JPWO2019188550A1 - エネルギー貯蔵デバイスのアンダーコート層形成用組成物 - Google Patents

エネルギー貯蔵デバイスのアンダーコート層形成用組成物 Download PDF

Info

Publication number
JPWO2019188550A1
JPWO2019188550A1 JP2020510727A JP2020510727A JPWO2019188550A1 JP WO2019188550 A1 JPWO2019188550 A1 JP WO2019188550A1 JP 2020510727 A JP2020510727 A JP 2020510727A JP 2020510727 A JP2020510727 A JP 2020510727A JP WO2019188550 A1 JPWO2019188550 A1 JP WO2019188550A1
Authority
JP
Japan
Prior art keywords
group
undercoat layer
energy storage
storage device
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020510727A
Other languages
English (en)
Inventor
辰也 畑中
辰也 畑中
康志 境田
康志 境田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019188550A1 publication Critical patent/JPWO2019188550A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

カーボンナノチューブ、カーボンナノチューブ分散剤、および溶媒を含み、前記カーボンナノチューブが、くびれ部を有するエネルギー貯蔵デバイスのアンダーコート層形成用組成物は、低抵抗化効果および抵抗上昇抑制効果を発揮するアンダーコート層を与え得る。

Description

本発明は、エネルギー貯蔵デバイスのアンダーコート層形成用組成物に関する。
スマートフォンやデジタルカメラ、携帯ゲーム機などの携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。
中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いことなどから、現在最も精力的に開発が進められている二次電池である。
また、近年の環境問題への取り組みから、電気自動車の開発も活発に進められており、その動力源としての二次電池には、より高い性能が求められるようになってきている。
ところで、リチウムイオン二次電池は、リチウムを吸蔵、放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状または全固体型の電解質)を満たした構造を有する。
正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにポリマーバインダーを含む組成物を、銅箔やアルミニウム箔などの集電体上に塗布することで製造される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられ、ポリフッ化ビニリデン(PVdF)などのN−メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体などが市販されている。
しかし、上述したバインダーの集電体に対する接着力は十分とは言えず、電極の裁断工程や巻回工程等の製造工程時に、活物質や導電材の一部が集電体から剥離、脱落し、微小短絡や電池容量のばらつきを生じる原因となる。
さらに、長期間の使用により、電解液によるバインダーの膨潤や、活物質のリチウム吸蔵、放出による体積変化に伴う電極合材の体積変化により、電極合材層と集電体間の接触抵抗が増大したり、活物質や導電材の一部が集電体から剥離、脱落したりすることによる電池容量の劣化が起こるという問題や、さらには安全性の点で問題もある。
上記課題を解決する試みとして、集電体と電極合材層の間の密着性を高め、接触抵抗を低下させることで電池を低抵抗化する技術として、集電体と電極合材層との間に導電性のアンダーコート層を介在させる手法が開発されている。
例えば、特許文献1では、炭素を導電性フィラーとする導電層をアンダーコート層として、集電体と電極合材層との間に配設する技術が開示されており、アンダーコート層を備えた複合集電体を用いることで、集電体と電極合材層の間の接触抵抗を低減でき、かつ、高速放電時の容量減少も抑制でき、さらに電池の劣化をも抑制できることが示され、また、特許文献2や特許文献3でも同様の技術が開示されている。
さらに、特許文献4や特許文献5では、カーボンナノチューブ(以下、CNTとも略記する)を導電性フィラーとしたアンダーコート層が開示されている。
ところで、アンダーコートには、電池の低抵抗化だけでなく、抵抗の上昇を抑制する機能も期待されているが、使用する導電性炭素材料によっては、電池の抵抗を増大させ、抵抗上昇を加速させてしまう場合がある。
この点、どのような導電性炭素材料を用いた場合に、電池を低抵抗化することができ、かつ、抵抗の上昇を抑制できるかについての知見は明らかではない。
特開平9−097625号公報 特開2000−011991号公報 特開平11−149916号公報 国際公開第2014/042080号 国際公開第2015/029949号
本発明は、このような事情に鑑みてなされたものであり、低抵抗化効果および抵抗上昇抑制効果を発揮するアンダーコート層を与え得るエネルギー貯蔵デバイスのアンダーコート層形成用組成物を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、アンダーコート層形成用組成物において、特定の構造および物性値を有するカーボンナノチューブ(CNT)を用いることで、低抵抗化効果および抵抗上昇抑制効果を発揮するアンダーコート層を与え得る組成物が得られることを見出し、本発明を完成させた。
すなわち、本発明は、
1. カーボンナノチューブ、カーボンナノチューブ分散剤、および溶媒を含み、前記カーボンナノチューブが、くびれ部を有することを特徴とするエネルギー貯蔵デバイスのアンダーコート層形成用組成物、
2. 前記カーボンナノチューブの外径(D)の幾何平均径(MD)が、5〜30nmである1のエネルギー貯蔵デバイスのアンダーコート層形成用組成物、
3. 前記カーボンナノチューブ分散剤が、側鎖にオキサゾリン基を含むビニル系ポリマーまたはトリアリールアミン系高分岐ポリマーを含む1または2のエネルギー貯蔵デバイスのアンダーコート層形成用組成物、
4. 1〜3のいずれかのエネルギー貯蔵デバイスのアンダーコート層形成用組成物から得られるアンダーコート層、
5. 目付量が、1000mg/m2以下である4のアンダーコート層、
6. 目付量が、500mg/m2以下である5のアンダーコート層、
7. 目付量が、300mg/m2以下である6のアンダーコート層、
8. 目付量が、200mg/m2以下である7のアンダーコート層、
9. 4〜8のいずれかのアンダーコート層を備えるエネルギー貯蔵デバイスの電極用複合集電体、
10. 9のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極、
11. 10のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス、
12. リチウムイオン二次電池である11のエネルギー貯蔵デバイス
を提供する。
本発明のエネルギー貯蔵デバイスのアンダーコート層形成用組成物は、エネルギー貯蔵デバイスの電極を構成する集電体と活物質等とを接合するアンダーコート層を形成するための組成物として好適であり、当該組成物を用いて上記集電体上にアンダーコート層を形成することにより、エネルギー貯蔵デバイスの低抵抗化を図ることができるとともに、抵抗の上昇を抑制することができる。
本発明で用いられるカーボンナノチューブの平行部とくびれ部を示す模式断面図である。
以下、本発明についてさらに詳しく説明する。
本発明に係るエネルギー貯蔵デバイスのアンダーコート層形成用組成物(以下、単に組成物という)は、特定の構造および物性値を有するCNT、CNT分散剤、および溶媒を含む。
上記CNTとしては、その分散液を塗膜にしてアンダーコート層とした際に電池抵抗を下げる効果を発揮するために、分散液中で分散し易いものを用いることが好ましい。そのようなCNTとしては、小さいエネルギーで容易に切断可能な結晶不連続部を多く有していることが好ましい。
このような観点から、本発明の組成物に用いられるCNTは、くびれ部を有するものが好ましい。くびれ部を有するCNTとは、CNTのウォールに、平行部と平行部のチューブ外径に対して90%以下のチューブ外径であるくびれ部とを有するものである。
このくびれ部は、CNTの成長方向が変更されることで作り出される部位であるため、結晶不連続部を有しており、小さな機械的エネルギーで容易に切断できる易破断箇所となる。
図1に平行部1とくびれ部3とを有するCNTの模式断面図を示す。
平行部1は、図1に示されるように、ウォールが2本の平行な直線または2本の平行な曲線と認識できる部分である。この平行部1において、平行線の法線方向のウォールの外壁間の距離が平行部1のチューブ外径2である。
一方、くびれ部3は、その両端が平行部1と連接し、平行部1に比べてウォール間の距離が近づいている部分であり、より具体的には、平行部1のチューブ外径2に対して90%以下のチューブ外径4を持つ部分である。なお、くびれ部3のチューブ外径4は、くびれ部3において、外壁を構成するウォールが最も近い箇所の外壁間距離である。図1に示されるように、くびれ部3の多くには結晶が不連続である箇所が存在する。
上記CNTのウォールの形状とチューブ外径は、透過型電子顕微鏡等で観察することができる。具体的には、CNTの0.5%分散液を作製し、その分散液を試料台にのせて乾燥させ、透過型電子顕微鏡で5万倍にて撮影した画像によりくびれ部を確認することができる。
上記CNTは、CNTの0.1%分散液を作製し、その分散液を試料台にのせて乾燥させ、透過型電子顕微鏡で2万倍にて撮影した画像を100nm四方の区画に区切り、100nm四方の区画にCNTの占める割合が10〜80%である区画を300区画選択した際に、1区画中にくびれ部分が少なくとも1箇所存在する区画が300区画中に占める割合によって易破断箇所の全体に占める割合(易破断箇所の存在割合)を判断する。区画中のCNTの占める面積が10%未満の場合には、CNTの存在量が少なすぎるため測定が困難である。また、区画のCNTの占める面積が80%を超える場合には、区画に占めるCNTが多くなるためCNTが重なり合ってしまい、平行部分とくびれ部分を区別するのが困難であり正確な測定が困難となる。
本発明で用いるCNTにおいては、易破断箇所の存在割合が60%以上である。易破断箇所の存在割合が60%よりも少ない場合は、CNTが分散しにくく、分散させるために過度の機械的エネルギーを加えた時には、グラファイト綱面の結晶構造破壊につながり、CNTの特徴である電気導電性などの特性が低下する。より高い分散性を得るためには、易破断箇所の存在割合は、70%以上であることが好ましい。
本発明で用いられるCNTは、くびれ部を有するものであればチューブ外径の幾何平均径(MD)は特に制限はないが、5〜30nmであることが好ましい。
チューブ外径の平均径が30nmを超えると、導電材として使用する場合、単位質量あたりの繊維本数が少なくなり、十分な導電性を得ることができないおそれがある。また、チューブ外径の平均径が5nm未満であると、カーボンナノチューブの十分な分散が困難となり、結果として特性が悪化する虞がある。分散性と特性のバランスから、チユーブ外径の幾何平均径は10〜25nmがより好ましく、19〜22nmがより一層好ましい。
また、上記CNTの導電率は、デバイスの低抵抗化および抵抗上昇抑制効果を発揮させるという観点から、好ましくは50S/cm以下、より好ましくは45S/cm以下、より一層好ましくは35S/cm以下である。下限は特に制限されないが、アンダーコート層の導電性を高くするという観点から、好ましくは5S/cm以上、より好ましくは10S/cm以上である。
さらに、上記CNTの密度は、デバイスの低抵抗化および抵抗上昇抑制効果を発揮させるという観点から、好ましくは1.15g/cm3以上、より好ましくは1.3g/cm3以上である。上限は特に制限されないが、好ましくは2.0g/cm3以下、より好ましくは1.6g/cm3以下である。
なお、上記CNTの密度(g/cm3)は、粉体に20kN/cm2の圧力を印加した時(20kN/cm2印加時)において測定される嵩密度を意味する。
CNTの導電率および密度は、公知の粉体抵抗測定システム(例えば、(株)三菱ケミカルアナリテック製のMCP−PD51型および抵抗率計ロレスタGP等)により測定することができる。
また、G/Dバンド比は、0.680〜2.900が好ましく、得られるデバイスの低抵抗化効果および抵抗上昇抑制効果を高めることを考慮すると、0.690以上が好ましく、0.710以上がより好ましく、0.800以上がより一層好ましく、0.900以上がさらに好ましい。なお、G/Dバンド比の上限は2.900以下であるが、2.500以下が好ましく、2.000以下がより好ましく、1.500以下がより一層好ましい。
なお、CNTのG/Dバンド比は、用いるCNTの結晶性と欠陥の量の指標となるパラメータであり、ラマン分光測定によって求めることができる。
より具体的には、ラマン分光測定より1590〜1605cm-1間で最も強度が大きいラマンシフトであるG+バンド、1580〜1565cm-1間で最も強度の大きいラマンシフトであるG-バンド、および1330〜1310cm-1間で最もピーク強度が大きいラマンシフトであるDバンドのそれぞれのピーク強度を求め、(G++G-)/D比で表されるものである。なお、各ピーク強度を算出する際のベースラインは1700〜1150cm-1とする。
本発明において、CNTの炭素含有率の標準偏差は特に限定されるものではないが、標準偏差が1.00以上であると、得られるデバイスの低抵抗化の効果が大きくなり、また、抵抗の上昇を効率的に抑制することができる。これらの効果をより高めることを考慮すると、上記標準偏差は1.50以上が好ましく、2.00以上がより好ましい。
また、上記低抵抗化効果および抵抗上昇抑制効果をより高めることを考慮すると、元素分析により求められた炭素含有率の平均値(n=3)が94質量%以上のCNTを用いることが好ましく、同平均値が95質量%以上のCNTを用いることがより好ましく、同平均値が96質量%以上のCNTを用いることがより一層好ましい。
なお、炭素含有率の標準偏差は、CNT1mg(誤差:±10質量%以内にて)を元素分析にて定量分析した際に、3回(n=3)の測定結果から求められる炭素含有率の標準偏差である。
本発明において、上記CNTは、示差熱分析の第一発熱ピークの変曲点の温度(TDTA)とX線回折でのカーボンナノチューブ(002)面の結晶子サイズ(LC(002))との比TDTA/LC(002)と、チューブ外径の分布の幾何標準偏差(σD)の積((TDTA/LC(002))×σD)が22以下であることが好ましい。
さらに、上記CNTの水蒸気吸着量は、0.6〜4.5mg/gが好ましい。水蒸気吸着量が0.6mg/g未満の場合、水系溶媒とのなじみが悪くなるとともに、CNTの表面官能基量が少なく、分散剤や活物質との活性点が少なくなり、分散不良につながるおそれがある。水蒸気吸着量が4.5mg/gを超える場合、CNTに含まれるAlおよびMgの総量も増えており、CNTとしての純度が低く、その優れた特性が阻害されるおそれがある。分散性と特性のバランスから、CNTの水蒸気吸着量は、1〜4mg/gがより好ましい。
本発明で使用可能なCNTの具体例としては、国際公開第2016/076393号に開示された、くびれ構造を有するCNTであるTC−2010、TC−2020、TC−3210L、TC−1210LN等のTCシリーズ〔戸田工業(株)製〕等が挙げられるが、これらに限定されるものではない。
また、本発明の組成物では、上記くびれ部を有するCNTと、その他のCNTや、CNT以外の導電性材料とを併用して用いることができるが、上記くびれ部を有するCNTを単独で用いることが好ましい。
分散剤としては、従来、CNT等の導電性炭素材料の分散剤として用いられているものから適宜選択することができ、例えば、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)、アクリル樹脂エマルジョン、水溶性アクリル系ポリマー、スチレンエマルジョン、シリコーンエマルジョン、アクリルシリコーンエマルジョン、フッ素樹脂エマルジョン、EVAエマルジョン、酢酸ビニルエマルジョン、塩化ビニルエマルジョン、ウレタン樹脂エマルジョン、国際公開第2014/04280号記載のトリアリールアミン系高分岐ポリマー、国際公開第2015/029949号記載の側鎖にオキサゾリン基を有するポリマー等が挙げられるが、本発明においては、国際公開第2015/029949号記載の側鎖にオキサゾリン基を有するポリマーを含む分散剤や、国際公開第2014/04280号記載のトリアリールアミン系高分岐ポリマーを含む分散剤を用いることが好ましい。
側鎖にオキサゾリン基を有するポリマー(以下、オキサゾリンポリマーという)としては、式(1)に示されるような2位に重合性炭素−炭素二重結合含有基を有するオキサゾリンモノマーをラジカル重合して得られる、オキサゾリン環の2位でポリマー主鎖またはスペーサー基に結合した繰り返し単位を有する、側鎖にオキサゾリン基を有するビニル系ポリマーが好ましい。
Figure 2019188550
上記Xは、重合性炭素−炭素二重結合含有基を表し、R1〜R4は、互いに独立して、水素原子、ハロゲン原子、炭素数1〜5のアルキル基、炭素数6〜20のアリール基、または炭素数7〜20のアラルキル基を表す。
オキサゾリンモノマーが有する重合性炭素−炭素二重結合含有基としては、重合性炭素−炭素二重結合を含んでいれば特に限定されるものではないが、重合性炭素−炭素二重結合を含む鎖状炭化水素基が好ましく、例えば、ビニル基、アリル基、イソプロペニル基等の炭素数2〜8のアルケニル基などが好ましい。
ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
炭素数1〜5のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、シクロヘキシル基等が挙げられる。
炭素数6〜20のアリール基の具体例としては、フェニル基、キシリル基、トリル基、ビフェニリル基、ナフチル基等が挙げられる。
炭素数7〜20のアラルキル基の具体例としては、ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等が挙げられる。
式(1)で示される2位に重合性炭素−炭素二重結合含有基を有するオキサゾリンモノマーの具体例としては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−4−エチル−2−オキサゾリン、2−ビニル−4−プロピル−2−オキサゾリン、2−ビニル−4−ブチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−ビニル−5−エチル−2−オキサゾリン、2−ビニル−5−プロピル−2−オキサゾリン、2−ビニル−5−ブチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−4−エチル−2−オキサゾリン、2−イソプロペニル−4−プロピル−2−オキサゾリン、2−イソプロペニル−4−ブチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン、2−イソプロペニル−5−プロピル−2−オキサゾリン、2−イソプロペニル−5−ブチル−2−オキサゾリン等が挙げられるが、入手容易性などの点から、2−イソプロペニル−2−オキサゾリンが好ましい。
また、水系溶媒を用いて組成物を調製することを考慮すると、オキサゾリンポリマーも水溶性であることが好ましい。
このような水溶性のオキサゾリンポリマーは、上記式(1)で表されるオキサゾリンモノマーのホモポリマーでもよいが、水への溶解性をより高めるため、上記オキサゾリンモノマーと親水性官能基を有する(メタ)アクリル酸エステル系モノマーとの少なくとも2種のモノマーをラジカル重合させて得られたものであることが好ましい。
親水性官能基を有する(メタ)アクリル系モノマーの具体例としては、(メタ)アクリル酸、アクリル酸2−ヒドロキシエチル、アクリル酸メトキシポリエチレングリコール、アクリル酸とポリエチレングリコールとのモノエステル化物、アクリル酸2−アミノエチルおよびその塩、メタクリル酸2−ヒドロキシエチル、メタクリル酸メトキシポリエチレングリコール、メタクリル酸とポリエチレングリコールとのモノエステル化物、メタクリル酸2−アミノエチルおよびその塩、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウム、(メタ)アクリルニトリル、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、スチレンスルホン酸ナトリウム等が挙げられ、これらは、単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸とポリエチレングリコールとのモノエステル化物が好適である。
また、オキサゾリンポリマーのCNT分散能に悪影響を及ぼさない範囲で、上記オキサゾリンモノマーおよび親水性官能基を有する(メタ)アクリル系モノマー以外のその他のモノマーを併用することができる。
その他のモノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸エステルモノマー;エチレン、プロピレン、ブテン、ペンテン等のα−オレフィン系モノマー;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロオレフィン系モノマー;スチレン、α−メチルスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル系モノマー;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマーなどが挙げられ、これらはそれぞれ単独で用いても、2種以上組み合わせて用いてもよい。
本発明で用いるオキサゾリンポリマーの製造に用いられるモノマー成分において、オキサゾリンモノマーの含有率は、得られるオキサゾリンポリマーのCNT分散能をより高めるという点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。なお、モノマー成分におけるオキサゾリンモノマーの含有率の上限値は100質量%であり、この場合は、オキサゾリンモノマーのホモポリマーが得られる。
一方、得られるオキサゾリンポリマーの水溶性をより高めるという点から、モノマー成分における親水性官能基を有する(メタ)アクリル系モノマーの含有率は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。
また、モノマー成分におけるその他の単量体の含有率は、上述のとおり、得られるオキサゾリンポリマーのCNT分散能に影響を与えない範囲であり、また、その種類によって異なるため一概には決定できないが、5〜95質量%、好ましくは10〜90質量%の範囲で適宜設定すればよい。
オキサゾリンポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が1,000〜2,000,000が好ましく、2,000〜1,000,000がより好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値である。
本発明で使用可能なオキサゾリンポリマーは、上記モノマーを従来公知のラジカル重合にて合成することができるが、市販品として入手することもでき、そのような市販品としては、例えば、エポクロスWS−300((株)日本触媒製、固形分濃度10質量%、水溶液)、エポクロスWS−700((株)日本触媒製、固形分濃度25質量%、水溶液)、エポクロスWS−500((株)日本触媒製、固形分濃度39質量%、水/1−メトキシ−2−プロパノール溶液)、Poly(2−ethyl−2−oxazoline)(Aldrich)、Poly(2−ethyl−2−oxazoline)(AlfaAesar)、Poly(2−ethyl−2−oxazoline)(VWR International,LLC)等が挙げられる。
なお、溶液として市販されている場合、そのまま使用しても、目的とする溶媒に置換してから使用してもよい。
また、下記式(2)および(3)で示される、トリアリールアミン類とアルデヒド類および/またはケトン類とを酸性条件下で縮合重合することで得られる高分岐ポリマーも好適に用いられる。
Figure 2019188550
上記式(2)および(3)において、Ar1〜Ar3は、それぞれ独立して、式(4)〜(8)で表されるいずれかの二価の有機基を表すが、特に、式(4)で示される置換または非置換のフェニレン基が好ましい。
Figure 2019188550
また、式(2)および(3)において、Z1およびZ2は、それぞれ独立して、水素原子、炭素数1〜5の分岐構造を有していてもよいアルキル基、または式(9)〜(12)で表されるいずれかの一価の有機基を表す(ただし、Z1およびZ2が同時に上記アルキル基となることはない。)が、Z1およびZ2としては、それぞれ独立して、水素原子、2−または3−チエニル基、式(9)で示される基が好ましく、特に、Z1およびZ2のいずれか一方が水素原子で、他方が、水素原子、2−または3−チエニル基、式(9)で示される基、特にR141がフェニル基のもの、またはR141がメトキシ基のものがより好ましい。
なお、R141がフェニル基の場合、後述する酸性基導入法において、ポリマー製造後に酸性基を導入する手法を用いた場合、このフェニル基上に酸性基が導入される場合もある。
上記炭素数1〜5の分岐構造を有していてもよいアルキル基としては、上記で例示したものと同様のものが挙げられる。
Figure 2019188550
上記式(3)〜(8)において、R101〜R138は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜5の分岐構造を有していてもよいアルキル基、炭素数1〜5の分岐構造を有していてもよいアルコキシ基、またはカルボキシル基、スルホ基、リン酸基、ホスホン酸基もしくはそれらの塩を表す。
ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
炭素数1〜5の分岐構造を有していてもよいアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基等が挙げられる。
炭素数1〜5の分岐構造を有していてもよいアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基等が挙げられる。
カルボキシル基、スルホ基、リン酸基およびホスホン酸基の塩としては、ナトリウム,カリウム等のアルカリ金属塩;マグネシウム,カルシウム等の2族金属塩;アンモニウム塩;プロピルアミン、ジメチルアミン、トリエチルアミン、エチレンジアミン等の脂肪族アミン塩;イミダゾリン、ピペラジン、モルホリン等の脂環式アミン塩;アニリン、ジフェニルアミン等の芳香族アミン塩;ピリジニウム塩などが挙げられる。
上記式(9)〜(12)において、R139〜R162は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜5の分岐構造を有していてもよいアルキル基、炭素数1〜5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR163、COR163、NR163164、COOR165(これらの式中、R163およびR164は、それぞれ独立して、水素原子、炭素数1〜5の分岐構造を有していてもよいアルキル基、炭素数1〜5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R165は、炭素数1〜5の分岐構造を有していてもよいアルキル基、炭素数1〜5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、またはカルボキシル基、スルホ基、リン酸基、ホスホン酸基もしくはそれらの塩を表す。
ここで、炭素数1〜5の分岐構造を有していてもよいハロアルキル基としては、ジフルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2−クロロエチル基、2−ブロモエチル基、1,1−ジフルオロエチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、2−クロロ−1,1,2−トリフルオロエチル基、ペンタフルオロエチル基、3−ブロモプロピル基、2,2,3,3−テトラフルオロプロピル基、1,1,2,3,3,3−ヘキサフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イル基、3−ブロモ−2−メチルプロピル基、4−ブロモブチル基、パーフルオロペンチル基等が挙げられる。
なお、ハロゲン原子、炭素数1〜5の分岐構造を有していてもよいアルキル基としては、上記式(3)〜(8)で例示した基と同様のものが挙げられる。
特に、集電体との密着性をより向上させることを考慮すると、上記高分岐ポリマーは、式(2)または(3)で表される繰り返し単位の少なくとも1つの芳香環中に、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、およびそれらの塩から選ばれる少なくとも1種の酸性基を有するものが好ましく、スルホ基またはその塩を有するものがより好ましい。
上記高分岐ポリマーの製造に用いられるアルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、2−メチルブチルアルデヒド、ヘキシルアルデヒド、ウンデシルアルデヒド、7−メトキシ−3,7−ジメチルオクチルアルデヒド、シクロヘキサンカルボキシアルデヒド、3−メチル−2−ブチルアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド等の飽和脂肪族アルデヒド類;アクロレイン、メタクロレイン等の不飽和脂肪族アルデヒド類;フルフラール、ピリジンアルデヒド、チオフェンアルデヒド等のヘテロ環式アルデヒド類;ベンズアルデヒド、トリルアルデヒド、トリフルオロメチルベンズアルデヒド、フェニルベンズアルデヒド、サリチルアルデヒド、アニスアルデヒド、アセトキシベンズアルデヒド、テレフタルアルデヒド、アセチルベンズアルデヒド、ホルミル安息香酸、ホルミル安息香酸メチル、アミノベンズアルデヒド、N,N−ジメチルアミノベンズアルデヒド、N,N−ジフェニルアミノベンズアルデヒド、ナフチルアルデヒド、アントリルアルデヒド、フェナントリルアルデヒド等の芳香族アルデヒド類、フェニルアセトアルデヒド、3−フェニルプロピオンアルデヒド等のアラルキルアルデヒド類などが挙げられるが、中でも、芳香族アルデヒド類を用いることが好ましい。
また、上記高分岐ポリマーの製造に用いられるケトン化合物としては、アルキルアリールケトン、ジアリールケトン類であり、例えば、アセトフェノン、プロピオフェノン、ジフェニルケトン、フェニルナフチルケトン、ジナフチルケトン、フェニルトリルケトン、ジトリルケトン等が挙げられる。
本発明に用いられる高分岐ポリマーは、下記スキーム1に示されるように、例えば、下記式(A)で示されるような、上述したトリアリールアミン骨格を与え得るトリアリールアミン化合物と、例えば下記式(B)で示されるようなアルデヒド化合物および/またはケトン化合物とを、酸触媒の存在下で縮合重合して得られる。
なお、アルデヒド化合物として、例えば、テレフタルアルデヒド等のフタルアルデヒド類のような、二官能化合物(C)を用いる場合、スキーム1で示される反応が生じるだけではなく、下記スキーム2で示される反応が生じ、2つの官能基が共に縮合反応に寄与した、架橋構造を有する高分岐ポリマーが得られる場合もある。
Figure 2019188550
(式中、Ar1〜Ar3、およびZ1〜Z2は、上記と同じ意味を表す。)
Figure 2019188550
(式中、Ar1〜Ar3、およびR101〜R104は、上記と同じ意味を表す。)
上記縮合重合反応では、トリアリールアミン化合物のアリール基1当量に対して、アルデヒド化合物および/またはケトン化合物を0.1〜10当量の割合で用いることができる。
上記酸触媒としては、例えば、硫酸、リン酸、過塩素酸等の鉱酸類;p−トルエンスルホン酸、p−トルエンスルホン酸一水和物等の有機スルホン酸類;ギ酸、シュウ酸等のカルボン酸類などを用いることができる。
酸触媒の使用量は、その種類によって種々選択されるが、通常、トリアリールアミン類100質量部に対して、0.001〜10,000質量部、好ましくは0.01〜1,000質量部、より好ましくは0.1〜100質量部である。
上記の縮合反応は無溶媒でも行えるが、通常溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができ、例えば、テトラヒドロフラン、1,4−ジオキサン等の環状エーテル類;N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等のアミド類;メチルイソブチルケトン、シクロヘキサノン等のケトン類;塩化メチレン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類などが挙げられ、特に、環状エーテル類が好ましい。これらの溶媒は、それぞれ単独でまたは2種以上混合して用いることができる。
また、使用する酸触媒が、例えば、ギ酸のような液状のものであるならば、酸触媒に溶媒としての役割を兼ねさせることもできる。
縮合時の反応温度は、通常40〜200℃である。反応時間は反応温度によって種々選択されるが、通常30分間から50時間程度である。
高分岐ポリマーに酸性基を導入する場合、ポリマー原料である、上記トリアリールアミン化合物、アルデヒド化合物、ケトン化合物の芳香環上に予め導入し、これを用いて高分岐ポリマーを製造する方法で導入しても、得られた高分岐ポリマーを、その芳香環上に酸性基を導入可能な試薬で処理する方法で導入してもよいが、製造の簡便さを考慮すると、後者の手法を用いることが好ましい。
後者の手法において、酸性基を芳香環上に導入する手法としては、特に制限はなく、酸性基の種類に応じて従来公知の各種方法から適宜選択すればよい。
例えば、スルホ基を導入する場合、過剰量の硫酸を用いてスルホン化する手法などを用いることができる。
上記高分岐ポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が1,000〜2,000,000が好ましく、2,000〜1,000,000がより好ましい。
具体的な高分岐ポリマーとしては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
Figure 2019188550
本発明において、CNTと分散剤との混合比率は、質量比で1,000:1〜1:100程度とすることができる。
また、組成物中における分散剤の濃度は、CNTを溶媒に分散させ得る濃度であれば特に限定されるものではないが、組成物中に0.001〜30質量%程度とすることが好ましく、0.002〜20質量%程度とすることがより好ましい。
さらに、組成物中におけるCNTの濃度は、目的とするアンダーコート層の目付量や、要求される機械的、電気的、熱的特性などにおいて変化するものであり、また、少なくともCNTの一部が孤立分散し、実用的な目付量範囲でアンダーコート層を作製できる限り任意であるが、組成物中に0.0001〜30質量%程度とすることが好ましく、0.001〜20質量%程度とすることがより好ましく、0.001〜10質量%程度とすることがより一層好ましい。
溶媒としては、従来、導電性組成物の調製に用いられるものであれば特に限定されず、例えば、水;テトラヒドロフラン(THF)、ジエチルエーテル、1,2−ジメトキシエタン(DME)等のエーテル類;塩化メチレン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類;N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール、n−ブタノール、t−ブタノール、n−プロパノール等のアルコール類;n−ヘプタン、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール等のグリコール類等の有機溶媒が挙げられる。これらの溶媒は、1種単独で、または2種以上を混合して用いることができる。
特に、CNTの孤立分散の割合を向上させ得るという点から、水、NMP、DMF、THF、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノールが好ましい。また塗工性を向上させ得るという点から、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノールを含むことが好ましい。またコストを下げ得るという点からは、水を含むことが好ましい。これらの溶媒は、孤立分散の割合を増やすこと、塗工性を上げること、コストを下げることを目的として、1種単独でまたは2種以上を混合して用いることができる。水とアルコール類との混合溶媒を用いる場合、その混合割合は特に限定されるものではないが、質量比で、水:アルコール類=1:1〜10:1程度が好ましい。
本発明の組成物には、マトリックスとなる高分子を添加してもよい。マトリックス高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体〔P(VDF−HFP)〕、フッ化ビニリデン−塩化3フッ化エチレン共重合体〔P(VDF−CTFE)〕等のフッ素系樹脂;ポリビニルピロリドン、エチレン−プロピレン−ジエン三元共重合体、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン−酢酸ビニル共重合体)、EEA(エチレン−アクリル酸エチル共重合体)等のポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル−スチレン共重合体)、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)、MS(メタクリル酸メチル−スチレン共重合体)、スチレン−ブタジエンゴム等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアクリル酸ナトリウム、PMMA(ポリメチルメタクリレート)等の(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ−3−ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、カルボキシメチルセルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂や、ポリアニリンおよびその半酸化体であるエメラルジンベース;ポリチオフェン;ポリピロール;ポリフェニレンビニレン;ポリフェニレン;ポリアセチレン等の導電性高分子、さらにはエポキシ樹脂;ウレタンアクリレート;フェノール樹脂;メラミン樹脂;尿素樹脂;アルキド樹脂等の熱硬化性樹脂や光硬化性樹脂などが挙げられるが、本発明の導電性炭素材料分散液においては、溶媒として水を用いることが好適であることから、マトリックス高分子としても水溶性のもの、例えば、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、水溶性セルロースエーテル、アルギン酸ナトリウム、ポリビニルアルコール、ポリスチレンスルホン酸、ポリエチレングリコール等が挙げられるが、特に、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム等が好適である。
マトリックス高分子は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700〜7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、メトローズSHシリーズ(ヒドロキシプロピルメチルセルロース、信越化学工業(株)製)、メトローズSEシリーズ(ヒドロキシエチルメチルセルロース、信越化学工業(株)製)、JC−25(完全ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JM−17(中間ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JP−03(部分ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、ポリスチレンスルホン酸(Aldrich社製、固形分濃度18質量%、水溶液)等が挙げられる。
マトリックス高分子の含有量は、特に限定されるものではないが、組成物中に、0.0001〜99質量%程度が好ましく、0.001〜90質量%程度がより好ましい。
なお、本発明の組成物には、用いる分散剤と架橋反応を起こす架橋剤や、自己架橋する架橋剤を含んでいてもよい。これらの架橋剤は、使用する溶媒に溶解することが好ましい。
オキサゾリンポリマーの架橋剤としては、例えば、カルボキシル基、水酸基、チオール基、アミノ基、スルフィン酸基、エポキシ基等のオキサゾリン基との反応性を有する官能基を2個以上有する化合物であれば特に限定されるものではないが、カルボキシル基を2個以上有する化合物が好ましい。なお、薄膜形成時の加熱や、酸触媒の存在下で上記官能基が生じて架橋反応を起こす官能基、例えば、カルボン酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等を有する化合物も架橋剤として用いることができる。
オキサゾリン基と架橋反応を起こす化合物の具体例としては、酸触媒の存在下で架橋反応性を発揮する、ポリアクリル酸やそのコポリマー等の合成高分子およびカルボキシメチルセルロースやアルギン酸といった天然高分子の金属塩、加熱により架橋反応性を発揮する、上記合成高分子および天然高分子のアンモニウム塩等が挙げられるが、特に、酸触媒の存在下や加熱条件下で架橋反応性を発揮するポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースアンモニウム等が好ましい。
このようなオキサゾリン基と架橋反応を起こす化合物は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700〜7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、アロンA−30(ポリアクリル酸アンモニウム、東亞合成(株)製、固形分濃度32質量%、水溶液)、DN−800H(カルボキシメチルセルロースアンモニウム、ダイセルファインケム(株)製)、アルギン酸アンモニウム((株)キミカ製)等が挙げられる。
トリアリールアミン系高分岐ポリマーの架橋剤としては、例えば、メラミン系、置換尿素系、またはそれらのポリマー系架橋剤等が挙げられ、これら架橋剤は、それぞれ単独で、または2種以上混合して用いることができる。なお、好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、CYMEL(登録商標)、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メチロール化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メチロール化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メチロール化尿素、メトキシメチル化チオ尿素、メトキシメチル化チオ尿素、メチロール化チオ尿素等の化合物、およびこれらの化合物の縮合体が例として挙げられる。
自己架橋する架橋剤としては、例えば、水酸基に対してアルデヒド基、エポキシ基、ビニル基、イソシアネート基、アルコキシ基、カルボキシル基に対してアルデヒド基、アミノ基、イソシアネート基、エポキシ基、アミノ基に対してイソシアネート基、アルデヒド基などの、互いに反応する架橋性官能基を同一分子内に有している化合物や、同じ架橋性官能基同士で反応する水酸基(脱水縮合)、メルカプト基(ジスルフィド結合)、エステル基(クライゼン縮合)、シラノール基(脱水縮合)、ビニル基、アクリル基などを有している化合物などが挙げられる。
自己架橋する架橋剤の具体例としては、酸触媒の存在下で架橋反応性を発揮する多官能アクリレート、テトラアルコキシシラン、ブロックイソシアネート基を有するモノマーおよび水酸基、カルボン酸、アミノ基の少なくとも1つを有するモノマーのブロックコポリマーなどが挙げられる。
このような自己架橋する架橋剤は、市販品として入手することもでき、そのような市販品としては、例えば、多官能アクリレートでは、A−9300(エトキシ化イソシアヌル酸トリアクリレート、新中村化学工業(株)製)、A−GLY−9E(Ethoxylated glycerine triacrylate(EO9mol)、新中村化学工業(株)製)、A−TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業(株)製)、テトラアルコキシシランでは、テトラメトキシシラン(東京化成工業(株)製)、テトラエトキシシラン(東横化学(株)製)、ブロックイソシアネート基を有するポリマーでは、エラストロンシリーズE−37、H−3、H38、BAP、NEW BAP−15、C−52、F−29、W−11P、MF−9、MF−25K(第一工業製薬(株)製)等が挙げられる。
これら架橋剤の添加量は、使用する溶媒、使用する基材、要求される粘度、要求される膜形状などにより変動するが、分散剤に対して0.001〜80質量%、好ましくは0.01〜50質量%、より好ましくは0.05〜40質量%である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、分散剤と架橋反応を起こすものであり、分散剤中に架橋性置換基が存在する場合はそれらの架橋性置換基により架橋反応が促進される。
本発明では、架橋反応を促進するための触媒として、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp−トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物、および/または2,4,4,6−テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2−ニトロベンジルトシレート、有機スルホン酸アルキルエステル等の熱酸発生剤を添加する事ができる。
触媒の添加量はCNT分散剤に対して、0.0001〜20質量%、好ましくは0.0005〜10質量%、より好ましくは0.001〜3質量%である。
本発明の組成物の調製法は、特に限定されるものではなく、CNT、分散剤および溶媒、並びに必要に応じて用いられるマトリックスポリマー、架橋剤等を任意の順序で混合して分散液を調製すればよい。
この際、混合物を分散処理することが好ましく、この処理により、CNTの分散割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミル等を用いる湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、特に、ジェットミルを用いた湿式処理や超音波処理が好適である。
分散処理の時間は任意であるが、1分間から10時間程度が好ましく、5分間から5時間程度がより好ましい。この際、必要に応じて加熱処理を施しても構わない。
なお、マトリックスポリマー等の任意成分を用いる場合、これらは、CNT、分散剤および溶媒からなる混合物を調製した後から加えてもよい。
本発明において、組成物の固形分濃度は、特に限定されるものではないが、所望の目付量や膜厚でアンダーコート層を形成することを考慮すると、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がより一層好ましい。
また、その下限は、任意であるが、実用的な観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がより一層好ましい。
なお、固形分とは、組成物を構成する溶媒以外の成分の総量である。
以上で説明した組成物を集電体の少なくとも一方の面に塗布し、これを自然または加熱乾燥し、アンダーコート層を形成してアンダーコート箔を作製することができる。
アンダーコート層の厚みは、得られるデバイスの内部抵抗を低減することを考慮すると、1nm〜10μmが好ましく、1nm〜1μmがより好ましく、1〜500nmがより一層好ましい。
アンダーコート層の膜厚は、例えば、アンダーコート箔から適当な大きさの試験片を切り出し、それを手で裂く等の手法により断面を露出させ、走査電子顕微鏡(SEM)等の顕微鏡観察により、断面部分でアンダーコート層が露出した部分から求めることができる。
集電体の一面あたりのアンダーコート層の目付量は、上記膜厚を満たす限り特に限定されるものではないが、1000mg/m2以下が好ましく、500mg/m2以下がより好ましく、300mg/m2以下がより一層好ましく、200mg/m2以下がさらに好ましい。
一方、アンダーコート層の機能を担保して優れた特性の電池を再現性よく得るため、集電体の一面あたりのアンダーコート層の目付量を好ましくは1mg/m2以上、より好ましくは5mg/m2以上、より一層好ましくは10mg/m2以上、さらに好ましくは15mg/m2以上とする。
なお、アンダーコート層の目付量は、アンダーコート層の面積(m2)に対するアンダーコート層の質量(mg)の割合であり、アンダーコート層がパターン状に形成されている場合、当該面積はアンダーコート層のみの面積であり、パターン状に形成されたアンダーコート層の間に露出する集電体の面積を含まない。
アンダーコート層の質量は、例えば、アンダーコート箔から適当な大きさの試験片を切り出し、その質量W0を測定し、その後、アンダーコート箔からアンダーコート層を剥離し、アンダーコート層を剥離した後の質量W1を測定し、その差(W0−W1)から算出する、あるいは、予め集電体の質量W2を測定しておき、その後、アンダーコート層を形成したアンダーコート箔の質量W3を測定し、その差(W3−W2)から算出することができる。
アンダーコート層を剥離する方法としては、例えばアンダーコート層が溶解、もしくは膨潤する溶剤に、アンダーコート層を浸漬させ、布等でアンダーコート層をふき取るなどの方法が挙げられる。
目付量や膜厚は、公知の方法で調整することができる。例えば、塗布によりアンダーコート層を形成する場合、アンダーコート層を形成するための塗工液(アンダーコート層形成用組成物)の固形分濃度、塗布回数、塗工機の塗工液投入口のクリアランスなどを変えることで調整できる。
目付量や膜厚を多くしたい場合は、固形分濃度を高くしたり、塗布回数を増やしたり、クリアランスを大きくしたりする。目付量や膜厚を少なくしたい場合は、固形分濃度を低くしたり、塗布回数を減らしたり、クリアランスを小さくしたりする。
上記アンダーコート層の表面粗さRaの換算膜厚に対する割合は、50%以上が好ましく、得られるデバイスの低抵抗化および抵抗上昇抑制効果をより高めることを考慮すると、55%以上が好ましい。上記割合の上限は、特に制限されないが、1,000%以下が好ましく、500%以下がより好ましい。
また、アンダーコート層の表面粗さRaは、上記割合を満たす限り特に制限されないが、10nm以上が好ましく、15nm以上がより好ましく、20nm以上がより一層好ましい。また、上限についても、膜厚の範囲内であれば特に制限されないが、1,000nm以下が好ましく、500nm以下がより好ましい。
なお、上記表面粗さRaは、作製したアンダーコート層について、原子間力顕微鏡を用いて所定領域内、例えば、30μm×30μmの領域内で任意の3点を測定して得られる平均値(算術平均粗さ)である。
一方、アンダーコート層の換算膜厚は、アンダーコート層の密度を1g/cm3とした場合の、アンダーコート層の目付量から算出される値である。
集電体は、従来、エネルギー貯蔵デバイス用電極の集電体として用いられているものを使用することができる。例えば、銅、アルミニウム、チタン、ステンレススチール、ニッケル、金、銀およびこれらの合金や、カーボン材料、金属酸化物、導電性高分子等を用いることができるが、超音波溶接等の溶接を適用して電極構造体を作製する場合、銅、アルミニウム、チタン、ステンレススチールまたはこれらの合金からなる金属箔を用いることが好ましい。
集電体の厚みは特に限定されないが、本発明においては、1〜100μmが好ましい。
組成物の塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、キャスティング法、スプレーコート法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法、ダイコート法などが挙げられるが、作業効率等の点から、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ダイコート法が好適である。
加熱乾燥する場合の温度も任意であるが、50〜200℃程度が好ましく、80〜150℃程度がより好ましい。
本発明のエネルギー貯蔵デバイス用電極は、上記アンダーコート層上に、電極合材層を形成して作製することができる。
本発明におけるエネルギー貯蔵デバイスとしては、例えば、電気二重層キャパシタ、リチウム二次電池、リチウムイオン二次電池、プロトンポリマー電池、ニッケル水素電池、アルミ固体コンデンサ、電解コンデンサ、鉛蓄電池等の各種エネルギー貯蔵デバイスが挙げられるが、本発明のアンダーコート箔は、特に、電気二重層キャパシタ、リチウムイオン二次電池に好適に用いることができる。
ここで、活物質としては、従来、エネルギー貯蔵デバイス用電極に用いられている各種活物質を用いることができる。
例えば、リチウム二次電池やリチウムイオン二次電池の場合、正極活物質としてリチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
このようなリチウムイオンを吸着離脱可能なカルコゲン化合物としては、例えばFeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
リチウムイオン含有カルコゲン化合物としては、例えばLiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(但し、Mは、Co、Mn、Ti、Cr、V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)等が挙げられる。
ポリアニオン系化合物としては、例えばLiFePO4等が挙げられる。
硫黄化合物としては、例えばLi2S、ルベアン酸等が挙げられる。
一方、上記負極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4〜15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金としては、例えば、Li−Al、Li−Mg、Li−Al−Ni、Na−Hg、Na−Zn等が挙げられる。
リチウムイオンを吸蔵放出する周期表4〜15族の元素から選ばれる少なくとも1種の元素の単体としては、例えば、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
同じく酸化物としては、例えば、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)、酸化チタン等が挙げられる。
同じく硫化物としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、具体的には、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
リチウムイオンを可逆的に吸蔵・放出可能な炭素材料としては、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
また、電気二重層キャパシタの場合、活物質として炭素質材料を用いることができる。
この炭素質材料としては、活性炭等が挙げられ、例えば、フェノール樹脂を炭化後、賦活処理して得られた活性炭が挙げられる。
電極合材層は、以上で説明した活物質と、以下で説明するバインダーポリマーおよび必要に応じて溶媒を合わせて作製した電極スラリーを、アンダーコート層上に塗布し、自然または加熱乾燥して形成することができる。
バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体〔P(VDF−HFP)〕、フッ化ビニリデン−塩化3フッ化エチレン共重合体〔P(VDF−CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン−プロピレン−ジエン三元共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン等の導電性高分子などが挙げられる。
なお、バインダーポリマーの添加量は、活物質100質量部に対して、0.1〜20質量部、特に、1〜10質量部が好ましい。
溶媒としては、上記組成物用の溶媒で例示した溶媒が挙げられ、それらの中からバインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
なお、上記電極スラリーは、導電材を含んでいてもよい。導電材としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケルなどが挙げられる。
電極スラリーの塗布方法としては、上述した組成物の塗布方法と同様の手法が挙げられる。
また、加熱乾燥する場合の温度も任意であるが、50〜400℃程度が好ましく、80〜150℃程度がより好ましい。
電極は、必要に応じてプレスしてもよい。このとき、プレス圧力は1kN/cm以上が好ましい。プレス法は、一般に採用されている方法を用いることができるが、特に金型プレス法やロールプレス法が好ましい。また、プレス圧力は、特に限定されないが、2kN/cm以上が好ましく、3kN/cm以上がより好ましい。プレス圧力の上限は、40kN/cm程度が好ましく、30kN/cm程度がより好ましい。
本発明に係るエネルギー貯蔵デバイスは、上述したエネルギー貯蔵デバイス用電極を備えたものであり、より具体的には、少なくとも一対の正負極と、これら各極間に介在するセパレータと、電解質とを備えて構成され、正負極の少なくとも一方が、上述したエネルギー貯蔵デバイス用電極から構成される。
このエネルギー貯蔵デバイスは、電極として上述したエネルギー貯蔵デバイス用電極を用いることにその特徴があるため、その他のデバイス構成部材であるセパレータや、電解質などは、公知の材料から適宜選択して用いることができる。
セパレータとしては、例えば、セルロース系セパレータ、ポリオレフィン系セパレータ等が挙げられる。
電解質としては、液体、固体のいずれでもよく、また水系、非水系のいずれでもよいが、本発明のエネルギー貯蔵デバイス用電極は、非水系電解質を用いたデバイスに適用した場合にも実用上十分な性能を発揮させ得る。
非水系電解質としては、電解質塩を非水系有機溶媒に溶かしてなる非水系電解液が挙げられる。
電解質塩としては、4フッ化硼酸リチウム、6フッ化リン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩;テトラメチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラプロピルアンモニウムヘキサフルオロホスフェート、メチルトリエチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムパークロレート等の4級アンモニウム塩、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド等のリチウムイミドなどが挙げられる。
非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
エネルギー貯蔵デバイスの形態は特に限定されるものではなく、円筒型、扁平巻回角型、積層角型、コイン型、扁平巻回ラミネート型、積層ラミネート型等の従来公知の各種形態のセルを採用することができる。
コイン型に適用する場合、上述した本発明のエネルギー貯蔵デバイス用電極を、所定の円盤状に打ち抜いて用いればよい。
例えば、リチウムイオン二次電池は、コインセルのワッシャーとスペーサーが溶接されたフタに、一方の電極を設置し、その上に、電解液を含浸させた同形状のセパレータを重ね、さらに上から、電極合材層を下にして本発明のエネルギー貯蔵デバイス用電極を重ね、ケースとガスケットを載せて、コインセルかしめ機で密封して作製することができる。
積層ラミネート型に適用する場合、電極合材層がアンダーコート層表面の一部または全面に形成された電極における、電極合材層が形成されていない部分(溶接部)で金属タブと溶接して得られた電極構造体を用いればよい。なお、アンダーコート層が形成され、かつ、電極合材層が形成されていない部分で溶接する場合、集電体の一面あたりのアンダーコート層の目付量を好ましくは0.1g/m2以下、より好ましくは0.09g/m2以下、より一層好ましくは0.05g/m2未満とする。
この場合、電極構造体を構成する電極は一枚でも複数枚でもよいが、一般的には、正負極とも複数枚が用いられる。
正極を形成するための複数枚の電極は、負極を形成するための複数枚の電極と、一枚ずつ交互に重ねることが好ましく、その際、正極と負極の間には上述したセパレータを介在させることが好ましい。
金属タブは、複数枚の電極の最も外側の電極の溶接部で溶接しても、複数枚の電極のうち、任意の隣接する2枚の電極の溶接部間に金属タブを挟んで溶接してもよい。
金属タブの材質は、一般的にエネルギー貯蔵デバイスに使用されるものであれば、特に限定されるものではなく、例えば、ニッケル、アルミニウム、チタン、銅等の金属;ステンレススチール、ニッケル合金、アルミニウム合金、チタン合金、銅合金等の合金などが挙げられるが、溶接効率を考慮すると、アルミニウム、銅およびニッケルから選ばれる少なくとも1種の金属を含んで構成されるものが好ましい。
金属タブの形状は、箔状が好ましく、その厚さは0.05〜1mm程度が好ましい。
溶接方法は、金属同士の溶接に用いられる公知の方法を用いることができ、その具体例としては、TIG溶接、スポット溶接、レーザー溶接、超音波溶接等が挙げられるが、超音波溶接にて電極と金属タブとを接合することが好ましい。
超音波溶接の手法としては、例えば、複数枚の電極をアンビルとホーンとの間に配置し、溶接部に金属タブを配置して超音波をかけて一括して溶接する手法や、電極同士を先に溶接し、その後、金属タブを溶接する手法などが挙げられる。
本発明では、いずれの手法でも、金属タブと電極とが上記溶接部で溶接されるだけでなく、複数枚の電極同士も互いに超音波溶接されることになる。
溶接時の圧力、周波数、出力、処理時間等は、特に限定されるものではなく、用いる材料やアンダーコート層の有無、目付量などを考慮して適宜設定すればよい。
以上のようにして作製した電極構造体を、ラミネートパックに収納し、上述した電解液を注入した後、ヒートシールすることでラミネートセルが得られる。
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、測定等に使用した装置は以下のとおりである。
(1)プローブ型超音波照射装置(分散処理)
Hielscher Ultrasonics社製、UIP1000
(2)ワイヤーバーコーター(アンダーコート層形成)
(株)エスエムテー製、PM−9050MC
(3)ホモディスパー(電極スラリーの混合)
プライミクス(株)製、T.K.ロボミックス(ホモディスパー2.5型(φ32)付き)
(4)薄膜旋回型高速ミキサー(電極スラリーの混合)
プライミクス(株)製、フィルミクス40型
(5)自転・公転ミキサー(電極スラリーの脱泡)
(株)シンキー製、あわとり練太郎(ARE−310)
(6)ロールプレス機(電極の圧縮)
有限会社タクミ技研製、SA−602
(7)充放電測定装置(二次電池評価)
東洋システム(株)製、TOSCAT−3100
(8)コインセルかしめ機
宝泉(株)製、手動コインカシメ機CR2032
(9)透過型電子顕微鏡(CNTの直径の測定)
(株)日立製作所製、H−8000
(10)粉体抵抗測定システム
(株)三菱ケミカルアナリテック製、粉体抵抗測定システムMCP−PD51型および抵抗率計ロレスタGP
測定条件
4探針プローブ、電極間隔:3mm、電極半径:0.7mm、試料半径:10mm、印加圧力:4〜25kN/cm2
密度および導電率の測定方法
導電性炭素材料1.0gを粉体抵抗測定システムの測定容器内に詰めた後に加圧を開始して、表1に示す条件で圧力を印加した時における密度および導電率を測定した。また、各圧力において測定された密度と導電率から最小二乗法により近似直線を求めた後、得られた近似直線から密度が1g/cm3の時に期待される導電率を算出した。
(11)粘度計
装置:東機産業(株)製、VISCOMETER TVE−22L
(12)ラマン分光測定
装置:(株)堀場製作所製、 ARAMIS
測定条件
レーザー:633nm
グレーティング:300Line/mm(NC−7000以外)、1200Line/mm(NC−7000)
測定範囲:3100〜150cm-1
対物レンズ:10倍
検出器:Synapse CCD検出器(感度補正無し)
G:1700−1450cm-1
D:1450−1150cm-1
Baseline:1700〜1150cm-1
G/D比測定方法
上記の測定条件にて、CNTまたはカーボンブラック5mgを用いてG+バンド:1590〜1605cm-1間で最も強度が大きいラマンシフト、G-バンド:1580〜1565cm-1間で最も強度の大きいラマンシフト、Dバンド:1330〜1310cm-1間で最もピーク強度が大きいラマンシフトのピーク強度を求め、(G++G-)/D比を求めた。各ピーク強度を算出する際のベースラインは1700〜1150cm-1とした。
(13)元素分析
装置:(株)ジェイ・サイエンス・ラボ製、JM10
測定元素:水素、炭素、窒素
測定方法:自己積分方式(ピストンポンプを使用)
試料炉温度:1000℃
燃焼炉:850℃
還元炉:550℃
測定サンプル量:1.0mg(誤差:±10質量%以内)
測定回数:3
(14)原子間力顕微鏡
Bruker AXS社製、Dimension Icon
測定条件
プローブ:単結晶Si
バネ定数:40N/m
共振周波数:305kHz
走査速度:0.4Hz
[1]アンダーコート液の製造
[実施例1−1]
分散剤としてオキサゾリンポリマーを含む水溶液であるエポクロスWS−300((株)日本触媒製、固形分濃度10質量%、重量平均分子量1.2×105、オキサゾリン基量7.7mmol/g)5.0gと、純水37.15gと、2−プロパノール(純正化学(株)製、試薬特級)7.35gとを混合し、さらにそこへCNTであるTC−2010(戸田工業(株)製、多層CNT、G/D比:0.997)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分間超音波処理を行い、CNTが均一に分散した分散液を調製した。これに、ポリアクリル酸アンモニウム(PAA−NH4)を含む水溶液であるアロンA−30(東亞合成(株)、固形分濃度31.6質量%)1.2gと、純水41.35gと、2−プロパノール(純正化学(株)製、試薬特級)7.44gを混合して、アンダーコート液(固形分1.38質量%)を調製した。
[比較例1−1]
CNTを、VGCF−X(昭和電工(株)製、多層CNT)に変更した以外は、実施例1−1と同様の方法でアンダーコート液を調製した。
[比較例1−2]
CNTを、C−100(アルケマ社製、多層CNT)に変更した以外は、実施例1−1と同様の方法でアンダーコート液を調製した。
[比較例1−3]
CNTを、Baytubes(BAYER社製、多層CNT)に変更した以外は、実施例1−1と同様の方法でアンダーコート液を調製した。
[比較例1−4]
CNTを、NC−7000(Nanocyl S.A.社製、多層CNT)に変更した以外は、実施例1−1と同様の方法でアンダーコート液を調製した。
上記で使用した各CNTの平均直径を、以下の手順で測定した。
CNT0.5gと、純水42.08gと、2−プロパノール(純正化学(株)製、試薬特級)7.43gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて10分間の超音波処理を行い、CNTの粉末を溶媒中で解砕処理して微粒子化した。得られた混合物は不均一であったが、これをカーボン支持膜付グリッドに滴下し、室温で10分乾燥させた。これを透過型電子顕微鏡(TEM)にて、加速電圧200kVで観察し、無作為に4本のCNTを倍率70,000倍にて撮影した。CNTの直径は、撮影した画像を元に直接測定した。CNT1本につき無作為に5点で直径の測定を行い、計20点の測定値から平均値を求めた。結果を表1に示す。
Figure 2019188550
上記で使用した各CNTの密度および導電率について、粉体抵抗測定システムにて測定した。結果を表2に示す。
Figure 2019188550
上記で使用した各CNTのG/D比および分散液粘度について、ラマン分光測定器および粘度計にて測定した。結果を表3に示す。
Figure 2019188550
上記で使用した各CNTを0.9〜1.1mgの範囲で秤量し、3回の元素分析を行って求められた炭素含有率、その平均値(n=3)、その標準偏差(n=3)を表4に示す。
Figure 2019188550
[2]電極および二次電池の製造
[実施例2−1]
実施例1−1で得られたアンダーコート液を、集電体であるアルミ箔(厚み15μm)にワイヤーバーコーター(OSP13、ウェット膜厚13μm)で均一に展開後、150℃で30分乾燥してアンダーコート層を形成し、アンダーコート箔を作製した。
アンダーコート箔を5×10cmに切り出したものを20枚用意し、質量を測定後、2−プロパノールと水の1:1(質量比)混合液を染み込ませた紙でアンダーコート層を擦り落とした金属箔の質量を測定し、擦り落とす前後の質量差から算出したアンダーコート層の目付量は、150mg/m2であった。
活物質としてリン酸鉄リチウム(LFP、Aleees社製)31.84g、バインダーとしてポリフッ化ビニリデン(PVdF)のNMP溶液(12質量%、(株)クレハ、KFポリマー L#1120)13.05g、導電材としてデンカブラック1.39gおよびN−メチルピロリドン(NMP)13.72gを、ホモディスパーにて8,000rpmで1分間混合した。次いで、薄膜旋回型高速ミキサーを用いて周速20m/秒で60秒の混合処理をし、さらに自転・公転ミキサーにて2,200rpmで30秒脱泡することで、電極スラリー(固形分濃度58質量%、LFP:PVdF:AB=91.5:4.5:4(質量比))を作製した。
得られた電極スラリーを、先に作製したアンダーコート箔に均一(ウェット膜厚100μm)に展開後、80℃で30分、次いで120℃で30分乾燥してアンダーコート層上に電極合材層を形成し、さらにロールプレス機で圧着することで電極を作製した。
得られた電極から、直径10mmの円盤状の電極を4枚打ち抜き、電極層の質量(打ち抜いた電極の質量から、電極未塗工部を直径10mmに打ち抜いたものの質量を差し引いたもの)、および電極層厚み(打ち抜いた電極の厚みから、基材の厚みを引いたもの)を測定し、120℃で15時間真空乾燥し、アルゴンで満たされたグローブボックスに移した。
2032型のコインセル(宝泉(株)製)のワッシャーとスペーサーが溶接されたフタに、直径14mmに打ち抜いたリチウム箔(本荘ケミカル(株)製、厚み0.17mm)を6枚重ねたものを設置し、その上に、電解液(キシダ化学(株)製、エチレンカーボネート:ジエチルカーボネート=1:1(体積比)、電解質であるリチウムヘキサフルオロホスフェートを1mol/L含む)を24時間以上染み込ませた、直径16mmに打ち抜いたセパレータ(セルガード(株)製、セルガード♯2400)を一枚重ねた。さらに上から、活物質を塗布した面を下にして電極を重ねた。電解液を1滴滴下した後、ケースとガスケットを載せて、コインセルかしめ機で密封した。その後、24時間静置し、試験用の二次電池を4個作製した。
[比較例2−1〜2−4]
比較例1−1〜1−4で得られたアンダーコート液を用いた以外は、実施例2−1と同様にして、アンダーコート箔および試験用の二次電池を作製した。
[比較例2−5]
集電体として無垢のアルミ箔を用いた以外は、実施例2−1と同様にして試験用の二次電池を作製した。
実施例2−1および比較例2−2,2−4で作製したアンダーコート箔について、アンダーコート箔の目付量、および表面粗さRaを以下の手法で測定するとともに、換算膜厚、および表面粗さRaの換算膜厚に対する割合を算出した。結果を表5に示す。
[目付量]
作製したアンダーコート箔を8×16cmに切り出して質量を測定した後、0.1N塩酸水溶液に浸漬させてアンダーコート層のみを除去し、金属箔の質量を測定した。アンダーコート層の除去前後での質量差から単位面積あたりの目付量を求めた。
[アンダーコート層の換算膜厚]
上記で算出された目付量から、アンダーコート層の密度を1g/cm3と仮定することでその換算膜厚を算出した。
[表面粗さRa]
作製したアンダーコート箔の30μm×30μmの領域について原子間力顕微鏡を用いて3点測定し、その平均値の表面粗さRa(算術平均粗さ)を求めた。
Figure 2019188550
実施例2−1および比較例2−1〜2−5で作製した二次電池の特性を評価した。正極におけるアンダーコート箔が電池に及ぼす影響を評価することを目的として、充放電測定装置を用いて電池のエージング、直流抵抗測定、サイクル特性評価、直流抵抗測定の順番にて、表6に示す条件で充放電試験を行った。得られた結果を表7に示す。
Figure 2019188550
Figure 2019188550
・終始条件:2−4.5V
・温度:室温
・放電電圧:ステップ2,4において、各放電条件時の実放電容量を100%とし、10%放電した時点での電圧を放電電圧とした。
・直流抵抗測定:4個の試験用電池につき、ステップ2,4において、各放電条件時の電流値と放電電圧から直流抵抗を算出し、その平均値を求めた。
表7に示されるように、実施例2−1で作製された二次電池では、アンダーコート層を形成するCNTとして、本発明に規定されるくびれ部を有するとともに、所定の直径、導電率、密度、G/D比を有し、また元素分析で求められた炭素含有率の標準偏差が所定以上であるCNTを用いているため、比較例2−1〜2−5で作製された電池に比較して、電池の直流抵抗が低く、かつサイクル試験後の抵抗の上昇も抑制されていることがわかる。
また、上記で述べたCNTを用いることで、表7に示されるように、実施例2−1で作製された二次電池では、アンダーコート層の表面粗さRaが適正化されたことにより、比較例で作製された電池に比較して、電池の直流抵抗が低く、かつサイクル試験後の抵抗の上昇も抑制されていることがわかる。
1 平行部
2 平行部のチューブ外径
3 くびれ部
4 くびれ部のチューブ外径

Claims (12)

  1. カーボンナノチューブ、カーボンナノチューブ分散剤、および溶媒を含み、
    前記カーボンナノチューブが、くびれ部を有することを特徴とするエネルギー貯蔵デバイスのアンダーコート層形成用組成物。
  2. 前記カーボンナノチューブの外径(D)の幾何平均径(MD)が、5〜30nmである請求項1記載のエネルギー貯蔵デバイスのアンダーコート層形成用組成物。
  3. 前記カーボンナノチューブ分散剤が、側鎖にオキサゾリン基を含むビニル系ポリマーまたはトリアリールアミン系高分岐ポリマーを含む請求項1または2記載のエネルギー貯蔵デバイスのアンダーコート層形成用組成物。
  4. 請求項1〜3のいずれか1項記載のエネルギー貯蔵デバイスのアンダーコート層形成用組成物から得られるアンダーコート層。
  5. 目付量が、1000mg/m2以下である請求項4記載のアンダーコート層。
  6. 目付量が、500mg/m2以下である請求項5記載のアンダーコート層。
  7. 目付量が、300mg/m2以下である請求項6記載のアンダーコート層。
  8. 目付量が、200mg/m2以下である請求項7記載のアンダーコート層。
  9. 請求項4〜8のいずれか1項記載のアンダーコート層を備えるエネルギー貯蔵デバイスの電極用複合集電体。
  10. 請求項9記載のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。
  11. 請求項10記載のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。
  12. リチウムイオン二次電池である請求項11記載のエネルギー貯蔵デバイス。
JP2020510727A 2018-03-29 2019-03-19 エネルギー貯蔵デバイスのアンダーコート層形成用組成物 Pending JPWO2019188550A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018064395 2018-03-29
JP2018064395 2018-03-29
PCT/JP2019/011347 WO2019188550A1 (ja) 2018-03-29 2019-03-19 エネルギー貯蔵デバイスのアンダーコート層形成用組成物

Publications (1)

Publication Number Publication Date
JPWO2019188550A1 true JPWO2019188550A1 (ja) 2021-04-08

Family

ID=68061664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510727A Pending JPWO2019188550A1 (ja) 2018-03-29 2019-03-19 エネルギー貯蔵デバイスのアンダーコート層形成用組成物

Country Status (3)

Country Link
JP (1) JPWO2019188550A1 (ja)
TW (1) TW202005150A (ja)
WO (1) WO2019188550A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116490347A (zh) * 2020-09-25 2023-07-25 株式会社力森诺科 透明基板和其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266491B2 (ja) * 2007-12-25 2013-08-21 ニッタ株式会社 カーボンナノチューブの製造方法
KR102013167B1 (ko) * 2012-09-14 2019-08-22 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스 전극용 복합 집전체 및 전극
WO2015029949A1 (ja) * 2013-08-27 2015-03-05 日産化学工業株式会社 導電性炭素材料分散剤および導電性炭素材料分散液
WO2016076393A1 (ja) * 2014-11-14 2016-05-19 戸田工業株式会社 カーボンナノチューブとその製造方法、及びカーボンナノチューブを用いたリチウムイオン二次電池
KR20180016969A (ko) * 2015-06-04 2018-02-20 닛산 가가쿠 고교 가부시키 가이샤 에너지 저장 디바이스 전극용 언더코트박
JP6962200B2 (ja) * 2016-01-07 2021-11-05 日産化学株式会社 エネルギー貯蔵デバイス用電極
US10749183B2 (en) * 2016-01-07 2020-08-18 Nissan Chemical Industries, Ltd. Electrode for energy storage devices
JP6767668B2 (ja) * 2016-05-18 2020-10-14 戸田工業株式会社 カーボンナノチューブ分散液
JP7193212B2 (ja) * 2016-05-18 2022-12-20 戸田工業株式会社 カーボンナノチューブとその製造方法、及びカーボンナノチューブ分散体

Also Published As

Publication number Publication date
TW202005150A (zh) 2020-01-16
WO2019188550A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7035496B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
JP6962200B2 (ja) エネルギー貯蔵デバイス用電極
JP6962199B2 (ja) エネルギー貯蔵デバイス用電極
JP6528907B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔およびエネルギー貯蔵デバイス電極の製造方法
WO2018101301A1 (ja) カーボンナノチューブ含有薄膜
JP6531868B2 (ja) エネルギー貯蔵デバイス電極およびエネルギー貯蔵デバイス
JP7047807B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
WO2018101308A1 (ja) エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JPWO2019188545A1 (ja) 導電性薄膜形成用組成物
JPWO2019188550A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188547A1 (ja) 導電性薄膜形成用分散液
JPWO2019188540A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188559A1 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
WO2019188556A1 (ja) エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JP7318637B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318638B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188539A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188541A1 (ja) エネルギー貯蔵デバイスのアンダーコート層
WO2022176789A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
JP2019175729A (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物