JPWO2019211937A1 - コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法 - Google Patents

コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法 Download PDF

Info

Publication number
JPWO2019211937A1
JPWO2019211937A1 JP2020517022A JP2020517022A JPWO2019211937A1 JP WO2019211937 A1 JPWO2019211937 A1 JP WO2019211937A1 JP 2020517022 A JP2020517022 A JP 2020517022A JP 2020517022 A JP2020517022 A JP 2020517022A JP WO2019211937 A1 JPWO2019211937 A1 JP WO2019211937A1
Authority
JP
Japan
Prior art keywords
gene
catechol
strain
transformant
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020517022A
Other languages
English (en)
Other versions
JP7317810B2 (ja
Inventor
乾 将行
将行 乾
和三 平賀
和三 平賀
雅子 須田
雅子 須田
久保田 健
健 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Publication of JPWO2019211937A1 publication Critical patent/JPWO2019211937A1/ja
Application granted granted Critical
Publication of JP7317810B2 publication Critical patent/JP7317810B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11001Catechol 1,2-dioxygenase (1.13.11.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01063Protocatechuate decarboxylase (4.1.1.63)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

カテコールの生産性を向上できる微生物の形質転換体の提供。一態様において、宿主のコリネ型細菌に(1)Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD、(2)Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属における前記(1)の遺伝子のオーソログ、及び(3)前記(1)又は(2)の遺伝子がコードする酵素とのアミノ酸配列の同一性が70%以上であり、かつ、脱炭酸活性を有する酵素がコードされた遺伝子からなる群から選択される遺伝子が導入された形質転換体であって、宿主コリネ型細菌のカテコール1,2−ジオキシゲナーゼ遺伝子catA、及び、プロトカテク酸デヒドロゲナーゼ遺伝子pcaHGに変異が導入され、前記2遺伝子がコードする酵素が機能低下又は機能欠損している、コリネ型細菌の形質転換体。

Description

本開示は、コリネ型細菌の形質転換体に関する。本開示は、また、該形質転換体を用いる有用化合物(例えば、カテコール)の製造方法に関する。
地球温暖化、および化石資源の枯渇問題を背景に、再生可能な資源を原料とした化学品の製造は、バイオ燃料と並んで新産業バイオリファイナリーとして低炭素社会実現に向けた重要な方策であることが認識され、注目されている。
カテコールは香料、重合防止剤、抗酸化剤、医薬品、農薬の合成原料として使用される。また、レジスト(プリント基板製造時に塗布する感光性の樹脂)の剥離剤、脱酸素剤(活性炭吸着剤)、メッキ処理剤の原料として使用される。
カテコールは、主にフェノールを原料として酸化反応により製造されている。しかし、上述の低炭素社会実現に向け、再生可能資源からの製造が切望されている。
カテコールは、微生物の代謝経路上に存在する。ベンゼンからの2段階の酸化又はジヒドロキシ安息香酸に対する脱炭酸反応によりカテコールが生成する。その後カテコールはオルト開裂またはメタ開裂によって分解が進み、TCA回路に組み込まれる。
特許文献1及び2はEscherichia属又はKlebsiella属の微生物を宿主としトランスケトレース、DAHPシンセース、3-デヒドロキネートシンセースを導入し、さらにKlebsiella pneumoniae由来のデヒドロシキメートデヒドラターゼ、プロトカテク酸デカルボキシラーゼを導入した形質転換菌を用いてグルコースからカテコールを製造する技術を開示する。
特許文献3は微生物によるアジピン酸、シスシスムコン酸生産を目的としている。その検討過程で、特許文献2と同じ構成による株を用いたカテコール生産例を開示する。
特許文献4および5はデヒドロシキミ酸を前駆体とする化合物の生産法を開示したもので、Klebsiellapneumoniae, Enterobacter cloacae, Lactobacillus plantarum またはClostridium butyricum 由来のプロトカテク酸デカルボキシラーゼを発現させることによるカテコール製造法を提案している。実施例では大腸菌にEnterobacter cloacae由来の3,4-DHB デカルボキシラーゼを発現させた形質転換菌を用いている。
特許文献6はムコン酸の3種類の異性体の生産を目的としている。その検討過程で、特許文献2と同じ構成による株を用いたカテコール生産例を開示する。
非特許文献1は大腸菌にKlebsiella pneumoniaeのプロトカテク酸脱炭酸酵素遺伝子を導入した形質転換菌を用いてグルコースからカテコールを製造する技術を開示する。
非特許文献2は大腸菌にPseudomonas aeruginosaのanthranilate 1,2-dioxygenase遺伝子を導入した形質転換菌を用いてグルコースからカテコールを製造する技術を開示する。
非特許文献3は大腸菌にKlebsiella pneumoniaeのプロトカテク酸脱炭酸酵素遺伝子を導入した形質転換菌を用いてグルコースからカテコールを製造する技術を開示する。
米国特許第5272073号明細書 特表平9-506242号公報 特表平9-505463号公報 米国特許第2012-0196339号明細書 米国特許第2013-0252294号明細書 特表2013-516196号公報
J. Am. Chem. Soc. (1995) 117:2395-2400 Microb. Cell Fact. (2014) 13:136 J. Am. Chem. Soc. (2005) 127:2874-2882
生物学的方法によるカテコールの製造方法においては、実用化に向けてより一層の生産性の向上が期待されている。
本開示は、一態様において、糖類を原料として、効率よくカテコールを製造できる微生物、及び、この微生物を用いて効率良くカテコールを製造する方法を提供する。
本開示は、一態様において、宿主のコリネ型細菌に、
(1)Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD、
(2)Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属における前記(1)の遺伝子のオーソログ、及び
(3)前記(1)又は(2)の遺伝子がコードする酵素とのアミノ酸配列の同一性が70%以上であり、かつ、脱炭酸活性を有する酵素がコードされた遺伝子
からなる群から選択される遺伝子が導入された形質転換体であって、
宿主コリネ型細菌のカテコール1,2−ジオキシゲナーゼ遺伝子catA、及び、プロトカテク酸デヒドロゲナーゼ遺伝子pcaHGに変異が導入され、前記2遺伝子がコードする酵素が機能低下又は機能欠損している、コリネ型細菌の形質転換体に関する。
本開示は、その他の一態様において、本開示に係るコリネ型細菌形質転換体を、増殖に必要な因子の少なくとも1つを除いた反応液中又は還元条件の反応液中で反応させる工程と、反応培地中のカテコールを回収する工程とを含むカテコールの製造方法に関する。
本開示によれば、一態様において、コリネ型細菌におけるカテコールの製造を効率化することができる。例えば、カテコールの生産における生産速度及び/又は収率を向上できる。
図1は、CAT21株のカテコール生産の様子の一例を示すグラフである。 図2は、コリネ型細菌の対カテコール耐性の高さを示す実験例である。
本発明者らは、鋭意検討した結果、プロトカテク酸及びカテコールの分解を抑制する変異が導入されたコリネ型細菌において、所定の脱炭酸酵素を発現させることでカテコールの生産性を向上できることを見出した。
該所定の脱炭酸酵素を発現させることでプロトカテク酸の脱炭酸反応が亢進し、カテコールの生産性が向上すると推定される。ただし、本開示はこのメカニズムに限定されなくてもよい。
本開示によれば、一態様において、カテコールの生産濃度及び/又は収率を向上させうる。
[宿主]
本開示において、所定の脱炭酸酵素を導入する宿主は、コリネ型細菌である。
本開示において、コリネ型細菌とは、バージーズ・マニュアル・デターミネイティブ・バクテリオロジー〔BargeysManual of Determinative Bacteriology、Vol. 8、599(1974)〕に定義されている一群の微生物であり、通常の好気的条件で増殖するものならば特に限定されるものではない。具体例を挙げれば、コリネバクテリウム属菌、ブレビバクテリウム属菌、アースロバクター属菌、マイコバクテリウム属菌、マイクロコッカス属菌等が挙げられる。コリネ型細菌の中ではコリネバクテリウム属菌が好ましい。
コリネバクテリウム属菌としては、コリネバクテリウム グルタミカム(Corynebacteriumglutamicum)、コリネバクテリウム エフィシェンス(Corynebacterium efficiens)、コリネバクテリウム アンモニアゲネス(Corynebacterium ammoniagenes)、コリネバクテリウム ハロトレランス(Corynebacterium halotolerance)、コリネバクテリウム アルカノリティカム(Corynebacterium alkanolyticum)等が挙げられる。中でも、安全でかつキシロオリゴ糖の利用能が高い点で、コリネバクテリウム グルタミカムが好ましい。
好適な菌株として、コリネバクテリウム グルタミカムR株(FERMP-18976)、ATCC13032株、ATCC13869株、ATCC13058株、ATCC13059株、ATCC13060株、ATCC13232株、ATCC13286株、ATCC13287株、ATCC13655株、ATCC13745株、ATCC13746株、ATCC13761株、ATCC14020株、ATCC31831株、MJ-233(FERM BP-1497)、MJ-233AB-41(FERM BP-1498)等が挙げられる。中でも、R株(FERM P-18976)、ATCC13032株、ATCC13869株が好ましい。
これらの菌株は、微生物保存機関であるNBRC(NITEBiological Resource Center)、ATCC(American Type Culture Collection)などで入手可能である。
また、これら微生物は、自然界に存在する野生株だけでなく、その変異株、又は遺伝子組換え株であってもよい。
カテコールの生産性を向上する観点から、本開示に係る形質転換体において、宿主コリネ型細菌ゲノムのカテコール1,2-ジオキシゲナーゼ活性を有する酵素をコードする遺伝子catA、及び、プロトカテク酸デヒドロゲナーゼ活性を有する酵素をコードする遺伝子pcaHGには変異が導入され、これら2つの酵素が機能低下又は機能欠損している。前記変異は、例えば、塩基配列の置換、欠失、挿入などが挙げられる。
これらの変異は、宿主として使用するコリネ型細菌にあらかじめ導入されていてもよく、本開示に係る形質転換体を製造する過程でこれらの変異を導入してもよい。
また、カテコールの生産性を向上する観点から、宿主のコリネ型細菌として、プロトカテク酸の産生が向上するような遺伝子改変株を使用してもよい(例えば、国際公開 WO2017/169399)。
[脱炭酸酵素の導入]
本開示において、宿主であるコリネ型細菌に導入される脱炭酸酵素は、プロトカテク酸に対する脱炭酸活性を有する酵素であることが好ましい。
コリネ型細菌にプロトカテク酸に対する脱炭酸活性を有する酵素を導入する形態として、下記(1)〜(3)の遺伝子のいずれかを導入することが挙げられる。
(1)Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD。
(2)Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属における前記(1)の遺伝子のオーソログ。
(3)前記(1)又は(2)の遺伝子がコードする酵素とのアミノ酸配列の同一性が70%以上であり、かつ、脱炭酸活性を有する酵素がコードされた遺伝子。
本開示において、上記(1)〜(3)の遺伝子の宿主コリネ型細菌への導入にあたっては、一般的な遺伝子組換え技術(例えば、Michael R. Green & Joseph Sambrook, Molecular cloning, Coldspring Harbor Laboratory Pressに記載の方法)を用いて行うことができ、プラスミドベクターを用いた遺伝子導入、又は宿主コリネ型細菌染色体へ組み込む形態で実施することができる。
本開示において、遺伝子の導入とは、一又は複数の実施形態において、該遺伝子が宿主内で発現可能に導入することをいう。
例えば、宿主コリネ型細菌にubiDX遺伝子を導入するには、適当なプロモーターを該遺伝子の5’-側上流に組み込むことが好ましく、加えてターミネーターを3’-側下流に組み込むことがさらに好ましい。
[Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD]
本開示において、Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiDは、一又は複数の実施形態において、LGG_02656若しくはLGG_RS12695としてNCBIなどのデータベースに登録される。
宿主に導入する脱炭酸酵素遺伝子は、前記Lactobacillus rhamnosusのubiDのオーソログであってもよい。Lactobacillus rhamnosusのubiDのオーソログとしては、Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属におけるオーソログが挙げられ、カテコールの生産性を向上する観点から、Lactobacillus属、Bacillus属及びEnterobacter属のオーソログが好ましく、Lactobacillus属及びBacillus属のオーソログがより好ましく、Lactobacillus属のオーソログがさらに好ましく、実施例で使用される遺伝子がさらにより好ましい。
Lactobacillus rhamnosusのubiD遺伝子のLactobacillus属のオーソログとしては、LactobacilluspentosusのubiD遺伝子、Lactobacillus plantarumのubiD遺伝子、Lactobacillus pobuzihiiのubiD遺伝子、LactobacilluscompostiのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のBacillus属のオーソログとしては、前記Bacillus megateriumのubiD遺伝子、Bacillus licheniformisのubiD遺伝子、BacillusatrophaeusのubiD遺伝子、Bacillus subtilis subsp. subtilisのubiD遺伝子、Bacillus subtilis subsp. spizizeniiのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のEnterobacter属のオーソログとしては、EnterobacteraerogenesのubiD遺伝子、Enterobacter cloacaeのubiD遺伝子、Enterobacter sakazakiiのubiD遺伝子、EnterobacterhormaecheiのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のEscherichia属のオーソログとしては、Escherichia coli WのubiD遺伝子、Escherichia fergusoniiのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のPaenibacillus属のオーソログとしては、PaenibacilluspolymyxaのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のCitrobacter属のオーソログとしては、Citrobacter koseriのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
Lactobacillus rhamnosusのubiD遺伝子のPantoea属のオーソログとしては、Pantoea ananatisのubiD遺伝子が挙げられるが、これらに限定されなくてもよい。
なお、本開示において「オーソログ遺伝子」とは、異なる生物(例えば、異なる種、異なる属)に存在する相同な機能を有するタンパクをコードする類縁遺伝子を意味する。
宿主に導入する脱炭酸酵素遺伝子は、前記Lactobacillus rhamnosusのubiD遺伝子又は上述したそのオーソログがコードする酵素のアミノ酸配列と同一性が70%以上であるアミノ酸配列を有する酵素であって、脱炭酸活性を有する酵素がコードされた遺伝子であってもよい。
アミノ酸配列の同一性は、カテコールの生産性を向上する観点から、70%以上であって、75%以上が好ましく、80%以上がより好ましく、85%以上がさらに好ましい。
本開示において、ubiD遺伝子は、カテコールの生産性を向上する観点から、ubiD遺伝子とともに該ubiD遺伝子と同じゲノムにあるubiX遺伝子も宿主コリネ型細菌に導入されることが好ましい。また、該ubiD遺伝子と同じゲノムにubiH遺伝子が存在する場合、カテコールの生産性を向上する観点から、ubiD遺伝子及びubiX遺伝子とともにubiH遺伝子も導入されることが好ましい。
Lactobacillus rhamnosusのubiD遺伝子とubiX遺伝子はこの順でオペロンを構成しており、このような場合、本開示においてubiDX遺伝子と表記する。Lactobacillus rhamnosusのubiDX遺伝子の一又は複数の実施形態として、配列表の配列番号1の塩基配列が挙げられる。
Lactobacillus rhamnosusのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiDX遺伝子として導入することが好ましい。 また、Lactobacillus rhamnosusのubiD遺伝子のオーソログを宿主コリネ型細菌に導入する場合も、カテコールの生産性を向上する観点から、ubiD遺伝子とともにubiX遺伝子も宿主コリネ型細菌に導入されることが好ましく、ゲノムにubiH遺伝子があればubiD遺伝子及びubiX遺伝子とともにubiH遺伝子も宿主コリネ型細菌に導入されることが好ましい。
Lactobacillus pentosusのubiX遺伝子は、ubiD遺伝子とは別個にubiH遺伝子とオペロンを構成する(ubiHX遺伝子)。Lactobacillus pentosusのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiD遺伝子とともにubiHX遺伝子を導入することが好ましい。Lactobacillus pentosusのubiXH遺伝子及びubiD遺伝子の一又は複数の実施形態として、それぞれ、配列表の配列番号2及び3の塩基配列が挙げられる。
Lactobacillus plantarumのubiD遺伝子を宿主コリネ型細菌に導入する場合も、Lactobacillus pentosusと同様に、カテコールの生産性を向上する観点から、ubiD遺伝子とともにubiHX遺伝子を導入することが好ましい。Lactobacillus plantarumのubiXH遺伝子及びubiD遺伝子の一又は複数の実施形態として、それぞれ、配列表の配列番号4及び5の塩基配列が挙げられる。
Lactobacillus pobuzihii及びLactobacilluscompostiのubiD遺伝子を宿主コリネ型細菌に導入する場合も、カテコールの生産性を向上する観点から、ubiDX遺伝子として導入することが好ましい。Lactobacillus pobuzihii及びLactobacilluscompostiのubiDX遺伝子の一又は複数の実施形態として、それぞれ、配列表の配列番号6及び7の塩基配列が挙げられる。
Bacillus megateriumのubiD遺伝子は、ubiX遺伝子、ubiD及びubiHがこの順でオペロンを構成しており、このような場合、本開示においてubiXDH遺伝子と表記する。Bacillus megateriumのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Bacillus megateriumのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号10の塩基配列が挙げられる。
Bacillus licheniformisのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Bacillus licheniformisのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号11の塩基配列が挙げられる。
Bacillus atrophaeusのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Bacillus atrophaeusのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号12の塩基配列が挙げられる。
Bacillus subtilis subsp. subtilisのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Bacillus subtilis subsp. subtilisのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号13の塩基配列が挙げられる。
Bacillus subtilis subsp. spizizeniiのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Bacillus subtilis subsp. spizizeniiのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号14の塩基配列が挙げられる。
Enterobacter aerogenesのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Enterobacter aerogenesのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号15の塩基配列が挙げられる。
Enterobacter cloacaeのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Enterobacter cloacaeのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号16の塩基配列が挙げられる。
Enterobacter sakazakiiのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Enterobacter sakazakiiのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号17の塩基配列が挙げられる。
Enterobacter hormaecheiのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Enterobacter hormaecheiのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号18の塩基配列が挙げられる。
Escherichia coli WのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Escherichia coli WのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号19の塩基配列が挙げられる。
Escherichia fergusoniiのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Escherichia fergusoniiのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号20の塩基配列が挙げられる。
Paenibacillus polymyxaのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Paenibacillus polymyxaのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号21の塩基配列が挙げられる。
Citrobacter koseriのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Citrobacter koseriのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号22の塩基配列が挙げられる。
Pantoea ananatisのubiD遺伝子を宿主コリネ型細菌に導入する場合、カテコールの生産性を向上する観点から、ubiXDH遺伝子として導入することが好ましい。Pantoea ananatisのubiXDH遺伝子遺伝子の一又は複数の実施形態として、配列表の配列番号23の塩基配列が挙げられる。
[形質転換体]
本開示は、一態様において、宿主コリネ型細菌に上記(1)−(3)のいずれかの遺伝子が導入され、かつ、宿主ゲノムのカテコール1,2-ジオキシゲナーゼ(catA)及びプロトカテク酸デヒドロゲナーゼ(pcaHG)の2つの酵素が機能低下又は機能欠損している形質転換体に関する。
本開示に係る形質転換体は、一又は複数の実施形態において、カテコールを効率よく産生できる。
本開示に係る形質転換体は、一又は複数の実施形態において、カテコールの生産性を向上する観点から、ubiX遺伝子及び/又はubiH遺伝子が導入されていることが好ましい。
本開示に係る形質転換体は、カテコールの産生又はその効率化のために、さらなる遺伝子が導入されてもよく、遺伝子の欠失及び/又は変異が導入されもよい。
カテコール産生の効率化の一又は複数の実施形態として、プロトカテク酸の産生を向上する遺伝子の導入や破壊が挙げられる。プロトカテク酸の産生を向上する遺伝子の導入の一例として、3−デオキシ−D−アラビノ−ヘプツロソネート−7−リン酸シンターゼ活性を有する酵素をコードする遺伝子(例えば、aroG)、及び/又は、3−デヒドロキナ酸シンターゼ活性を有する酵素をコードする遺伝子(例えば、qusB)の導入が挙げられる。
本開示に係る形質転換体は、一又は複数の実施形態として、カテコールの産生に使用できる。また、本開示に係る形質転換体は、その他の一又は複数の実施形態として、カテコールを中間体とする有機化合物の産生に使用できる。
[カテコールの製造方法]
本開示に係る形質転換体は、菌体増殖を伴わない反応液中で、糖類を原料として、カテコールを高効率で生産できる。
よって、本開示は、その他の一態様において、本開示に係るコリネ型細菌形質転換体を、増殖に必要な因子の少なくとも1つを除いた反応液中又は還元条件の反応液中で反応させる工程と、反応培地中のカテコールを回収する工程とを含むカテコールの製造方法に関する。
本発明に係るカテコールの製造方法においては、まず、上記の本開示に係る形質転換体を好気条件下で増殖培養する。
本開示に係る形質転換体の培養は、炭素源、窒素源及び無機塩等を含む通常の栄養培地を用いて行うことが出来る。培養には、炭素源として、例えばグルコース又は廃糖蜜等を、そして窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム又は尿素等をそれぞれ単独もしくは混合して用いることが出来る。また、無機塩として、例えばリン酸一水素カリウム、リン酸ニ水素カリウム又は硫酸マグネシウム等を使用することが出来る。この他にも必要に応じて、ペプトン、肉エキス、酵母エキス、コーンスティープリカー、カザミノ酸又はビオチンもしくはチアミン等の各種ビタミン等の栄養素を培地に適宜添加することも出来る。
培養は、通常、通気攪拌又は振盪等の好気的条件下、約20℃〜約60℃、好ましくは、約25℃〜約35℃の温度で行うことが出来る。培養時のpHは例えば5〜10付近、好ましくは7〜8付近の範囲であり、培養中のpH調整は酸又はアルカリを添加することにより行うことが出来る。培養開始時の炭素源濃度は、約1〜20%(W/V)、好ましくは約2〜5%(W/V)である。また、培養期間は通常1〜7日間程度である。
ついで、本開示に係る形質転換体の培養菌体を回収する。上記の如くして得られる培養物から培養菌体を回収分離する方法としては、特に限定されず、例えば遠心分離や膜分離等の公知の方法を用いることができる。
回収された培養菌体に対して処理を加え、得られる菌体処理物を次工程に用いてもよい。前記菌体処理物としては、培養菌体に何らかの処理が加えられたものが挙げられ、例えば、菌体をアクリルアミド又はカラギーナン等で固定化した固定化菌体等が挙げられる。
上記の如くして得られる培養物から回収分離された本開示に係る形質転換体の培養菌体又はその菌体処理物によるカテコールの生成反応は、菌体増殖を伴わない反応液中であれば好気条件及び還元条件のいずれの生成方式を用いてもよい。カテコール生成方式は、回分式、連続式いずれの生成方式も可能である。
本開示において、増殖しないことには、実質的に増殖しないこと、又は殆ど増殖しないことが含まれる。例えば、好気条件の反応では微生物の増殖に必須の化合物であるビオチン、チアミンなどのビタミン類、窒素源などの1種以上を欠乏、或いは制限させた反応液を用いることにより、形質転換体の増殖を回避又は抑制できる。
また、還元条件では、コリネ型細菌は実質的に増殖しないため反応液の組成は規定されない。還元条件における反応液の酸化還元電位は、約-200mV〜-500mVが好ましく、約-150mV〜-500mVがより好ましい。反応液の還元状態は簡便にはレサズリン指示薬(還元状態であれば、青色から無色への脱色)で推定できるが、正確には酸化還元電位差計(例えば、BROADLEY JAMES社製、ORPElectrodes)を用いて測定できる。
本開示においては、反応液に菌体又はその処理物を添加した直後からカテコールを採取するまで、還元条件を維持していることが好ましいが、少なくともカテコールを採取する時点で反応液が還元状態であればよい。反応時間の約50%以上、より好ましくは約70%以上、さらに好ましくは約90%以上の時間、反応液が還元条件下に保たれていることが望ましい。なかでも、反応時間の約50%以上、より好ましくは約70%以上、さらに好ましくは約90%以上の時間、反応液の酸化還元電位が約-200mV〜-500mV程度に保たれていることがより望ましい。
反応液には、カテコール生成の原料となる有機炭素源(例えば、糖類等)が含まれている。有機炭素源としては、本開示に係る形質転換体が生化学反応に利用できる物質が挙げられる。
具体的には、糖類としては、グルコース、キシロース、アラビノース、ガラクトース、フルクトースもしくはマンノースなどの単糖類、セロビオース、ショ糖、ラクトースもしくはマルトースなどの二糖類、又はデキストリンもしくは可溶性澱粉などの多糖類などが挙げられる。なかでも、グルコースが好ましい。
よって、本開示は、一態様において、本開示に係るコリネ型細菌形質転換体を、増殖に必要な因子の少なくとも1つを除いた反応液中又は還元条件の反応液中で反応させる工程と、反応培地中のカテコールを回収する工程とを含むカテコールの製造方法に関する。
最後に、上述のようにして反応培地で生成したカテコールを採取する。その方法はバイオプロセスで用いられる公知の方法を用いることが出来る。そのような公知の方法として、カテコール生成液の塩析法、再結晶法、有機溶媒抽出法、エステル化蒸留分離法、クロマトグラフィー分離法又は電気透析法等があり、その分離精製採取法は適宜定めることが出来る。
本開示は、一又は複数の実施形態において、以下に関しうる;
[1] 宿主のコリネ型細菌に、
(1)Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD、
(2)Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属における前記(1)の遺伝子のオーソログ、及び
(3)前記(1)又は(2)の遺伝子がコードする酵素とのアミノ酸配列の同一性が70%以上であり、かつ、脱炭酸活性を有する酵素がコードされた遺伝子
からなる群から選択される遺伝子が導入された形質転換体であって、
宿主コリネ型細菌のカテコール1,2−ジオキシゲナーゼ遺伝子catA、及び、プロトカテク酸デヒドロゲナーゼ遺伝子pcaHGに変異が導入され、前記2遺伝子がコードする酵素が機能低下又は機能欠損している、コリネ型細菌の形質転換体。
[2] カテコール生産能を有する、[1]に記載の形質転換体。
[3] さらに、3−デオキシ−D−アラビノ−ヘプツロソネート−7−リン酸シンターゼ活性を有する酵素をコードする遺伝子、及び、3−デヒドロキナ酸シンターゼ活性を有する酵素をコードする遺伝子の少なくとも一方が導入された、[1]又は[2]に記載の形質転換体。
[4] 宿主のコリネ型細菌がコリネバクテリウム グルタミカムである、[1]から[3]のいずれかに記載の形質転換体。
[5] 宿主のコリネ型細菌がコリネバクテリウム グルタミカムR(FERMP-18976)、ATCC13032、又はATCC13869である、[1]から[4]のいずれかに記載の形質転換体。
[6] コリネバクテリウム グルタミカムCAT21株(受託番号:NITE BP-02689)形質転換体。
[7] [1]から[6]のいずれかに記載のコリネ型細菌形質転換体を、増殖に必要な因子の少なくとも1つを除いた反応液中又は還元条件の反応液中で反応させる工程と、反応培地中のカテコールを回収する工程とを含む、カテコールの製造方法。
[8] [1]から[6]のいずれかに記載の形質転換体を用いて、反応液中で、グルコース、フルクトース、セロビオース、キシロビオース、ショ糖、ラクトース、マルトース、デキストリン、キシロース、アラビノース、ガラクトース、マンノース及び可溶性澱粉からなる群より選ばれる糖類からカテコールへ変換し、該反応液よりカテコールを回収することを含む、[7]に記載のカテコールの製造方法。
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
カテコール生産株の構築
(1) 染色体DNAの調製・入手
Corynebacterium glutamicum R(FERM P-18976)、Lactobacillus rhamnosus NBRC 3425、Lactobacilluspentosus JCM 1558、Lactobacillus plantarum NBRC 3070、Lactobacillus pobuzihii JCM 18084、Lactobacilluscomposti JCM 14202、Lactobacillus hokkaidonensis JCM18461、Lactobacillus sakei subsp. sakei JCM 1157、Bacillus megaterium JCM 2506、Bacilluslicheniformis JCM 2505、Bacillus atrophaeus JCM 9070、Bacillus subtilis subsp. subtilis NBRC 14144、Bacillus subtilis subsp. spizizenii NBRC 101239、Enterobacter aerogenes NBRC 13534、Enterobactercloacae NBRC 13535、Enterobacter hormaechei ATCC 49162、Escherichia coli W NBRC 13500、Escherichiafergusonii NBRC 102419、Paenibacillus polymyxa NBRC15309、Pantoea ananatis LMG 20103の染色体DNAは、菌株入手機関の情報に従って培養した後、DNAゲノム抽出キット(商品名:GenomicPrep Cells and Tissue DNA Isolation Kit、アマシャム社製)を用いて調製した。Enterobacter sakazakii ATCC BAA-894D-5、Citrobacterkoseri ATCC BAA-895D-5の染色体DNAは、ATCCより入手した。
(2) カテコール生産関連遺伝子発現プラスミドの構築
目的の酵素遺伝子を単離するために用いたプライマー配列を表1に示す。PCRは、Veritiサーマルサイクラー(アプライド・バイオシステムズ社製)を用い、反応試薬としてPrimeSTAR HS DNA Polymerase(タカラバイオ株式会社製)を用いた。
得られたDNA断片を、PgapAプロモーターを含有するクローニングベクター(pCRB209[国際公開 WO2012/033112]、pCRB210[国際公開 WO2012/033112])に導入した。尚、Lactobacillus pentosusおよびLactobacillusplantarumのubiD遺伝子とubiXH遺伝子は染色体上で異なる位置に配置されているため、別々にクローニングを行った後、同一プラスミドに乗せ換えた。
導入したクローニングベクターと得られたプラスミド名を表2に示す。
Figure 2019211937
Figure 2019211937
(3) Corynebacterium glutamicum R株染色体遺伝子破壊用プラスミドの構築
Corynebacterium glutamicum R株の染色体遺伝子をマーカーレスで破壊するために必要なDNA領域をPCR法により増幅した。各PCR断片はオーバーラップ領域により連結可能である。得られたDNA断片をマーカーレス遺伝子破壊用プラスミドpCRA725[J. Mol.Microbiol. Biotechnol. 8:243-254(2004)、(特開2006-124440)]に導入した。得られた染色体遺伝子破壊用プラスミドを表3に示す。
Figure 2019211937
(4) 染色体遺伝子組換えによるカテコール生産株の構築
マーカーレス染色体遺伝子導入用ベクターpCRA725は、コリネバクテリウム グルタミカムR内で複製不能なプラスミドである。プラスミドpCRA725に導入した染色体上の相同領域との一重交叉株の場合、pCRA725上のカナマイシン耐性遺伝子の発現によるカナマイシン耐性と、バチルス サブチリス(Bacillus subtilis)のsacR-sacB遺伝子の発現によるスクロース含有培地での致死性を示すのに対し、二重交叉株の場合、pCRA725上のカナマイシン耐性遺伝子の脱落によるカナマイシン感受性と、sacR-sacB遺伝子の脱落によるスクロース含有培地での生育性を示す。従って、マーカーレス染色体遺伝子導入株は、カナマイシン感受性及びスクロース含有培地生育性を示す。
上記方法により、上述したカテコール生産関連遺伝子染色体導入用プラスミド及び染色体遺伝子破壊用プラスミドを用いてPCA生産関連遺伝子染色体導入株を構築した。宿主菌株としてプロトカテク酸生産性コリネ型細菌Corynebacterium glutamicum PCA3株[国際公開 WO2017/169399]を使用した。また、pcaHG遺伝子破壊用プラスミドpCRG3[国際公開 WO2017/169399]、qsuB遺伝子染色体導入用プラスミドpCRB295[国際公開 WO2017/169399]及びaroG(S180F)遺伝子染色体導入用プラスミドpCRB285[国際公開 WO2017/169399]も使用した。尚、本染色体遺伝子組換えの概要は、表4および表5にまとめて示した。
Figure 2019211937
Figure 2019211937
(5) カテコール生産遺伝子発現プラスミド導入株の構築
上述の染色体遺伝子組換え株にプロトカテク酸脱炭酸酵素を導入することによりカテコール生産株を構築した。また、対照実験用としてpCRB22(Appl Microbiol Biotechnol. 2015Jun;99(11):4679-89)を使用した。尚、本生産株の概要は、表6にまとめて示した。
Figure 2019211937
コリネバクテリウム グルタミカム(Corynebacterium glutamicum)CAT21は、日本国千葉県木更津市かずさ鎌足2-5-8 122号室(郵便番号292-0818)の独立行政法人製品評価技術基盤機構 特許微生物寄託センターに国際寄託した(ブダペスト条約に基づく国際寄託の受託日:2018年4月17日、受託番号:NITE BP-02689)。
[実施例2]
カテコール生産試験(試験管内、10mLスケール)
(プロトカテク酸分解経路破壊、カテコール分解経路破壊の組み合わせ)
コリネバクテリウム グルタミカムR株をベースとして構築した、カテコール生産株である、CAT91株(表5及び表6参照)を用いて、試験管を用いた好気バッチ反応におけるカテコール生産実験を以下に述べる方法によって行った。
CAT91株を終濃度50μg/mL カナマイシンと4%のグルコースを含んだA寒天培地[(NH2)2CO2g、(NH4)2SO4 7g、KH2PO4 0.5g、K2HPO40.5g、MgSO4・7H2O0.5g、0.06%(w/v)FeSO4・7H2O、0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 1ml、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7g、寒天 15gを蒸留水1Lに溶解]に塗布し、33℃、15時間暗所に静置した。
上記のプレート上で増殖したCAT91株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだA液体培地[(NH2)2CO 2g、(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)FeSO4・7H2O、0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 1ml、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7gを蒸留水1Lに溶解]10mlの入った試験管に一白金耳植菌し、33℃にて7-15時間、好気的に振とう培養を行った。
上記条件で増殖した株を、終濃度50μg/mLカナマイシンと4%のグルコースを含んだA液体培地10mlに初期菌体濃度OD610=0.5となるように懸濁し、200mgのCaCO3を加え33℃にて48時間、好気的に振とう培養を行った。48時間後の培養液を遠心分離(4℃,15,000×g、5分)し、培養上清液を得た。培養上清液中の代謝物質濃度は、高速液体クロマトグラフィーシステム(Prominence HPLC装置(島津製作所製)、COSMOSIL Packed column 5C18-AR-II、移動相に10%メタノール、0.1%リン酸を用いて分離)により分析した。その結果、同株は48時間後、0.1mMのカテコールを生産した。
[実施例3]
カテコール生産試験(試験管内、10mLスケール)
(プロトカテク酸分解経路破壊、カテコール分解経路破壊、DAHP合成酵素強化、プロトカテク酸合成酵素強化の組み合わせ)
CAT91株をベースとして構築した、カテコール生産株である、CAT92株(表5及び表6参照)を用いて、試験管を用いた好気バッチ反応におけるカテコール生産実験を以下に述べる方法によって行った。
CAT92株を終濃度50μg/mL カナマイシンと4%のグルコースを含んだA寒天培地[(NH2)2CO2g、(NH4)2SO4 7g、KH2PO4 0.5g、K2HPO40.5g、MgSO4・7H2O0.5g、0.06%(w/v)FeSO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 1ml、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7g、寒天 15gを蒸留水1Lに溶解]に塗布し、33℃、15時間暗所に静置した。
上記のプレート上で増殖したCAT92株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだA液体培地[(NH2)2CO 2g、(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)FeSO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 1ml、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7gを蒸留水1Lに溶解]10mlの入った試験管に一白金耳植菌し、33℃にて7-15時間、好気的に振とう培養を行った。
上記条件で増殖した株を、終濃度50μg/mLカナマイシンと4%のグルコースを含んだA液体培地10mlに初期菌体濃度OD610=0.5となるように懸濁し、200mgのCaCO3を加え33℃にて48時間、好気的に振とう培養を行った。48時間後の培養液を遠心分離(4℃,15,000×g、5分)し、培養上清液を得た。培養上清液中の代謝物質濃度は、高速液体クロマトグラフィーシステム(Prominence HPLC装置(島津製作所製)、COSMOSIL Packed column 5C18-AR-II、移動相に10%メタノール、0.1%リン酸を用いて分離) により分析した。その結果、同株は24時間後、18.4mMのカテコールを生産した。
[実施例4]
カテコール生産試験(試験管内、10mLスケール)
(様々な生物由来プロトカテク酸脱炭酸活性を持つ酵素をコードする遺伝子のカテコール生産に対する影響)
Corynebacterium glutamicum形質転換体によるカテコール生産におけるプロトカテク酸脱炭酸活性を持つ酵素をコードする遺伝子導入の効果を調べるため、プロトカテク酸生産株Corynebacterium glutamicum PCA3[国際公開WO/2017/169399]をベースとしてカテコール分解酵素をコードする遺伝子を破壊した株LHglc1367を構築した(表5)。この株に各遺伝子を組み込んだプラスミドを導入し、脱炭酸酵素導入株CAT01-CAT47を得た(表6)。それぞれのカテコール生産性を比較した。各株を終濃度50μg/mLカナマイシンと4%のグルコースを含んだ前記A寒天培地に塗布し、33℃、15時間暗所に静置した。
上記のプレート上で増殖した各株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地10mlの入った試験管に一白金耳植菌し、33℃にて7-15時間、好気的に振とう培養を行った。
上記条件で増殖した各株を、終濃度50μg/mLカナマイシンと4%のグルコースを含んだ前記A液体培地10mlに初期菌体濃度OD610=0.5となるように植菌し、200mgのCaCO3を加え33℃にて24時間、好気的に振とう培養を行った。24時間後の培養液を遠心分離し(4℃,15000×g、5分)、得られた上清液について前記高速液体クロマトグラフィーシステムによりカテコールの定量分析を行った。結果を表7に示す。
なお、表7におけるアミノ酸配列の同一性は、LactobacillusrhamnosusのubiD遺伝子がコードするアミノ酸配列と、その他のubiD遺伝子がコードするアミノ酸配列との比較の結果である。
Figure 2019211937
表7の結果から、Lactobacillus rhamnosusのubiDX及びそのオーソログを導入することによりカテコールの生成量は増大することが示された。そのなかでも、Lactobacillus rhamnosusのubiDX及びそれと相同性が高いもの(例えば、CAT21株、CAT41株、CAT24株)を用いた場合、カテコールの生産量がより一層向上することが示された。
[実施例5]
カテコール生産試験(ジャーファーメンター、400mLスケール)
(生産至適pHの検討)
CAT21株(表5〜表7参照)を用いて、ジャーファーメンターを用いた好気バッチ反応におけるカテコール生産実験を以下に述べる方法によって行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地10mlに植菌後、33℃で18時間、好気的に振盪培養を行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地100mlに植菌後、33℃で12時間、好気的に振盪培養を行った。
上記条件で増殖した菌体を遠心分離(4℃,3000×g,10分)により集菌し、得られた菌体を、1000ml容量のジャーファーメンター培養槽内の、終濃度50μg/mLカナマイシンと8%のグルコース、及び消泡剤(アデカノール L126)3g/Lを含有する培養液[(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)FeSO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 25μl、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7gを蒸留水1Lに溶解]400mlにOD610=0.2となるように懸濁し、1000ml容量ジャーファーメンターにより33℃、5.0Nアンモニア水の添加によるpH維持制御、通気量0.4L/min(air、1vvm)、溶存酸素濃度(DO)10%(大気圧下飽和溶存酸素濃度を100%として)の条件において24時間通気撹拌培養を行った。培養上清液中の代謝物質濃度は、前記の高速液体クロマトグラフィーシステムにより分析した。その結果を表8に示す。
Figure 2019211937
CAT21株は、pH7.0を維持して培養した場合、培養開始24時間後に、60mMのカテコールを生成し、検討したpHの中でもっとも高い濃度を示した。また、pH8.0を維持して培養した場合はカテコールの生産濃度は24時間後の時点で0mMだった。これらの結果から、同株を用いてカテコール生産させる場合はpHを7.0付近にしたときに最も高い生産性を示すことが分かった。
[実施例6]
カテコール生産試験(ジャーファーメンター、400mLスケール)
(増殖非依存型の生産試験)
CAT21株(表5〜表7参照)を用いて、ジャーファーメンターを用いた好気バッチ反応におけるカテコール生産実験を以下に述べる方法によって行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地10mlに植菌後、33℃で18時間、好気的に振盪培養を行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地100mlに植菌後、33℃で12時間、好気的に振盪培養を行った。
上記条件で増殖した菌体を遠心分離(4℃,3000×g,10分)により集菌し、得られた菌体を、1000ml容量のジャーファーメンター培養槽内の、終濃度50μg/mLカナマイシンと8%のグルコース、及び消泡剤(アデカノール L126)3g/Lを含有する培養液[(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)FeSO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 25μl、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7gを蒸留水1Lに溶解]400mlにOD610=0.2となるように懸濁し、1000ml容量ジャーファーメンターにより33℃、pH7.0(5.0Nアンモニア水の添加により制御)、通気量0.4L/min(air、1vvm)、溶存酸素濃度(DO)5%(大気圧下飽和溶存酸素濃度を100%として)の条件において18時間通気撹拌培養を行った。
上記条件で増殖した菌体を遠心分離(4℃,5000×g,10分)により集菌し、菌体を0.9%塩化ナトリウム水溶液で1回洗浄した後、100g湿菌体/L(培地体積あたり湿菌体重量として5%)となるように、10%グルコースを含む250ml反応液[(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)Fe2SO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.01%(w/v) thiaminesolution 2mlを蒸留水1Lに溶解]に懸濁し、1000ml容量ジャーファーメンターを用いて33℃、pH7.0(5.0N アンモニア水の添加により制御)、通気量0.25L/min(air、1vvm)、DO5%の条件においてカテコール生成反応を行った。培養上清液中の代謝物質濃度は、前記の高速液体クロマトグラフィーシステムにより分析した。その結果を図1に示す。
図1に示すとおり、CAT21株は、カテコール生成反応開始27.5時間後に、66mM(7.25g/l)のカテコールを生成した。この結果から、同株は、無機塩最少培地を用いる菌体増殖を伴わない反応プロセスにおいて、非常に高いカテコール生産性を有することが示された。同株のカテコール生産性は、糖からの発酵法による生産性としては、これまでに報告されている生産性の高いEscherichia coli組換え株の生産性38mM(4.2g/L) 36時間(非特許文献3)および41mM(4.5g/L)84時間(非特許文献2)を大幅に上回った。
[実施例7]
カテコール生産試験(ジャーファーメンター)
(樹脂吸着の利用)
CAT21株(表5〜表7参照)を用いて、ジャーファーメンターを用いた好気バッチ反応と樹脂吸着を組み合わせたカテコール生産実験を以下に述べる方法によって行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地10mlに植菌後、33℃で18時間、好気的に振盪培養を行った。
CAT21株を終濃度50μg/mLカナマイシンと2%のグルコースを含んだ前記A液体培地100mlに植菌後、33℃で12時間、好気的に振盪培養を行った。
上記条件で増殖した菌体を遠心分離(4℃,3000×g,10分)により集菌し、得られた菌体を、1000ml容量のジャーファーメンター培養槽内の、終濃度50μg/mLカナマイシンと8%のグルコース、及び消泡剤(アデカノール L126)3g/Lを含有する培養液[(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)FeSO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.02%(w/v)biotinsolution 25μl、0.01%(w/v)thiamin solution 2ml、yeast extract 2g、vitamin assay casamino acid7gを蒸留水1Lに溶解]400mlにOD610=0.2となるように懸濁し、1000ml容量ジャーファーメンターにより33℃、pH7.0(5.0Nアンモニア水の添加により制御)、通気量0.4L/min(air、1vvm)、溶存酸素濃度(DO)5%(大気圧下飽和溶存酸素濃度を100%として)の条件において18時間通気撹拌培養を行った。
上記条件で増殖した菌体を遠心分離(4℃,5000×g,10分)により集菌し、菌体を0.9%塩化ナトリウム水溶液で1回洗浄した後、100g 湿菌体/L(培地体積あたり湿菌体重量として5%)となるように、10%グルコースを含む300ml反応液[(NH4)2SO47g、KH2PO4 0.5g、K2HPO4 0.5g、MgSO4・7H2O 0.5g、0.06%(w/v)Fe2SO4・7H2O + 0.042%(w/v)MnSO4・2H2O 1ml、0.01%(w/v)thiaminesolution 2mlを蒸留水1Lに溶解]に懸濁し、1000ml容量ジャーファーメンターを用いて33℃、pH7.0(5.0Nアンモニア水の添加により制御)、通気量0.3L/min(air、1vvm)、DO5%の条件においてカテコール生成反応を行った。その際ジャーファーメンターからあらかじめ反応液を満たした流路とペリスタポンプを接続し、培養液の循環を同時に開始した。流路の途中にクロスフロー型ろ過装置(マイクローザペンシル型モジュール)と新たなペリスタポンプを配置し、菌体を含まないろ過液の抜き取りを行った。このろ過液を60gの吸着樹脂(SP850)を詰めたカラムに通し、フロースルー液はジャーファーメンターに戻した。48時間後の実験を終了し、流路に含まれる反応液を全てジャーファーメンターに戻し容量を測定した。培養上清液中の代謝物質濃度は、前記の高速液体クロマトグラフィーシステムにより分析した。樹脂に吸着した代謝物質は水、次いで100%エタノールを通液することで抽出し、水抽出液はそのままで、エタノール抽出液はエバポレーターで乾固させ、同体積の水に溶解した後に前記の高速液体クロマトグラフィーシステムにより分析した。その結果を表9に示す。
Figure 2019211937
合計のカテコール物質量を反応液の体積で割ることでカテコール生産濃度とした。その結果CAT21株は48時間で135mM(14.9g/L)のカテコールを生産した。その際の消費グルコースに対する収率は18%(モル比)だった。
糖からの発酵法によるカテコール生産で吸着樹脂を併用した例としては、Escherichia coli組換え株を用いた77mM(8.5g/L)、収率7% 36時間(非特許文献3)が報告されているが、CAT21株のカテコール生産性は濃度、収率ともにこれを大幅に上回った。
[参考例1]
コリネ型細菌が他の微生物より高いカテコール耐性を示すことの検証
コリネ型細菌Corynebacterium glutamicum,大腸菌Escherichia coli,酵母Saccharomyces cerevisiae,シュードモナスPseudomonas putida, ロドコッカスRhodococcus erythropolisについて、寒天培地上でのクロスストリークアッセイによりカテコールへの耐性を比較した。
Corynebacterium glutamicum R株およびATCC 13032株を4%のグルコースを含んだ前記A寒天培地に塗布し、33℃で15時間暗所に静置した。上記のプレート上で増殖したコリネバクテリウムグルタミカムを2%のグルコースを含んだ前記A液体培地10mlの入った試験管に一白金耳植菌し、33℃にて13時間、好気的に振とう培養を行った。
Escherichia coli K-12 MG1655株をLB寒天培地[1%ポリペプトン、0.5%酵母エキス、0.5%塩化ナトリウム、及び1.5%寒天]に塗布し、37℃、15時間暗所に静置した。上記プレートで増殖したEscherichia coliをLB液体培地[1%ポリペプトン、0.5%酵母エキス、及び0.5%塩化ナトリウム]に植菌し、37℃、13時間、好気的に振とう培養を行った。
Pseudomonas putida ATCC 700801株を前記LB寒天培地に塗布し、30℃、15時間暗所に静置した。上記プレートで増殖したPseudomonas putidaを前記LB液体培地に植菌し、30℃、13時間、好気的に振とう培養を行った。
Saccharomyces cerevisiae NBRC2376株をYEPD寒天培地[2%ポリペプトン、1%酵母エキス、2%グルコース、及び1.5%寒天]に塗布し、30℃、20時間暗所に静置した。上記プレートで増殖したSaccharomyces cerevisiaeをYEPD液体培地[2%ポリペプトン、1%酵母エキス、及び2%グルコース]に植菌し、30℃、13時間、好気的に振とう培養を行った。
Rhodococcus erythropolis ATCC 27854株を前記LB寒天培地に塗布し、30℃、15時間暗所に静置した。上記プレートで増殖したRhodococcus erythropolisを前記LB液体培地に植菌し、30℃、13時間、好気的に振とう培養を行った。
以上のように前培養を行った各株を4%のグルコースを含んだ前記A寒天培地に線状に均一それぞれ塗布し、これと交差するようにプレートの中心に25%のカテコールを含ませたろ紙を上から置いた。30℃または26℃で24時間暗所に静置した後、ろ紙からの増殖阻害範囲を比較することで耐性の比較を行った。その結果を図2に示す。
図2に示すとおり、コリネ型細菌は他のどの菌よりも増殖阻止域が狭く、耐性が比較的高いことが示された。また、コリネ型細菌のR株とATCC 13032株では明確な違いはなかった。
本開示は、例えば、カテコールの製造に有用である。

Claims (7)

  1. 宿主のコリネ型細菌に、
    (1)Lactobacillus rhamnosusの脱炭酸酵素遺伝子ubiD、
    (2)Lactobacillus属、Bacillus属、Enterobacter属、Escherichia属、Paenibacillus属、Citrobacter属、及びPantoea属における前記(1)の遺伝子のオーソログ、及び
    (3)前記(1)又は(2)の遺伝子がコードする酵素とのアミノ酸配列の同一性が70%以上であり、かつ、脱炭酸活性を有する酵素がコードされた遺伝子
    からなる群から選択される遺伝子が導入された形質転換体であって、
    宿主コリネ型細菌のカテコール1,2−ジオキシゲナーゼ遺伝子catA、及び、プロトカテク酸デヒドロゲナーゼ遺伝子pcaHGに変異が導入され、前記2遺伝子がコードする酵素が機能低下又は機能欠損している、コリネ型細菌の形質転換体。
  2. カテコール生産能を有する、請求項1に記載の形質転換体。
  3. さらに、3−デオキシ−D−アラビノ−ヘプツロソネート−7−リン酸シンターゼ活性を有する酵素をコードする遺伝子、及び、3−デヒドロキナ酸シンターゼ活性を有する酵素をコードする遺伝子の少なくとも一方が導入された、請求項1又は請求項2に記載の形質転換体。
  4. 宿主のコリネ型細菌がコリネバクテリウム グルタミカムR(FERM P-18976)、ATCC13032、又はATCC13869である、請求項1から請求項3のいずれかに記載の形質転換体。
  5. コリネバクテリウム グルタミカムCAT21株(受託番号:NITEBP-02689)形質転換体。
  6. 請求項1から請求項5のいずれかに記載の形質転換体を、増殖に必要な因子の少なくとも1つを除いた反応液中又は還元条件の反応液中で反応させる工程と、反応培地中のカテコールを回収する工程とを含む、カテコールの製造方法。
  7. 請求項1から請求項5のいずれかに記載の形質転換体を用いて、反応液中で、グルコース、フルクトース、セロビオース、キシロビオース、ショ糖、ラクトース、マルトース、デキストリン、キシロース、アラビノース、ガラクトース、マンノース及び可溶性澱粉からなる群より選ばれる糖類からカテコールへ変換し、該反応液よりカテコールを回収することを含む、請求項6に記載のカテコールの製造方法。
JP2020517022A 2018-05-01 2019-02-18 コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法 Active JP7317810B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018088424 2018-05-01
JP2018088424 2018-05-01
PCT/JP2019/005902 WO2019211937A1 (ja) 2018-05-01 2019-02-18 コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019211937A1 true JPWO2019211937A1 (ja) 2021-05-13
JP7317810B2 JP7317810B2 (ja) 2023-07-31

Family

ID=68386011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517022A Active JP7317810B2 (ja) 2018-05-01 2019-02-18 コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法

Country Status (5)

Country Link
US (1) US11359217B2 (ja)
EP (1) EP3789481A4 (ja)
JP (1) JP7317810B2 (ja)
CN (1) CN112074599B (ja)
WO (1) WO2019211937A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272073A (en) * 1992-06-30 1993-12-21 Purdue Research Foundation Biocatalytic synthesis of catechol from glucose
JPH09506242A (ja) * 1993-09-16 1997-06-24 パーデュー・リサーチ・ファウンデーション バイオマス由来炭素源からカテコールを合成する方法
US20120196339A1 (en) * 2011-01-31 2012-08-02 Los Alamos National Security Llc Production of industrially relevant compounds in prokaryotic organisms
WO2017169399A1 (ja) * 2016-03-28 2017-10-05 公益財団法人地球環境産業技術研究機構 形質転換体及びそれを用いるプロトカテク酸又はその塩の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487987A (en) 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
JP3860189B2 (ja) 2004-10-27 2006-12-20 株式会社興人 非結晶性ポリエステル樹脂の製造方法
EP2521770B1 (en) 2010-01-08 2015-11-25 Amyris, Inc. Methods for producing isomers of muconic acid and muconate salts
WO2012033112A1 (ja) 2010-09-08 2012-03-15 グリーンフェノール・高機能フェノール樹脂製造技術研究組合 コリネ型細菌形質転換体及びそれを用いるフェノールの製造方法
JP5996434B6 (ja) * 2010-11-10 2018-06-27 グリーンフェノール開発株式会社 コリネ型細菌形質転換体及びそれを用いるフェノールの製造方法
US20130302860A1 (en) * 2010-12-28 2013-11-14 Sumitomo Rubber Industries, Ltd. Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same
WO2015069847A2 (en) 2013-11-06 2015-05-14 Massachusetts Institute Of Technology Co-culture based modular engineering for the biosynthesis of isoprenoids, aromatics and aromatic-derived compounds
WO2016036915A1 (en) * 2014-09-03 2016-03-10 Coffa Gianguido Genetically modified microbes for the biological conversion of carbonaceous materials to protocatechuic acid
WO2016207403A1 (en) 2015-06-24 2016-12-29 Deinove Method of producing muconic acid
CN109153986B (zh) 2016-02-26 2022-08-12 公益财团法人地球环境产业技术研究机构 棒状型细菌转化体及使用其的4-氨基苯甲酸或其盐的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272073A (en) * 1992-06-30 1993-12-21 Purdue Research Foundation Biocatalytic synthesis of catechol from glucose
JPH09506242A (ja) * 1993-09-16 1997-06-24 パーデュー・リサーチ・ファウンデーション バイオマス由来炭素源からカテコールを合成する方法
US20120196339A1 (en) * 2011-01-31 2012-08-02 Los Alamos National Security Llc Production of industrially relevant compounds in prokaryotic organisms
WO2017169399A1 (ja) * 2016-03-28 2017-10-05 公益財団法人地球環境産業技術研究機構 形質転換体及びそれを用いるプロトカテク酸又はその塩の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHEN, X. ET AL.: "Genomic Analysis and Identification of Catabolic Pathways for Aromatic Compounds in Corynebacterium", MICROBES AND ENVIRONMENTS, vol. 20, no. 3, JPN6019017453, 2005, pages 160 - 167, XP055649266, ISSN: 0005052025, DOI: 10.1264/jsme2.20.160 *
SHEN, X. ET AL.: "Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in", SCIENCE IN CHINA SER. C LIFE SCIENCES, vol. 48, no. 3, JPN6019017454, 2005, pages 241 - 249, XP055649570, ISSN: 0005052026, DOI: 10.1360/062004-32 *
前田淳哉 ほか: "コリネ型細菌由来phenol 2-monooxygenaseの機能解析", 日本農芸化学会2016年度大会講演要旨集(オンライン), JPN6019017456, 2016, pages 2 - 201, ISSN: 0005052027 *
辻正男 ほか: "Corynebacterium glutamicum変異株の性質と安息香酸よりのカテコール蓄積機構", J. FERMENT. TECHNOL., vol. 54, no. 11, JPN6019017457, 1976, pages 789 - 794, ISSN: 0005052028 *

Also Published As

Publication number Publication date
EP3789481A4 (en) 2022-02-16
WO2019211937A1 (ja) 2019-11-07
EP3789481A1 (en) 2021-03-10
US11359217B2 (en) 2022-06-14
JP7317810B2 (ja) 2023-07-31
US20210222211A1 (en) 2021-07-22
CN112074599A (zh) 2020-12-11
CN112074599B (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
CN109477066B (zh) 转化体及使用其的原儿茶酸或其盐的制造方法
KR102323473B1 (ko) 코리네형 세균 형질 전환체 및 이를 이용하는 4-히드록시벤조산 또는 그 염의 제조 방법
US10738296B2 (en) Transformant for producing 4-hydroxybenzoic acid or salt thereof
JP6564929B2 (ja) コリネ型細菌形質転換体及びそれを用いる4−アミノ安息香酸又はその塩の製造方法
CN106414714A (zh) 生产邻氨基苯甲酸和/或盐的重组菌株和经2‑氨基苯甲酸从可再生资源发酵生产苯胺
CN101688176A (zh) 具有羧基的酸性物质的生产方法
CA2751280A1 (en) Novel microbial succinic acid producers and purification of succinic acid
EP3102675B1 (en) Improved microorganisms for succinic acid production
JP7171759B2 (ja) コリネ型細菌形質転換体およびそれを用いる2-フェニルエタノールの製造方法
WO2015118051A1 (en) Modified microorganism for improved production of fine chemicals on sucrose
JP7317810B2 (ja) コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法
JP6991319B2 (ja) 形質転換体及びそれを用いた有機化合物の製造方法
WO2021049616A1 (ja) 形質転換体及びそれを用いる1,3-ブタンジオールの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7317810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150