JPWO2019234857A1 - プロセスバス適用保護システムおよびインテリジェント電子デバイス - Google Patents

プロセスバス適用保護システムおよびインテリジェント電子デバイス Download PDF

Info

Publication number
JPWO2019234857A1
JPWO2019234857A1 JP2018560698A JP2018560698A JPWO2019234857A1 JP WO2019234857 A1 JPWO2019234857 A1 JP WO2019234857A1 JP 2018560698 A JP2018560698 A JP 2018560698A JP 2018560698 A JP2018560698 A JP 2018560698A JP WO2019234857 A1 JPWO2019234857 A1 JP WO2019234857A1
Authority
JP
Japan
Prior art keywords
time
digital value
merging unit
value
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018560698A
Other languages
English (en)
Other versions
JP6501993B1 (ja
Inventor
新谷 幹夫
幹夫 新谷
直哉 成田
直哉 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6501993B1 publication Critical patent/JP6501993B1/ja
Publication of JPWO2019234857A1 publication Critical patent/JPWO2019234857A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/30Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
    • H02H3/307Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel involving comparison of quantities derived from a plurality of phases, e.g. homopolar quantities; using mixing transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

プロセスバス適用保護システム(40)において、第1のマージングユニット(50_1)は、電力系統の電気量を継続的にサンプリングして第1のデジタル値にデジタル変換する。インテリジェント電子デバイス(60)は、プロセスバス(41)を介して第1のマージングユニット(50_1)から受信した第1のデジタル値の受信時刻を特定することによって、受信時刻に対応付けられた第1のデジタル値の時系列データを生成する。インテリジェント電子デバイス(60)は、受信時刻に対応付けられた第1のデジタル値の時系列データと第1の遅延時間の情報とに基づいて、任意の第1の時刻において第1のマージングユニット(50_1)によってサンプリングされた電気量の値を決定する。

Description

この開示は、プロセスバスを介して接続されたマージングユニットとインテリジェント電子デバイスとを有し、電力系統の保護に用いられるプロセスバス適用保護システムに関する。
従来の保護リレーをマージングユニット(MU:Merging Unit)とインテリジェント電子デバイス(IED:Intelligent Electric Device)とに分割し、両者をプロセスバスで接続したプロセスバス適用保護システムが一般的になりつつある(たとえば、特開2012−65433号公報(特許文献1)を参照)。
このような保護システムでは、変電所内などに設けられた電力機器の近傍にMUが設置され、MUによって電力系統の電気量の信号が取り込まれる(なお、この開示において、電流および電圧の少なくとも一方を電気量と称する)。MUは、取り込んだ電気量信号をA/D(Analog to Digital)変換し、A/D変換後のデジタル信号を、プロセスバスを介してIEDにシリアルデータで送信する。IEDは、MUから受信したデータに基づいてリレー演算を行う。
上記のプロセスバス適用保護システムを用いて、たとえば、送電線保護用の電流差動リレーを構成することができる。電流差動リレーの場合には、送電線の両端にそれぞれ設けられたMUによって検出される電気量は、同時刻に検出されたものである必要がある。
複数のMU間でサンプリング同期を行う代表的な方法の1つは、上記の特開2012−65433号公報(特許文献1)に記載されているように、GPS(Global Positioning System)に基づく時刻同期信号を各MUに供給するものである。具体的に、GPS衛星からの信号を受信する時計装置が設けられ、時計装置から時刻同期信号が各MUに送信される。各MUは、供給された時刻同期信号に内蔵クロックを同期させる。
特開2012−65433号公報
上記のGPS信号に基づくサンプリング同期の方法は、時計装置の故障等によって時刻同期信号が途切れた場合に問題となる。また、時計装置からの時刻同期信号に基づく同期処理は複雑であるために、各MUでの同期処理に障害が生じる場合も考慮しなければならない。
本開示は、上記の問題点を考慮したものであって、その目的は、各MUでのサンプリング同期を必要とせずに、各MUにおける電気量の検出時刻の同時性を確保することが可能なIEDおよびプロセスバス適用保護システムを提供することである。なお、上記では、送電線保護用の電流差動リレーを例に挙げて説明したが、本開示の適用対象は電流差動リレーに限定されるものではない。
一実施形態によるプロセスバス適用保護システムは、第1のマージングユニットと、インテリジェント電子デバイスとを備える。第1のマージングユニットは、電力系統の電気量を継続的にサンプリングし、サンプリングした電気量の値を第1のデジタル値にデジタル変換してプロセスバスに出力するように構成される。インテリジェント電子デバイスは、プロセスバスを介して第1のマージングユニットから第1のデジタル値を継続的に受信し、受信時刻を特定することによって、受信時刻に対応付けられた第1のデジタル値の時系列データを生成する。インテリジェント電子デバイスは、受信時刻に対応付けられた第1のデジタル値の時系列データと、第1のマージングユニットが電気量をサンプリングしてから対応する第1のデジタル値を受信するまでの第1の遅延時間の情報とに基づいて、任意の第1の時刻において第1のマージングユニットによってサンプリングされた電気量の値を決定するように構成される。
上記の実施形態によれば、マージングユニットからのデータの受信時刻と遅延時間の情報とに基づいて、任意の時刻において当該マージングユニットによってサンプリングされた電気量の値を決定することができる。したがって、複数のマージングユニットでのサンプリング同期を必要とせずに、各マージングユニットにおける電気量の検出時刻の同時性を確保することが可能になる。
プロセスバス適用保護システムの構成例を示すブロック図である。 実施の形態1におけるMUおよびIEDのハードウェア構成の一例を示すブロック図である。 MUからIEDに送信される通信パケットの構成例を示す概略図である。 遅延時間に基づくサンプル時刻の補正について説明するための図である。 第2のMUによる電気量の検出時刻を第1のMUによる電気量の検出時刻に同期させる場合のリサンプリング処理について説明するための図である。 一次関数による補間処理について説明するための図である。 図1および図2の各MUの動作を示すフローチャートである。 図1および図2のIEDの動作を示すフローチャートである。 実施の形態2のプロセスバス適用保護システムにおいて、MUおよびIEDのハードウェア構成の一例を示すブロック図である。 実施の形態2のプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。 実施の形態3のプロセスバス適用保護システムにおいて、MUおよびIEDのハードウェア構成の一例を示すブロック図である。 実施の形態3のプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。 図11のMUの動作を示すフローチャートである。 図11のIEDの動作を示すフローチャートである。 実施の形態3の変形例によるMUおよびIEDのハードウェア構成を示すブロック図である。 実施の形態3の変形例によるプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。 IEDの定める演算時刻に、第1および第2のMUによる電気量の検出時刻を同期させるためのリサンプリング処理について説明するための図である。 実施の形態4におけるプロセスバス適用保護システムにおいて、IEDの動作を示すフローチャートである。 実施の形態5のプロセスバス適用保護システムにおけるリサンプリング処理について説明するための図である。 実施の形態5におけるプロセスバス適用保護システムにおいて、IEDの動作を示すフローチャートである。
以下、各実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない。
実施の形態1.
[プロセスバス適用保護システムの構成例]
図1は、プロセスバス適用保護システムの構成例を示すブロック図である。図1を参照して、電力系統30は、一例として、送電線または母線を表す第1の三相線路31_1と、送電線または母線を表す第2の三相線路31_2とを含む。以下、第1および第2の三相線路31_1,31_2について総称する場合には三相線路31と記載する。なお、図解を容易にするために図1では三相線路を1本の線で示している。
第1の三相線路31_1には、電流変成器(CT:Current Transformer)CT1、電圧変成器(VT:Voltage Transformer)VT1、および第1の遮断器(CB:Circuit Breaker)33_1が設けられている。同様に、第2の三相線路31_2には、電流変成器CT2、電圧変成器VT2、および第2の遮断器33_2が設けられている。
以下、電流変成器CT_1,CT_2について総称する場合には電流変成器CTと記載する。電圧変成器VT_1,VT_2について総称する場合には電圧変成器VTと記載する。第1および第2の遮断器33_1,33_2について総称する場合には遮断器33と記載する。なお、電流変成器CT、電圧変成器VT、および遮断器33は、三相線路の相ごとに設けられているが、図1では図解を容易にするためにそれぞれ1個のみ代表的に示している。
電流変成器CTは、三相線路31を流れる電流を後述するMUに入力するのに適した大きさに変換する。同様に、電圧変成器VTは、三相線路31の電圧を後述するMUに入力するのに適した大きさに変換する。
プロセスバス適用保護システム40は、第1のマージングユニット(MU1)50_1と、第2のマージングユニット(MU2)50_2と、インテリジェント電子デバイス(IED)60と、プロセスバス41とを備える。MU50_1,50_2とIED60とは、プロセスバス41と称される通信回線を介して相互に接続される。
MU50_1は、対応する電流変成器CT1および電圧変成器VT1からそれぞれ出力された電流信号および電圧信号など、電力系統の保護・制御に必要な情報を収集する。同様に、MU50_2は、対応する電流変成器CT2および電圧変成器VT2からそれぞれ出力された電流信号および電圧信号など、電力系統の保護・制御に必要な情報を収集する。
各MU50は、取得した電流信号および電圧信号を、IEC61850で規定された一定のサンプリング周期(たとえば、4800Hz)でアナログデジタル(A/D:Analog to Digital)変換する。なお、MU50ごとにサンプリング周期が異なっていても、本開示の技術を適用することは可能である。
各MU50は、A/D変換器53により得られた電気量を、IEC61850で規定されたSV(SV:Sampled Value)のフォーマットに変換し、変換後の電気量を、プロセスバス41を介してIED60に出力する。以降本開示においては、SVフォーマットに変換された電気量をSVデータと称する。
IED60は、プロセスバス41を介してMU50から受信したSVデータに基づいて保護演算(リレー演算とも称する)を行う。保護演算に用いられる電気量のサンプリング周期(前述したA/D変換器53でのサンプリング周期と区別するために「リレー演算周期」または「演算周期」と称する)は、たとえば、系統周波数に対応する周期の1/16(電気角で22.5°)または1/12(電気角で30°)などである。
なお、保護演算の際に、MU50_1における電気量の検出時刻とMU50_2における電気量の検出時刻との間の同時性が必要な場合には、IED60は、同時性を満たすようにSVデータを補正する。SVデータの具体的な補正方法については後述する。
IED60は、保護演算の結果、いずれかの三相線路31に故障が生じていると判定した場合には、故障が生じている三相線路31に対応するMU50に対して、対応する遮断器33をトリップするための指令信号を出力する。この指令信号を受けたMU50は、対応する遮断器33にトリップ信号を出力する。なお、上記と異なり、IED60が遮断器33にトリップ信号を直接出力するように構成されていてもよい。
[MUおよびIEDのハードウェア構成例]
図2は、実施の形態1におけるMUおよびIEDのハードウェア構成の一例を示すブロック図である。
(1. MUのハードウェア構成例)
図2を参照して、MU50は、入力変換用の補助変成器51_1,51_2,…(総称する場合、補助変成器51と記載する)と、アナログフィルタ(AF:Analog Filter)52_1,52_2,…(総称する場合、アナログフィルタ52と記載する)と、A/D変換器53とを含む。MU50は、さらに、処理回路54と、通信回路55と、デジタル出力(DO:Digital Output)回路56とを含む。補助変成器51を入力変成器とも称する。
MU50には、対応する電流変成器CTから出力された各相の電流信号および対応する電圧変成器VTから出力された各相の電圧信号を受信するために、複数のチャンネルが設けられている。各チャンネルには、対応する電流変成器CTから各相の電流信号および各相の電流信号がそれぞれ入力される(図2では、代表的に2チャンネルのみ示されている)。
補助変成器51(51_1,51_2,…)は、チャンネルごとに設けられている。各補助変成器51は、電流変成器CTからの電流信号または電圧変成器VTからの電圧信号を受信し、受信した電圧信号または電流信号をA/D変換器53および処理回路54での信号処理に適した電圧レベルの信号に変換する。
アナログフィルタ52(52_1,52_2,…)は、複数の補助変成器51にそれぞれ対応してチャンネルごとに設けられる。各アナログフィルタ52は、たとえば、対応するチャンネルの電流信号または電圧信号の高域をカットするローパスフィルタである。アナログフィルタ52は、A/D変換の際の折り返し誤差を除去するために設けられている。
A/D変換器53は、各アナログフィルタ52から出力されたアナログの電流信号または電圧信号をデジタル値に変換する。A/D変換器53は、チャンネルごとのサンプルホールド回路(不図示)とマルチプレクサ(不図示)とを備えていてもよい。この場合、マルチプレクサはサンプルホールド回路に保持された電気量信号を順次選択し、A/D変換器53はマルチプレクサによって選択された信号をA/D変換する。
処理回路54は、本実施の形態の場合、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)とを備えたマイクロコンピュータとして構成される。この場合、CPUは、ROMおよび/または不揮発性メモリ(不図示)に格納されたプログラムに従って、MU50全体(A/D変換器53、通信回路55、デジタル出力回路56など)を制御することにより所望の機能を実現する。
なお、処理回路54は、FPGA(Field Programmable Gate Array)として構成されていてもよいし、ASIC(Application Specific Integrated Circuit)などの専用の回路として構成されていてもよい。
通信回路55は、プロセスバス41を介してIED60の通信回路61との間で、データの送受信を行う。
デジタル出力回路56は、外部機器にデジタル信号を出力するためのインターフェイス回路である。たとえば、デジタル出力回路56は、処理回路54の指令に従って、対応する遮断器33にトリップ信号を出力する。
以下、処理回路54の機能の一部についてさらに具体的に説明する。
まず、処理回路54は、A/D変換器53に対して変換開始指令(トリガ)を出力する。A/D変換器53は、処理回路54から受けた変換開始指令のタイミングで電力系統30の電気量をサンプリングする。
さらに、処理回路54は、A/D変換によって得られたデジタルデータを、IEC61850規格で定められた通信プロトコルに従ったSVフォーマットのデータ形式に変換する。変換後のSVデータは、通信回路55からプロセスバス41を介してIED60に送信される。たとえば、処理回路54は、A/D変換によって得られたデジタルデータに基づいてパケットを生成する。
図3は、MUからIEDに送信される通信パケットの構成例を示す概略図である。図3を参照して、パケット70の先頭に宛先および発信元情報などを含むETH(Ethernet)ヘッダ71が配置され、その後に電気量のデータ72が配置される。データ72は、チャンネルごとに区分されており、図3の場合には、CH1からCH8までの8チャンネル分のデータ部分が含まれる。パケットの末尾に、誤りを検出し訂正するために巡回冗長検査(CRC:Cyclic Redundancy Check)符号などのFCS(Frame Check Sequence)を設けてもよい。各MUは、A/D変換器53のA/D変換周期ごとにSVデータを送信してもよいし、複数のA/D変換周期ごとに複数のサンプリング時刻に検出された電気量に基づくSVデータをまとめて送信してもよい。
再び図2を参照して、処理回路54は、さらに、通信回路55によってIED60から遮断器33の開放指令を受信した場合には、遮断器33に対してトリップ信号を出力するようにデジタル出力回路56に指令する。デジタル出力回路56は、処理回路54からの指令に従って、対応する遮断器33にトリップ信号を出力する。
(2. IEDのハードウェア構成例)
図2を参照して、IED60は、通信回路61と、タイマ62と、処理回路63と、不揮発性メモリ64とを備える。
通信回路61は、MU50の通信回路55との間でプロセスバス41を介してデータの送受信を行う。たとえば、通信回路61は、MU50の通信回路55から送信された図3に示す通信パケットを受信する。
タイマ62は、各MU50からSVデータを受信したときに、SVデータの受信時刻を特定し、受信時刻を表す文字列(タイムスタンプと称する)を受信したSVデータに付加する。これによって、受信時刻に対応付けられた時系列のSVデータが生成される。受信時刻は、図3の通信パケットの先頭を受信した時刻としてもよいし、通信パケットの末尾を受信したときとしてもよい。もしくは、通信パケットの途中の予め定められた部分を受信したときを受信時刻に定めてもよい。
処理回路63は、処理回路63は、各MUから受信したSVデータに基づいて保護演算を行う。この際、複数のMU50における電気量の検出時刻に同時性が必要な場合には、同時性を満たすようにSVデータを補正する。SVデータの具体的な補正方法については後述する。処理回路63は、保護演算の結果、いずれかの三相線路31に故障が生じていると判定した場合には、故障が生じている三相線路31に対応するMU50に対して遮断器33を閉路するための指令信号を出力する。
本実施の形態の場合、処理回路63はCPUとRAMとROMとを備えたマイクロコンピュータとして構成される。この場合、CPUは、ROMおよび/または不揮発性メモリ64に格納されたプログラムに従って、IED60全体を制御することにより上記の動作を実現する。
なお、処理回路63は、FPGA(Field Programmable Gate Array)として構成されていてもよいし、ASIC(Application Specific Integrated Circuit)などの専用の回路として構成されていてもよい。
不揮発性メモリ64は、処理回路63のCPUで実行するプログラムを格納する。さらに、不揮発性メモリ64は、電気量の検出時刻の同時性を満たすために実行される上述の補正処理において必要な遅延時間データを格納する。ここで、遅延時間データとは、各MU50において電力系統30の電気量を検出してから、IED60がSVデータを受信するまでの遅延時間を表すデータである。遅延時間データの詳細については後述する。
[同時刻性を満たすためのSVデータの補正処理]
本開示の課題の欄で述べたように、本開示におけるプロセスバス適用保護システムでは、GPS信号に基づく時刻同期信号を利用せずに、各MUにおける電気量の検出時刻の同時性を実現することを目的としている。このために、実施の形態1のプロセスバス適用保護システム40では、以下の(1)〜(3)の手順でSVデータの補正を行う。
(1)遅延時間データの決定
まず、MU50ごとに電力系統30の電気量を検出してから、IED60がSVデータを受信するまでの遅延時間を求める。表1は、遅延時間の要因と、当該遅延時間を取得する方法を表形式でまとめたものである。
Figure 2019234857
表1を参照して、遅延時間の要因として例えば次の(A)〜(E)が挙げられる。
(A)図2の入力変成器51およびアナログフィルタ52による位相シフト。
(B)A/D変換器53の変換時間。
(C)処理回路54がIEC61850に従うSVフォーマットのデータを作成するのに要する時間。
(D)MU50の通信回路55による送信処理時間。
(E)MU50の通信回路55からIED60の通信回路61までのプロセスバス41を介したパケットの伝送時間。
上記の(A)に関して、入力変成器51およびアナログフィルタ52による位相シフトに伴う遅延時間は、入力変成器51の巻き線インダクタンスおよび相互インダクタンスならびにアナログフィルタ52のインピーダンスなどを用いて見積もることができる。位相シフト量を実際に測定することによって遅延時間を見積もってもよい。もしくは、MUのベンダが提供する遅延時間の標準値を用いてもよい。
上記の(B)〜(D)に関して、定型的な処理であれば処理すべきデータ量は一定であるので、予め処理時間を測定することによってこれらの処理に要する遅延時間を決定することができる。もしくは、MUのベンダが提供する遅延時間の標準値を用いてもよい。
上記の(E)に関して、光ファイバを介した信号伝送時間は、プロセスバス41として用いられる光ファイバの長さから計算することができる。具体的に、光ファイバの長さをLとし、光速をcとし、光ファイバの伝送路を構成する誘電体中を伝搬する電磁波の速度と光速との比を速度係数αとすれば、光ファイバによる信号伝送時間Tは、T=L/(c・α)によって求めることができる。
実施の形態1のプロセスバス適用保護システム40では、上記の遅延時間データは、事前に設定されてIED60の不揮発性メモリ64に格納される。たとえば、IED60に接続されるMU50ごとに、上記の(A)〜(E)を合算した遅延時間値が不揮発性メモリ64に格納される。
なお、遅延時間値に代えて、定格周波数に基づいて計算した遅延に伴う位相シフト量を不揮発性メモリ64に格納してもよい。また、上記の(A)〜(E)のうち遅延時間が無視できるものは合計の遅延時間に算入しなくてよいし、MUの構成によっては上記(A)〜(E)以外に考慮すべき遅延時間がある場合には、その遅延時間を合計遅延時間に算入してもよい。
(2)サンプル時刻の補正
次に、IED60は、各MU50からのSVデータの受信時刻から、当該MUについて予め定められた上記の遅延時間を減算することによって、SVデータに対応する電気量の検出時刻を決定する。言い替えると、IED60は、各MU50から受信したSVデータの受信時刻から上記の遅延時間を減算することによって、各MUでの電気量のサンプリング時刻に対応付けられたSVデータ(以下、補正データと称する)を生成する。
図4は、遅延時間に基づくサンプル時刻の補正について説明するための図である。図4では、図1の三相線路31_1と三相線路31_2とは相互に接続されているとする。したがって、電圧変成器VT1と電圧変成器VT2とで検出される元のアナログ波形80は同じである。
図4(A)を参照して、元のアナログ波形80が実線で示され、第1のMU50_1によるサンプリングデータ81が黒丸で示されている。
図4(B)を参照して、MU50_1からIED60が受信したデータ82が黒丸で示されている。受信データ82は、サンプリングデータ81よりも遅延時間dtAだけ遅れている。
図4(C)を参照して、IED60は、受信データ82の各データ点の受信時刻から遅延時間dtAを減算した時刻を各データ点のサンプリング時刻に決定する。たとえば、受信時刻t1のデータ点のサンプリング時刻はt1−dtAに決定される。これによって、図4(C)に示すように、受信データ82を遅延時間dtAだけ前にシフトした補正データ(すなわち、遅延補正後の受信データ83)が生成される。言い替えると、電気量の受信時刻に対応付けられた時系列のSVデータが、電気量のサンプリング時刻に対応付けられた時系列のSVデータに変換される。
図4(D)を参照して、元のアナログ波形80が実線で示され、第2のMU50_1によるサンプリングデータ84が黒丸で示されている。
図4(E)を参照して、MU50_2からIED60が受信したデータ85が黒丸で示されている。受信データ85は、サンプリングデータ84よりも遅延時間dtBだけ遅れている。
図4(F)を参照して、IED60は、受信データ82の各データ点の受信時刻から遅延時間dtBを減算した時刻を各データ点のサンプリング時刻に決定する。たとえば、受信時刻t2のデータ点のサンプリング時刻はt2−dtBに決定される。これによって、図4(F)に示すように、受信データ85を遅延時間dtBだけ前にシフトした補正データ(遅延補正後の受信データ86)が生成される。言い替えると、電気量の受信時刻に対応付けられた時系列のSVデータが、電気量のサンプリング時刻に対応付けられた時系列のSVデータに変換される。
図4(C)と図4(F)とを比較すると、MU50_1によるサンプリング時刻とMUMU50_2によるサンプリング時刻とは一致していない。そこで、次に説明するリサンプリングが必要になる。
(3)リサンプリング
第1のMU50_1と第2のMU50_2とで、電気量の検出時刻を同期させるために、IED60は、遅延補正後のMU50_1またはMU50_2からの受信データ(すなわち、補正データ)83,86を用いてリサンプリングを行う。
図5は、第2のMUによる電気量の検出時刻を第1のMUによる電気量の検出時刻に同期させる場合のリサンプリング処理について説明するための図である。図5(A)には、遅延補正後のMU50_1からの受信データ83(すなわち、補正データ)が黒丸で示され、図5(B)には、遅延補正後のMU50_2からの受信データ86(すなわち、補正データ)が黒三角で示されている。
第2のMU50_2による電気量の検出時刻を第1のMU50_1による電気量の検出時刻に同期させる場合には、遅延補正後のMU50_2からの受信データ86に対して補間処理を行う。たとえば、MU50_1によって時刻t05に検出されたデータ点に対応するMU50_2の検出データを求めるために、時刻t05の前後の時刻t00と時刻t10とにおいてMU50_2によって検出されたデータ点を用いて一次関数による補間処理を行う。
図6は、一次関数による補間処理について説明するための図である。図6を参照して、時刻t00における検出データ90の値をI(t00)とし、時刻t10における検出データ90の値をI(t10)とする。この場合、時刻t05における値I(t05)を、一次関数91を用いた直線近似によって求めることができる。なお、一次関数補間に代えてスプライン補間を用いても構わないし、他の補間方法を用いてもよい。
[データ処理手順]
以下、これまでの説明を総括して実施の形態1のプロセスバス適用保護システム40によるデータ処理手順について説明する。
図7は、図1および図2の各MUの動作を示すフローチャートである。図7を参照して、まず、ステップS100において、MU50は電気量のサンプリングを行う。次のステップS110で、MU50のA/D変換器53は、サンプリングした電気量のA/D変換を行う。
次のステップS120で、MU50の処理回路54は、得られた電気量をIEC61850のSVフォーマットに従うデータ形式に変換する。その次のステップS130で、MU50の通信回路55は、データ変換後のSVデータを、プロセスバス41を介してIED60に送信する。以下、上記のステップS100〜S130が繰り返される。
図8は、図1および図2のIEDの動作を示すフローチャートである。図8を参照して、IED60は、プロセスバス41を介してMU50からSVデータを受信すると(ステップS200でYES)、IED60のタイマ62は、受信したSVデータに受信時刻を表すタイムスタンプを付加する(ステップS210)。これによって、受信時刻に対応付けられた時系列のSVデータが生成される。
次のステップS220において、IED60の処理回路63は、不揮発性メモリ64に格納された事前に設定された遅延時間データに基づいて、受信時刻から検出時刻を決定する。すなわち、処理回路63は、各MU50から受信したSVデータを当該MUに対応する遅延時間だけ前にシフトさせた補正データを生成する(この処理を遅延補正と称する)。これにより、電気量の受信時刻に対応付けられた時系列のSVデータが、電気量のサンプリング時刻に対応付けられた時系列のSVデータに変換される。
その次のステップS230において、IED60の処理回路63は、リレー演算の実行にデータ検出時刻の同時性が必要な場合には、図5および図6で説明したリサンプリング処理を行う。
その後、リレー演算周期が経過する度に(ステップS240でYES)、IED60の処理回路63は、複数のMUから取得したSVデータを用いてリレー演算を行う(ステップS250)。以下、上記のステップS200〜S250が繰り返される。
[実施の形態1の効果]
以上のとおり、実施の形態1のプロセスバス適用保護システム40によれば、時計装置からの時刻同期信号を必要とせずに、各MUにおける電気量の検出時刻の同時性を確保することができる。これによって装置構成を簡単化できるので、たとえば、GPS信号の受信が途切れるなど機器不良の可能性が減らすことができ、システム全体への信頼性を増すことができる。さらに、サンプリング同期のためのMUでの処理が必要でなくなるので、異なるメーカ製のMUとIEDとの接続が容易になる。
なお、図4および図5では、第1のMU50_1でのサンプリング周期と第2のMU50_2でのサンプリング周期とが同じ場合について示した。これに対して、両MUでのサンプリング周期が異なる場合も上記と全く同じ手順で遅延補正処理およびリサンプリング処理を実行することができる。
実施の形態2.
実施の形態2では、IED60の不揮発性メモリ64に代えて各MUの不揮発性メモリ57に遅延時間データが格納されている場合について説明する。
[MUおよびIEDのハードウェア構成]
図9は、実施の形態2のプロセスバス適用保護システムにおいて、MUおよびIEDのハードウェア構成の一例を示すブロック図である。
図9のMU50Aは、事前に設定された遅延時間データを格納する不揮発性メモリ57が設けられている点で、図2のMU50と異なる。MU50Aは、プロセスバス41を介してSVデータをIED60に送信する際に、SVデータと共に遅延時間データも送信する。図9のその他の点は図2の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
図10は、実施の形態2のプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。
図10の通信パケットの構成は、図3の通信パケットの構成に対応するものである。ただし、各チャンネルのSVデータの後に遅延時間データ74が配置されている点で、図10の通信パケットの構成は図3の通信パケットの構成と異なる。MU50Aの処理回路54は、SVデータをプロセスバスの規格に基づくデータ形式に変換する際に、図10に示すように通信パケットに遅延時間データ74の情報を付加する。
[通信パケットの構成例]
表2は、実施の形態2のプロセスバス適用保護システム40Aにおいて、遅延時間の要因ごとに各遅延時間を取得する方法を表形式でまとめたものである。
Figure 2019234857
表2は表1に対応するものであり、遅延要因(A)〜(E)は表1の場合と同じである。表2に示すように、遅延要因(A)〜(D)については、事前に設定された値が各MU50の不揮発性メモリ57に格納され、各MU50からIED60にSVデータを送信する際に遅延時間データも一緒に送信される。光ファイバの送信時間に基づく遅延時間(E)を光ファイバの長さから算出する点は実施の形態1の場合と同じである。この遅延時間の計算値も各MU50の不揮発性メモリ57に格納しておき、各MU50からIED60にSVデータを送信する際に一緒に送信してもよい。
[実施の形態2の効果]
以上の実施の形態2のプロセスバス適用保護システム40Aにおいても、実施の形態1の場合と同様の効果を奏することができる。
実施の形態3.
実施の形態3では、一部の遅延要因による遅延時間がカウンタを用いて計測され、計測値に基づいて遅延補正が実行される場合について説明する。
[MUおよびIEDのハードウェア構成]
図11は、実施の形態3のプロセスバス適用保護システムにおいて、MUおよびIEDのハードウェア構成の一例を示すブロック図である。
図11のMU50Bは、A/D変換器53、処理回路54、および通信回路55における処理時間を計測するためのカウンタ58をさらに含む点で図2のMU50と異なる。カウンタ58は、処理回路54の制御に従って時間計測を行う。具体的に、処理回路54は、A/D変換器53にA/D変換を開始する指令信号(トリガ)を送信してから、通信回路55から通信パケットの送信完了通知を受信するまでの経過時間を、カウンタ58を利用して計測する。MU50Bは、プロセスバス41を介してSVデータIED60に送信する際に、SVデータと共に遅延時間の計測値も送信する。図11のその他の点は図2の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
なお、上記の手順によれば、送信される遅延時間の計測値の情報は、1ステップ前に送信したSVデータに対応することになる。これに対して、SVデータの送信開始直後に計測した遅延時間を、送信バッファ上に格納されているSVデータに付加するようにすれば、SVデータと対応する遅延時間とを同一フレームで送信することができる。
[通信パケットの構成例]
図12は、実施の形態3のプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。
図12の通信パケットの構成は、図3の通信パケットの構成に対応するものである。ただし、各チャンネルのSVデータの後に遅延時間計測値75が配置されている点で、図12の通信パケットの構成は図3の通信パケットの構成と異なる。MU50Aの処理回路54は、電気量の検出値をIEC61850規格に基づくSVフォーマットのデータ形式に変換する際に、図12に示すように通信パケットに遅延時間計測値75の情報を付加する。
[遅延時間データの取得方法のまとめ]
表3は、実施の形態3のプロセスバス適用保護システム40Bにおいて、遅延時間の要因ごとに各遅延時間を取得する方法を表形式でまとめたものである。
Figure 2019234857
表2は表1に対応するものであり、遅延要因(A)〜(E)は表1の場合と同じである。表2に示すように、遅延要因(A)については、事前に設定された値がIED60の不揮発性メモリ64に格納される。遅延要因(B)〜(D)については、各MU50のカウンタ58を利用して計測された遅延時間が、各MU50からIED60にSVデータを送信する際に一緒に送信される。
光ファイバの送信時間に基づく遅延時間(E)を光ファイバの長さから算出する点は実施の形態1の場合と同じである。この遅延時間の計算値も各MU50の不揮発性メモリ57(不図示)に格納しておき、各MU50からIED60にSVデータを送信する際に一緒に送信してもよいし、IED60の不揮発性メモリ64に格納しておいてもよい。
[データ処理手順]
以下、実施の形態3のプロセスバス適用保護システム40Bによるデータ処理手順について説明する。
図13は、図11のMUの動作を示すフローチャートである。図13を参照して、まず、ステップS100において、MU50Bは電気量のサンプリングを行う。
次のステップS105において、処理回路54は、A/D変換器53に変換開始指令(トリガ)を送信したときに、処理時間の計測を開始する。
次のステップS110で、MU50BのA/D変換器53は、サンプリングした電気量のA/D変換を行う。これによって検出した電気量のデジタル値が得られる。
その次のステップS120で、MU50Bの処理回路54は、得られた電気量のデジタル値と遅延時間計測値75とをIEC61850規格に従うSVフォーマットのデータ形式に変換する。ただし、このとき送信される遅延時間計測値75は、1ステップ前の遅延時間計測において得られた計測値である。
その次のステップS130で、MU50Bの通信回路55は、データ変換後のSVデータおよび遅延時間計測値75を、プロセスバス41を介してIED60に送信する。MU50Bの処理回路54は、通信回路55から送信完了の通知を受けたことによって処理時間の計測を終了する(ステップS135)。以下、上記のステップS100〜S130が繰り返される。
図14は、図11のIEDの動作を示すフローチャートである。図14を参照して、IED60は、プロセスバス41を介してMU50BからSVデータおよび遅延時間計測値75を受信すると(ステップS200でYES)、IED60のタイマ62は、受信したSVデータに受信時刻を表すタイムスタンプを付加する(ステップS210)。これによって、受信時刻に対応付けられた時系列のSVデータが生成される。
次のステップS220において、IED60の処理回路63は、不揮発性メモリ64に格納された事前設定の遅延時間データと受信した遅延時間計測値75とに基づいて、SVデータの受信時刻から当該SVデータに対応する電気量の検出時刻を決定する。すなわち、処理回路63は、各MU50Bから受信したSVデータを当該MUに対応する遅延時間だけ前にシフトさせた補正データを生成する(この処理を遅延補正と称する)。これにより、電気量の受信時刻に対応付けられた時系列のSVデータが、電気量のサンプリング時刻に対応付けられた時系列のSVデータに変換される。
その次のステップS230において、IED60の処理回路63は、リレー演算の実行にデータ検出時刻の同時性が必要な場合には、実施の形態の1の図5および図6で説明したリサンプリング処理を行う。
その後、リレー演算周期が経過する度に(ステップS240でYES)、IED60の処理回路63は、複数のMUから取得したSVデータを用いてリレー演算を行う(ステップS250)。以下、上記のステップS200〜S250が繰り返される。
[実施の形態3の効果]
以上の実施の形態3のプロセスバス適用保護システム40Bにおいても、実施の形態1の場合と同様の効果を奏することができる。特に、実施の形態3の場合には、各MU50におけるデータ処理時間の実測値を用いて遅延補正が行われる。したがって、特定のイベントがMUで生じたときに定常状態と異なるデータがIEDに送信される場合においても、遅延時間の影響を正確にリレー演算に反映することができるので、より高精度のリレー演算を行うことができる。
[実施の形態3の変形例]
図15は、実施の形態3の変形例によるMUおよびIEDのハードウェア構成を示すブロック図である。
図15のプロセスバス適用保護システム40CにおいてMU50Cは、事前に設定された遅延時間データを格納する不揮発性メモリ57がさらに設けられている点で、図11のMU50Bと異なる。MU50Cは、プロセスバス41を介してSVデータをIED60Aに送信する際に、SVデータと共に遅延時間データ74および遅延時間計測値75を送信する。図15のその他の点は図11の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。
図16は、実施の形態3の変形例によるプロセスバス適用保護システムにおいて、MUからIEDに送信される通信パケットの構成例を示す概略図である。
図16の通信パケットの構成は、図3の通信パケットの構成に対応するものである。ただし、各チャンネルのSVデータの後に遅延時間データ74および遅延時間計測値75が配置されている点で、図16の通信パケットの構成は図3の通信パケットの構成と異なる。MU50Cの処理回路54は、電気量の検出値をIEC61850規格に基づくSVフォーマットのデータ形式に変換する際に、図16に示すように通信パケットに遅延時間データ74および遅延時間計測値75の情報を付加する。
実施の形態4.
実施の形態1の場合には、遅延補正後のMU50_1からの受信データ83に同期するように、遅延補正後のMU50_2からの受信データ86において補間処理が行われていた。これに対して、実施の形態4の場合には、IEDが定めるタイミング(たとえば、リレー演算タイミング)に同期するように、両方の受信データ83,86の各々についてリサンプリング処理(すなわち、補間処理)が行われる。以下、図面を参照してさらに具体的に説明する。
[リサンプリング処理の方法]
図17は、IEDの定める演算時刻に、第1および第2のMUによる電気量の検出時刻を同期させるためのリサンプリング処理について説明するための図である。図17(A)には、IEDのリレー演算タイミングが矢印で示されている。また、図17(B)には、遅延補正後のMU50_1からの受信データ83(すなわち、補正データ)が黒丸で示され、図17(C)には、遅延補正後のMU50_2からの受信データ86(すなわち、補正データ)が黒三角で示されている。
IEDのリレー演算時刻に、第1および第2のMU50_1,50_2による電気量の検出時刻を同期させる場合には、遅延補正後の受信データ83,86の両方に対して補間処理を行う。たとえば、時刻t20に対応する受信データ83のデータ点DT10を求めるためには、時刻t20の前後の時刻t30,t31における受信データ83のデータ点を用いて一次関数による補間処理を行う。同様に、時刻t20に対応する受信データ86のデータ点DT20を求めるためには、時刻t20の前後の時刻t40,t41における受信データ86のデータ点を用いて一次関数による補間処理を行う。
図17における他の時刻t21,t22についても同様に対応するデータ点を、補間処理(リサンプリング処理)によって求めることができる。なお、一次関数補間に代えてスプライン補間を用いても構わないし、他の補間方法を用いてもよい。
[IEDの処理手順]
図18は、実施の形態4におけるプロセスバス適用保護システムにおいて、IEDの動作を示すフローチャートである。なお、図18では、図11に示す実施の形態3の場合のMU50BおよびIED60のハードウェア構成を前提としているが、他の実施の形態のハードウェア構成の場合にも、本実施の形態の場合の処理手順を適用することができる。
図18を参照して、IED60Bは、プロセスバス41を介してMU50からSVデータおよび遅延時間計測値75を受信すると(ステップS200でYES)、IED60のタイマ62は、受信したSVデータに受信時刻を表すタイムスタンプを付加する(ステップS210)。
次のステップS220において、IED60の処理回路63は、不揮発性メモリ64に格納された事前設定の遅延時間データと受信した遅延時間計測値75とに基づいて、1ステップ前に受信したSVデータの受信時刻から当該SVデータに対応する電気量の検出時刻を決定する。すなわち、処理回路63は、各MU50Bから受信したSVデータを当該MUに対応する遅延時間だけ前にシフトさせた補正データを生成する(この処理を遅延補正と称する)。
その後、リレー演算周期が経過する度に(ステップS240でYES)、IED60の処理回路63は、図15で説明したリサンプリング処理を実行する(ステップS230)。さらに、IED60は、リサンプリング後のSVデータを用いてリレー演算を実行する(ステップS250)。
[実施の形態4の効果]
以上説明した実施の形態4のプロセスバス適用保護システムにおいても、実施の形態1の場合と同様の効果を奏することができる。特に、実施の形態4の場合には、IEDがリレー演算を行うタイミングでリサンプリング処理が行われるので、実施の形態1の場合に比べてリサンプリング処理の回数を減らすことができる。
なお、図17では、第1のMU50_1でのサンプリング周期と第2のMU50_2でのサンプリング周期とが同じ場合について示した。これに対して、両MUでのサンプリング周期が異なる場合も上記と全く同じ手順で遅延補正処理およびリサンプリング処理を実行することができる。
また、上記で説明したリサンプリング処理は、実施の形態1〜3のいずれのハードウェア構成を用いても同様に実行することができる。
実施の形態5.
実施の形態5の場合も実施の形態4の場合と同様に、IEDが定める演算タイミングに対して、第1および第2のMUによる電気量の検出時刻を同期させるためのリサンプリング処理が実行される。ただし、実施の形態5の場合には、実施の形態1の図4で説明したような遅延補正処理が行われずに、電気量の受信時刻に対応付けられた時系列のSVデータがそのまま用いられる。以下、図面を参照して詳しく説明する。
[リサンプリング処理の方法]
図19は、実施の形態5のプロセスバス適用保護システムにおけるリサンプリング処理について説明するための図である。図17(A)には、IEDのリレー演算タイミングが矢印で示されている。以下、時刻t50のリレー演算タイミングに対応するデータ点を求める方法を説明する。
図19(B)を参照して、元のアナログ波形80が実線で示され、第1のMU50_1によるサンプリングデータ81が黒丸で示されている。
図19(C)を参照して、MU50_1からIED60が受信したデータ82が黒丸で示されている。受信データ82は、サンプリングデータ81よりも遅延時間dtAだけ遅れている。すなわち、受信データ82は、電気量の受信時刻に対応付けられた時系列のSVデータを表している。
ここで、IED60は、MU50_1におけるサンプリング時刻t50に対応するデータ点を求めるために、時刻t50に遅延時間dtAを加算したt50+dtAにおけるデータ点DT33を、当該時刻の前後の時刻t63,t64における受信データ82を用いた一次関数補間によって求める。このデータ点DT33が、時刻t50におけるMU50_1による電気量の検出値に対応している。なお、一次関数補間に代えてスプライン補間を用いてもよい。
図19(D)を参照して、元のアナログ波形80が実線で示され、第2のMU50_2によるサンプリングデータ84が黒丸で示されている。
図19(E)を参照して、MU50_2からIED60が受信したデータ85が黒丸で示されている。受信データ85は、サンプリングデータ84よりも遅延時間dtBだけ遅れている。すなわち、受信データ85は、電気量の受信時刻に対応付けられた時系列のSVデータを表している。
ここで、IED60は、MU50_2におけるサンプリング時刻t50に対応するデータ点を求めるために、時刻t50に遅延時間dtBを加算したt50+dtBにおけるデータ点DT44を、当該時刻の前後の時刻t73,t44における受信データ85を用いた一次関数補間によって求める。このデータ点DT44が、時刻t50におけるMU50_2による電気量の検出値に対応している。なお、一次関数補間に代えてスプライン補間を用いてもよい。
[IEDの処理手順]
図20は、実施の形態5におけるプロセスバス適用保護システムにおいて、IEDの動作を示すフローチャートである。なお、図20では、図11に示す実施の形態3の場合のMU50BおよびIED60のハードウェア構成を前提としているが、他の実施の形態のハードウェア構成の場合にも、本実施の形態の場合の処理手順を適用することができる。
図20を参照して、IED60Bは、プロセスバス41を介してMU50からSVデータおよび遅延時間計測値75を受信すると(ステップS200でYES)、IED60のタイマ62は、受信したSVデータに受信時刻を表すタイムスタンプを付加する(ステップS210)。これによって、受信時刻に対応付けられた時系列のSVデータが生成される。
その後、リレー演算周期が経過する度に(ステップS240でYES)、IED60の処理回路63は、図19で説明したリサンプリング処理を実行する(ステップS230)。さらに、IED60は、リサンプリング後のSVデータを用いてリレー演算を実行する(ステップS250)。
[実施の形態5の効果]
以上説明した実施の形態5のプロセスバス適用保護システムにおいても、実施の形態1の場合と同様の効果を奏することができる。特に、実施の形態5の場合には、IEDがリレー演算を行うタイミングでリサンプリング処理が行われ、遅延補正処理を必要としないので、実施の形態1,4の場合に比べて演算時間をさらに削減することができる。
なお、図19では、第1のMU50_1でのサンプリング周期と第2のMU50_2でのサンプリング周期とが同じ場合について示した。これに対して、両MUでのサンプリング周期が異なる場合も上記と全く同じ手順でリサンプリング処理を実行することができる。
また、上記で説明したリサンプリング処理は、実施の形態1〜3のいずれのハードウェア構成を用いても同様に実行することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
30 電力系統、31 三相線路、33 遮断器、40,40A,40B,40C プロセスバス適用保護システム、41 プロセスバス、51 補助変成器、52 アナログフィルタ、53 A/D変換器、54,63 処理回路、55,61 通信回路、56 デジタル出力回路、57,64 不揮発性メモリ、58 カウンタ、62 タイマ、CT,CT1,CT2 電流変成器、VT,VT1,VT2 電圧変成器、dtA,dtB 遅延時間。

Claims (15)

  1. 第1のマージングユニットと、インテリジェント電子デバイスとを備え、
    前記第1のマージングユニットは、電力系統の電気量を継続的にサンプリングし、サンプリングした前記電気量の値を第1のデジタル値にデジタル変換してプロセスバスに出力するように構成され、
    前記インテリジェント電子デバイスは、前記プロセスバスを介して前記第1のマージングユニットから前記第1のデジタル値を継続的に受信し、受信時刻を特定することによって、受信時刻に対応付けられた前記第1のデジタル値の時系列データを生成し、
    前記インテリジェント電子デバイスは、受信時刻に対応付けられた前記第1のデジタル値の時系列データと、前記第1のマージングユニットが前記電気量をサンプリングしてから対応する前記第1のデジタル値を受信するまでの第1の遅延時間の情報とに基づいて、任意の第1の時刻において前記第1のマージングユニットによってサンプリングされた前記電気量の値を決定するように構成される、プロセスバス適用保護システム。
  2. 前記インテリジェント電子デバイスは、各前記第1のデジタル値の受信時刻から前記第1の遅延時間を減算することによって、前記電気量のサンプリング時刻に対応付けられた前記第1のデジタル値の時系列データを生成し、
    前記インテリジェント電子デバイスは、サンプリング時刻に対応付けられた前記第1のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻において前記第1のマージングユニットによってサンプリングされた電気量の値を決定する、請求項1に記載のプロセスバス適用保護システム。
  3. 前記インテリジェント電子デバイスは、受信時刻に対応付けられた前記第1のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻に前記第1の遅延時間を加算した受信時刻に対応する前記第1のデジタル値の補間値を求め、求めた前記第1のデジタル値の前記補間値を前記第1の時刻において前記第1のマージングユニットによってサンプリングされた前記電気量の値に決定する、請求項1に記載のプロセスバス適用保護システム。
  4. 第2のマージングユニットをさらに備え、
    前記第2のマージングユニットは、電力系統の電気量を継続的にサンプリングし、サンプリングした前記電気量の値を第2のデジタル値にデジタル変換してプロセスバスに出力するように構成され、
    前記インテリジェント電子デバイスは、前記プロセスバスを介して前記第2のマージングユニットから前記第2のデジタル値を継続的に受信し、受信時刻を特定することによって、受信時刻に対応付けられた前記第2のデジタル値の時系列データを生成し、
    前記インテリジェント電子デバイスは、受信時刻に対応付けられた前記第2のデジタル値の時系列データと、前記第2のマージングユニットが前記電気量をサンプリングしてから対応する前記第2のデジタル値を受信するまでの第2の遅延時間の情報とに基づいて、前記第1の時刻において前記第2のマージングユニットによってサンプリングされた前記電気量の値を決定するように構成される、請求項1に記載のプロセスバス適用保護システム。
  5. 前記インテリジェント電子デバイスは、各前記第1のデジタル値の受信時刻から前記第1の遅延時間を減算することによって、前記電気量のサンプリング時刻に対応付けられた前記第1のデジタル値の時系列データを生成し、
    前記インテリジェント電子デバイスは、各前記第2のデジタル値の受信時刻から前記第2の遅延時間を減算することによって、前記電気量のサンプリング時刻に対応付けられた前記第2のデジタル値の時系列データを生成し、
    前記インテリジェント電子デバイスは、サンプリング時刻に対応付けられた前記第1のデジタル値の時系列データおよびサンプリング時刻に対応付けられた前記第2のデジタル値の時系列データの各々を用いた補間処理によって、前記第1の時刻において前記第1のマージングユニットおよび前記第2のマージングユニットの各々によってサンプリングされた電気量の値を決定する、請求項4に記載のプロセスバス適用保護システム。
  6. 前記インテリジェント電子デバイスは、受信時刻に対応付けられた前記第1のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻に前記第1の遅延時間を加算した受信時刻に対応する前記第1のデジタル値の補間値を求め、求めた前記第1のデジタル値の前記補間値を前記第1の時刻において前記第1のマージングユニットによってサンプリングされた前記電気量の値に決定し、
    前記インテリジェント電子デバイスは、受信時刻に対応付けられた前記第2のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻に前記第2の遅延時間を加算した受信時刻に対応する前記第1のデジタル値の補間値を求め、求めた前記第2のデジタル値の前記補間値を前記第1の時刻において前記第2のマージングユニットによってサンプリングされた前記電気量の値に決定する、請求項4に記載のプロセスバス適用保護システム。
  7. 前記インテリジェント電子デバイスは、前記第1の遅延時間の情報を格納するための不揮発性メモリを含む、請求項1〜3のいずれか1項に記載のプロセスバス適用保護システム。
  8. 前記インテリジェント電子デバイスは、前記第1の遅延時間の情報および前記第2の遅延時間の情報を格納するための不揮発性メモリを含む、請求項4〜6のいずれか1項に記載のプロセスバス適用保護システム。
  9. 前記第1のマージングユニットは、前記第1の遅延時間の情報を格納するための第1の不揮発性メモリを含み、前記第1のデジタル値と共に前記第1の遅延時間の情報を前記インテリジェント電子デバイスに出力するように構成される、請求項1〜3のいずれか1項に記載のプロセスバス適用保護システム。
  10. 前記第1のマージングユニットは、前記第1の遅延時間の情報を格納するための第1の不揮発性メモリを含み、前記第1のデジタル値と共に前記第1の遅延時間の情報を前記インテリジェント電子デバイスに出力するように構成され、
    前記第2のマージングユニットは、前記第2の遅延時間の情報を格納するための第2の不揮発性メモリを含み、前記第2のデジタル値と共に前記第2の遅延時間の情報を前記インテリジェント電子デバイスに出力するように構成される、請求項4〜6のいずれか1項に記載のプロセスバス適用保護システム。
  11. 前記第1のマージングユニットは、前記第1の遅延時間の一部を計測するための第1のカウンタを含み、前記第1のデジタル値と共に前記第1のカウンタの計測値を前記インテリジェント電子デバイスに出力するように構成される、請求項1〜3のいずれか1項に記載のプロセスバス適用保護システム。
  12. 前記第1のマージングユニットは、前記第1の遅延時間の一部を計測するための第1のカウンタを含み、前記第1のデジタル値と共に前記第1のカウンタの計測値を前記インテリジェント電子デバイスに出力するように構成され、
    前記第2のマージングユニットは、前記第2の遅延時間の一部を計測するための第2のカウンタを含み、前記第2のデジタル値と共に前記第2のカウンタの計測値を前記インテリジェント電子デバイスに出力するように構成される、請求項4〜6のいずれか1項に記載のプロセスバス適用保護システム。
  13. 第1のマージングユニットによってサンプリングされてデジタル変換された電力系統の電気量を表す第1のデジタル値を、プロセスバスを介して前記第1のマージングユニットから継続的に受信する通信回路と、
    各前記第1のデジタル値の受信時刻を特定することによって、受信時刻に対応付けられた前記第1のデジタル値の時系列データを生成するタイマと、
    受信時刻に対応付けられた前記第1のデジタル値の時系列データと、前記第1のマージングユニットが前記電気量をサンプリングしてから対応する前記第1のデジタル値を受信するまでの第1の遅延時間の情報とに基づいて、任意の第1の時刻において前記第1のマージングユニットによってサンプリングされた前記電気量の値を決定するように構成された処理回路とを備える、インテリジェント電子デバイス。
  14. 前記処理回路は、各前記第1のデジタル値の受信時刻から前記第1の遅延時間を減算することによって、前記電気量のサンプリング時刻に対応付けられた前記第1のデジタル値の時系列データを生成し、
    前記処理回路は、サンプリング時刻に対応付けられた前記第1のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻において前記第1のマージングユニットによってサンプリングされた電気量の値を決定する、請求項13に記載のインテリジェント電子デバイス。
  15. 前記処理回路は、受信時刻に対応付けられた前記第1のデジタル値の時系列データを用いた補間処理によって、前記第1の時刻に前記第1の遅延時間を加算した受信時刻に対応する前記第1のデジタル値の補間値を求め、求めた前記第1のデジタル値の前記補間値を前記第1の時刻において前記第1のマージングユニットによってサンプリングされた前記電気量の値に決定する、請求項13に記載のインテリジェント電子デバイス。
JP2018560698A 2018-06-06 2018-06-06 プロセスバス適用保護システムおよびインテリジェント電子デバイス Active JP6501993B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021729 WO2019234857A1 (ja) 2018-06-06 2018-06-06 プロセスバス適用保護システムおよびインテリジェント電子デバイス

Publications (2)

Publication Number Publication Date
JP6501993B1 JP6501993B1 (ja) 2019-04-17
JPWO2019234857A1 true JPWO2019234857A1 (ja) 2020-07-30

Family

ID=66166753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018560698A Active JP6501993B1 (ja) 2018-06-06 2018-06-06 プロセスバス適用保護システムおよびインテリジェント電子デバイス

Country Status (4)

Country Link
JP (1) JP6501993B1 (ja)
KR (1) KR102537804B1 (ja)
GB (1) GB2588544B (ja)
WO (1) WO2019234857A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425380A (en) * 1977-07-29 1979-02-26 Hitachi Ltd Digital controller
JP2692907B2 (ja) * 1988-12-07 1997-12-17 株式会社東芝 サンプリング時刻同期方式
JPH10164774A (ja) * 1996-11-27 1998-06-19 Toshiba Corp 遠方監視制御装置
JP3827888B2 (ja) * 1999-06-07 2006-09-27 株式会社東芝 電流差動継電装置の伝送同期方式
JP2001095143A (ja) * 1999-09-20 2001-04-06 Hitachi Ltd 電流差動保護継電装置
JP4575347B2 (ja) * 2001-02-09 2010-11-04 株式会社東芝 変電機器保護制御システム
US7241779B2 (en) 2003-12-23 2007-07-10 Cephalon, Inc. Fused pyrrolocarbazoles
JP4509921B2 (ja) * 2005-12-14 2010-07-21 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP5373260B2 (ja) * 2006-12-01 2013-12-18 九州電力株式会社 送配電系統の事故点標定方法およびシステム
JP5259663B2 (ja) * 2010-09-15 2013-08-07 株式会社東芝 計測装置およびプログラム
JP6034059B2 (ja) * 2012-05-31 2016-11-30 株式会社東芝 電流差動保護継電器
JP6133525B1 (ja) * 2016-09-01 2017-05-24 三菱電機株式会社 インテリジェント電子デバイス

Also Published As

Publication number Publication date
GB2588544A (en) 2021-04-28
GB2588544B (en) 2022-06-22
JP6501993B1 (ja) 2019-04-17
WO2019234857A1 (ja) 2019-12-12
GB202018841D0 (en) 2021-01-13
KR20210002698A (ko) 2021-01-08
KR102537804B1 (ko) 2023-05-31

Similar Documents

Publication Publication Date Title
EP2626877B1 (en) Circuit breaker phase control switching system and circuit breaker control unit
US10910813B2 (en) Intelligent electronic device
JP5020421B1 (ja) 保護制御装置
US20150316593A1 (en) Merging unit which collects information of power system
JP5507025B1 (ja) 電流差動リレー
JP2009071637A (ja) 保護制御計測システム
US6856256B2 (en) Method and system for detecting and digitally transmitting analog output measured quantities of a number of transducers
JP2006254594A (ja) 保護継電装置
US20190207694A1 (en) Systems and methods for time-synchronized communication
JP6501993B1 (ja) プロセスバス適用保護システムおよびインテリジェント電子デバイス
JP6548592B2 (ja) 保護制御装置
JP6274351B2 (ja) データ収集システム
JP7493041B2 (ja) 異なる変電所のied間の時間同期
KR101777038B1 (ko) 보호 릴레이 장치
US12003087B2 (en) Time synchronization between IEDs of different substations
JP5844022B1 (ja) プロセスバス適用保護システム
JP6550703B2 (ja) マージングユニット、トリガ信号出力方法、及びマージングユニットテストシステム
JP2022099577A (ja) 保護制御システム
US20230184818A1 (en) Methods and systems for determining an electrical quantity in an electrical installation
JPH0251313A (ja) ディジタル保護継電装置のサンプリング同期方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250