにおける前記下アームスイッチング素子の寄生ダイオードに流れる電流による電圧降下分又は前記下アームスイッチング素子に並列接続されるダイオードに流れる電流による電圧降下分である
    請求項1に記載の負荷駆動装置。
  4. 前記制御部は、前記平滑コンデンサの電圧が閾値電圧よりも小さいときに前記負荷に対する力行制御を停止する請求項1から3の何れか1項に記載の負荷駆動装置。
  5. 前記負荷は、永久磁石同期モータである請求項1から4の何れか1項に記載の負荷駆動装置。
  6. 前記インバータを構成するスイッチング素子は金属酸化膜半導体電界効果型トランジスタであり、前記金属酸化膜半導体電界効果型トランジスタのうちの少なくとも1つは、ワイドバンドギャップ半導体で形成されている請求項5に記載の負荷駆動装置。
  7. 交流電源から出力される交流電圧を直流電圧に変換して前記平滑コンデンサに印加する整流部を備え、
    前記整流部は、上アーム素子と下アーム素子とが直列に接続されるレグを2つ以上備え、それぞれのレグにおける上アーム素子及び下アーム素子のうちの少なくとも1つがスイッチング素子で構成される
    請求項5又は6に記載の負荷駆動装置。
  8. 前記整流部を構成するスイッチング素子のうちの少なくとも1つは、ワイドバンドギャップ半導体で形成されている請求項7に記載の負荷駆動装置。
  9. 請求項8に記載の負荷駆動装置を備えた冷凍サイクル適用機器。
  10. 請求項9に記載の冷凍サイクル適用機器を備えた空気調和機であって、
    前記負荷には、第2の永久磁石同期モータが含まれ、
    前記負荷駆動装置は、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを2つ以上備え、前記平滑コンデンサに蓄積された直流電力を交流電力に変換して前記第2の永久磁石同期モータに供給する第2のインバータを備え、
    前記永久磁石同期モータは圧縮機を駆動し、
    前記第2の永久磁石同期モータは送風装置を駆動し、
    前記制御部は、前記第2のインバータに対しても前記電圧低下抑制制御を行う
    空気調和機。
  11. 前記制御部は、前記電圧低下抑制制御を行うときには、前記第2の永久磁石同期モータよりも前記永久磁石同期モータの回転を先に停止させる
    請求項10に記載の空気調和機。
JP2020521386A 2018-08-08 2018-08-08 空気調和機 Active JP6768175B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029777 WO2020031290A1 (ja) 2018-08-08 2018-08-08 負荷駆動装置、冷凍サイクル適用機器及び空気調和機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020154774A Division JP7030921B2 (ja) 2020-09-15 2020-09-15 負荷駆動装置及び冷凍サイクル適用機器

Publications (2)

Publication Number Publication Date
JPWO2020031290A1 true JPWO2020031290A1 (ja) 2020-08-20
JP6768175B2 JP6768175B2 (ja) 2020-10-14

Family

ID=69414593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020521386A Active JP6768175B2 (ja) 2018-08-08 2018-08-08 空気調和機

Country Status (4)

Country Link
US (1) US11811353B2 (ja)
JP (1) JP6768175B2 (ja)
CN (1) CN112514233B (ja)
WO (1) WO2020031290A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009296A1 (ja) * 2020-07-07 2022-01-13 三菱電機株式会社 電力変換装置および空気調和機
JP7030921B2 (ja) * 2020-09-15 2022-03-07 三菱電機株式会社 負荷駆動装置及び冷凍サイクル適用機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140272A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp 電力変換装置
JP2014204617A (ja) * 2013-04-08 2014-10-27 ダイキン工業株式会社 モータ駆動回路及び空気調和機
WO2017022084A1 (ja) * 2015-08-04 2017-02-09 三菱電機株式会社 インバータ制御装置および空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100505A (ja) * 2007-10-15 2009-05-07 Fuji Electric Systems Co Ltd 3レベル電力変換装置
WO2010013344A1 (ja) * 2008-08-01 2010-02-04 三菱電機株式会社 交流直流変換装置、交流直流変換装置の制御方法、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
JP5769764B2 (ja) 2013-07-10 2015-08-26 三菱電機株式会社 交流直流変換装置、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
JP2017022798A (ja) * 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 電力変換装置および駆動装置
JP6877898B2 (ja) 2016-06-28 2021-05-26 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及びこれを備える空気調和機
JP7044462B2 (ja) 2016-06-28 2022-03-30 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及びこれを備える空気調和機
JP6798802B2 (ja) 2016-06-28 2020-12-09 日立ジョンソンコントロールズ空調株式会社 直流電源装置および空気調和機
JP2018074666A (ja) * 2016-10-26 2018-05-10 日立アプライアンス株式会社 電力変換装置
JP6725409B2 (ja) * 2016-12-22 2020-07-15 トヨタ自動車株式会社 ハイブリッド自動車

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014140272A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp 電力変換装置
JP2014204617A (ja) * 2013-04-08 2014-10-27 ダイキン工業株式会社 モータ駆動回路及び空気調和機
WO2017022084A1 (ja) * 2015-08-04 2017-02-09 三菱電機株式会社 インバータ制御装置および空気調和機

Also Published As

Publication number Publication date
US11811353B2 (en) 2023-11-07
CN112514233B (zh) 2024-07-23
US20210159820A1 (en) 2021-05-27
JP6768175B2 (ja) 2020-10-14
WO2020031290A1 (ja) 2020-02-13
CN112514233A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP5873716B2 (ja) モータ制御装置
JP6075067B2 (ja) 電力変換装置
JP6755845B2 (ja) モータ駆動システム
WO2016035216A1 (ja) 電力変換装置、それを備えたモータ駆動装置、送風機および圧縮機、ならびに、それらの少なくとも一方を備えた空気調和機、冷蔵庫および冷凍機
US11909197B2 (en) Motor drive device, blower, compressor, and air conditioner
JP6768175B2 (ja) 空気調和機
CN105531915B (zh) 开关装置、电力转换装置、电动机驱动装置、鼓风机和压缩机
JP5788540B2 (ja) 電動機駆動装置、及び冷凍空調装置
JP7034373B2 (ja) 直流電源装置、電力変換装置及び冷凍サイクル装置
JP6453108B2 (ja) 電力変換装置、アクティブフィルタ、及びモータ駆動装置
WO2020066030A1 (ja) 直流電源装置、モータ駆動装置、送風機、圧縮機及び空気調和機
JP7030921B2 (ja) 負荷駆動装置及び冷凍サイクル適用機器
WO2020095377A1 (ja) 負荷駆動装置、冷凍サイクル装置及び空気調和機
WO2022149207A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP2020137329A (ja) インバータ装置
JP2016001991A (ja) 電動機駆動装置、及び冷凍空調装置
US20220103096A1 (en) Load driving apparatus, air conditioner, and method for operating load driving apparatus
JP2016127677A (ja) 電力変換装置
JP6518506B2 (ja) 電源装置、並びにそれを用いる空気調和機
US11632071B2 (en) Motor drive device and air conditioner
WO2022208593A1 (ja) 電力変換装置、モータ駆動装置及び空気調和機
WO2023100267A1 (ja) 電力変換装置、モータ駆動システム、および電力変換方法
JP2013247695A (ja) 電力変換装置
JP2019122120A (ja) インバータ装置、昇圧回路制御方法及びプログラム
JPWO2020066027A1 (ja) 直流電源装置、モータ駆動装置、送風機、圧縮機及び空気調和機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200414

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6768175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250