JPWO2019213048A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019213048A5
JPWO2019213048A5 JP2020560906A JP2020560906A JPWO2019213048A5 JP WO2019213048 A5 JPWO2019213048 A5 JP WO2019213048A5 JP 2020560906 A JP2020560906 A JP 2020560906A JP 2020560906 A JP2020560906 A JP 2020560906A JP WO2019213048 A5 JPWO2019213048 A5 JP WO2019213048A5
Authority
JP
Japan
Prior art keywords
dielectric
substrate
intermediate layer
layer
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020560906A
Other languages
Japanese (ja)
Other versions
JP2021523596A (en
Publication date
Priority claimed from US16/396,943 external-priority patent/US11239563B2/en
Application filed filed Critical
Publication of JP2021523596A publication Critical patent/JP2021523596A/en
Publication of JPWO2019213048A5 publication Critical patent/JPWO2019213048A5/ja
Withdrawn legal-status Critical Current

Links

Description

すべての引用された特許文献、特許出願、および他の参考文献は参照によってそのすべてが本明細書に援用される。しかしながら、本出願内の用語が援用された参照文献内の用語と矛盾または相容れない場合は、本出願からの用語は、援用された参照文献からの相容れない単語に優先される。
[付記1] 誘電体層および第1導電層を含む基板と、前記基板の前記第1の面から外側に延在する第1誘電部分を形成する少なくとも1つの非気体誘電材料、平均誘電率を有する前記第1誘電部分、および任意選択のビア内に延在する任意選択の第2誘電部分を含む少なくとも1つの誘電構造体とを含む電磁(EM)装置であって、前記少なくとも1つの誘電構造体は、逆行性表面を含む前記少なくとも1つの連結スロットによる前記第2誘電部分と前記基板との間の機械的連結、前記誘電構造体と前記基板との間に配置される粗面化表面を有する中間層、または、前記誘電構造体と前記基板との間に配置される接着剤材料のうちの少なくとも1つによって前記基板に対して接着される、前記電磁(EM)装置。
[付記2] 前記基板の第1の面から反対の第2の面に対して前記基板を少なくとも部分的に通って延在する少なくとも1つのビアをさらに含む、付記1に記載の装置。
[付記3] 前記機械的連結を含む、付記1~2のうちのいずれか1つ以上に記載の装置。
[付記4] 前記中間層が存在し、前記中間層は0.5~5マイクロメートルのピーク部から谷底部までの平均距離によって規定される表面粗さを有する、付記1~3のうちのいずれか1つ以上に記載の装置。
[付記5] 前記中間層は、前記第1導電層と同じまたは異なる材料である、付記4に記載の装置。
[付記6] 前記接着剤層を含む、付記1~5のうちのいずれか1つ以上に記載の装置。
[付記7] 前記EM装置は誘電共振器アンテナ(DRA)を含み、前記少なくとも1つの誘電構造体は少なくとも前記DRAの少なくとも部分である、付記1~6のうちのいずれか1つ以上に記載の装置。
[付記8] 前記装置を形成するように前記基板上に誘電組成物を射出成形することを含む、付記1~7のうちのいずれか1つ以上に記載の装置を製造する方法。
[付記9] 前記誘電組成物は、熱可塑性ポリマーを含む、付記8に記載の方法。
[付記10] 前記成形中の前記誘電組成物の射出温度は、前記熱可塑性ポリマーの溶融温度より高い、好ましくは前記射出温度が40℃~220℃、または40℃~160℃、または100℃~220℃である、付記9に記載の方法。
[付記11] 前記射出成形中の射出圧力は、65~350kPaである、付記8~10のうちのいずれか1つ以上に記載の方法。
[付記12] 前記射出成形後の金型温度は0~250℃、または23~200℃であり、かつ、任意選択的に0.5~10分の間維持される、付記8~11のうちのいずれか1つ以上に記載の方法。
[付記13] 前記射出成形は、前記金型を前記誘電組成物で0.1~10秒、または0.5~5秒、または0.2~1秒充填することを含む、付記8~12のうちのいずれか1つ以上に記載の方法。
[付記14] 前記誘電構造体と前記基板との間に視認できる層間剥離が存在しない、付記8~13のうちのいずれか1つ以上に記載の方法。
[付記15] 前記基板をエッチングすることによって前記機械的連結を形成することをさらに含む、付記8~14のうちのいずれか1つ以上に記載の方法。
[付記16] 前記基板の導電層上に前記中間層を形成することをさらに含み、前記中間層を形成することは、任意選択的に、前記導電層を酸化剤に対してさらすことを含み、前記酸化剤は、好ましくはHNO 、H SO 、AgNO 、H 、HOCl、KOCl、KMnO 、またはCH COOHのうちの少なくとも1つを含む、付記8~15のうちのいずれか1つ以上に記載の方法。
[付記17] 前記射出成形の前に、前記基板上に接着剤材料の堆積を形成することをさらに含む、付記8~16のうちのいずれか1つ以上に記載の方法。
[付記18] 前記誘電組成物は、誘電性充填剤を含み、前記誘電性充填剤は、マルチモーダル粒子サイズを有する、付記8~17のうちのいずれか1つ以上に記載の方法。
[付記19] 前記誘電性充填剤は、第1の平均粒子サイズを有する第1の複数の粒子と、第2の平均粒子サイズを有する第2の複数の粒子とを含み、前記第1の平均粒子サイズは、前記第2の平均粒子サイズの7倍以上、または10倍以上、または7~20倍である、付記18に記載の方法。
[付記20] 前記誘電組成物は、流動調整剤、シラン、または難燃剤のうちの少なくとも1つを含む、付記8~19のうちのいずれか1つ以上に記載の方法。
[付記21] 前記射出成形中または後に前記誘電組成物または前記基板のうちの少なくとも1つの上に超音波を伝達することをさらに含む、付記8~20のうちのいずれか1つ以上に記載の方法。
All cited patent documents, patent applications, and other references are hereby incorporated by reference in their entirety. However, if the terms in this application are inconsistent or incompatible with the terms in the referenced references, the terms from this application take precedence over the incompatible words from the referenced references.
[Appendix 1] A substrate including a dielectric layer and a first conductive layer, and at least one non-gas dielectric material forming a first dielectric portion extending outward from the first surface of the substrate, and an average dielectric constant. An electromagnetic (EM) device comprising said first dielectric moiety having and at least one dielectric structure comprising an optional second dielectric moiety extending within an optional via, said at least one dielectric structure. The body is a mechanical connection between the second dielectric portion and the substrate by the at least one coupling slot including a retrograde surface, and a roughened surface disposed between the dielectric structure and the substrate. The electromagnetic (EM) device that is adhered to the substrate by an intermediate layer having, or at least one of an adhesive material arranged between the dielectric structure and the substrate.
[Appendix 2] The apparatus according to Annex 1, further comprising at least one via extending at least partially through the substrate from the first surface of the substrate to the opposite second surface.
[Appendix 3] The device according to any one or more of the appendices 1 and 2, which includes the mechanical connection.
[Appendix 4] The intermediate layer is present, and the intermediate layer has a surface roughness defined by the average distance from the peak portion to the valley bottom portion of 0.5 to 5 micrometers, any of the appendices 1 to 3. Or one or more of the devices described.
[Appendix 5] The apparatus according to Annex 4, wherein the intermediate layer is made of the same material as or different from the first conductive layer.
[Appendix 6] The apparatus according to any one or more of the appendices 1 to 5, which includes the adhesive layer.
[Appendix 7] The EM apparatus includes a dielectric resonator antenna (DRA), and the at least one dielectric structure is at least a part of the DRA, according to any one or more of the appendices 1 to 6. Device.
[Appendix 8] The method for manufacturing the apparatus according to any one or more of the following appendices 1 to 7, which comprises injection molding a dielectric composition onto the substrate so as to form the apparatus.
[Appendix 9] The method according to Appendix 8, wherein the dielectric composition comprises a thermoplastic polymer.
[Appendix 10] The injection temperature of the dielectric composition during molding is higher than the melting temperature of the thermoplastic polymer, preferably the injection temperature is 40 ° C. to 220 ° C., or 40 ° C. to 160 ° C., or 100 ° C. to 100 ° C. The method according to Appendix 9, wherein the temperature is 220 ° C.
[Appendix 11] The method according to any one or more of the appendices 8 to 10, wherein the injection pressure during the injection molding is 65 to 350 kPa.
[Appendix 12] Of the appendices 8 to 11, the mold temperature after the injection molding is 0 to 250 ° C. or 23 to 200 ° C., and is optionally maintained for 0.5 to 10 minutes. The method described in any one or more of the above.
[Appendix 13] The injection molding comprises filling the mold with the dielectric composition for 0.1 to 10 seconds, 0.5 to 5 seconds, or 0.2 to 1 second. The method described in any one or more of them.
[Appendix 14] The method according to any one or more of Annex 8 to 13, wherein there is no visible delamination between the dielectric structure and the substrate.
[Appendix 15] The method according to any one or more of the appendices 8 to 14, further comprising forming the mechanical connection by etching the substrate.
[Appendix 16] Further comprising forming the intermediate layer on the conductive layer of the substrate, forming the intermediate layer optionally comprises exposing the conductive layer to an oxidizing agent. The oxidizing agent preferably comprises at least one of HNO 3 , H 2 SO 4 , AgNO 3 , H 2 O 2 , HOCl, KOCl, KMnO 4 , or CH 3 COOH, among appendicees 8-15. The method described in any one or more.
[Appendix 17] The method according to any one or more of the appendices 8 to 16, further comprising forming a deposit of an adhesive material on the substrate prior to the injection molding.
[Supplementary Note 18] The method according to any one or more of Supplementary note 8 to 17, wherein the dielectric composition contains a dielectric filler, and the dielectric filler has a multimodal particle size.
[Appendix 19] The dielectric filler contains a first plurality of particles having a first average particle size and a second plurality of particles having a second average particle size, and the first average. The method according to Appendix 18, wherein the particle size is 7 times or more, 10 times or more, or 7 to 20 times the second average particle size.
[Appendix 20] The method according to any one or more of Annex 8 to 19, wherein the dielectric composition contains at least one of a flow conditioner, silane, or a flame retardant.
[Appendix 21] The description of any one or more of the appendices 8 to 20, further comprising transmitting ultrasonic waves on at least one of the dielectric composition or the substrate during or after the injection molding. Method.

Claims (26)

誘電体層および第1の面において第1導電層を含む基板と、
前記基板の前記第1の面から外側に延在する第1誘電部分を形成する少なくとも1つの非気体誘電材料、および、第1の平均誘電率を有する前記第1誘電部分を含む少なくとも1つの誘電構造体と
を含む電磁(EM)装置であって、
前記少なくとも1つの誘電構造体は、セラミック粒子を含む誘電性充填剤を含む接着剤材料によって前記基板に対して接着され、前記は第2の平均誘電率を有する、
前記電磁(EM)装置。
A substrate containing a dielectric layer and a first conductive layer on the first surface ,
At least one non-gas dielectric material forming a first dielectric moiety extending outward from the first surface of the substrate, and at least one including the first dielectric moiety having a first average permittivity. An electromagnetic (EM) device that includes a dielectric structure.
The at least one dielectric structure is adhered to the substrate by an adhesive material containing a dielectric filler containing ceramic particles, which has a second average dielectric constant .
The electromagnetic (EM) device.
前記誘電性充填剤は、二酸化チタンを含む、請求項1に記載のEM装置 The EM apparatus according to claim 1, wherein the dielectric filler contains titanium dioxide . 前記第2の平均誘電率は前記第1の平均誘電率に一致する、請求項1~2のうちのいずれか1項に記載のEM装置 The EM apparatus according to any one of claims 1 to 2, wherein the second average dielectric constant matches the first average dielectric constant . 前記基板は、The substrate is
中間層であって、前記第1導電層は前記中間層と前記誘電体層との間に配置され、前記中間層は、前記第1導電層の平均粗さよりも大きい平均粗さを有する粗面を有する前記中間層と、 An intermediate layer, wherein the first conductive layer is arranged between the intermediate layer and the dielectric layer, and the intermediate layer is a rough surface having an average roughness larger than the average roughness of the first conductive layer. With the intermediate layer having
前記誘電構造体と前記中間層との間に配置される、前記接着剤材料と、 The adhesive material disposed between the dielectric structure and the intermediate layer,
をさらに含む、請求項1~3のうちのいずれか1項に記載のEM装置。The EM apparatus according to any one of claims 1 to 3, further comprising.
前記中間層は、前記第1導電層と同じ材料である、請求項4に記載のEM装置。 The EM apparatus according to claim 4, wherein the intermediate layer is made of the same material as the first conductive layer. 前記中間層は、酸化物材料、酸化銅、黒色酸化物、窒化物材料、原子堆積材料の層、蒸着材料の層、または、前述の材料の任意の組み合わせを含む、請求項4に記載のEM装置。The EM according to claim 4, wherein the intermediate layer comprises an oxide material, copper oxide, black oxide, a nitride material, a layer of an atomic layer deposition material, a layer of a vapor deposition material, or any combination of the above-mentioned materials. Device. 記中間層は0.5~5マイクロメートルのピーク部から谷底部までの平均距離によって規定される表面粗さを有する、請求項のうちのいずれか1項に記載のEM装置。 The EM apparatus according to any one of claims 4 to 6 , wherein the intermediate layer has a surface roughness defined by an average distance from a peak portion to a valley bottom portion of 0.5 to 5 micrometers. 前記基板の第1の面から反対の第2の面に対して前記基板を少なくとも部分的に通って延在する少なくとも1つのビアをさらに含む、請求項1~7のうちのいずれか1項に記載のEM装置。 13 . The described EM device. 前記接着剤材料は、前記少なくとも1つのビア内に延在する、請求項8に記載のEM装置。The EM apparatus of claim 8, wherein the adhesive material extends within the at least one via. 前記接着剤材料と前記基板との間に形成される機械的連結をさらに含み、面取りまたは逆行性表面を含む前記基板内の前記少なくとも1つのビアによって前記機械的連結が形成される、請求項9に記載のEM装置。9. The mechanical connection is formed by the at least one via in the substrate, further comprising a mechanical connection formed between the adhesive material and the substrate, including a chamfered or retrograde surface. EM device described in. 前記面取りまたは前記逆行性表面が前記基板の前記第1の面に配置されている、請求項10に記載のEM装置 The EM apparatus according to claim 10, wherein the chamfered or retrograde surface is arranged on the first surface of the substrate . 前記面取りまたは前記逆行性表面が前記基板の前記第2の面に配置されている、請求項10に記載のEM装置 The EM apparatus according to claim 10, wherein the chamfered or retrograde surface is arranged on the second surface of the substrate . 前記EM装置は誘電共振器アンテナ(DRA)を含み、前記少なくとも1つの誘電構造体は前記DRAの少なくとも部分である、請求項1~12のうちのいずれか1に記載のEM装置。 The EM device according to any one of claims 1 to 12 , wherein the EM device includes a dielectric resonator antenna (DRA), and the at least one dielectric structure is at least a portion of the DRA. 前記接着剤材料を前記基板上に堆積させ、続いて前記基板上に誘電組成物を射出成形してEM装置を形成することを含む、前述の請求項のうちのいずれか1項に記載のEM装置を作製する方法。 EM according to any one of the above claims, comprising depositing the adhesive material on the substrate and then injection molding the dielectric composition onto the substrate to form an EM apparatus. How to make a device. 前記誘電組成物は、熱可塑性ポリマーを含む、請求項14に記載の方法。 14. The method of claim 14 , wherein the dielectric composition comprises a thermoplastic polymer. 前記成形中の前記誘電組成物の射出温度は、前記熱可塑性ポリマーの溶融温度より高い、好ましくは前記射出温度が40℃~220℃、または40℃~160℃、または100℃~220℃である、請求項15に記載の方法。 The injection temperature of the dielectric composition during molding is higher than the melting temperature of the thermoplastic polymer, preferably the injection temperature is 40 ° C. to 220 ° C., or 40 ° C. to 160 ° C., or 100 ° C. to 220 ° C. , The method according to claim 15 . 前記射出成形中の射出圧力は、65~350kPaである、請求項1416のうちのいずれか1つ以上に記載の方法。 The method according to any one or more of claims 14 to 16 , wherein the injection pressure during the injection molding is 65 to 350 kPa. 前記射出成形後の金型温度は、0~250℃、または23~200℃であり、かつ、任意選択的に0.5~10分間維持される、請求項1417のいずれか1に記載の方法。 The mold temperature after the injection molding is 0 to 250 ° C. or 23 to 200 ° C., and is optionally maintained for 0.5 to 10 minutes, according to any one of claims 14 to 17 . The method described. 前記射出成形は、前記金型を前記誘電組成物で0.1~10秒、または0.5~5秒、または0.2~1秒充填することを含む、請求項1418のうちのいずれか1に記載の方法。 Of claims 14-18 , the injection molding comprises filling the mold with the dielectric composition for 0.1-10 seconds, 0.5-5 seconds, or 0.2-1 seconds. The method according to any one. 前記誘電構造体と前記基板との間に視認できる層間剥離が存在しない、請求項1419のうちのいずれか1に記載の方法。 The method according to any one of claims 14 to 19 , wherein there is no visible delamination between the dielectric structure and the substrate. 前記基板をエッチングすることによって機械的連結を形成することをさらに含む、請求項1420のうちのいずれか1に記載の方法。 The method according to any one of claims 14 to 20 , further comprising forming a mechanical connection by etching the substrate. 前記基板の導電層上に中間層を形成することをさらに含み、
前記中間層を形成することは、任意選択的に、前記導電層を酸化剤に対してさらすことを含み、前記酸化剤は、好ましくは、HNO、HSO、AgNO、H、HOCl、KOCl、KMnO、またはCHCOOHのうちの少なくとも1つを含む、請求項1421のうちのいずれか1に記載の方法。
Further comprising forming an intermediate layer on the conductive layer of the substrate.
Forming the intermediate layer optionally comprises exposing the conductive layer to an oxidizing agent, wherein the oxidizing agent is preferably HNO 3 , H 2 SO 4 , AgNO 3 , H 2 O. 2. The method of any one of claims 14-21 , comprising at least one of HOCl, KOCl , KMnO 4 , or CH 3 COOH.
前記誘電組成物は、誘電性充填剤を含み、前記誘電性充填剤は、マルチモーダル粒子サイズを有する、請求項1422のうちのいずれか1に記載の方法。 The method according to any one of claims 14 to 22 , wherein the dielectric composition comprises a dielectric filler, wherein the dielectric filler has a multimodal particle size. 前記誘電性充填剤は、第1の平均粒子サイズを有する第1の複数の粒子と、第2の平均粒子サイズを有する第2の複数の粒子とを含み、前記第1の平均粒子サイズは、前記第2の平均粒子サイズの7倍以上、または10倍以上、または7~20倍である、請求項23に記載の方法。 The dielectric filler comprises a first plurality of particles having a first average particle size and a second plurality of particles having a second average particle size, wherein the first average particle size is: 23. The method of claim 23 , wherein the second average particle size is 7 times or more, 10 times or more, or 7 to 20 times the average particle size. 前記誘電組成物は、流動調整剤、シラン、または難燃剤のうちの少なくとも1つを含む、請求項1424のうちのいずれか1に記載の方法。 The method according to any one of claims 14 to 24 , wherein the dielectric composition comprises at least one of a flow conditioner, silane, or a flame retardant. 前記射出成形中または後に前記誘電組成物または前記基板のうちの少なくとも1つの上に超音波を伝達することをさらに含む、請求項1425のうちのいずれか1に記載の方法。 The method of any one of claims 14-25 , further comprising transmitting ultrasonic waves over at least one of the dielectric composition or the substrate during or after the injection molding.
JP2020560906A 2018-05-01 2019-04-30 Electromagnetic dielectric structure bonded to a substrate and method for manufacturing it Withdrawn JP2021523596A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862665072P 2018-05-01 2018-05-01
US62/665,072 2018-05-01
US201862671022P 2018-05-14 2018-05-14
US62/671,022 2018-05-14
US16/396,943 2019-04-29
US16/396,943 US11239563B2 (en) 2018-05-01 2019-04-29 Electromagnetic dielectric structure adhered to a substrate and methods of making the same
PCT/US2019/029857 WO2019213048A1 (en) 2018-05-01 2019-04-30 Electromagnetic dielectric structure adhered to a substrate and methods of making the same

Publications (2)

Publication Number Publication Date
JP2021523596A JP2021523596A (en) 2021-09-02
JPWO2019213048A5 true JPWO2019213048A5 (en) 2022-04-27

Family

ID=68383754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560906A Withdrawn JP2021523596A (en) 2018-05-01 2019-04-30 Electromagnetic dielectric structure bonded to a substrate and method for manufacturing it

Country Status (8)

Country Link
US (2) US11239563B2 (en)
JP (1) JP2021523596A (en)
KR (1) KR20210003183A (en)
CN (1) CN112055917A (en)
DE (1) DE112019002263T5 (en)
GB (1) GB2587724B (en)
TW (1) TW202013666A (en)
WO (1) WO2019213048A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239563B2 (en) * 2018-05-01 2022-02-01 Rogers Corporation Electromagnetic dielectric structure adhered to a substrate and methods of making the same
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
JP2023515976A (en) 2020-02-26 2023-04-17 ティコナ・エルエルシー circuit structure
CN111864329A (en) * 2020-08-03 2020-10-30 江西沃格光电股份有限公司 Dielectric resonator, preparation method thereof, dielectric filter and communication equipment
CN112164900B (en) * 2020-10-26 2021-09-28 北京邮电大学 Plasma dielectric resonant antenna
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
CN116162361B (en) * 2021-11-25 2024-04-09 广东中塑新材料有限公司 Low dielectric LCP resin material and preparation method thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198450B1 (en) 1995-06-20 2001-03-06 Naoki Adachi Dielectric resonator antenna for a mobile communication
US6075485A (en) * 1998-11-03 2000-06-13 Atlantic Aerospace Electronics Corp. Reduced weight artificial dielectric antennas and method for providing the same
JP2001024420A (en) * 1999-07-06 2001-01-26 Mitsumi Electric Co Ltd Antenna element
JP2003212649A (en) * 2002-01-16 2003-07-30 Murata Mfg Co Ltd Dielectric porcelain for high-frequency region, dielectric resonator, dielectric filter, dielectric duplexer and transmitter device
GB0207052D0 (en) * 2002-03-26 2002-05-08 Antenova Ltd Novel dielectric resonator antenna resonance modes
JP3843428B2 (en) * 2002-10-31 2006-11-08 ソニーケミカル&インフォメーションデバイス株式会社 Chip-shaped antenna element, manufacturing method thereof, and printed circuit board mounted with antenna
JP2005064548A (en) * 2003-08-08 2005-03-10 Tdk Corp Dielectric resonant antenna
CN1826299B (en) * 2004-03-01 2010-06-16 株式会社村田制作所 Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
US7071879B2 (en) * 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system
US7405698B2 (en) * 2004-10-01 2008-07-29 De Rochemont L Pierre Ceramic antenna module and methods of manufacture thereof
US7876283B2 (en) * 2005-12-15 2011-01-25 Stmicroelectronics S.A. Antenna having a dielectric structure for a simplified fabrication process
US20080129617A1 (en) * 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Wideband Dielectric Antenna
US8497804B2 (en) * 2008-10-31 2013-07-30 Medtronic, Inc. High dielectric substrate antenna for implantable miniaturized wireless communications and method for forming the same
CN101593866B (en) * 2009-06-30 2013-07-10 华南理工大学 Dielectric resonance UHF RFID label antenna provided with T-shaped matching network
US20110163921A1 (en) * 2010-01-06 2011-07-07 Psion Teklogix Inc. Uhf rfid internal antenna for handheld terminals
US8841777B2 (en) * 2010-01-12 2014-09-23 International Business Machines Corporation Bonded structure employing metal semiconductor alloy bonding
US8354339B2 (en) * 2010-07-20 2013-01-15 International Business Machines Corporation Methods to form self-aligned permanent on-chip interconnect structures
EP3295482B1 (en) * 2015-05-13 2020-10-28 Intel Corporation Package with bi-layered dielectric structure
CN104993239A (en) * 2015-07-16 2015-10-21 清华大学 Triple-polarized dielectric resonant antenna with high isolation and low cross polarization
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
CN105924151A (en) * 2016-04-20 2016-09-07 苏州艾福电子通讯股份有限公司 Microwave dielectric ceramic powder, preparation method thereof, microwave dielectric ceramic and microwave component
US10062656B2 (en) * 2016-08-15 2018-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Composite bond structure in stacked semiconductor structure
CN106356616A (en) * 2016-09-19 2017-01-25 西南交通大学 Dielectric resonator antenna applied in WLAN frequency band
GB2575946B (en) * 2017-06-07 2022-12-14 Rogers Corp Dielectric resonator antenna system
US10910722B2 (en) * 2018-01-15 2021-02-02 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) * 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11239563B2 (en) * 2018-05-01 2022-02-01 Rogers Corporation Electromagnetic dielectric structure adhered to a substrate and methods of making the same
US11552390B2 (en) * 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system

Similar Documents

Publication Publication Date Title
JPWO2019213048A5 (en)
GB2587724A (en) Electromagnetic dielectric structure adhered to a substrate and methods of making the same
CN102738119B (en) Through-silicon vias for semicondcutor substrate and method of manufacture
KR101423534B1 (en) Structure and method for producing same
KR101456088B1 (en) Insulating sheet, process for producing same, and process for producing structure using the insulating sheet
CN106132688A (en) Goods and method for thin slice and the controlled bonding of carrier
TWI225685B (en) Method forming metal filled semiconductor features to improve structural stability
CN114787989A (en) Package core assembly and manufacturing method
TWI738706B (en) Substrate for packaging and manufacturing method thereof
KR20120048710A (en) Structure and process for producing same
CN102548200A (en) Circuit board and manufacturing method thereof
JP2022510822A (en) Semiconductor onsemi substrate for radio frequency applications
CN113889476A (en) 1T1C flexible ferroelectric memory and preparation method thereof
CN102160283B (en) Method for producing a dielectric layer in an electroacoustic component, and electroacoustic component
US10092928B2 (en) Process for the manufacture of a component comprising a stack of a functional layer on a composite film
TWI694575B (en) Through silicon via structure and method for manufacturing the same
JP4640878B2 (en) Method of manufacturing circuit board using low dielectric constant resin insulating layer and method of manufacturing thin film multilayer circuit film using low dielectric constant resin insulating layer
CN101442064A (en) Semiconductor device and method of manufacturing the same
JP5617291B2 (en) Aerosol deposition apparatus and aerosol deposition method
TWI238026B (en) Structure and fabricating method of a high-dielectric film formed on an organic substrate
CN113054093B (en) Filling layer and resonator comprising same and manufacturing method
JP2006175375A (en) Composite structure of resin and brittle material and production method used for it, and electronic device
CN102097304B (en) Forming method of nitrogen-doped silicon carbide thin film
TW201407717A (en) Film for filling through hole interconnects and post processing for interconnect substrates
WO2024075456A1 (en) Circuit board, and method for manufacturing circuit board