JPWO2019187767A1 - Insulating substrate and manufacturing method thereof - Google Patents

Insulating substrate and manufacturing method thereof Download PDF

Info

Publication number
JPWO2019187767A1
JPWO2019187767A1 JP2019531350A JP2019531350A JPWO2019187767A1 JP WO2019187767 A1 JPWO2019187767 A1 JP WO2019187767A1 JP 2019531350 A JP2019531350 A JP 2019531350A JP 2019531350 A JP2019531350 A JP 2019531350A JP WO2019187767 A1 JPWO2019187767 A1 JP WO2019187767A1
Authority
JP
Japan
Prior art keywords
copper plate
insulating substrate
copper
plate material
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019531350A
Other languages
Japanese (ja)
Other versions
JP6582159B1 (en
Inventor
翔一 檀上
翔一 檀上
樋口 優
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68053654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2019187767(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority claimed from PCT/JP2019/005810 external-priority patent/WO2019187767A1/en
Application granted granted Critical
Publication of JP6582159B1 publication Critical patent/JP6582159B1/en
Publication of JPWO2019187767A1 publication Critical patent/JPWO2019187767A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Products (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本発明は、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板に関する。各銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%%以上である組成を有し、各銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、各銅板材の平均結晶粒径が50μm〜400μmである。The present invention provides an insulating substrate in which a ceramic substrate, a first copper plate material formed on one surface of the ceramic substrate, and a second copper plate material formed on the other surface of the ceramic substrate are joined. Regarding Each copper plate material has a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm, and a copper content of 99.96 mass% or more. When the Euler angles (φ1, Φ, φ2) represent the crystal orientation distribution function obtained from the texture analysis by EBSD of the surface of each copper plate having the composition, φ1 = 75 ° ~ 90 °, Φ = 20 In the range of ° -40 °, φ2 = 35 °, the average value of azimuth density is 0.1 or more and less than 15.0, and φ1 = 20 ° -40 °, φ = 55 ° -75 °, φ2 = 20 ° The average value of the orientation density is 0.1 or more and less than 15.0, and the average crystal grain size of each copper plate material is 50 μm to 400 μm.

Description

本発明は、絶縁基板、特にパワーデバイス用の絶縁基板及びその製造方法に関する。   The present invention relates to an insulating substrate, particularly an insulating substrate for power devices and a method for manufacturing the insulating substrate.

一般に、パワーデバイスは高電圧・大電流を使用するため、半導体素子が発する熱による材料特性の劣化が課題となっている。そこで、近年、絶縁性及び放熱性に優れたセラミック基板を銅板に接合した絶縁基板を用いることによって、絶縁・放熱対策が行われてきている。   Generally, a power device uses a high voltage and a large current, so that deterioration of material properties due to heat generated by a semiconductor element is a problem. Therefore, in recent years, measures for insulation and heat dissipation have been taken by using an insulating substrate in which a ceramic substrate having excellent insulation and heat dissipation is joined to a copper plate.

セラミック基板と銅板との接合には、主に、銀系ろう材等を介して接合する接合方法、ろう材を介さずに銅の共晶反応を利用して接合する接合方法等が用いられている。セラミック基板には窒化アルミニウム、アルミナ、窒化ケイ素等が用いられているが、これらの熱膨張係数は銅板を構成する銅板材の熱膨張係数と異なる。そのため、半導体素子の発熱の際に、熱膨張係数の差によって絶縁基板全体に大きなひずみが生じる傾向がある。また、セラミック基板と銅板材とでは、銅板材の方が高い熱膨張係数を有するため、熱処理を行うと、セラミック基板には引張応力が加わり、銅板には圧縮応力が加わる。これにより、絶縁基板全体に高いひずみが加わり、絶縁基板が熱膨張により変形して寸法変化が生じるだけでなく、セラミック基板と銅板との剥離等が生じやすくなる。そのため、加熱してもできる限り変形しにくい絶縁基板が求められている。   For joining the ceramic substrate and the copper plate, a joining method of joining via a silver-based brazing material or the like, a joining method of joining using a eutectic reaction of copper without using a brazing material, etc. are mainly used. There is. Aluminum nitride, alumina, silicon nitride or the like is used for the ceramic substrate, but the thermal expansion coefficient of these is different from the thermal expansion coefficient of the copper plate material forming the copper plate. Therefore, when the semiconductor element generates heat, a large strain tends to occur in the entire insulating substrate due to the difference in thermal expansion coefficient. In addition, since the copper plate material has a higher thermal expansion coefficient between the ceramic substrate and the copper plate material, when heat treatment is performed, tensile stress is applied to the ceramic substrate and compressive stress is applied to the copper plate. As a result, a high strain is applied to the entire insulating substrate, the insulating substrate is deformed due to thermal expansion, and a dimensional change occurs, and the ceramic substrate and the copper plate are easily separated. Therefore, there is a demand for an insulating substrate that is as deformable as possible even when heated.

また、銅板に用いられる高純度の銅は、接合時の700℃以上の高温では結晶粒が著しく成長し、組織の均質化が困難になり、加えて、伸びや引張強度も低下する。そのため、ボンディング性が低下し、また、ひずみが生じた際に粒界破壊の起点になるといった問題がある。そこで、絶縁基板を構成する高純度の銅を用いた銅板の引張強度、伸びを向上させるとともに結晶粒を適切に微細化することで、熱膨張による変形に伴う負荷に対する抵抗力を増大し、粒界破壊の防止、さらにはボンディング性の向上が期待されている。   Further, in the high-purity copper used for the copper plate, crystal grains grow remarkably at a high temperature of 700 ° C. or more at the time of joining, it becomes difficult to homogenize the structure, and in addition, elongation and tensile strength also decrease. Therefore, there is a problem that the bondability is deteriorated and it becomes a starting point of grain boundary fracture when strain occurs. Therefore, by improving the tensile strength and elongation of the copper plate using high-purity copper that constitutes the insulating substrate and appropriately refining the crystal grains, the resistance to the load due to the deformation due to thermal expansion is increased, It is expected to prevent field destruction and further improve bondability.

例えば、特許文献1には、放熱基板に用いられる純銅板として、純度99.90mass%以上の純銅からなり、X線回析強度の比率を特定した純銅板が開示されている。純銅板を構成する無酸素銅において、100μm以下の結晶粒径、X線回折強度の比率を規定することで、純銅板のエッチング性を向上させている。   For example, Patent Document 1 discloses, as a pure copper plate used for a heat dissipation substrate, a pure copper plate made of pure copper having a purity of 99.90 mass% or more and having a specified ratio of X-ray diffraction strength. In the oxygen-free copper constituting the pure copper plate, the etching property of the pure copper plate is improved by defining the crystal grain size of 100 μm or less and the ratio of the X-ray diffraction intensity.

また、特許文献2には、放熱用電子部品及び大電流用電子部品等に好適な銅合金板として、引張強さが350MPa以上であり、所定位置の結晶方位の集積度を制御した銅合金板が開示されている。所定位置の結晶方位の集積度を制御することで、銅合金板の繰返し曲げ加工性等を向上させている。   Further, in Patent Document 2, as a copper alloy plate suitable for electronic components for heat dissipation, electronic components for large current, etc., a copper alloy plate having a tensile strength of 350 MPa or more and controlling the degree of integration of crystal orientation at a predetermined position. Is disclosed. By controlling the degree of integration of the crystal orientation at a predetermined position, the repetitive bending workability of the copper alloy plate is improved.

特開2014−189817号公報JP, 2014-189817, A 特許第5475914号公報Japanese Patent No. 5475914

しかしながら、特許文献1に開示されている純銅板は、エッチングによって表面に凹凸が生じにくいため他の部材との密着性が優れているが、高温下での他の部材との接合に関しては全く検討されていない。また、特許文献2に開示されている銅合金板は、耐熱性に関して検討されているが、200℃で30分間の熱処理による耐熱性しか考慮されていない。さらに、特許文献2に開示されている銅合金板は、引張強さが350MPa以上であり、絶縁基板に用いる銅板材として適切な150〜330MPaの範囲に対応していない。また、特許文献1、2のいずれにおいても、銅板を絶縁基板に接合した後の不具合については何ら言及されていない。それ故、半導体素子が発熱した際、銅板材とセラミック基板との熱膨張係数の差によって生じる、絶縁基板の変形、セラミック基板と銅板との剥離の問題、これらを700℃以上の高温で接合する際に生じる、結晶粒の成長による組織の不均質化、ボンディング性の低下の問題に対しては、依然として解決されていない。   However, the pure copper plate disclosed in Patent Document 1 has excellent adhesion to other members because the surface is less likely to have irregularities due to etching, but the joining with other members at high temperatures is completely investigated. It has not been. Further, the copper alloy plate disclosed in Patent Document 2 has been studied for heat resistance, but only heat resistance by heat treatment at 200 ° C. for 30 minutes is considered. Furthermore, the copper alloy plate disclosed in Patent Document 2 has a tensile strength of 350 MPa or more, and does not correspond to the range of 150 to 330 MPa suitable as a copper plate material used for an insulating substrate. Further, in any of Patent Documents 1 and 2, there is no mention of a problem after the copper plate is bonded to the insulating substrate. Therefore, when the semiconductor element generates heat, problems of deformation of the insulating substrate and separation of the ceramic substrate and the copper plate caused by a difference in thermal expansion coefficient between the copper plate material and the ceramic substrate, and joining them at a high temperature of 700 ° C. or higher. The problems of non-uniformity of the structure due to the growth of crystal grains and deterioration of the bondability which have occurred at this time have not yet been solved.

上記事情に鑑み、本発明の目的は、耐熱特性に優れ、さらには、結晶粒が良好に微細化された銅板材を備えた絶縁基板及びその製造方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide an insulating substrate having a copper plate material having excellent heat resistance and finely crystallized grains, and a method for manufacturing the same.

[1]セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板であって、
前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が1.0以上15.0未満である圧延集合組織を有し、かつ、
前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下である、絶縁基板。
[2]前記第1及び第2の銅板材の平均結晶粒径が100μmより大きく400μm以下である、[1]に記載の絶縁基板。
[3]前記セラミック基板が、窒化アルミニウム、窒化珪素、アルミナ、およびアルミナとジルコニアの化合物からなる群から選択される少なくとも1種を主成分とするセラミック材料を用いて形成されている、[1]または[2]に記載の絶縁基板。
[4]前記第1及び第2の銅板材の引張強度が、210MPa以上250MPa以下である、[1]乃至[3]のいずれかに記載の絶縁基板。
[5]前記第1及び第2の銅板材の伸びが25%以上50%未満である[1]乃至[4]のいずれかに記載の絶縁基板。
[6]前記第1及び第2の銅板材の導電率が95%IACS以上である、[1]乃至[5]のいずれかに記載の絶縁基板。
[7][1]乃至[6]のいずれかに記載の絶縁基板の製造方法であって、
前記第1の銅板材の材料である第1の被圧延材及び前記第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒〜50℃/秒、到達温度が250℃〜600℃、保持時間が10秒〜3600秒、冷却速度が10℃/秒〜50℃/秒の条件で焼鈍処理を施す焼鈍工程と、
前記焼鈍工程後に、前記第1の被圧延材と、前記第2の被圧延材との総加工率が10〜65%の冷間圧延を行う冷間圧延工程と、
前記冷間圧延工程後に、前記セラミック基板の一方の面に前記第1の被圧延材を、前記セラミック基板の他方の面に前記第2の被圧延材を、ろう材を介してそれぞれ接合し、前記第1の銅板材と前記第2の銅板材とがそれぞれ接合された絶縁基板を形成する接合工程と、を含み、
前記接合工程は、昇温速度が10℃/秒〜100℃/秒、到達温度が400℃〜600℃、保持時間が10秒〜300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒〜100℃/秒、到達温度が750℃〜850℃、保持時間が100秒〜7200秒の条件で熱処理を施す第2加熱処理と、で構成される、絶縁基板の製造方法。
[1] An insulating substrate in which a ceramic substrate, a first copper plate material formed on one surface of the ceramic substrate, and a second copper plate material formed on the other surface of the ceramic substrate are joined. There
The first and second copper sheet materials have a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn, and Cr of 0.1 to 2.0 ppm, and copper content. The composition has a composition of 99.96 mass% or more, and the crystal orientation distribution function obtained from the texture analysis by EBSD of the surfaces of the first and second copper sheet materials is Euler angles (φ1, φ, φ2). ), The average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° is 0.1 or more and less than 15.0, and φ1 = 20 °. Has a rolling texture in which the average value of the orientation density in the range of -40 °, Φ = 55 ° to 75 °, and Φ2 = 20 ° is 1.0 or more and less than 15.0, and
An insulating substrate in which the average crystal grain size of the first and second copper plate materials is 50 μm or more and 400 μm or less.
[2] The insulating substrate according to [1], wherein the average crystal grain size of the first and second copper plate materials is more than 100 μm and 400 μm or less.
[3] The ceramic substrate is formed of a ceramic material containing at least one selected from the group consisting of aluminum nitride, silicon nitride, alumina, and a compound of alumina and zirconia as a main component. [1] Alternatively, the insulating substrate according to [2].
[4] The insulating substrate according to any one of [1] to [3], wherein the first and second copper sheet materials have a tensile strength of 210 MPa or more and 250 MPa or less.
[5] The insulating substrate according to any one of [1] to [4], wherein the first and second copper sheet materials have an elongation of 25% or more and less than 50%.
[6] The insulating substrate according to any one of [1] to [5], wherein the electrical conductivity of the first and second copper plate materials is 95% IACS or more.
[7] A method for manufacturing an insulating substrate according to any one of [1] to [6],
With respect to the first rolled material that is the material of the first copper sheet and the second rolled material that is the material of the second copper sheet, the heating rate is 10 ° C / sec to 50 ° C / sec, An annealing step of performing an annealing treatment under the conditions that the ultimate temperature is 250 ° C to 600 ° C, the holding time is 10 seconds to 3600 seconds, and the cooling rate is 10 ° C / second to 50 ° C / second;
A cold rolling step of performing, after the annealing step, cold rolling at a total working rate of the first rolled material and the second rolled material of 10 to 65%;
After the cold rolling step, the first rolled material is bonded to one surface of the ceramic substrate, and the second rolled material is bonded to the other surface of the ceramic substrate via a brazing material, A bonding step of forming an insulating substrate in which the first copper plate material and the second copper plate material are respectively bonded,
In the joining step, a first heat treatment is performed in which a temperature rising rate is 10 ° C./second to 100 ° C./second, an ultimate temperature is 400 ° C. to 600 ° C., and a holding time is 10 seconds to 300 seconds; Production of an insulating substrate composed of a second heat treatment in which a heat treatment is performed at a speed of 10 ° C./sec to 100 ° C./sec, an ultimate temperature of 750 ° C. to 850 ° C., and a holding time of 100 seconds to 7200 seconds. Method.

本発明によれば、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板において、前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が1.0以上15.0未満である圧延集合組織を有し、かつ、前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下であることにより、耐熱特性に優れた絶縁基板を得ることができる。   According to the present invention, the ceramic substrate, the first copper plate material formed on one surface of the ceramic substrate, and the second copper plate material formed on the other surface of the ceramic substrate are joined together. In the insulating substrate, the first and second copper plates have a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm. , The content of copper is 99.96 mass% or more, and the crystal orientation distribution function obtained from the texture analysis by EBSD of the surfaces of the first and second copper sheet materials is the Euler angle (φ1 , Φ, φ2), the average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° is 0.1 or more and less than 15.0, φ1 = 20 ° -40 °, φ = 55 ° -75 °, φ2 = 20 ° By having a rolling texture having an average value of orientation density of 1.0 or more and less than 15.0 and having an average crystal grain size of the first and second copper sheet materials of 50 μm or more and 400 μm or less, An insulating substrate having excellent heat resistance can be obtained.

また、本発明によれば、第1及び第2の銅板材が優れた耐熱特性を示すため、絶縁基板全体の負荷応力が低減し、熱膨張による負荷に対する抵抗力が増大する。これにより、第1及び第2の銅板材とセラミック基板との熱膨張係数の差によって生じる、絶縁基板の変形、さらにはセラミック基板と第1及び第2の銅板材との剥離、すなわちボンディング性の低下を抑制することができる。   Further, according to the present invention, since the first and second copper sheet materials have excellent heat resistance characteristics, the load stress of the entire insulating substrate is reduced and the resistance force to the load due to thermal expansion is increased. As a result, deformation of the insulating substrate caused by the difference in thermal expansion coefficient between the first and second copper plate materials and the ceramic substrate, and further separation of the ceramic substrate and the first and second copper plate materials, that is, bonding property The decrease can be suppressed.

本発明の絶縁基板に用いられる銅板材の表面の圧延集合組織をEBSDにより測定し、ODFで解析した結果の一例を示す結晶方位分布図である。図1(A)はφ2=20°の結晶方位分布図であり、図1(B)は、φ2=35°の結晶方位分布図である。It is a crystal orientation distribution diagram which shows an example of the result of having measured the rolling texture of the surface of the copper plate material used for the insulating substrate of this invention by EBSD, and analyzing it by ODF. FIG. 1 (A) is a crystal orientation distribution diagram of φ2 = 20 °, and FIG. 1 (B) is a crystal orientation distribution diagram of φ2 = 35 °.

以下に、本発明の絶縁基板の詳細及び実施形態例について説明する。なお、以下において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。   Details of the insulating substrate of the present invention and embodiments will be described below. In addition, below, the numerical range represented using "-" means the range including the numerical values described before and after "-" as a lower limit and an upper limit.

<絶縁基板>
本発明の絶縁基板は、セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合されている。すなわち、絶縁基板は、第1の銅板材と第2の銅板材との間にセラミック基板が配置され、第1の銅板材と、セラミック基板と、第2の銅板材と、がこの順でそれぞれ圧延接合された積層構造を有している。第1の銅板材とセラミック基板、セラミック基板と第2の銅板材は、相互に接合された層構造であればよい。第1の銅板材とセラミック基板、セラミック基板と第2の銅板材は、例えば、ろう材、接着剤、はんだ等で接合されていてもよく、特にろう材を介して接合されていることが好ましい。また、絶縁基板の厚みは、使用状況に応じて適宜選択可能であり、例えば、0.3mm〜10.0mmであることが好ましく、0.8mm〜5.0mmであることがより好ましい。なお、特に言及されない限り、便宜上、第1及の銅板材及び第2の銅板材を、以下において単に「銅板材」とも呼ぶことがある。
<Insulating substrate>
In the insulating substrate of the present invention, a ceramic substrate, a first copper plate member formed on one surface of the ceramic substrate, and a second copper plate member formed on the other surface of the ceramic substrate are joined together. ing. That is, in the insulating substrate, the ceramic substrate is arranged between the first copper plate member and the second copper plate member, and the first copper plate member, the ceramic substrate, and the second copper plate member are respectively arranged in this order. It has a roll-bonded laminated structure. The first copper plate material and the ceramic substrate, and the ceramic substrate and the second copper plate material may have a layered structure in which they are bonded to each other. The first copper plate material and the ceramic substrate, and the ceramic substrate and the second copper plate material may be joined by, for example, a brazing material, an adhesive, solder, or the like, and it is particularly preferable that they are joined by a brazing material. . The thickness of the insulating substrate can be appropriately selected according to the usage situation, and is preferably 0.3 mm to 10.0 mm, more preferably 0.8 mm to 5.0 mm. In addition, unless otherwise specified, the first and second copper plate materials may be simply referred to as “copper plate materials” below for convenience.

[セラミック基板]
本発明の絶縁基板に用いられるセラミック基板は、高い絶縁性を備えるセラミック材料から形成されていれば、特に限定されるものではない。このようなセラミック基板は、例えば、窒化アルミニウム、窒化珪素、アルミナおよびアルミナとジルコニアの化合物の少なくとも1種を主成分とするセラミック材料を用いて形成されていることが好ましい。セラミック基板の厚さは、特に限定されるものではないが、例えば、0.05mm〜2.0mmであることが好ましく、0.2mm〜1.0mmであることがより好ましい。
[Ceramic substrate]
The ceramic substrate used for the insulating substrate of the present invention is not particularly limited as long as it is made of a ceramic material having a high insulating property. Such a ceramic substrate is preferably formed using, for example, a ceramic material containing, as a main component, at least one of aluminum nitride, silicon nitride, alumina, and a compound of alumina and zirconia. The thickness of the ceramic substrate is not particularly limited, but is preferably 0.05 mm to 2.0 mm, and more preferably 0.2 mm to 1.0 mm.

[銅板材]
一般に、銅材料とは、(加工前であって所定の組成を有する)銅素材が所定の形状(例えば、板、条、箔、棒、線など)に加工された材料を意味する。その中で、「板材」とは、特定の厚みを有し、形状的に安定しており、かつ面方向に広がりを有する材料を指し、広義には条材を含む意味である。本発明における「銅板材」は、所定の組成を有する銅から形成された当該「板材」を意味する。
[Copper plate material]
Generally, a copper material means a material obtained by processing a copper material (before processing and having a predetermined composition) into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, etc.). Among them, the “plate material” refers to a material having a specific thickness, stable in shape, and spreading in the surface direction, and broadly means to include a strip material. The "copper plate material" in the present invention means the "plate material" formed from copper having a predetermined composition.

[銅板材の成分組成]
本発明の絶縁基板に用いられる銅板材は、銅の含有量が99.96mass%以上であり、好ましくは99.99mass%以上である。銅の含有量が99.96mass%未満であると、熱伝導率が低下し、所望する放熱性が得られない。また、上記銅板材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1ppm〜2.0ppmである。これらの金属成分の合計含有量の下限値は、特に限定されないが、不可避的不純物を考慮し、0.1ppmとしている。一方、これらの金属成分の合計含有量が2.0ppmを超えると、所望の方位密度が得られない。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力の増大効果が得られず、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、上記銅板材には、銅、並びに、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分以外に、残部として不可避的不純物が含まれていてもよい。不可避的不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。第1の銅板材の成分組成と第2の銅板材の成分組成は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
[Copper sheet material composition]
The copper plate material used for the insulating substrate of the present invention has a copper content of 99.96 mass% or more, preferably 99.99 mass% or more. When the content of copper is less than 99.96 mass%, the thermal conductivity decreases, and desired heat dissipation cannot be obtained. Further, the copper plate material has a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 ppm to 2.0 ppm. The lower limit of the total content of these metal components is not particularly limited, but is 0.1 ppm in consideration of inevitable impurities. On the other hand, if the total content of these metal components exceeds 2.0 ppm, the desired orientation density cannot be obtained. Therefore, the effect of increasing the resistance force to the load due to the thermal expansion applied to the insulating substrate cannot be obtained, and the insulating substrate may be deformed or the ceramic substrate and the copper plate material may be separated from each other. Further, the copper plate material may contain inevitable impurities as the balance in addition to copper and a metal component selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr. . The unavoidable impurities mean impurities at a content level that can be unavoidably included in the manufacturing process. The composition of the first copper plate material and the composition of the second copper plate material may be the same or different, but from the viewpoint of production efficiency, it is preferable that they are the same.

銅板材の上記金属成分の定量分析には、GDMS法を用いることができる。GDMS法とは、Glow Discharge Mass Spectrometryの略であり、固体試料を陰極としグロー放電を用いて試料表面をスパッタし、放出された中性粒子をプラズマ内のArや電子と衝突させることによってイオン化させ、質量分析器でイオン数を計測することで、金属に含まれる極微量元素の割合を解析する技術である。   The GDMS method can be used for the quantitative analysis of the metal components of the copper plate material. The GDMS method is an abbreviation for Glow Discharge Mass Spectrometry, in which a solid sample is used as a cathode, the sample surface is sputtered using glow discharge, and emitted neutral particles are ionized by colliding with Ar and electrons in plasma. This is a technique for analyzing the proportion of trace elements contained in metals by measuring the number of ions with a mass spectrometer.

[圧延集合組織]
本発明の絶縁基板に用いられる銅板材は、該銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数(ODF:crystal orientation distribution function)をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有する。オイラー角(φ1、Φ、φ2)は、圧延方向をRD方向、RD方向に対して直交する方向(板幅方向)をTD方向、圧延面(RD面)に対して垂直な方向をND方向としたとき、RD方向を軸とした方位回転がΦ、ND方向を軸とした方位回転がφ1、TD方向を軸とした方位回転がφ2として表される。方位密度は、集合組織における結晶方位の存在比率及び分散状態を定量的に解析する際に用いられるパラメータであり、EBSD及びX線回折を行い、(100)、(110)、(112)等の3種類以上の正極点図の測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。EBSDによる集合組織解析から得られるφ2を所定の角度で固定した結晶方位分布図において、RD面内での方位密度の分布が示される。第1の銅板材が有する圧延集合組織と第2の銅板材が有する圧延集合組織は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
[Rolling texture]
The copper plate used for the insulating substrate of the present invention has a crystal orientation distribution function (ODF) obtained from texture analysis by EBSD of the surface of the copper plate at Euler angles (φ1, Φ, φ2). When expressed, the average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° is 0.1 or more and less than 15.0, and φ1 = 20 °. The rolling texture has an average value of the orientation density in the range of -40 °, Φ = 55 ° to 75 °, and Φ2 = 20 ° of 0.1 or more and less than 15.0. Regarding the Euler angles (φ1, φ, φ2), the rolling direction is the RD direction, the direction orthogonal to the RD direction (plate width direction) is the TD direction, and the direction perpendicular to the rolling surface (RD surface) is the ND direction. At this time, the azimuth rotation about the RD direction is represented by Φ, the azimuth rotation about the ND direction is represented by φ1, and the azimuth rotation about the TD direction is represented by φ2. The orientation density is a parameter used when quantitatively analyzing the existence ratio and the dispersion state of the crystal orientation in the texture, and performs the EBSD and the X-ray diffraction to obtain (100), (110), (112), etc. It is calculated by the crystal orientation distribution analysis method by the series expansion method based on the measurement data of three or more kinds of positive electrode diagrams. The distribution of orientation density in the RD plane is shown in the crystal orientation distribution chart in which φ2 obtained from the texture analysis by EBSD is fixed at a predetermined angle. The rolling texture of the first copper sheet material and the rolling texture of the second copper sheet material may be the same or different, but from the viewpoint of production efficiency, they are the same. preferable.

EBSD法とは、Electron BackScatter Diffractionの略であり、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子を利用した結晶方位解析技術である。EBSDによる解析の際、測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。測定後の結晶粒の解析には、例えば、TSL社製の解析ソフトOIM Analysis(商品名)を用いることができる。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。厚さ方向の測定箇所は、試料表面から板厚の1/8倍〜1/2倍の位置付近とすることが好ましい。   The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique utilizing reflected electrons generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the analysis by EBSD, the measurement area and the scan step may be determined according to the size of the crystal grain of the sample. For the analysis of the crystal grains after the measurement, for example, analysis software OIM Analysis (trade name) manufactured by TSL can be used. The information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens nm where the electron beam penetrates the sample. It is preferable that the measurement location in the thickness direction is in the vicinity of a position 1/8 to 1/2 times the plate thickness from the sample surface.

図1は、本発明の絶縁基板に用いられる銅板材の表面の圧延集合組織をEBSDにより測定し、ODFで解析した結果の一例を示す結晶方位分布図である。図1(A)はφ2=20°の結晶方位分布図であり、図1(B)は、φ2=35°の結晶方位分布図である。結晶方位分布図では、結晶方位分布がランダムな状態を方位密度が1であるとし、それに対して何倍の集積となっているかが等高線で表されている。図1において、白い部分は方位密度が高く、黒い部分は方位密度が低いことを示し、それ以外の部分は白に近いほど方位密度が高いことを示す。本発明では、図1(A)において、点線で囲われた領域(φ1=20°〜40°、Φ=55°〜75°、φ2=20°)の方位密度の平均値が15未満であり、図1(B)において、点線で囲われた領域(φ1=75°〜90°、Φ=20°〜40°、φ2=35°)の方位密度の平均値が15未満である圧延集合組織を有している。図1(A)では、前者の方位密度の平均値が8であり、図1(B)では、後者の方位密度の平均値が4である結晶方位分布図を示している。   FIG. 1 is a crystal orientation distribution diagram showing an example of a result obtained by measuring a rolling texture of a surface of a copper plate material used for an insulating substrate of the present invention by EBSD and analyzing by ODF. FIG. 1 (A) is a crystal orientation distribution diagram of φ2 = 20 °, and FIG. 1 (B) is a crystal orientation distribution diagram of φ2 = 35 °. In the crystal orientation distribution diagram, assuming that the crystal orientation distribution is random and the orientation density is 1, the contour lines show how many times the orientation density is integrated. In FIG. 1, the white portion has a high azimuth density, the black portion has a low azimuth density, and the other portions have a higher azimuth density as they are closer to white. In the present invention, in FIG. 1A, the average value of the azimuth density in the region surrounded by the dotted line (φ1 = 20 ° to 40 °, Φ = 55 ° to 75 °, φ2 = 20 °) is less than 15. In FIG. 1 (B), the rolling texture in which the average value of the orientation density of the region surrounded by the dotted line (φ1 = 75 ° to 90 °, Φ = 20 ° to 40 °, φ2 = 35 °) is less than 15. have. FIG. 1A shows a crystal orientation distribution chart in which the average value of the former orientation density is 8, and FIG. 1B shows the average value of the latter orientation density of 4.

本発明では、絶縁基板に用いられる銅板材は、EBSDによる集合組織解析から得られた結晶方位分布関数において、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、かつ、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有する。このように、方位密度を適切に制御することにより、上記銅板材は、高温(例えば、700℃以上)での熱処理において結晶粒の成長が抑制され、耐熱特性に優れる効果を発揮する。φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が15.0以上では、結晶方位制御が十分ではないため、高温(例えば、700℃以上)での熱処理における結晶粒の成長が抑制できず、耐熱特性に劣ってしまう。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が15.0以上の場合も同様、結晶方位制御が十分ではないため、耐熱特性に劣ってしまう。そのため、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。尚、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値のそれぞれの下限値である0.1は、EBSDによる集合組織解析において解析できる方位密度の最小値として規定している。   In the present invention, the copper plate material used for the insulating substrate is in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° in the crystal orientation distribution function obtained from the texture analysis by EBSD. The average value of the orientation density in 0.1 is less than 0.1 and less than 15.0, and the average value of the orientation density in the range of φ1 = 20 ° to 40 °, φ = 55 ° to 75 °, φ2 = 20 ° is 0. It has a rolling texture of 1 or more and less than 15.0. As described above, by appropriately controlling the orientation density, the copper plate material suppresses the growth of crystal grains during heat treatment at a high temperature (for example, 700 ° C. or higher) and exhibits an excellent heat resistance characteristic. When the average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° is 15.0 or more, the crystal orientation control is not sufficient, and thus the high temperature (for example, 700 ° C.). In the above heat treatment, the growth of crystal grains cannot be suppressed, resulting in poor heat resistance. Therefore, the resistance against the load due to the thermal expansion applied to the insulating substrate may increase, and the insulating substrate may be deformed or the ceramic substrate and the copper plate material may be separated from each other. Also, when the average value of the orientation density in the range of φ1 = 20 ° to 40 °, Φ = 55 ° to 75 °, φ2 = 20 ° is 15.0 or more, similarly, the crystal orientation control is not sufficient, and therefore the heat resistance is high. Inferior in characteristics. Therefore, the resistance against the load due to the thermal expansion applied to the insulating substrate may increase, and the insulating substrate may be deformed or the ceramic substrate and the copper plate material may be separated from each other. In addition, the average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 °, φ1 = 20 ° to 40 °, φ = 55 ° to 75 °, φ2 = 20. Each lower limit of 0.1 of the average value of the orientation density in the range of ° is defined as the minimum value of the orientation density that can be analyzed in the texture analysis by EBSD.

[平均結晶粒径]
本発明の絶縁基板に用いられる銅板材の平均結晶粒径は50μm以上400μm以下であり、100μmより大きく400μm以下であることが好ましい。平均結晶粒径が50μm未満であると、十分な結晶方位制御ができず、耐熱特性に劣ってしまう。一方、平均結晶粒径が400μmを超えると、十分な引張強度と伸びが得られず、絶縁基板にかかる熱膨張による負荷に対する抵抗力が増大し、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまう場合がある。また、銅板材とセラミック基板との界面において、銅板材の結晶粒界が界面と接する箇所には欠陥(ボイド)が生じやすい。平均結晶粒径が100μm以下である場合、セラミック基板と接触する銅板材の結晶粒界が著しく増加し、接合強度が低下するおそれがある。そのため、平均結晶粒径は100nmより大きいことが好ましい。なお、平均結晶粒径は、銅板材のRD面におけるEBSD解析により測定することができ、例えば、測定範囲における全結晶粒の粒径の平均を平均結晶粒径として定義することができる。また、第1の銅板材が有する平均結晶粒径と第2の銅板材が有する平均結晶粒径は、同じであってもよく、異なっていてもよいが、製造効率の観点から、これらは同じであることが好ましい。
[Average grain size]
The average crystal grain size of the copper plate material used for the insulating substrate of the present invention is 50 μm or more and 400 μm or less, preferably more than 100 μm and 400 μm or less. If the average crystal grain size is less than 50 μm, the crystal orientation cannot be sufficiently controlled, and the heat resistance will be poor. On the other hand, when the average crystal grain size exceeds 400 μm, sufficient tensile strength and elongation cannot be obtained, and the resistance to the load due to thermal expansion applied to the insulating substrate increases, resulting in deformation of the insulating substrate and between the ceramic substrate and the copper plate material. Peeling may occur. Further, at the interface between the copper plate material and the ceramic substrate, defects (voids) are likely to occur at locations where the crystal grain boundaries of the copper plate material contact the interface. When the average crystal grain size is 100 μm or less, the crystal grain boundaries of the copper plate material that comes into contact with the ceramic substrate may remarkably increase and the bonding strength may decrease. Therefore, the average crystal grain size is preferably larger than 100 nm. The average crystal grain size can be measured by EBSD analysis on the RD surface of the copper plate material, and for example, the average grain size of all crystal grains in the measurement range can be defined as the average crystal grain size. The average crystal grain size of the first copper plate material and the average crystal grain size of the second copper plate material may be the same or different, but from the viewpoint of production efficiency, they are the same. Is preferred.

[板厚]
第1の銅板材と第2の銅板材の厚さ(板厚)は、特に限定されるものでないが、0.05mm〜7.0mmであることが好ましく、0.1mm〜4.0mmであることがより好ましい。第1の銅板材の厚さと第2の銅板材の厚さは、同じであってもよく、異なっていてもよいが、接合熱処理、ヒートサイクル試験において、それぞれの銅板材の体積が大きく異なると、熱膨張量の違いによる板反りが起きることがある。そのため、絶縁基板の回路設計に応じて、板厚はそれぞれ適切に組み合わせることが望ましい。
[Thickness]
The thickness (plate thickness) of the first copper plate material and the second copper plate material is not particularly limited, but is preferably 0.05 mm to 7.0 mm, and 0.1 mm to 4.0 mm. Is more preferable. The thickness of the first copper plate material and the thickness of the second copper plate material may be the same or different, but when the volume of each copper plate material is greatly different in the bonding heat treatment and the heat cycle test. The plate warp may occur due to the difference in the amount of thermal expansion. Therefore, it is desirable to appropriately combine the plate thicknesses according to the circuit design of the insulating substrate.

[特性]
(引張強度)
銅板材の引張強度は、210MPa以上250MPa以下であることが好ましい。引張強度が210MPa未満であると、近年要求される強度としては十分ではない。一方、引張強度が250MPaを超えると、伸び、加工性が低下する傾向にある。
[Characteristic]
(Tensile strength)
The tensile strength of the copper plate material is preferably 210 MPa or more and 250 MPa or less. If the tensile strength is less than 210 MPa, the strength required in recent years is not sufficient. On the other hand, when the tensile strength exceeds 250 MPa, elongation and workability tend to be reduced.

(伸び)
銅板材の伸びは、25%以上50%未満であることが好ましい。伸びが25%未満であると、絶縁基板にかかる熱膨張による負荷応力に対して、絶縁基板の変形、セラミック基板と銅板材との剥離等が生じてしまうおそれがある。一方、伸びが50%を超えると、強度が不十分となる傾向にある。
(Stretch)
The elongation of the copper plate material is preferably 25% or more and less than 50%. When the elongation is less than 25%, the insulating substrate may be deformed, the ceramic substrate and the copper plate material may be separated from each other, or the like due to the load stress applied to the insulating substrate due to thermal expansion. On the other hand, if the elongation exceeds 50%, the strength tends to be insufficient.

銅板材の導電率は、95%IACS以上であることが好ましい。導電率が95%未満であると、熱伝導率が低下し、その結果、優れた放熱特性が得られない傾向にある。   The electrical conductivity of the copper plate material is preferably 95% IACS or more. When the electric conductivity is less than 95%, the thermal conductivity is lowered, and as a result, excellent heat dissipation characteristics tend not to be obtained.

次に、本発明の絶縁基板の製造方法の一例を説明する。   Next, an example of the method of manufacturing the insulating substrate of the present invention will be described.

[絶縁基板の製造方法]
本発明の絶縁基板の製造方法では、焼鈍工程[工程A]、冷間圧延工程[工程B]、接合工程[工程C]を含む。これらの工程における処理が、この順序にて行われることで、第1の銅板材とセラミック基板と第2の銅板材とが接合された本発明の絶縁基板を得ることができる。
[Insulating substrate manufacturing method]
The method for manufacturing an insulating substrate of the present invention includes an annealing step [step A], a cold rolling step [step B], and a joining step [step C]. By performing the processing in these steps in this order, the insulating substrate of the present invention in which the first copper plate material, the ceramic substrate, and the second copper plate material are joined can be obtained.

まず、焼鈍工程[工程A]では、上記の成分組成を有する銅素材から製造した被圧延材、すなわち、第1の銅板材の材料である第1の被圧延材及び第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒〜50℃/秒、到達温度が250℃〜600℃、保持時間が10秒〜3600秒、冷却速度が10℃/秒〜50℃/秒の条件で焼鈍処理を施す。焼鈍工程[工程A]において、焼鈍条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化、結晶方位の不十分な制御を招き、その結果、絶縁基板の耐熱特性が劣る傾向にある。例えば、到達温度が高すぎる、または昇温速度が遅すぎる場合、結晶方位を十分に制御できず、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が著しく高くなる傾向にある。また、到達温度が低すぎる場合、焼鈍工程において歪みが緩和されないため、その後の冷間圧延と合わせて接合熱処理前の歪みも大きくなる。そのため、圧延集合組織は規定の範囲内であっても再結晶が促され、結晶粒が粗大化するおそれがある。   First, in the annealing step [step A], a material to be rolled manufactured from a copper material having the above-described composition, that is, a material to be a first copper sheet material, which is a first material to be rolled, and a material to be a second copper sheet material. For the second material to be rolled, the temperature rising rate is 10 ° C / sec to 50 ° C / sec, the reached temperature is 250 ° C to 600 ° C, the holding time is 10 sec to 3600 sec, and the cooling rate is 10 ° C / sec. Annealing is performed under the condition of -50 ° C / sec. In the annealing step [step A], if the annealing condition is out of the above-specified range, coarsening of the average crystal grain size of the obtained copper plate material and insufficient control of the crystal orientation are caused, and as a result, the heat resistance of the insulating substrate is increased. It tends to be inferior. For example, when the reached temperature is too high or the temperature rising rate is too slow, the crystal orientation cannot be sufficiently controlled, and the orientation in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° The average value of the density tends to be remarkably high. Further, if the reached temperature is too low, the strain is not relaxed in the annealing process, and the strain before the joining heat treatment also increases together with the subsequent cold rolling. Therefore, even if the rolling texture is within the specified range, recrystallization may be promoted and the crystal grains may become coarse.

冷間圧延工程[工程B]では、焼鈍工程([工程A])後に、第1の銅板材の材料である第1の被圧延材と、第2の銅板材の材料である第2の被圧延材との総加工率が10〜65%の冷間圧延を行う。冷間圧延工程[工程B]において、冷間圧延条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化、結晶方位の不十分な制御を招き、絶縁基板の耐熱特性が劣る傾向にある。例えば、総加工率が著しく高い場合、結晶方位を十分に制御できず、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が著しく高くなる傾向にある。一方、総加工率が低すぎる場合、結晶粒成長を抑制しきれず結晶粒が粗大化するおそれがある。   In the cold rolling step [step B], after the annealing step ([step A]), the first rolled material that is the material of the first copper plate material and the second rolled material that is the material of the second copper plate material. Cold rolling is performed at a total working rate of 10 to 65% with the rolled material. In the cold rolling step [Step B], if the cold rolling conditions are out of the range specified above, coarsening of the average crystal grain size of the obtained copper sheet material and insufficient control of the crystal orientation are caused, resulting in heat resistance of the insulating substrate. Tend to be inferior. For example, when the total processing rate is extremely high, the crystal orientation cannot be sufficiently controlled, and the average value of the orientation density in the range of φ1 = 20 ° to 40 °, φ = 55 ° to 75 °, φ2 = 20 ° is extremely high. Tends to become. On the other hand, if the total processing rate is too low, the crystal grain growth may not be suppressed and the crystal grains may become coarse.

接合工程[工程C]では、冷間圧延工程([工程B])後に、セラミック基板の一方の面に第1の銅板材の材料である第1の被圧延材を、セラミック基板の他方の面に第2の銅板材の材料である第2の被圧延材を、例えばAg−Cu−Ti系等のろう材を介してそれぞれ接合し、第1の銅板材と第2の銅板材とがそれぞれ接合された絶縁基板を形成する。接合工程[工程C]は、昇温速度が10℃/秒〜100℃/秒、到達温度が400℃〜600℃、保持時間が10秒〜300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒〜100℃/秒、到達温度が750℃〜850℃、保持時間が100秒〜7200秒の条件で熱処理を施す第2加熱処理と、で構成されている。接合工程[工程C]において、接合条件が上記規定の範囲外では、得られる銅板材の平均結晶粒径の粗大化または過剰な微細化、結晶方位の不十分な制御を招き、その結果、絶縁基板の耐熱特性が劣る傾向にある。例えば、第1加熱処理および第2加熱処理の昇温速度が速すぎる場合、結晶方位を十分に制御できず、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が著しく高くなる傾向にある。一方、第1加熱処理の到達温度が低すぎる場合、圧延集合組織は規定の範囲内であっても、冷間圧延による歪みが緩和されない。そのため、第2加熱処理において再結晶が歪みによって促進され、結晶粒が粗大化するおそれがある。また、第2加熱処理の到達温度が高すぎる場合、結晶粒成長を抑制しきれず結晶粒が粗大化するおそれがある。一方、第2加熱処理の到達温度が低すぎる場合、銅板材とセラミック基板との界面が活性せず、これらを良好に接合することが困難となる。   In the joining step [step C], after the cold rolling step ([step B]), the first rolled material, which is the material of the first copper plate material, is attached to one surface of the ceramic substrate and the other surface of the ceramic substrate. And a second material to be rolled, which is a material of the second copper plate material, are joined to each other via a brazing material such as Ag-Cu-Ti system, and the first copper plate material and the second copper plate material are respectively joined. A bonded insulating substrate is formed. The joining step [step C] is a first heat treatment in which a heat treatment is performed under the conditions of a temperature rising rate of 10 ° C./second to 100 ° C./second, an ultimate temperature of 400 ° C. to 600 ° C., and a holding time of 10 seconds to 300 seconds. And a second heat treatment for performing heat treatment under conditions of a temperature rising rate of 10 ° C./sec to 100 ° C./sec, an ultimate temperature of 750 ° C. to 850 ° C., and a holding time of 100 seconds to 7200 seconds. In the joining step [step C], if the joining conditions are out of the above-specified range, coarsening or excessive miniaturization of the average crystal grain size of the obtained copper sheet material and insufficient control of the crystal orientation are caused, resulting in insulation. The heat resistance of the substrate tends to be poor. For example, when the temperature rising rate of the first heat treatment and the second heat treatment is too fast, the crystal orientation cannot be sufficiently controlled, and φ1 = 75 ° to 90 °, Φ = 20 ° to 40 °, and φ2 = 35 °. The average value of the orientation density in the range tends to be extremely high. On the other hand, if the temperature reached by the first heat treatment is too low, the strain due to cold rolling is not relaxed even if the rolling texture is within the specified range. Therefore, in the second heat treatment, recrystallization is promoted by strain, and the crystal grains may be coarsened. Further, if the temperature reached by the second heat treatment is too high, the crystal grain growth may not be suppressed and the crystal grains may become coarse. On the other hand, when the temperature reached by the second heat treatment is too low, the interface between the copper plate material and the ceramic substrate is not activated, and it becomes difficult to satisfactorily bond them.

[被圧延材の製造方法]
本発明の絶縁基板の製造方法において、焼鈍工程[工程A]で使用する第1の被圧延材及び第2の被圧延材は、上記の成分組成を有する銅素材から製造した被圧延材であれば、特に限定されるものではない。このような被圧延材は、例えば、以下の工程を経て製造することができる。以下に、本発明の絶縁基板の焼鈍工程[工程A]で使用できる被圧延材の製造方法の一例を説明する。
[Method of manufacturing rolled material]
In the method for manufacturing an insulating substrate of the present invention, the first rolled material and the second rolled material used in the annealing step [step A] may be rolled materials manufactured from the copper raw material having the above-described composition. However, it is not particularly limited. Such a material to be rolled can be manufactured, for example, through the following steps. Hereinafter, an example of a method for manufacturing a rolled material that can be used in the insulating substrate annealing step [step A] of the present invention will be described.

本発明の絶縁基板を構成するセラミック基板に接合される前の銅板材、すなわち、第1の銅板材となる第1の被圧延材及び第2の銅板材となる第2の被圧延材(以下、第1の被圧延材と第2の被圧延材を、単に「被圧延材」とも呼ぶ。)の製造方法としては、例えば、溶解・鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間圧延工程[工程3]、冷却工程[工程4]、面削工程[工程5]、第1冷間圧延工程[工程6]、第1焼鈍工程[工程7]、第2冷間圧延工程[工程8]、第2焼鈍工程[工程9]、仕上げ圧延工程[工程10]、最終焼鈍工程[工程11]、表面酸化膜除去工程[工程12]から構成される処理が順次行われる。   The copper plate material before being joined to the ceramic substrate that constitutes the insulating substrate of the present invention, that is, the first rolled material that becomes the first copper plate material and the second rolled material that becomes the second copper plate material (hereinafter , The first rolled material and the second rolled material are also simply referred to as “rolled material”.), For example, a melting / casting step [step 1], a homogenizing heat treatment step [step 2 ], Hot rolling step [step 3], cooling step [step 4], chamfering step [step 5], first cold rolling step [step 6], first annealing step [step 7], second cold step A process including a rolling process [process 8], a second annealing process [process 9], a finish rolling process [process 10], a final annealing process [process 11], and a surface oxide film removing process [process 12] is sequentially performed. .

まず、溶解・鋳造工程[工程1]では、銅素材を溶解し、鋳造することによって鋳塊を得る。銅素材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有する。均質化熱処理工程[工程2]では、得られた鋳塊に対して、保持温度700〜1000℃、保持時間10分〜20時間の均質化熱処理を行う。熱間圧延工程[工程3]では、総加工率が10〜90%となるように熱間圧延を行う。冷却工程[工程4]では、10℃/秒以上の冷却速度で急冷を行う。面削工程[工程5]では、冷却された材料の両面をそれぞれ約1.0mmずつ面削する。これにより、得られた板材表面の酸化膜が除去される。   First, in the melting / casting step [step 1], a copper material is melted and cast to obtain an ingot. The copper material has a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm, and a copper content of 99.96 mass% or more. Has a composition that is In the homogenizing heat treatment step [Step 2], the obtained ingot is subjected to homogenizing heat treatment at a holding temperature of 700 to 1000 ° C. and a holding time of 10 minutes to 20 hours. In the hot rolling step [Step 3], hot rolling is performed so that the total processing rate is 10 to 90%. In the cooling step [step 4], rapid cooling is performed at a cooling rate of 10 ° C./second or more. In the chamfering step [step 5], both sides of the cooled material are chamfered by about 1.0 mm. As a result, the oxide film on the surface of the obtained plate material is removed.

第1冷間圧延工程[工程6]では、総加工率が75%以上となるよう冷間圧延を複数回行う。   In the first cold rolling step [Step 6], cold rolling is performed a plurality of times so that the total processing rate is 75% or more.

第1焼鈍工程[工程7]では、昇温速度が1〜100℃/秒、到達温度が100〜500℃、保持時間が1〜900秒、かつ、冷却速度が1〜50℃/秒である条件で熱処理を施す。   In the first annealing step [step 7], the temperature rising rate is 1 to 100 ° C / sec, the ultimate temperature is 100 to 500 ° C, the holding time is 1 to 900 seconds, and the cooling rate is 1 to 50 ° C / sec. Heat treatment is performed under the conditions.

第2冷間圧延工程[工程8]では、総加工率が60〜95%となるように冷間圧延を行う。   In the second cold rolling step [Step 8], cold rolling is performed so that the total working rate is 60 to 95%.

第2焼鈍工程[工程9]では、昇温速度が10〜100℃/秒、到達温度が200〜550℃、保持時間が10〜3600秒、かつ、冷却速度が10〜100℃/秒である条件で熱処理を施す。   In the second annealing step [step 9], the temperature rising rate is 10 to 100 ° C / sec, the ultimate temperature is 200 to 550 ° C, the holding time is 10 to 3600 seconds, and the cooling rate is 10 to 100 ° C / second. Heat treatment is performed under the conditions.

仕上げ圧延工程[工程10]では、総加工率が10〜60%となるように冷間圧延を行う。最終焼鈍工程[工程11]では、到達温度が125〜400℃である条件で熱処理を施す。表面酸化膜除去工程[工程12]では、得られた板材表面の酸化膜除去と表面洗浄を目的として、酸洗及び研磨を行う。なお、上記圧延工程における加工率R(%)は下記式で定義される。こうして、銅板材の原料となる被圧延材を製造することができる。   In the finish rolling step [step 10], cold rolling is performed so that the total working rate is 10 to 60%. In the final annealing step [Step 11], heat treatment is performed under the condition that the ultimate temperature is 125 to 400 ° C. In the surface oxide film removing step [Step 12], pickling and polishing are performed for the purpose of removing the oxide film and cleaning the surface of the obtained plate material. The processing rate R (%) in the rolling step is defined by the following formula. In this way, the material to be rolled, which is a raw material for the copper plate material, can be manufactured.

R=(t−t)/t×100
式中、tは圧延前の板厚であり、tは圧延後の板厚である。
R = (t 0 −t) / t 0 × 100
In the formula, t 0 is the plate thickness before rolling, and t is the plate thickness after rolling.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜11及び比較例1〜17)
先ず、表1に示されるような所定の成分組成を有する、厚さ1.0mmの被圧延材(供試材)を2つ作製し、それぞれを第1の被圧延材及び第2の被圧延材とした。また、セラミック材料として窒化珪素を用いて形成された厚さ0.5mmのセラミック基板を使用した。
(Examples 1 to 11 and Comparative Examples 1 to 17)
First, two 1.0 mm-thick materials to be rolled (test materials) having predetermined composition as shown in Table 1 were prepared, and each of them was made into a first material to be rolled and a second material to be rolled. It was made of wood. Further, a 0.5 mm-thick ceramic substrate formed by using silicon nitride as the ceramic material was used.

次いで、銅板材となる上記で作製した各被圧延材に対し、表2に示す条件で焼鈍処理を施した[工程A]。焼鈍処理後、得られた各被圧延材に対し、表2に示す総加工率(すなわち、第1の被圧延材及び第2の被圧延材全体としての加工率)にて冷間圧延を行った[工程B]。冷間圧延後、得られた各被圧延材について、セラミック基板の一方の面に第1の銅板材に相当する第1の被圧延材を、セラミック基板の他方の面に第2の銅板材に相当する第2の被圧延材を、Ag−Cu−Ti系のろう材を介してそれぞれ接合し、第1の銅板材と第2の銅板材とがそれぞれ接合された絶縁基板を作製した[工程C]。[工程C]では、表2に示す第1加熱処理及び第2の加熱処理の条件で加熱処理を施した。以上の工程を経て、サンプルとなる絶縁基板を作製した。   Next, each of the rolled materials produced as described above to be a copper plate material was annealed under the conditions shown in Table 2 [Step A]. After the annealing treatment, cold rolling was performed on each of the obtained rolled materials at the total working rate shown in Table 2 (that is, the working rate of the first rolled material and the second rolled material as a whole). [Step B]. After the cold rolling, for each of the obtained rolled materials, a first rolled material corresponding to the first copper plate material was formed on one surface of the ceramic substrate, and a second copper plate material was formed on the other surface of the ceramic substrate. Corresponding second materials to be rolled were respectively joined through Ag-Cu-Ti based brazing materials to produce an insulating substrate in which the first copper plate material and the second copper plate material were respectively joined [step C]. In [Step C], the heat treatment was performed under the conditions of the first heat treatment and the second heat treatment shown in Table 2. Through the above steps, an insulating substrate as a sample was manufactured.

<測定方法及び評価方法>
[銅板材の定量分析]
作製した各銅板材の定量分析には、GDMS法を用いた。各実施例および各比較例ではV.G.Scientific社製 VG-9000を用いて解析を行った。各銅板材に含まれるAl、Be、Cd、Mg、Pb、Ni、P、Sn及びCrの含有量(ppm)並びにCuの含有量(mass%)を表1に示す。なお、各銅板材には、不可避的不純物が含まれている場合がある。表1における空欄部は、該当する金属成分が0ppmであったことを意味する。また、GDMS法による測定値が0.1ppm未満であった場合、金属成分の含有量は0ppmとした。
<Measurement method and evaluation method>
[Quantitative analysis of copper plate materials]
The GDMS method was used for the quantitative analysis of each produced copper plate material. In each example and each comparative example, VG-9000 manufactured by VG Scientific was used for analysis. Table 1 shows the content (ppm) of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr and the content of Cu (mass%) contained in each copper plate material. In addition, each copper plate material may contain unavoidable impurities. The blank part in Table 1 means that the corresponding metal component was 0 ppm. Moreover, when the measured value by the GDMS method was less than 0.1 ppm, the content of the metal component was set to 0 ppm.

<銅板材の方位密度>
サンプルである各絶縁基板から剥離させた各銅板材の圧延集合組織の方位密度解析には、EBSD法を用いた。各実施例および各比較例のEBSD測定では、結晶粒を200個以上含む測定試料面を測定した。測定試料面の測定面積およびスキャンステップは、供試材の結晶粒の大きさに応じて決定した。測定後の結晶粒の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSD法による結晶粒の解析において得られる情報は、電子線が供試材に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、供試材表面から板厚tの1/8倍〜1/2倍の位置付近とした。
<Orientation density of copper plate material>
The EBSD method was used for the orientation density analysis of the rolling texture of each copper plate material peeled from each insulating substrate as a sample. In the EBSD measurement of each example and each comparative example, a measurement sample surface containing 200 or more crystal grains was measured. The measurement area of the measurement sample surface and the scan step were determined according to the size of the crystal grains of the test material. To analyze the crystal grains after the measurement, analysis software OIM Analysis (trade name) manufactured by TSL was used. The information obtained in the analysis of crystal grains by the EBSD method includes information up to a depth of several tens nm where the electron beam penetrates into the test material. The measurement location in the plate thickness direction was near the position ⅛ to ½ times the plate thickness t from the surface of the test material.

[銅板材の平均結晶粒径]
サンプルである各絶縁基板から剥離させた各銅板材の平均結晶粒径は、圧延面におけるEBSD測定にて、結晶粒を200個以上含む測定試料面を測定した。測定結果の解析において、測定範囲中の全結晶粒から、平均結晶粒径を算出した。結晶粒径の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が供試材に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、供試材表面から板厚tの1/8倍〜1/2倍の位置付近とした。平均結晶粒径が50μm以上400μm以下の範囲にある場合、結晶粒が良好に微細化されていると評価した。
[Average grain size of copper plate]
The average crystal grain size of each copper plate material peeled from each insulating substrate as a sample was measured by EBSD measurement on the rolled surface on a measurement sample surface containing 200 or more crystal grains. In the analysis of the measurement results, the average crystal grain size was calculated from all the crystal grains in the measurement range. The analysis software OIM Analysis (trade name) manufactured by TSL was used for the analysis of the crystal grain size. The information obtained in the crystal grain analysis by EBSD includes information up to a depth of several tens of nm in which the electron beam penetrates the test material. The measurement location in the plate thickness direction was near the position ⅛ to ½ times the plate thickness t from the surface of the test material. When the average crystal grain size was in the range of 50 μm or more and 400 μm or less, it was evaluated that the crystal grains were finely refined.

[銅板材の導電率(EC)]
サンプルである各絶縁基板から剥離させた各銅板材の導電率は、シグマテスタ(渦電流を利用したIACS%測定)を用いて測定した。各銅板板材の導電率が95%IACS以上である場合を「良好」、95%IACS未満の場合を「不良」と評価した。
[Electrical conductivity of copper plate (EC)]
The electrical conductivity of each copper plate material peeled from each insulating substrate as a sample was measured using a sigma tester (IACS% measurement using eddy current). The case where the electrical conductivity of each copper plate material was 95% IACS or more was evaluated as “good”, and the case of less than 95% IACS was evaluated as “poor”.

[銅板材の引張強度]
サンプルである各絶縁基板から銅板材を剥離させ、切り出した試験片をJIS Z2241に準じて測定し、その平均値を示した。銅板材の引張強度が210MPa以上である場合を「良好」、210MPa未満の場合を「不良」と評価した。
[Tensile strength of copper plate]
The copper plate material was peeled from each insulating substrate as a sample, and the cut-out test piece was measured according to JIS Z2241 and the average value was shown. The case where the tensile strength of the copper plate material was 210 MPa or more was evaluated as “good”, and the case of less than 210 MPa was evaluated as “poor”.

[銅板材の伸び]
引張強度を測定する際にJIS Z2241に準じて測定し、その平均値を示した。銅板材の伸びが25%以上である場合を「良好」、25%未満の場合を「不良」と評価した。
[Elongation of copper plate material]
The tensile strength was measured according to JIS Z2241 and the average value was shown. The case where the elongation of the copper plate material was 25% or more was evaluated as "good", and the case of less than 25% was evaluated as "poor".

[絶縁基板の耐熱特性]
各絶縁基板のサンプルを、−40℃〜250℃(1サイクル −40℃:30分保持/250℃:30分保持)の条件で1200サイクル処理するヒートサイクル試験を実施した。ヒートサイクル試験後、セラミック基板にクラックが発生したか否かを目視で観察した。クラックが発生していない場合を「○」、クラックが発生している場合を「×」と評価した。
[Heat resistance of insulating substrate]
A heat cycle test was performed in which each insulating substrate sample was subjected to 1200 cycles under the conditions of -40 ° C to 250 ° C (1 cycle: -40 ° C: 30 minutes / 250 ° C: 30 minutes). After the heat cycle test, it was visually observed whether cracks were generated in the ceramic substrate. The case where the crack did not occur was evaluated as “◯”, and the case where the crack occurred was evaluated as “x”.

表3に、銅板材の方位密度、平均結晶粒径、導電率、引張強度、伸び及び絶縁基板の耐熱特性の結果を示す。   Table 3 shows the results of the orientation density, average crystal grain size, electrical conductivity, tensile strength, elongation of the copper plate material and the heat resistance characteristics of the insulating substrate.

Figure 2019187767
Figure 2019187767

Figure 2019187767
Figure 2019187767

Figure 2019187767
Figure 2019187767

表1〜表3に示すように、実施例1〜11では、絶縁基板の製造条件、絶縁基板を構成する銅板材の成分組成、方位密度および平均結晶粒径が、いずれも適正範囲内であるため、耐熱特性に優れた絶縁基板が得られた。特に、実施例1〜5、7〜11では、絶縁基板が備える銅板材の導電率、引張強度及び伸びが、いずれも良好であった。尚、表2中には示していないが、実施例5では、平均結晶粒径が100μmよりも小さいため、他の実施例よりも接合強度が低下する傾向が観察された。   As shown in Tables 1 to 3, in Examples 1 to 11, the manufacturing conditions of the insulating substrate, the component composition of the copper plate material forming the insulating substrate, the orientation density, and the average crystal grain size are all within appropriate ranges. Therefore, an insulating substrate having excellent heat resistance was obtained. In particular, in Examples 1 to 5 and 7 to 11, the electrical conductivity, tensile strength, and elongation of the copper plate material provided in the insulating substrate were all good. Although not shown in Table 2, in Example 5, since the average crystal grain size was smaller than 100 μm, it was observed that the bonding strength tended to be lower than in other Examples.

一方で、比較例1〜17では、絶縁基板の製造条件、絶縁基板を構成する銅板材の成分組成の一方または両方が適正範囲外であるため、方位密度、平均結晶粒径の両方または一方が適正範囲外となり、さらには、絶縁基板のヒートサイクル試験で、いずれもクラックの発生が観察された。   On the other hand, in Comparative Examples 1 to 17, since one or both of the manufacturing conditions of the insulating substrate and the component composition of the copper plate material forming the insulating substrate are out of the appropriate range, both or one of the orientation density and the average crystal grain size is It was out of the proper range, and further, in the heat cycle test of the insulating substrate, the occurrence of cracks was observed in all cases.

このように、成分組成、方位密度および平均結晶粒径が厳密に制御された銅板材を用いて形成された本発明の絶縁基板は、優れた耐熱特性を示すため、絶縁基板全体の負荷応力が低減し、熱膨張による負荷に対する抵抗力が増大する。これにより、銅板材とセラミック基板との熱膨張係数の差によって生じる絶縁基板の変形が抑制され、さらにはセラミック基板と銅板材との剥離、すなわちボンディング性の低下を抑制することができる。   As described above, the insulating substrate of the present invention formed by using the copper plate material in which the component composition, the orientation density and the average crystal grain size are strictly controlled exhibits excellent heat resistance, so that the load stress of the entire insulating substrate is And the resistance to the load due to thermal expansion is increased. As a result, the deformation of the insulating substrate caused by the difference in thermal expansion coefficient between the copper plate material and the ceramic substrate can be suppressed, and further, the separation between the ceramic substrate and the copper plate material, that is, the deterioration of the bondability can be suppressed.

Claims (7)

セラミック基板と、該セラミック基板の一方の面に形成された第1の銅板材と、該セラミック基板の他方の面に形成された第2の銅板材とが、接合された絶縁基板であって、
前記第1及び第2の銅板材が、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrから選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、前記第1及び第2の銅板材の表面のEBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ1=75°〜90°、Φ=20°〜40°、φ2=35°の範囲における方位密度の平均値が0.1以上15.0未満であり、φ1=20°〜40°、Φ=55°〜75°、φ2=20°の範囲における方位密度の平均値が0.1以上15.0未満である圧延集合組織を有し、かつ、
前記第1及び第2の銅板材の平均結晶粒径が50μm以上400μm以下であることを特徴とする絶縁基板。
An insulating substrate in which a ceramic substrate, a first copper plate material formed on one surface of the ceramic substrate, and a second copper plate material formed on the other surface of the ceramic substrate are joined together,
The first and second copper sheet materials have a total content of metal components selected from Al, Be, Cd, Mg, Pb, Ni, P, Sn, and Cr of 0.1 to 2.0 ppm, and copper content. The composition has a composition of 99.96 mass% or more, and the crystal orientation distribution function obtained from the texture analysis by EBSD of the surfaces of the first and second copper sheet materials is Euler angles (φ1, φ, φ2). ), The average value of the orientation density in the range of φ1 = 75 ° to 90 °, φ = 20 ° to 40 °, φ2 = 35 ° is 0.1 or more and less than 15.0, and φ1 = 20 °. Has a rolling texture in which the average value of the orientation density in the range of -40 °, Φ = 55 ° to 75 °, and Φ2 = 20 ° is 0.1 or more and less than 15.0, and
An insulating substrate, wherein the first and second copper plate materials have an average crystal grain size of 50 μm or more and 400 μm or less.
前記第1及び第2の銅板材の平均結晶粒径が100μmより大きく400μm以下である、請求項1に記載の絶縁基板。   The insulating substrate according to claim 1, wherein the average crystal grain size of the first and second copper plate materials is more than 100 μm and 400 μm or less. 前記セラミック基板が、窒化アルミニウム、窒化珪素、アルミナ、およびアルミナとジルコニアの化合物の少なくとも1種を主成分とするセラミック材料を用いて形成されている、請求項1または2に記載の絶縁基板。   The insulating substrate according to claim 1, wherein the ceramic substrate is formed using a ceramic material containing at least one of aluminum nitride, silicon nitride, alumina, and a compound of alumina and zirconia as a main component. 前記第1及び第2の銅板材の引張強度が、210MPa以上250MPa以下である、請求項1乃至3のいずれか1項に記載の絶縁基板。   The insulating substrate according to any one of claims 1 to 3, wherein the tensile strength of the first and second copper plate materials is 210 MPa or more and 250 MPa or less. 前記第1及び第2の銅板材の伸びが、25%以上50%未満である、請求項1乃至4のいずれか1項に記載の絶縁基板。   The insulating substrate according to any one of claims 1 to 4, wherein the first and second copper sheet materials have an elongation of 25% or more and less than 50%. 前記第1及び第2の銅板材の導電率が95%IACS以上である、請求項1乃至5のいずれか1項に記載の絶縁基板。   The insulating substrate according to claim 1, wherein the first and second copper plate materials have a conductivity of 95% IACS or more. 請求項1乃至6のいずれか1項に記載の絶縁基板の製造方法であって、
前記第1の銅板材の材料である第1の被圧延材及び前記第2の銅板材の材料である第2の被圧延材に対し、昇温速度が10℃/秒〜50℃/秒、到達温度が250℃〜600℃、保持時間が10秒〜3600秒、冷却速度が10℃/秒〜50℃/秒の条件で焼鈍処理を施す焼鈍工程と、
前記焼鈍工程後に、前記第1の被圧延材と、前記第2の被圧延材との総加工率が10〜65%の冷間圧延を行う冷間圧延工程と、
前記冷間圧延工程後に、前記セラミック基板の一方の面に前記第1の被圧延材を、前記セラミック基板の他方の面に前記第2の被圧延材を、ろう材を介してそれぞれ接合し、前記第1の銅板材と前記第2の銅板材とがそれぞれ接合された絶縁基板を形成する接合工程と、を含み、
前記接合工程は、昇温速度が10℃/秒〜100℃/秒、到達温度が400℃〜600℃、保持時間が10秒〜300秒の条件で熱処理を施す第1加熱処理と、昇温速度が10℃/秒〜100℃/秒、到達温度が750℃〜850℃、保持時間が100秒〜7200秒の条件で熱処理を施す第2加熱処理と、で構成される、絶縁基板の製造方法。
A method for manufacturing an insulating substrate according to any one of claims 1 to 6, comprising:
With respect to the first rolled material that is the material of the first copper sheet and the second rolled material that is the material of the second copper sheet, the heating rate is 10 ° C / sec to 50 ° C / sec, An annealing step of performing an annealing treatment under the conditions of an ultimate temperature of 250 ° C to 600 ° C, a holding time of 10 seconds to 3600 seconds, and a cooling rate of 10 ° C / second to 50 ° C / second;
A cold rolling step of performing, after the annealing step, cold rolling at a total working rate of the first rolled material and the second rolled material of 10 to 65%;
After the cold rolling step, the first rolled material is bonded to one surface of the ceramic substrate, the second rolled material is bonded to the other surface of the ceramic substrate through a brazing material, A bonding step of forming an insulating substrate in which the first copper plate material and the second copper plate material are respectively bonded,
In the joining step, a first heat treatment is performed in which a heat-up rate is 10 ° C./sec to 100 ° C./sec, an ultimate temperature is 400 ° C. to 600 ° C., and a holding time is 10 seconds to 300 seconds; A second heat treatment, which is a heat treatment under the conditions of a speed of 10 ° C./sec to 100 ° C./sec, an ultimate temperature of 750 ° C. to 850 ° C., and a holding time of 100 seconds to 7200 seconds, and manufacturing an insulating substrate. Method.
JP2019531350A 2018-03-29 2019-02-18 Insulating substrate and manufacturing method thereof Active JP6582159B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018065856 2018-03-29
JP2018065856 2018-03-29
PCT/JP2019/005810 WO2019187767A1 (en) 2018-03-29 2019-02-18 Insulating substrate and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP6582159B1 JP6582159B1 (en) 2019-09-25
JPWO2019187767A1 true JPWO2019187767A1 (en) 2020-04-30

Family

ID=68053654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531350A Active JP6582159B1 (en) 2018-03-29 2019-02-18 Insulating substrate and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6582159B1 (en)
KR (1) KR102343189B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475914A (en) 1993-08-10 1995-12-19 Ohio Electronic Engravers, Inc. Engraving head with cartridge mounted components
JP5186719B2 (en) * 2005-08-29 2013-04-24 日立金属株式会社 Ceramic wiring board, manufacturing method thereof, and semiconductor module
JP6256733B2 (en) * 2012-02-29 2018-01-10 日立金属株式会社 Ceramic circuit board manufacturing method and ceramic circuit board
JP6202718B2 (en) 2013-03-26 2017-09-27 三菱マテリアル株式会社 Heat dissipation board
JP6734033B2 (en) * 2015-10-16 2020-08-05 株式会社Shカッパープロダクツ Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
JP6719316B2 (en) * 2016-07-25 2020-07-08 古河電気工業株式会社 Copper alloy plate material for heat dissipation member and manufacturing method thereof
JP6744174B2 (en) * 2016-08-12 2020-08-19 株式会社Shカッパープロダクツ Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
CN110462074A (en) * 2017-03-31 2019-11-15 古河电气工业株式会社 Copper sheet material and its manufacturing method for the insulating substrate with copper sheet

Also Published As

Publication number Publication date
JP6582159B1 (en) 2019-09-25
KR20200002941A (en) 2020-01-08
KR102343189B1 (en) 2021-12-24

Similar Documents

Publication Publication Date Title
JP6678757B2 (en) Copper plate material for insulating substrate with copper plate and method of manufacturing the same
JP4516154B1 (en) Cu-Mg-P copper alloy strip and method for producing the same
TWI480394B (en) Cu-Mg-P copper alloy strip and its manufacturing method
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
JP6719316B2 (en) Copper alloy plate material for heat dissipation member and manufacturing method thereof
TWI683012B (en) Copper alloy plate for exothermic parts, exothermic parts and method for manufacturing exothermic parts
WO2016158390A1 (en) Copper alloy sheet for heat dissipation component, and heat dissipation component
JP2018059132A (en) Copper alloy sheet for heat radiation component and heat radiation component
TW201702391A (en) A copper alloy sheet for a heat radiating component and a heat radiating com ponent
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
WO2018062255A1 (en) Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component
JP6446007B2 (en) Copper alloy plate for heat dissipation parts
CN113684399A (en) Low thermal expansion aluminum alloy rolled material and method for producing same
JP2009287062A (en) Copper alloy for backing plate and method for producing the same
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
JP2007084928A (en) Backing plate made of copper alloy, and method for producing the copper alloy
JP2015203148A (en) Copper alloy material, ceramic wiring board and production method of ceramic wiring board
JP6582159B1 (en) Insulating substrate and manufacturing method thereof
US20240312946A1 (en) Ai bonding wire for semiconductor devices
JP7236299B2 (en) High-purity aluminum sheet, manufacturing method thereof, and power semiconductor module using the high-purity aluminum sheet
JP5755892B2 (en) Method for producing copper alloy sheet
JP4876785B2 (en) Copper alloy backing plate and method for producing the copper alloy
JP2007291516A (en) Copper alloy and its production method
JPWO2019187768A1 (en) Clad material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6582159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350