JP6734033B2 - Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board - Google Patents

Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board Download PDF

Info

Publication number
JP6734033B2
JP6734033B2 JP2015204814A JP2015204814A JP6734033B2 JP 6734033 B2 JP6734033 B2 JP 6734033B2 JP 2015204814 A JP2015204814 A JP 2015204814A JP 2015204814 A JP2015204814 A JP 2015204814A JP 6734033 B2 JP6734033 B2 JP 6734033B2
Authority
JP
Japan
Prior art keywords
oxygen
free copper
copper plate
plane
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015204814A
Other languages
Japanese (ja)
Other versions
JP2017075382A (en
Inventor
外木 達也
達也 外木
山本 佳紀
佳紀 山本
健二 児玉
健二 児玉
Original Assignee
株式会社Shカッパープロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shカッパープロダクツ filed Critical 株式会社Shカッパープロダクツ
Priority to JP2015204814A priority Critical patent/JP6734033B2/en
Priority to KR1020160114753A priority patent/KR20170045106A/en
Priority to CN201610879251.0A priority patent/CN106604537A/en
Publication of JP2017075382A publication Critical patent/JP2017075382A/en
Application granted granted Critical
Publication of JP6734033B2 publication Critical patent/JP6734033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Description

本発明は、無酸素銅板、無酸素銅板の製造方法およびセラミック配線基板に関する。 The present invention relates to an oxygen-free copper plate, a method for manufacturing an oxygen-free copper plate, and a ceramic wiring board.

半導体素子を実装する基板として、セラミック配線基板が用いられることがある(例えば特許文献1〜2参照)。セラミック配線基板は、セラミック基板と、セラミック基板上に設けられ、例えばエッチングにより所定箇所が除去されて配線パターン(銅配線)になる無酸素銅板と、を備えている。 A ceramic wiring board may be used as a board on which a semiconductor element is mounted (see, for example, Patent Documents 1 and 2). The ceramic wiring substrate includes a ceramic substrate and an oxygen-free copper plate which is provided on the ceramic substrate and has a predetermined pattern removed by etching to form a wiring pattern (copper wiring).

特開2001−217362号公報JP 2001-217362 A 特開平10−4156号公報JP, 10-4156, A

セラミック配線基板では、実装される半導体素子に通電・停止が繰り返されることにより半導体素子が発熱・放熱を繰り返す。このとき半導体素子からの熱がセラミック配線基板にも伝わり、セラミック配線基板は昇温・降温を繰り返すことになる。無酸素銅の線膨張係数は1.7×10−5/Kであり、セラミックの線膨張係数は0.3〜0.8×10−5/Kである。このため、セラミック配線基板が昇温と降温とを繰り返すと、無酸素銅板とセラミック基板との熱膨張差により無酸素銅板とセラミック基板との界面(接合界面)に繰り返し応力(熱応力)が発生することになる。これにより、セラミック基板が割れたり、無酸素銅板とセラミック基板との界面からの剥離が生じるなどの不具合が発生することがある。 In a ceramic wiring board, the semiconductor element to be mounted is repeatedly energized and stopped so that the semiconductor element repeatedly generates heat and radiates heat. At this time, heat from the semiconductor element is also transmitted to the ceramic wiring board, and the ceramic wiring board is repeatedly heated and cooled. The coefficient of linear expansion of oxygen-free copper is 1.7×10 −5 /K, and the coefficient of linear expansion of ceramics is 0.3 to 0.8×10 −5 /K. Therefore, when the ceramic wiring board repeatedly raises and lowers the temperature, repeated stress (thermal stress) is generated at the interface (bonding interface) between the oxygen-free copper plate and the ceramic substrate due to the difference in thermal expansion between the oxygen-free copper plate and the ceramic substrate. Will be done. As a result, problems such as cracking of the ceramic substrate and separation from the interface between the oxygen-free copper plate and the ceramic substrate may occur.

本発明は、上記課題を解決し、セラミック配線基板が昇温と降温とを繰り返した場合であっても、セラミック基板の割れや無酸素銅板とセラミック基板との界面からの剥離の発生等を抑制することができる技術を提供することを目的とする。 The present invention solves the above-mentioned problems and suppresses the occurrence of cracking of the ceramic substrate and peeling from the interface between the oxygen-free copper plate and the ceramic substrate even when the ceramic wiring substrate is repeatedly heated and cooled. The purpose is to provide a technology that can do.

本発明の一態様によれば、
圧延されることで平板状に形成された無酸素銅板であって、800℃以上1080℃以下の条件下で5分以上加熱した後、圧延面から測定した平均結晶粒径が500μm以上になり、かつ、前記無酸素銅板の前記圧延面と平行な面内に存在する各結晶面の結晶方位をそれぞれ測定し、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記圧延面に存在する前記(211)面の合計面積の割合が80%以上になる無酸素銅板が提供される。
According to one aspect of the invention,
An oxygen-free copper plate formed into a flat plate by being rolled, and after heating for 5 minutes or more under conditions of 800° C. or higher and 1080° C. or lower, the average crystal grain size measured from the rolled surface becomes 500 μm or more, A crystal having a crystal orientation in which the crystal orientation of each crystal plane existing in the plane parallel to the rolled surface of the oxygen-free copper sheet is measured and the inclination from the crystal orientation of the (211) plane is within 15°. When the surface is regarded as the (211) surface, the oxygen-free copper plate is provided in which the ratio of the total area of the (211) surface present in the rolled surface to the area of the rolled surface is 80% or more.

本発明の他の態様によれば、
セラミック基板上に設けられた後に熱処理が行われることで配線材になる無酸素銅板の製造方法であって、
無酸素銅で形成された被圧延材に対して、1回の加工度が40%以下である冷間圧延処理を、総加工度が90%以上になるように複数回行う冷間圧延工程を有する無酸素銅板の製造方法が提供される。
According to another aspect of the invention,
A method of manufacturing an oxygen-free copper plate which is a wiring material by being subjected to heat treatment after being provided on a ceramic substrate,
A cold rolling process in which a single cold rolling process with a workability of 40% or less is performed multiple times on the material to be rolled formed of oxygen-free copper so that the total workability is 90% or more. A method of manufacturing an oxygen-free copper plate having the same is provided.

本発明のさらに他の態様によれば、
セラミック基板と、
無酸素銅に対して圧延加工を行うことで平板状に形成され、前記セラミック基板上に設けられた配線材としての無酸素銅板と、を備え、
前記無酸素銅板の圧延面の平均結晶粒径が500μm以上であるとともに、前記圧延面に存在する結晶粒が有する結晶面のうち(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記(211)面の合計面積の割合が80%以上であるセラミック配線基板が提供される。
According to yet another aspect of the invention,
A ceramic substrate,
Formed into a flat plate by rolling oxygen-free copper, comprising an oxygen-free copper plate as a wiring material provided on the ceramic substrate,
A crystal having an average crystal grain size of 500 μm or more on the rolled surface of the oxygen-free copper sheet and having a tilt of 15° or less from the crystal orientation of the (211) plane among the crystal planes of the crystal grains present on the rolled surface. Provided is a ceramic wiring board in which the ratio of the total area of the (211) plane to the area of the rolled surface is 80% or more when the crystal plane having the orientation is regarded as the (211) plane.

本発明によれば、セラミック配線基板が昇温と降温とを繰り返した場合であっても、セラミック基板の割れや無酸素銅板とセラミック基板との界面からの剥離の発生を抑制することができる。 According to the present invention, even when the temperature of the ceramic wiring board is repeatedly raised and lowered, it is possible to suppress cracking of the ceramic substrate and peeling from the interface between the oxygen-free copper plate and the ceramic substrate.

本発明の一実施形態にかかる無酸素銅板に対して所定の熱処理を行った後の結晶方位マップである。It is a crystal orientation map after performing predetermined heat processing with respect to the oxygen-free copper plate concerning one Embodiment of this invention. 本発明の一実施形態にかかる無酸素銅板及びセラミック配線基板の製造工程を示すフロー図である。It is a flow figure showing a manufacturing process of an oxygen free copper board and a ceramic wiring board concerning one embodiment of the present invention.

<本発明の一実施形態>
(1)セラミック配線基板の構成
まず、本発明の一実施形態にかかるセラミック配線基板の構成について説明する。本実施形態にかかるセラミック配線基板は、所定厚さ(例えば0.5mm)のセラミック基板と、セラミック基板上に設けられた配線材と、を備えている。配線材として、無酸素銅板が用いられている。セラミック配線基板は、セラミック基板と無酸素銅板とが、例えばロウ材を介して貼り合わされる(接合される)ことで形成されている。この貼り合わせは、炉中でセラミック基板と無酸素銅板とロウ材との積層体を所定の条件(例えば800℃以上1080℃以下の温度で5分以上)で加熱する熱処理によって行われる。所定の熱処理が行われてセラミック基板と無酸素銅板とが貼り合わされる。また、所定の熱処理が行われて配線材になった無酸素銅板の所定箇所が例えばエッチングにより除去されて配線パターン(銅配線)が形成される。
<One Embodiment of the Present Invention>
(1) Configuration of Ceramic Wiring Board First, the configuration of the ceramic wiring board according to one embodiment of the present invention will be described. The ceramic wiring board according to the present embodiment includes a ceramic board having a predetermined thickness (for example, 0.5 mm) and a wiring material provided on the ceramic board. An oxygen-free copper plate is used as the wiring material. The ceramic wiring board is formed by bonding (bonding) a ceramic substrate and an oxygen-free copper plate, for example, with a brazing material interposed therebetween. This bonding is performed by heat treatment in which a laminated body of a ceramic substrate, an oxygen-free copper plate, and a brazing material is heated in a furnace under predetermined conditions (for example, at a temperature of 800° C. to 1080° C. for 5 minutes or more). A predetermined heat treatment is performed to bond the ceramic substrate and the oxygen-free copper plate. Further, a predetermined portion of the oxygen-free copper plate which has been subjected to a predetermined heat treatment and has become a wiring material is removed by, for example, etching to form a wiring pattern (copper wiring).

セラミック基板として、例えば窒化アルミニウム(AlN)や窒化ケイ素(SiN)等を主成分とするセラミック焼結体が用いられる。 As the ceramic substrate, for example, a ceramic sintered body containing aluminum nitride (AlN), silicon nitride (SiN) or the like as a main component is used.

ロウ材として、例えば、銀(Ag)、銅(Cu)、スズ(Sn)、インジウム(In)、チタン(Ti)、モリブデン(Mo)、炭素(C)等の金属、またはこれらの金属のうち少なくとも1つを含む金属合金が用いられる。 As the brazing material, for example, a metal such as silver (Ag), copper (Cu), tin (Sn), indium (In), titanium (Ti), molybdenum (Mo), carbon (C), or these metals A metal alloy containing at least one is used.

(2)無酸素銅板の構成
以下に、本発明の一実施形態にかかる無酸素銅板の構成について説明する。本実施形態にかかる無酸素銅板は、例えば上述のセラミック配線基板が有する配線材として好適に用いられる。
(2) Configuration of oxygen-free copper plate The configuration of the oxygen-free copper plate according to the embodiment of the present invention will be described below. The oxygen-free copper plate according to the present embodiment is suitably used, for example, as a wiring material included in the above-mentioned ceramic wiring board.

本実施形態にかかる無酸素銅板は、圧延されることで平板状に形成されている。無酸素銅板は、所定の熱処理(例えば800℃以上1080℃以下の条件下で5分以上加熱する熱処理)を行った後、表面(圧延面)から測定した平均結晶粒径が500μm以上、好ましくは500μm以上5cm(50000μm)以下になり、かつ、無酸素銅板の圧延面と平行な面内に存在する各結晶面の結晶方位をそれぞれ測定し、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を(211)面とみなしたとき、無酸素銅板の表面の面積(無酸素銅板のいずれかの主面の面積)Aに対する、無酸素銅板の表面に存在する(211)面の合計面積Bの割合((B/A)×100)が例えば80%以上(つまり80%以上100%以下)、好ましくは85%以上になるように形成されている。このように、本実施形態にかかる無酸素銅板は、例えば上述のセラミック配線基板を形成する際のセラミック基板と無酸素銅板とを貼り合わせる上述の熱処理(所定の熱処理ともいう。)により、無酸素銅板に再結晶等が生じ、無酸素銅板の表面の平均結晶粒径が500μm以上になり、無酸素銅板の表面の(211)面の配向性が80%以上になるように形成されている。 The oxygen-free copper plate according to the present embodiment is rolled into a flat plate shape. The oxygen-free copper plate has a predetermined heat treatment (for example, a heat treatment of heating at 800° C. or more and 1080° C. or less for 5 minutes or more), and then has an average crystal grain size measured from the surface (rolled surface) of 500 μm or more, preferably The crystal orientation of each crystal plane existing in the plane parallel to the rolled surface of the oxygen-free copper plate of 500 μm or more and 5 cm (50000 μm) or less was measured, and the inclination from the crystal orientation of the (211) plane was 15°. When the crystal plane having a crystal orientation within the range is regarded as the (211) plane, it exists on the surface of the oxygen-free copper plate with respect to the surface area A of the oxygen-free copper plate (the area of any one of the main surfaces of the oxygen-free copper plate). The ratio ((B/A)×100) of the total area B of the (211) plane is, for example, 80% or more (that is, 80% or more and 100% or less), preferably 85% or more. As described above, the oxygen-free copper plate according to the present embodiment is oxygen-free by the above-described heat treatment (also referred to as a predetermined heat treatment) for bonding the ceramic substrate and the oxygen-free copper plate when forming the above-mentioned ceramic wiring substrate, for example. Recrystallization or the like occurs in the copper plate, the average crystal grain size on the surface of the oxygen-free copper plate becomes 500 μm or more, and the orientation of the (211) plane of the surface of the oxygen-free copper plate becomes 80% or more.

なお、無酸素銅板の表面とは、例えば上述のセラミック配線基板を形成した際、セラミック配線基板の上面になる面である。つまり、セラミック基板に対向する面とは反対側の面である。 The surface of the oxygen-free copper plate is, for example, the surface that becomes the upper surface of the ceramic wiring board when the above-mentioned ceramic wiring board is formed. That is, it is the surface opposite to the surface facing the ceramic substrate.

例えば無酸素銅板を用いて形成した上述のセラミック配線基板において、上述のようにセラミック基板と無酸素銅板との間の界面(接合界面)に応力が発生すると、無酸素銅板内に転位が発生する。このとき、セラミック配線基板が有する無酸素銅板、つまり無酸素銅板とセラミック基板とを貼り合わせる所定の熱処理を行った後の無酸素銅板の圧延面の平均結晶粒径が500μm未満であると、無酸素銅板内に存在する結晶粒界が多く、上述の転位の無酸素銅板内の移動が抑制されるため、上述の応力が緩和されにくい。その結果、セラミック配線基板においてセラミック基板の割れや、セラミック基板と無酸素銅板との界面からの剥離を抑制することができないことがある。 For example, in the above-mentioned ceramic wiring board formed using an oxygen-free copper plate, when stress is generated at the interface (bonding interface) between the ceramic substrate and the oxygen-free copper plate as described above, dislocations occur in the oxygen-free copper plate. .. At this time, if the oxygen-free copper plate of the ceramic wiring board, that is, the average crystal grain size of the rolled surface of the oxygen-free copper plate after performing a predetermined heat treatment for bonding the oxygen-free copper plate and the ceramic substrate is less than 500 μm, Since there are many crystal grain boundaries existing in the oxygen copper plate and the movement of the dislocations described above in the oxygen-free copper plate is suppressed, the stress described above is difficult to relax. As a result, it may not be possible to prevent cracking of the ceramic substrate or separation from the interface between the ceramic substrate and the oxygen-free copper plate in the ceramic wiring substrate.

無酸素銅板が、所定の熱処理を行った後の表面における平均結晶粒径が500μm以上になるように形成されていることで、無酸素銅板内の結晶粒界を充分に減らすことができ、無酸素銅板内で上述の転位を容易に移動させ、上述の応力を緩和させることができる。その結果、セラミック配線基板においてセラミック基板の割れや、セラミック基板と無酸素銅板との界面からの剥離を抑制することができる。 Since the oxygen-free copper plate is formed so that the average crystal grain size on the surface after the predetermined heat treatment is 500 μm or more, the crystal grain boundaries in the oxygen-free copper plate can be sufficiently reduced, It is possible to easily move the dislocations described above in the oxygen copper plate and relieve the stresses described above. As a result, cracking of the ceramic substrate and separation from the interface between the ceramic substrate and the oxygen-free copper plate can be suppressed in the ceramic wiring substrate.

無酸素銅板は、所定の熱処理を行った後の表面における平均結晶粒径が5cm以下になるように形成されている。つまり、無酸素銅板は、所定の熱処理を行った後も単結晶化することがなく、多結晶体であるように形成されている。 The oxygen-free copper plate is formed so that the average crystal grain size on the surface after the predetermined heat treatment is 5 cm or less. That is, the oxygen-free copper plate is formed so as not to be single-crystallized even after performing a predetermined heat treatment and to be a polycrystalline body.

また、上述の転位は(211)面を移動しやすいという性質を有している。したがって、所定の熱処理を行った後の無酸素銅板の表面の面積Aに対する無酸素銅板の表面に存在する(211)面の合計面積Bの割合(つまり無酸素銅板の表面に存在する(211)面の面積率)が80%未満であると、上述の転位の移動が不充分であり、上述の応力を充分に緩和させることができないことがある。 Further, the above-mentioned dislocation has a property that it is easy to move on the (211) plane. Therefore, the ratio of the total area B of (211) planes existing on the surface of the oxygen-free copper plate to the area A of the oxygen-free copper plate after the predetermined heat treatment (that is, existing on the surface of the oxygen-free copper plate (211) If the surface area ratio) is less than 80%, the above dislocation movement may be insufficient and the above stress may not be sufficiently relaxed.

無酸素銅板が、所定の熱処理を行った後の表面における(211)面の面積率が80%以上になるように形成されていることで、上述の転位を充分に移動させて、上述の応力を充分に緩和させることができる。また、無酸素銅板が、所定の熱処理を行った後の表面における(211)面の面積率が85%以上になるように形成されていることで、上述の転位をより充分に移動させて、上述の応力をより緩和させることができる。 Since the oxygen-free copper plate is formed so that the area ratio of the (211) plane in the surface after performing the predetermined heat treatment is 80% or more, the above dislocations are sufficiently moved to cause the above stress. Can be sufficiently relaxed. Further, since the oxygen-free copper plate is formed so that the area ratio of the (211) plane in the surface after performing the predetermined heat treatment is 85% or more, the dislocations described above are moved more sufficiently, The above-mentioned stress can be further relaxed.

なお、無酸素銅板の表面に存在する結晶粒子の結晶面の測定方法は以下の通りである。無酸素銅板の表面に存在する各結晶面(各結晶粒)の結晶方位は、SEM/EBSD法により測定される。SEM/EBSD法とは、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で、試料としての無酸素銅板に電子線を照射したときに生じる電子後方散乱回折(EBSD:Electron Backscattering Diffraction)により形成される回折パターンを利用して、試料である無酸素銅板の表面に存在する結晶面の結晶方位を解析する方法である。例えば、SEMに、SEMから照射される電子線の軸と直交する軸に対して約60°〜70°傾斜させて試料としての無酸素銅板を配置し、試料に電子線を照射する。これにより、試料(無酸素銅板)の表面から約50nmの深さまでの領域に存在する各結晶面で電子後方散乱回折が生じ、回折パターンが得られる。得られた回折パターンを解析し、試料(無酸素銅板)の表面に存在する複数の各結晶面の結晶方位をそれぞれ解析する。 The method for measuring the crystal planes of crystal grains existing on the surface of the oxygen-free copper plate is as follows. The crystal orientation of each crystal plane (each crystal grain) existing on the surface of the oxygen-free copper plate is measured by the SEM/EBSD method. The SEM/EBSD method is a scanning electron microscope (SEM: Scanning Electron Microscope) and is formed by electron backscattering diffraction (EBSD) that occurs when an oxygen-free copper plate as a sample is irradiated with an electron beam. This is a method of analyzing the crystal orientation of the crystal planes existing on the surface of the oxygen-free copper plate which is the sample, using the diffraction pattern. For example, an oxygen-free copper plate as a sample is arranged in the SEM with an angle of about 60° to 70° with respect to an axis orthogonal to the axis of the electron beam emitted from the SEM, and the sample is irradiated with the electron beam. As a result, electron backscattering diffraction occurs in each crystal plane existing in the region from the surface of the sample (oxygen-free copper plate) to a depth of about 50 nm, and a diffraction pattern is obtained. The obtained diffraction pattern is analyzed to analyze the crystal orientations of a plurality of crystal planes existing on the surface of the sample (oxygen-free copper plate).

続いて、結晶方位によって結晶粒を色分けし、例えば図1に示すような結晶方位マップを得る。つまり、同一の結晶方位を有する結晶面には、同一の色を付して結晶方位マップを得る。このとき、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面は、(211)面とみなすこととする。つまり、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面は、(211)面に含めることとする。そして、得られた結晶方位マップから、無酸素銅板の表面の面積Aに対する、無酸素銅板の表面に存在する(211)面の合計面積Bの割合((B/A)×100)を算出することで、無酸素銅板の表面の(211)面の配向性を評価できる。 Subsequently, the crystal grains are color-coded according to the crystal orientation to obtain a crystal orientation map as shown in FIG. 1, for example. That is, the crystal planes having the same crystal orientation are given the same color to obtain the crystal orientation map. At this time, a crystal plane having a crystal orientation in which the inclination of the (211) plane from the crystal orientation is within 15° is regarded as a (211) plane. That is, a crystal plane having a crystal orientation in which the inclination of the (211) plane from the crystal orientation is within 15° is included in the (211) plane. Then, from the obtained crystal orientation map, the ratio ((B/A)×100) of the total area B of the (211) plane existing on the surface of the oxygen-free copper plate to the area A of the surface of the oxygen-free copper plate is calculated. Thus, the orientation of the (211) plane on the surface of the oxygen-free copper plate can be evaluated.

本実施形態にかかる無酸素銅板は、純度が例えば99.96質量%以上99.999質量%以下の銅を用い、酸素(O)濃度が例えば0.001質量%以下、好ましくは0.0005質量%以下であり、残部が不可避的不純物からなる無酸素銅で形成されている。無酸素銅板は、例えば、純度が99.96質量%以上99.999質量%以下であり、O濃度が0.001質量%以下であり、残部が不可避的不純物からなる無酸素銅に対して圧延加工等が行われることで形成されている。 The oxygen-free copper plate according to the present embodiment uses copper having a purity of, for example, 99.96 mass% or more and 99.999 mass% or less, and an oxygen (O) concentration of, for example, 0.001 mass% or less, preferably 0.0005 mass%. % Or less, and the balance is made of oxygen-free copper containing inevitable impurities. The oxygen-free copper plate has, for example, a purity of 99.96% by mass or more and 99.999% by mass or less, an O concentration of 0.001% by mass or less, and the balance being rolled against oxygen-free copper composed of unavoidable impurities. It is formed by processing.

セラミック配線基板に用いられる無酸素銅板(銅材)は、放熱のためや通電時のジュール熱発生を抑えるため高熱伝導率、高電気伝導率を有している必要がある。この目的を達成するためには無酸素銅板中の不純物を低減することが効果的である。純度が99.96質量%未満である銅を用いると、無酸素銅板中の不純物が多くなるため、無酸素銅板の熱伝導率、電気伝導率が低くなる。また、純度が99.96質量%未満であると、形成した無酸素銅板に対して所定の熱処理を行っても、この熱処理により無酸素銅板中に生じる再結晶や結晶成長が不充分であり、上述の平均結晶粒径が500μm未満になることがある。純度が99.96質量%以上の銅を用いることで、無酸素銅板中の不純物を充分に低減させることができ、無酸素銅板に所定の熱処理を行うことで、無酸素銅板中に充分な再結晶や結晶成長を生じさせることができ、上述の平均結晶粒径を500μm以上にすることができる。しかしながら、純度が99.999質量%を超える銅を用いると、製造コストが急増してしまう。このため、工業的には、純度が99.999質量%以下の銅を用いることが好ましい。 The oxygen-free copper plate (copper material) used for the ceramic wiring board needs to have high thermal conductivity and high electrical conductivity in order to dissipate heat and to suppress Joule heat generation during energization. To achieve this purpose, it is effective to reduce impurities in the oxygen-free copper plate. When copper having a purity of less than 99.96% by mass is used, impurities in the oxygen-free copper plate increase, so that the oxygen-free copper plate has low thermal conductivity and electrical conductivity. Further, if the purity is less than 99.96% by mass, even if the formed oxygen-free copper plate is subjected to a predetermined heat treatment, recrystallization or crystal growth that occurs in the oxygen-free copper plate due to this heat treatment is insufficient, The above-mentioned average crystal grain size may be less than 500 μm. By using copper having a purity of 99.96% by mass or more, impurities in the oxygen-free copper plate can be sufficiently reduced, and by performing a predetermined heat treatment on the oxygen-free copper plate, it is possible to sufficiently recover the oxygen-free copper plate. Crystals and crystal growth can be caused, and the above-mentioned average crystal grain size can be 500 μm or more. However, if copper having a purity of more than 99.999% by mass is used, the manufacturing cost will rapidly increase. Therefore, it is industrially preferable to use copper having a purity of 99.999 mass% or less.

上述のようにセラミック配線基板は、セラミック基板と無酸素銅板とを、ロウ材を介して貼り合わせて形成される。この貼り合わせは、上述のように炉中でセラミック基板と無酸素銅板とロウ材との積層体を高温に加熱しロウ材を溶融させて行われる。無酸素銅板(無酸素銅板を形成する無酸素銅)中のO濃度が高い(例えば無酸素銅板中のO濃度が0.001質量%を超える)と、ロウ材を加熱した際、ロウ材中の活性金属と無酸素銅中の酸素とが結合し、ロウ材の活性が失われることがある。つまり、セラミック基板と無酸素銅板との接合強度が低くなり、ロウ付けの信頼性が低下することがある。また、無酸素銅板中のO濃度が0.001質量%を超えると、所定の熱処理を行っても無酸素銅板中に生じる再結晶や結晶成長が不充分であり、所定の熱処理後の無酸素銅板の表面の平均結晶粒子径が500μm未満になることがある。 As described above, the ceramic wiring substrate is formed by bonding the ceramic substrate and the oxygen-free copper plate via the brazing material. This bonding is performed by heating the laminated body of the ceramic substrate, the oxygen-free copper plate and the brazing material to a high temperature in the furnace to melt the brazing material as described above. When the O concentration in the oxygen-free copper plate (oxygen-free copper forming the oxygen-free copper plate) is high (for example, the O concentration in the oxygen-free copper plate exceeds 0.001 mass %), the brazing material is heated when the brazing material is heated. The active metal of the above and the oxygen in the oxygen-free copper may be bonded, and the activity of the brazing material may be lost. That is, the bonding strength between the ceramic substrate and the oxygen-free copper plate may be reduced, and the brazing reliability may be reduced. Further, when the O concentration in the oxygen-free copper plate exceeds 0.001 mass %, recrystallization and crystal growth that occur in the oxygen-free copper plate are insufficient even if the predetermined heat treatment is performed, and the oxygen-free after the predetermined heat treatment. The average crystal grain size on the surface of the copper plate may be less than 500 μm.

O濃度を例えば0.001質量%以下にすることで、これらの問題を解決し、ロウ材の活性が失われることを抑制することができ、ロウ付けの信頼性の低下を抑制することができる。また、所定の熱処理によって無酸素銅板中に再結晶や結晶成長を充分に生じさせることができ、上述の平均結晶粒径を確実に500μm以上にすることができる。O濃度を0.0005質量%以下にすることで、ロウ付けの信頼性の低下をより抑制することができ、また上述の平均結晶粒径をより確実に500μm以上にすることができる。 By setting the O concentration to, for example, 0.001% by mass or less, these problems can be solved, loss of activity of the brazing material can be suppressed, and deterioration of brazing reliability can be suppressed. .. Moreover, recrystallization and crystal growth can be sufficiently caused in the oxygen-free copper plate by a predetermined heat treatment, and the above-mentioned average crystal grain size can be reliably made 500 μm or more. By setting the O concentration to 0.0005 mass% or less, it is possible to further suppress the decrease in reliability of brazing, and it is possible to more surely make the above-mentioned average crystal grain size 500 μm or more.

上述したように、無酸素銅板は平板状に形成されている。無酸素銅板は、厚さが例えば100μm以上、好ましくは100μm以上1mm以下となるように形成されている。 As described above, the oxygen-free copper plate has a flat plate shape. The oxygen-free copper plate is formed to have a thickness of, for example, 100 μm or more, preferably 100 μm or more and 1 mm or less.

無酸素銅板が例えば上述のセラミック配線基板に用いられる場合、無酸素銅板の厚さが100μm未満であると、放熱性が低く、セラミック配線基板に用いることができないことがある。無酸素銅板の厚さを100μm以上にすることで、充分な放熱性を得ることができる。無酸素銅板の厚さが厚くなるほど、高い放熱性が得られる。しかしながら、上述のセラミック基板の厚みに対し無酸素銅板の厚さが厚すぎる場合、セラミックの線膨張係数と無酸素銅の線膨張係数との違いによる熱膨張差によりセラミック基板の割れやセラミック基板と無酸素銅板との界面からの剥離が発生してしまうことがある。無酸素銅板の厚さを1mm以下にすることで、これを解決でき、上述の熱膨張差による上述の割れや上述の剥離を抑制することができる。 When the oxygen-free copper plate is used, for example, in the above-mentioned ceramic wiring board, if the thickness of the oxygen-free copper plate is less than 100 μm, the heat dissipation is low and it may not be used in the ceramic wiring board. When the thickness of the oxygen-free copper plate is 100 μm or more, sufficient heat dissipation can be obtained. As the thickness of the oxygen-free copper plate increases, higher heat dissipation can be obtained. However, if the thickness of the oxygen-free copper plate is too thick with respect to the thickness of the ceramic substrate described above, due to the difference in thermal expansion due to the difference between the linear expansion coefficient of ceramics and the linear expansion coefficient of oxygen-free copper Peeling from the interface with the oxygen-free copper plate may occur. By setting the thickness of the oxygen-free copper plate to 1 mm or less, this can be solved and the above-mentioned cracking and the above-mentioned peeling due to the above-mentioned difference in thermal expansion can be suppressed.

(3)無酸素銅板及びセラミック配線基板の製造方法
次に、本実施形態にかかる無酸素銅板及び無酸素銅板を用いたセラミック配線基板の製造方法について、図2を参照しながら説明する。図2は、本実施形態にかかる無酸素銅板及びセラミック配線基板の製造工程を示すフロー図である。
(3) Method for Manufacturing Oxygen-Free Copper Plate and Ceramic Wiring Board Next, a method for manufacturing the oxygen-free copper plate according to the present embodiment and a ceramic wiring board using the oxygen-free copper plate will be described with reference to FIG. FIG. 2 is a flow chart showing manufacturing steps of the oxygen-free copper plate and the ceramic wiring board according to the present embodiment.

[無酸素銅板形成工程(S10)]
図2に示すように、鋳造工程と圧延工程(熱間圧延工程、冷間圧延工程)とを行って無酸素銅板を形成する。
[Oxygen-free copper plate forming step (S10)]
As shown in FIG. 2, a casting process and a rolling process (hot rolling process, cold rolling process) are performed to form an oxygen-free copper plate.

(鋳造工程(S11))
まず、母材である純度99.99%の電気銅を例えば高周波溶解炉等を用いて溶解して銅の溶湯を生成する。続いて、溶湯湯面を木炭で被覆し、木炭のカーボン(C)と溶湯中の酸素(O)とを反応させ、溶湯中のOをCOガスとして溶湯中から除去する。そして、この銅の溶湯を鋳型に注いで冷却し、所定形状の鋳塊を鋳造(溶製)する。
(Casting process (S11))
First, electrolytic copper having a purity of 99.99%, which is a base material, is melted using, for example, a high-frequency melting furnace to generate a molten copper. Subsequently, the surface of the molten metal is covered with charcoal, carbon (C) of the charcoal is reacted with oxygen (O) in the molten metal, and O in the molten metal is removed as CO gas from the molten metal. Then, the molten copper is poured into a mold and cooled, and an ingot having a predetermined shape is cast (melted).

(熱間圧延工程(S12))
鋳塊を高温(例えば750℃以上950℃以下)に維持した状態で、鋳塊に対して熱間圧延処理を行い、所定厚さ(例えば12mm)の熱間圧延材を形成する。
(Hot rolling step (S12))
While maintaining the ingot at a high temperature (for example, 750° C. or higher and 950° C. or lower), the ingot is hot-rolled to form a hot-rolled material having a predetermined thickness (for example, 12 mm).

(冷間圧延工程(S13))
熱間圧延工程(S12)が終了した後、熱間圧延材に対して所定の冷間圧延処理を複数回行い、所定厚さ(例えば100μm以上)の平板状の無酸素銅板を形成する。
(Cold rolling step (S13))
After the hot rolling step (S12) is completed, the hot rolled material is subjected to a predetermined cold rolling treatment a plurality of times to form a flat plate-shaped oxygen-free copper plate having a predetermined thickness (for example, 100 μm or more).

冷間圧延工程(S13)では、被圧延材に再結晶等が生じないような冷間圧延処理を行う。具体的には、1回の加工度rが40%以下である冷間圧延処理(圧延パス)を、総加工度Rが90%以上となるように複数回行う。 In the cold rolling step (S13), cold rolling treatment is performed so that recrystallization or the like does not occur in the material to be rolled. Specifically, a single cold rolling treatment (rolling pass) with a workability r of 40% or less is performed multiple times so that the total workability R is 90% or more.

1回の冷間圧延処理(1回の圧延パス)の加工度rは、下記の(数1)から求められる。なお、(数1)中、t0は、1回の冷間圧延処理前の被圧延材の厚さであり、tは1回の冷間圧延処理後の被圧延材の厚さである。
(数1)
加工度r(%)={(t0−t)/t0}×100
The workability r of one cold rolling treatment (one rolling pass) is obtained from the following (Equation 1). Note that in (Equation 1), t0 is the thickness of the rolled material before one cold rolling treatment, and t is the thickness of the rolled material after one cold rolling treatment.
(Equation 1)
Workability r(%)={(t0-t)/t0}×100

1回の冷間圧延処理の加工度rを40%以下とすることで、冷間圧延処理を行うことにより発生する加工熱の量を低減できる。従って、複数回の冷間圧延処理を行って無酸素銅板を形成している間に、被圧延材が、加工熱により被圧延材に再結晶等が生じるような温度に加熱されることを抑制できる。また、形成された無酸素銅板中に、通常の圧延組織(圧延処理を行うことで生じる結晶組織)とは異なる結晶組織が生じることを抑制できる。例えば、無酸素銅板中にせん断帯が生じることを抑制できる。せん断帯とは、無酸素銅板の厚さ方向に斜めに横断する結晶組織であり、結晶面の整列を阻害する要因になる。 By setting the working ratio r of one cold rolling treatment to 40% or less, the amount of working heat generated by performing the cold rolling treatment can be reduced. Therefore, it is possible to prevent the material to be rolled from being heated to a temperature at which recrystallization or the like occurs in the material to be rolled due to processing heat while forming the oxygen-free copper plate by performing the cold rolling treatment a plurality of times. it can. Further, it is possible to suppress the formation of a crystal structure different from a normal rolling structure (a crystalline structure generated by performing a rolling process) in the formed oxygen-free copper plate. For example, it is possible to suppress the occurrence of shear bands in the oxygen-free copper plate. The shear band is a crystal structure that obliquely crosses the thickness direction of the oxygen-free copper plate, and becomes a factor that hinders the alignment of crystal planes.

総加工度Rは、下記の(数2)から求められる。なお、(数2)中、T0は、熱間圧延材の厚さであり、Tは、所定回数の冷間圧延処理を行った後(冷間圧延工程(S13)が終了した後)の圧延材(つまり無酸素銅板)の厚さである。
(数2)
総加工度R(%)={(T0−T)/T0}×100
The total workability R is obtained from the following (Equation 2). Note that in (Equation 2), T0 is the thickness of the hot-rolled material, and T is rolling after performing a predetermined number of cold rolling treatments (after completion of the cold rolling step (S13)). This is the thickness of the material (that is, the oxygen-free copper plate).
(Equation 2)
Total processing rate R(%)={(T0-T)/T0}×100

総加工度Rを高くすることで、無酸素銅板に導入されるひずみ量を多くできる。これにより、後述のセラミック配線基板形成工程(S20)で所定の熱処理(加熱処理)を行うことで、無酸素銅板の表面の(211)面の配向性を高めることができる。具体的には、総加工度Rを90%以上にすることで、所定の熱処理後の無酸素銅板の表面の(211)面の配向性を80%以上にできる。 By increasing the total workability R, the amount of strain introduced into the oxygen-free copper plate can be increased. As a result, by performing a predetermined heat treatment (heat treatment) in the ceramic wiring board forming step (S20) described below, the orientation of the (211) plane of the surface of the oxygen-free copper plate can be enhanced. Specifically, by setting the total workability R to 90% or more, the orientation of the (211) plane of the surface of the oxygen-free copper plate after the predetermined heat treatment can be 80% or more.

なお、冷間圧延工程(S13)では、焼鈍処理(焼鈍熱処理)を挟まずに、冷間圧延処理を複数回連続して行うことが好ましい。つまり、従来の無酸素銅板を製造するための冷間圧延工程では、圧延により低下する加工性を回復するため焼鈍処理を行うが、本実施形態にかかる冷間圧延工程では焼鈍処理は一切行わずに、被圧延材(形成される無酸素銅板)にひずみを蓄積させることが好ましい。これにより、所定の熱処理後の無酸素銅板の表面の(211)面の配向性をより高めることができる。 In the cold rolling step (S13), it is preferable to continuously perform the cold rolling process a plurality of times without interposing the annealing process (annealing heat treatment). That is, in the conventional cold rolling process for producing an oxygen-free copper sheet, an annealing process is performed to recover the workability that is reduced by rolling, but no annealing process is performed in the cold rolling process according to the present embodiment. In addition, it is preferable to accumulate strain in the material to be rolled (oxygen-free copper plate to be formed). Thereby, the orientation of the (211) plane of the surface of the oxygen-free copper plate after the predetermined heat treatment can be further enhanced.

[セラミック配線基板形成工程(S20)]
続いて、上述の無酸素銅板を用いてセラミック配線基板を形成する。例えば、ロウ材を介して、上述の無酸素銅板と、AlNを主成分とするセラミック焼結体で形成されるセラミック基板のいずれかの主面と、を貼り合わせ、セラミック配線基板を形成する。
[Ceramic wiring board forming step (S20)]
Subsequently, a ceramic wiring board is formed using the oxygen-free copper plate described above. For example, the oxygen-free copper plate described above is bonded to one of the main surfaces of a ceramic substrate formed of a ceramic sintered body containing AlN as a main component via a brazing material to form a ceramic wiring substrate.

具体的には、まず、セラミック基板の表面の清浄化処理を行う。例えば、セラミック基板を所定温度(例えば800℃〜1080℃)に加熱して、セラミック基板の表面に付着している有機物や残留炭素を除去する。そして、例えばスクリーン印刷法により、セラミック基板のいずれかの主面上にペースト状のロウ材を塗布する。 Specifically, first, the surface of the ceramic substrate is cleaned. For example, the ceramic substrate is heated to a predetermined temperature (for example, 800° C. to 1080° C.) to remove organic substances and residual carbon attached to the surface of the ceramic substrate. Then, for example, by a screen printing method, a paste-like brazing material is applied to one of the main surfaces of the ceramic substrate.

続いて、ロウ材上に無酸素銅板を配置する。その後、所定温度(例えば800℃以上1080℃以下)で所定時間(例えば5分以上)、無酸素銅板とセラミック基板とロウ材との積層体を加熱し、無酸素銅板とセラミック基板とを貼り合わせてセラミック配線基板を形成する。無酸素銅板とセラミック基板とを貼り合わせる際の加熱は、真空中または還元ガス雰囲気中または不活性ガス雰囲気中で行うとよい。 Then, an oxygen-free copper plate is placed on the brazing material. Then, the laminate of the oxygen-free copper plate, the ceramic substrate, and the brazing material is heated at a predetermined temperature (for example, 800° C. or higher and 1080° C. or lower) for a predetermined time (for example, 5 minutes or longer) to bond the oxygen-free copper plate and the ceramic substrate together. To form a ceramic wiring board. The heating when the oxygen-free copper plate and the ceramic substrate are bonded together is preferably performed in a vacuum, a reducing gas atmosphere, or an inert gas atmosphere.

無酸素銅板とセラミック基板とを貼り合わせる際の加熱によって、無酸素銅板が加熱されることで、無酸素銅板に再結晶や結晶成長が生じる。これにより、無酸素銅板の圧延面(つまりセラミック基板の主面方向から見た無酸素銅板)の平均結晶粒径が500μm以上になり、かつ、無酸素銅板の表面に存在する(211)面の割合(面積率、つまり上述の(B/A)×100)が80%以上(つまり、無酸素銅板の表面の(211)面の配向性が80%以上)になる。そして、このような無酸素銅板は配線材として使用される。 The oxygen-free copper plate is heated by the heating when the oxygen-free copper plate and the ceramic substrate are bonded together, so that recrystallization or crystal growth occurs in the oxygen-free copper plate. As a result, the average crystal grain size of the rolled surface of the oxygen-free copper plate (that is, the oxygen-free copper plate viewed from the main surface direction of the ceramic substrate) becomes 500 μm or more, and the (211) plane existing on the surface of the oxygen-free copper plate is The ratio (area ratio, that is, the above (B/A)×100) becomes 80% or more (that is, the orientation of the (211) plane of the surface of the oxygen-free copper plate is 80% or more). Then, such an oxygen-free copper plate is used as a wiring material.

なお、無酸素銅板とセラミック基板とを貼り合わせる際の熱処理の温度(以下、接合温度ともいう)が800℃未満であると、この熱処理により無酸素銅板中に生じる再結晶や結晶成長が不充分であることがある。したがって、熱処理後の無酸素銅板の表面の平均結晶粒径が500μm未満になることがある。接合温度を800℃以上にすることで、この問題を解決でき、熱処理後の無酸素銅板の表面の平均結晶粒径を確実に500μm以上にすることができる。しかしながら、接合温度が1080℃を超えると、無酸素銅板が溶融することがある。接合温度を1080℃以下にすることで、この問題を解決でき、無酸素銅板が溶融することなく、無酸素銅板中に再結晶等を充分に生じさせることができる。 If the temperature of the heat treatment for bonding the oxygen-free copper plate and the ceramic substrate (hereinafter also referred to as the bonding temperature) is less than 800° C., recrystallization or crystal growth that occurs in the oxygen-free copper plate due to this heat treatment is insufficient. May be. Therefore, the average crystal grain size on the surface of the oxygen-free copper plate after heat treatment may be less than 500 μm. By setting the bonding temperature to 800° C. or higher, this problem can be solved, and the average crystal grain size on the surface of the oxygen-free copper plate after the heat treatment can be reliably increased to 500 μm or higher. However, if the bonding temperature exceeds 1080° C., the oxygen-free copper plate may melt. By setting the bonding temperature to 1080° C. or less, this problem can be solved, and recrystallization or the like can be sufficiently generated in the oxygen-free copper plate without melting the oxygen-free copper plate.

(4)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(4) Effects of this Embodiment According to this embodiment, one or more of the following effects are exhibited.

(a)本実施形態にかかる無酸素銅板は、所定の熱処理(例えばセラミック配線基板を形成する際のセラミック基板と無酸素銅板とを貼り合わせるための熱処理、具体的には800℃以上1080℃以下の条件下で5分以上加熱する熱処理)を行った後、表面(圧延面)の平均結晶粒径が500μm以上になり、かつ、無酸素銅板の表面の面積Aに対する、無酸素銅板の表面に存在する上述の(211)面の合計面積Bの割合((B/A)×100)が80%以上になるように形成されている。 (A) The oxygen-free copper plate according to the present embodiment has a predetermined heat treatment (for example, a heat treatment for bonding a ceramic substrate and an oxygen-free copper plate when forming a ceramic wiring substrate, specifically 800° C. or more and 1080° C. or less). After the heat treatment of heating for 5 minutes or more under the condition (1), the average crystal grain size of the surface (rolled surface) becomes 500 μm or more, and the surface of the oxygen-free copper plate with respect to the surface area A of the oxygen-free copper plate is It is formed so that the ratio ((B/A)×100) of the total area B of the above-mentioned (211) planes present is 80% or more.

これらにより、例えば無酸素銅板を用いて形成したセラミック配線基板において、セラミック配線基板に搭載した半導体素子等を駆動させた際にセラミック基板と無酸素銅板との界面に発生する上述の応力を緩和させることができる。したがって、セラミック基板の割れやセラミック基板と無酸素銅板との界面からの剥離の発生を抑制することができる。その結果、セラミック配線基板の信頼性を向上させることができる。 With these, for example, in a ceramic wiring board formed by using an oxygen-free copper plate, the above-mentioned stress generated at the interface between the ceramic substrate and the oxygen-free copper plate when a semiconductor element or the like mounted on the ceramic wiring board is driven is relaxed. be able to. Therefore, cracking of the ceramic substrate and peeling from the interface between the ceramic substrate and the oxygen-free copper plate can be suppressed. As a result, the reliability of the ceramic wiring board can be improved.

具体的には、所定の熱処理後の無酸素銅板の表面の平均結晶粒径が500μm以上になることで、所定の熱処理後の無酸素銅板中の結晶粒界を低減させることでる。これにより、この無酸素銅板を用いて形成したセラミック配線基板の使用時(例えばセラミック配線基板に搭載した半導体素子等の駆動時)に無酸素銅板内に発生した上述の転位を容易に移動させることができ、セラミック基板と無酸素銅板との界面に発生した応力を緩和させることができる。 Specifically, the average grain size of the surface of the oxygen-free copper plate after the predetermined heat treatment is 500 μm or more, thereby reducing the grain boundaries in the oxygen-free copper plate after the predetermined heat treatment. As a result, when the ceramic wiring board formed by using this oxygen-free copper plate is used (for example, when a semiconductor element mounted on the ceramic wiring board is driven), the above-mentioned dislocations generated in the oxygen-free copper plate can be easily moved. Therefore, the stress generated at the interface between the ceramic substrate and the oxygen-free copper plate can be relieved.

また、所定の熱処理後の無酸素銅板の表面が上述の転位が移動しやすい(211)面に多く配向することで、つまり所定の熱処理後の無酸素銅板の表面の面積Aに対する上述の(211)面の合計面積Bの割合((B/A)×100)が80%以上になることで、この無酸素銅板を用いて形成したセラミック配線基板の使用時に上述の転位を充分に移動させて、上述の応力を充分に緩和することができる。 Further, the surface of the oxygen-free copper plate after the predetermined heat treatment is mainly oriented in the (211) plane in which dislocations are easily moved, that is, the above-mentioned (211) with respect to the area A of the surface of the oxygen-free copper plate after the predetermined heat treatment. The ratio of the total area B of the () plane ((B/A)×100) is 80% or more, so that the dislocations described above can be sufficiently moved when the ceramic wiring substrate formed using this oxygen-free copper plate is used. The above stress can be relaxed sufficiently.

(b)本実施形態に係る無酸素銅板は、大電流用半導体素子(例えば大電流スイッチング用半導体素子)が搭載されるセラミック配線基板に用いられる場合に、特に有効である。大電流スイッチング用半導体素子には他の半導体素子よりも大きな電流が流される(通電される)ため、大電流用半導体素子が搭載されたセラミック配線基板はより高温になりやすい。このため、このセラミック配線基板では、昇温と降温とを繰り返すことでセラミック配線基板(セラミック基板と無酸素銅板との界面)に発生する応力がより大きくなる。本実施形態にかかる無酸素銅板を用いて形成したセラミック配線基板は、このような大きな応力が発生した場合であっても、セラミック基板の割れや、セラミック基板と無酸素銅板との界面からの剥離の発生を抑制することができ、セラミック配線基板の信頼性を向上させることができる。 (B) The oxygen-free copper plate according to the present embodiment is particularly effective when used in a ceramic wiring board on which a large-current semiconductor element (for example, a large-current switching semiconductor element) is mounted. Since a larger current is passed through (energized) than the other semiconductor elements for the large current switching semiconductor element, the ceramic wiring board on which the large current switching semiconductor element is mounted is likely to reach a higher temperature. Therefore, in this ceramic wiring board, the stress generated in the ceramic wiring board (the interface between the ceramic substrate and the oxygen-free copper plate) is further increased by repeatedly raising and lowering the temperature. The ceramic wiring board formed by using the oxygen-free copper plate according to the present embodiment, even when such a large stress occurs, cracking of the ceramic substrate or peeling from the interface between the ceramic substrate and the oxygen-free copper plate. Can be suppressed, and the reliability of the ceramic wiring board can be improved.

(c)冷間圧延工程(S13)で行う1回の冷間圧延処理の加工度rを40%以下にすることで、冷間圧延処理を行うことで発生する加工熱を低減できる。つまり、被圧延材が、加工熱により再結晶等が生じるような温度に加熱されることを抑制できる。これにより、無酸素銅板の表面の結晶面((211)面)の配向性を高めることができる。つまり、所定の熱処理後(例えばセラミック配線基板を形成する際の熱処理後)に、無酸素銅板の表面に存在する(211)面の割合(上述の(B/A)×100)を80%以上にすることができる。従って、上記(a)(b)の効果をより得ることができる。 (C) By setting the workability r of one cold rolling treatment performed in the cold rolling step (S13) to 40% or less, the working heat generated by performing the cold rolling treatment can be reduced. That is, it is possible to prevent the material to be rolled from being heated to a temperature at which recrystallization or the like occurs due to processing heat. Thereby, the orientation of the crystal plane ((211) plane) on the surface of the oxygen-free copper plate can be enhanced. That is, after a predetermined heat treatment (for example, after heat treatment for forming a ceramic wiring board), the ratio of the (211) planes (the above (B/A)×100) existing on the surface of the oxygen-free copper plate is 80% or more. Can be Therefore, the effects of the above (a) and (b) can be further obtained.

(d)冷間圧延工程(S13)で行う1回の冷間圧延処理の加工度rを40%以下にすることで、無酸素銅板中に、結晶面の整列を阻害するせん断帯が生じることを抑制できる。これにより、無酸素銅板の表面の結晶面((211)面)の配向性をより高めることができる。つまり、所定の熱処理後の無酸素銅板の表面に存在する(211)面の面積率をより確実に80%以上にすることができる。従って、上記(a)(b)の効果をより得ることができる。 (D) When the workability r of one cold rolling treatment performed in the cold rolling step (S13) is set to 40% or less, a shear band that hinders the alignment of crystal planes is generated in the oxygen-free copper sheet. Can be suppressed. Thereby, the orientation of the crystal plane ((211) plane) on the surface of the oxygen-free copper plate can be further enhanced. That is, the area ratio of the (211) plane existing on the surface of the oxygen-free copper plate after the predetermined heat treatment can be more surely set to 80% or more. Therefore, the effects of the above (a) and (b) can be further obtained.

(e)無酸素銅板を純度が99.96質量%以上である銅を用いて形成することで、圧延面の平均結晶粒径を500μm以上にさせやすくなる。また、無酸素銅中の酸素濃度を0.001質量%以下とすることで、上述のロウ付けの信頼性を向上することができ、また上述の平均結晶粒径をより確実に500μm以上にすることができる。 (E) By forming the oxygen-free copper plate using copper having a purity of 99.96% by mass or more, it becomes easy to make the average crystal grain size of the rolled surface 500 μm or more. Further, by setting the oxygen concentration in oxygen-free copper to 0.001% by mass or less, the reliability of the brazing described above can be improved, and the above-mentioned average crystal grain size is more surely set to 500 μm or more. be able to.

(f)無酸素銅板の厚さを100μm以上とすることで、無酸素銅板に大電流を流すことができる。つまり、セラミック配線基板に、大電流用半導体素子を搭載することができる。 (F) By setting the thickness of the oxygen-free copper plate to 100 μm or more, a large current can be passed through the oxygen-free copper plate. That is, the semiconductor element for large current can be mounted on the ceramic wiring board.

(本発明の他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other Embodiments of the Present Invention)
Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment and can be appropriately modified without departing from the scope of the invention.

無酸素銅板には、熱伝導率を大きく損なわない範囲でAg、Sn、Mg、Fe、Zr、Ti、Mn、P、Zn等の不純物が含まれていても良く、許容可能な不純物の合計含有量は0.04質量%未満である。 The oxygen-free copper plate may contain impurities such as Ag, Sn, Mg, Fe, Zr, Ti, Mn, P and Zn within a range that does not significantly impair the thermal conductivity, and the total content of allowable impurities is contained. The amount is less than 0.04% by mass.

上述の実施形態では、セラミック配線基板形成工程(S20)において、無酸素銅板とセラミック基板とを貼り合わせる際の加熱により、無酸素銅板に再結晶等を生じさせて、無酸素銅板の表面の結晶粒径を500μm以上にし、かつ、無酸素銅板の表面に存在する(211)面の割合((B/A)×100)を80%以上にしたが、これに限定されるものではない。例えば、冷間圧延工程(S13)が終了した後、無酸素銅板を所定温度で所定時間加熱して、無酸素銅板を再結晶させてもよい。 In the above-described embodiment, in the ceramic wiring board forming step (S20), recrystallization or the like is caused in the oxygen-free copper plate by heating at the time of attaching the oxygen-free copper plate and the ceramic substrate to each other, and the crystal on the surface of the oxygen-free copper plate The particle size was set to 500 μm or more, and the ratio ((B/A)×100) of (211) planes existing on the surface of the oxygen-free copper plate was set to 80% or more, but the present invention is not limited to this. For example, after the cold rolling step (S13) is completed, the oxygen-free copper plate may be heated at a predetermined temperature for a predetermined time to recrystallize the oxygen-free copper plate.

上述の実施形態では、冷間圧延工程(S13)で被圧延材の加工性を回復させる焼鈍処理を行わなかったが、ひずみを充分に蓄積させることができれば、冷間圧延工程(S13)中に焼鈍処理を行っても良い。なお、焼鈍処理を行う場合は、焼鈍処理(最後の加熱処理)を行った後の被圧延材の厚さから圧延材の厚さまでの総加工度を例えば90%以上にすることが好ましい。つまり、90%以上の総加工度分のひずみを圧延材に加えることが好ましい。 In the above-described embodiment, the annealing treatment for recovering the workability of the material to be rolled was not performed in the cold rolling step (S13), but if the strain can be sufficiently accumulated, the cold rolling step (S13) may be performed. You may perform an annealing process. When performing the annealing treatment, it is preferable that the total workability from the thickness of the material to be rolled to the thickness of the rolled material after the annealing treatment (final heat treatment) is set to, for example, 90% or more. That is, it is preferable to apply a strain of 90% or more to the rolled material.

上述の実施形態では、セラミック配線基板形成工程(S20)で、清浄化処理を行ったが、これに限定されない。つまり、清浄化処理は必要に応じて行えばよく、清浄化処理は行わなくてもよい。 In the above-described embodiment, the cleaning process is performed in the ceramic wiring board forming step (S20), but the present invention is not limited to this. That is, the cleaning process may be performed as needed, and the cleaning process may not be performed.

上述の実施形態では、ロウ材を介して無酸素銅板とセラミック基板とを貼り合わせてセラミック配線基板を形成したが、これに限定されない。つまり、無酸素銅板とセラミック基板とを、ロウ材を介さずに貼り合わせてもよい。例えば、無酸素銅板とセラミック基板とを直接貼り合わせてもよい。 In the above-described embodiment, the oxygen-free copper plate and the ceramic substrate are bonded together via the brazing material to form the ceramic wiring substrate, but the present invention is not limited to this. That is, the oxygen-free copper plate and the ceramic substrate may be bonded to each other without the brazing material. For example, the oxygen-free copper plate and the ceramic substrate may be directly bonded.

次に、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited thereto.

<試料の作製>
まず、各試料(試料1〜13)となるセラミック基板と無酸素銅板とを有するセラミック配線基板(無酸素銅板付きセラミック配線基板)を作製した。
<Preparation of sample>
First, a ceramic wiring board (ceramic wiring board with oxygen-free copper plate) having a ceramic substrate and an oxygen-free copper plate to be each sample (Samples 1 to 13) was produced.

(試料1)
試料1では、母材として、純度が99.990質量%(99.990wt%)の銅(電気銅)を用いた。そして、カーボン坩堝(黒鉛ルツボ)を有する高周波溶解炉を用い、不活性ガス(Nガス)雰囲気中にて、母材を所定温度に加熱して溶解し、銅の溶湯を作製した。そして、溶湯表面(溶湯湯面)を木炭で被覆し、木炭のCと溶湯中のOとを反応させてCOガスを発生させることで、溶湯中からOを取り除いて無酸素銅の溶湯を作製した。次いでこの溶湯を鋳型に注いで冷却し、所定形状の無酸素銅の鋳塊(インゴット)を鋳造した。
(Sample 1)
In Sample 1, copper (electrolytic copper) having a purity of 99.990 mass% (99.990 wt%) was used as the base material. Then, using a high-frequency melting furnace having a carbon crucible (graphite crucible), the base material was heated to a predetermined temperature and melted in an inert gas (N 2 gas) atmosphere to prepare a molten copper. Then, the molten metal surface (molten metal surface) is coated with charcoal, and C of charcoal is reacted with O in the molten metal to generate CO gas, thereby removing O from the molten metal and producing a molten oxygen-free copper. did. Next, this molten metal was poured into a mold and cooled to cast an oxygen-free copper ingot (ingot) having a predetermined shape.

得られた鋳塊(無酸素銅)の不純物の分析をプラズマ発光分光法(ICP−AES)により行った結果、無酸素銅(銅)の純度は99.99質量%(99.99wt%)であった。また、無酸素銅中の酸素分析(酸素濃度の測定)を黒鉛ルツボ内で銅を溶解した際に発生したCOを赤外線吸収法で測定する方法で行った結果、無酸素銅中の酸素濃度は0.0002質量%(0.0002wt%)であった。 As a result of analyzing impurities in the obtained ingot (oxygen-free copper) by plasma emission spectroscopy (ICP-AES), the purity of oxygen-free copper (copper) was 99.99 mass% (99.99 wt%). there were. Further, as a result of performing an oxygen analysis (measurement of oxygen concentration) in oxygen-free copper by a method of measuring CO generated when copper is dissolved in the graphite crucible by an infrared absorption method, the oxygen concentration in oxygen-free copper is It was 0.0002 mass% (0.0002 wt%).

次に、インゴットに対して熱間圧延処理を行って12mmの熱間圧延材を形成した。そして、熱間圧延材に対して、1回の加工度rが40%以下である冷間圧延処理(圧延パス)を、焼鈍処理を挟むことなく、総加工度Rが90%以上になるように所定回数(複数回)連続して行う冷間圧延工程を実施し、厚さが1.0mmの無酸素銅板を作製した。なお、このときの総加工度Rは91.7%となった。 Next, the ingot was hot-rolled to form a 12 mm hot-rolled material. Then, with respect to the hot rolled material, a single cold rolling treatment (rolling pass) in which the workability r is 40% or less is performed so that the total workability R becomes 90% or more without sandwiching the annealing treatment. Then, a cold rolling process was continuously performed a predetermined number of times (a plurality of times) to produce an oxygen-free copper plate having a thickness of 1.0 mm. The total workability R at this time was 91.7%.

続いて、セラミック基板として、AlNを主成分とし、厚さが0.5mmであるセラミック焼結体を準備した。そして、セラミック基板を800℃以上900℃以下の条件で熱処理し、セラミック基板の表面に付着した有機物や残留炭素を除去する前処理(清浄化処理)を行った。 Then, a ceramic sintered body having AlN as a main component and a thickness of 0.5 mm was prepared as a ceramic substrate. Then, the ceramic substrate was heat-treated at a temperature of 800° C. or higher and 900° C. or lower to perform a pretreatment (cleaning treatment) for removing organic substances and residual carbon adhering to the surface of the ceramic substrate.

その後、スクリーン印刷法により、セラミック基板のいずれかの主面上にペースト状のロウ材を、厚さが0.03mmとなるように塗布した。ロウ材として、Agを70質量%、Cuを28質量%、Tiを2質量%含むロウ材を用いた。 After that, a paste brazing material was applied to one of the main surfaces of the ceramic substrate by a screen printing method so as to have a thickness of 0.03 mm. As the brazing material, a brazing material containing 70% by mass of Ag, 28% by mass of Cu and 2% by mass of Ti was used.

そして、ロウ材上に、作製した無酸素銅板を配置した後、真空中にて、無酸素銅板を配置したセラミック基板(無酸素銅板とセラミック基板とロウ材との積層体)を850℃の条件下で5分加熱し、ロウ材を介して無酸素銅板とセラミック基板とを貼り合わせて(接合して)セラミック配線基板を作製した。このセラミック配線基板を試料1とした。 Then, after arranging the produced oxygen-free copper plate on the brazing material, the ceramic substrate (a laminated body of the oxygen-free copper plate and the ceramic substrate and the brazing material) on which the oxygen-free copper plate is disposed is placed under vacuum at 850° C. After heating for 5 minutes, the oxygen-free copper plate and the ceramic substrate were bonded (bonded) to each other via a brazing material to prepare a ceramic wiring substrate. This ceramic wiring board was used as Sample 1.

(試料2〜13)
試料2〜13ではそれぞれ、無酸素銅に用いた銅の純度、無酸素銅中の酸素濃度、冷間圧延処理の総加工度R(熱間圧延後の総加工度R)、1回の冷間圧延処理(圧延パス)の加工度r、接合温度を下記の表1に示す通りとした。なお、表1中の1回の圧延パスの加工度rは、複数回行った圧延パスの各加工度のうち最大の加工度を示している。また、接合温度とは、酸素銅板とセラミック基板とを貼り合わせる際の熱処理の温度(加熱温度)である。その他は、試料1と同様にしてセラミック配線基板を作製した。これらをそれぞれ、試料2〜13とした。
(Samples 2 to 13)
In each of Samples 2 to 13, the purity of the copper used for the oxygen-free copper, the oxygen concentration in the oxygen-free copper, the total workability R of the cold rolling treatment (the total workability R after the hot rolling), and one cold The workability r and the joining temperature of the inter-rolling treatment (rolling pass) are as shown in Table 1 below. In addition, the workability r of one rolling pass in Table 1 indicates the maximum workability of the workability of each rolling pass performed a plurality of times. The joining temperature is the temperature of heat treatment (heating temperature) when the oxygen copper plate and the ceramic substrate are bonded together. A ceramic wiring board was produced in the same manner as in Sample 1 except for the above. These were designated as Samples 2 to 13, respectively.

<評価結果>
各試料について、無酸素銅板の表面(圧延面)の平均結晶粒径と、無酸素銅板の表面の(211)面の配向性と、無酸素銅板とセラミック基板との接合状態と、ヒートサイクル試験での割れ・剥離評価と、を評価した。
<Evaluation result>
For each sample, the average crystal grain size of the surface (rolled surface) of the oxygen-free copper plate, the orientation of the (211) plane of the surface of the oxygen-free copper plate, the bonding state between the oxygen-free copper plate and the ceramic substrate, and the heat cycle test The evaluation of cracking and peeling was performed.

(平均結晶粒径の評価)
試料1〜13の各試料が備える無酸素銅板(つまり所定の熱処理後の無酸素銅板)の圧延面(表面)の平均結晶粒径をそれぞれ測定した。結晶粒径の測定は、無酸素銅板の圧延面に相当する面を所定の粗さになるまで研磨した後、過酸化水素を加えたアンモニア水で表面(研磨した面)をエッチングする。そして、エッチングした面を光学顕微鏡で観察してJIS H5010の切断法にて結晶粒径を求め、求めた結晶粒径から平均結晶粒径を求めた。その結果を下記の表1に示す。
(Evaluation of average crystal grain size)
The average crystal grain size of the rolled surface (surface) of the oxygen-free copper plate (that is, the oxygen-free copper plate after the predetermined heat treatment) included in each of Samples 1 to 13 was measured. The crystal grain size is measured by polishing the surface of the oxygen-free copper plate corresponding to the rolled surface to a predetermined roughness, and then etching the surface (polished surface) with ammonia water containing hydrogen peroxide. Then, the etched surface was observed with an optical microscope to determine the crystal grain size by the JIS H5010 cutting method, and the average crystal grain size was determined from the determined crystal grain size. The results are shown in Table 1 below.

((211)面の配向性の評価)
試料1〜13の各試料が備える無酸素銅板について、無酸素銅板の表面(セラミック配線基板においてセラミック基板と対向する側とは反対側の無酸素銅板の面)の(211)面の配向性について評価を行った。具体的には、SEM/EBSD法により、無酸素銅板の表面に存在する各結晶面の結晶方位をそれぞれ測定し、結晶方位マップを作製した。EBSDの測定装置及び解析ソフトは株式会社TSLソリューションズ製のものを用いた。このとき、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面は、(211)面とみなした。そして、作製した結晶方位マップから、無酸素銅板の表面の面積Aに対する、無酸素銅板の表面に存在する(211)面の合計面積Bの割合((B/A)×100)を算出した。無酸素銅板の表面における(211)面の面積の割合を無酸素銅板の(211)面の配向性として下記の表1に示す。
(Evaluation of orientation of (211) plane)
Regarding the oxygen-free copper plate included in each of Samples 1 to 13, regarding the orientation of the (211) plane of the surface of the oxygen-free copper plate (the surface of the oxygen-free copper plate opposite to the side facing the ceramic substrate in the ceramic wiring board) An evaluation was made. Specifically, the crystal orientation of each crystal plane existing on the surface of the oxygen-free copper plate was measured by the SEM/EBSD method to prepare a crystal orientation map. As the measuring device and analysis software for EBSD, those manufactured by TSL Solutions Co., Ltd. were used. At this time, the crystal plane having a crystal orientation in which the inclination of the (211) plane from the crystal orientation was within 15° was regarded as the (211) plane. Then, the ratio ((B/A)×100) of the total area B of the (211) planes existing on the surface of the oxygen-free copper plate to the area A of the surface of the oxygen-free copper plate was calculated from the produced crystal orientation map. The ratio of the area of the (211) plane to the surface of the oxygen-free copper plate is shown in Table 1 below as the orientation of the (211) plane of the oxygen-free copper plate.

(接合状態の評価)
試料1〜13の各試料をそれぞれ、超音波顕微鏡(株式会社日立パワーソリュションズ製Fine SAT III)を用いて無酸素銅板とセラミック基板との接合界面の未接合率を求めた。未接合率とは、接合界面の面積に対する未接合部分の面積の割合である。未接合率が10%未満である試料の評価を「○」とし、未接合率が10%以上である試料の評価を「×」とした。その結果を下記の表1に示す。
(Evaluation of joining state)
The unbonded ratio of the bonded interface between the oxygen-free copper plate and the ceramic substrate was determined for each of the samples 1 to 13 using an ultrasonic microscope (Fine SAT III manufactured by Hitachi Power Solutions Co., Ltd.). The unbonded ratio is the ratio of the area of the unbonded portion to the area of the bonded interface. The sample with an unbonded ratio of less than 10% was evaluated as “◯”, and the sample with an unbonded ratio of 10% or more was evaluated as “x”. The results are shown in Table 1 below.

(割れ・剥離評価)
試料1〜13の各試料をそれぞれ、−65℃のエタノール及びドライアイスを混合した寒剤の液浴と、150℃のオイルバスの液浴と、に交互に投入した。具体的には、寒剤の液浴に5分間投入した後オイルバスの液浴に5分間投入するサイクルを1サイクルとして、このサイクルを合計500サイクル繰り返した。そして、各試料が備えるセラミック基板に割れ(クラック)が発生していないか否か、また無酸素銅板がセラミック基板から剥離している箇所がないか否かを確認し、割れ・剥離評価を行った。セラミック基板に割れが発生しておらず、無酸素銅板がセラミック基板から剥離している箇所がない試料の評価を「○」とし、セラミック基板に割れが発生していたり、無酸素銅板がセラミック基板から剥離している箇所がある試料の評価を「×」とした。その結果を下記の表1に示す。
(Crack and peeling evaluation)
Each of Samples 1 to 13 was alternately charged into a liquid bath of a cryogen in which ethanol and dry ice were mixed at -65°C and a liquid bath of an oil bath at 150°C. Specifically, a cycle of 5 minutes in a liquid bath of a cryogen and then 5 minutes in a liquid bath of an oil bath was set as one cycle, and this cycle was repeated for a total of 500 cycles. Then, it is confirmed whether or not cracks have occurred in the ceramic substrate of each sample, and whether or not there is a portion where the oxygen-free copper plate is peeled from the ceramic substrate, and crack/peel evaluation is performed. It was The ceramic substrate is not cracked and the oxygen-free copper plate is not separated from the ceramic substrate. The sample is rated as "○", and the ceramic substrate is cracked, or the oxygen-free copper plate is the ceramic substrate. The evaluation of the sample having a part peeled from the sample was evaluated as "x". The results are shown in Table 1 below.

(総合評価)
試料1〜13の各試料の総合評価を行った。無酸素銅板の平均結晶粒径が500μm以上であり、無酸素銅板の表面の(211)面の配向性が80%以上であり、接合状態の評価が「○」であり、割れ・剥離評価が「○」である試料の総合評価を「◎」とした。無酸素銅板の結晶粒径が500μm未満であったり、無酸素銅板の(211)面の配向性が80%未満であったり、接合状態の評価が「×」であったり、割れ・剥離評価が「×」である試料の総合評価を「×」とした。評価結果を下記の表1に示す。
(Comprehensive evaluation)
A comprehensive evaluation of each of the samples 1 to 13 was performed. The average crystal grain size of the oxygen-free copper plate is 500 μm or more, the orientation of the (211) plane of the surface of the oxygen-free copper plate is 80% or more, the evaluation of the bonding state is “◯”, and the cracking/peeling evaluation is The comprehensive evaluation of the sample which is “◯” is “◎”. The crystal grain size of the oxygen-free copper plate is less than 500 μm, the orientation of the (211) plane of the oxygen-free copper plate is less than 80%, the bonding state is evaluated as “x”, and the cracking/peeling evaluation is performed. The comprehensive evaluation of the sample which is "x" was designated as "x". The evaluation results are shown in Table 1 below.

試料1〜8から、所定の熱処理後(例えばセラミック基板を形成する際の無酸素銅板とセラミック基板とを貼り合わせる熱処理後)の無酸素銅板の表面の平均結晶粒径が500μm以上であり、かつ、所定の熱処理後の無酸素銅板の表面に存在する(211)面の割合が80%以上である(つまり無酸素銅板の(211)面の配向性が80%以上である)と、セラミック配線基板(無酸素銅板)の昇温と降温とが繰り返された場合であっても、セラミック基板に割れ(クラック)が生じたり、無酸素銅板とセラミック基板との界面からの剥離(つまり無酸素銅板がセラミック基板から剥離すること)がないことを確認した。 From Samples 1 to 8, the average crystal grain size of the surface of the oxygen-free copper plate after the predetermined heat treatment (for example, after the heat treatment for bonding the oxygen-free copper plate and the ceramic substrate when forming the ceramic substrate) is 500 μm or more, and If the proportion of the (211) plane present on the surface of the oxygen-free copper plate after the predetermined heat treatment is 80% or more (that is, the orientation of the (211) plane of the oxygen-free copper plate is 80% or more), the ceramic wiring Even when the substrate (oxygen-free copper plate) is repeatedly heated and cooled, cracks occur in the ceramic substrate and peeling from the interface between the oxygen-free copper plate and the ceramic substrate (that is, the oxygen-free copper plate). Was not peeled off from the ceramic substrate).

試料9〜13から、所定の熱処理後の無酸素銅板の表面に存在する(211)面の割合が80%未満であると、セラミック配線基板の昇温と降温とが繰り返された場合、セラミック基板に割れが生じたり、無酸素銅板がセラミック基板から剥離してしまうことを確認した。 From Samples 9 to 13, when the ratio of the (211) plane existing on the surface of the oxygen-free copper plate after the predetermined heat treatment was less than 80%, when the heating and cooling of the ceramic wiring substrate were repeated, the ceramic substrate It was confirmed that cracks occurred in the film and that the oxygen-free copper plate was separated from the ceramic substrate.

試料1,5と試料9との比較から、冷間圧延処理の総加工度R(熱間圧延後の総加工度R)が90%未満であると、セラミック基板と貼り合わせた後(所定の熱処理後)の無酸素銅板の表面に存在する(211)面の割合が80%未満となることを確認した。 From the comparison between Samples 1 and 5 and Sample 9, when the total workability R of the cold rolling treatment (the total workability R after hot rolling) is less than 90%, after bonding with the ceramic substrate (predetermined It was confirmed that the ratio of the (211) plane existing on the surface of the oxygen-free copper plate after the heat treatment was less than 80%.

試料1〜3と試料10との比較から、無酸素銅板を形成する銅の純度が99.96質量%未満であると、所定の熱処理中に無酸素銅板中に生じる再結晶や結晶の成長が不充分であり、所定の熱処理後の無酸素銅板の表面の平均結晶粒径が500μm未満となることを確認した。 From the comparison between Samples 1 to 3 and Sample 10, if the purity of the copper forming the oxygen-free copper plate is less than 99.96% by mass, recrystallization or crystal growth that occurs in the oxygen-free copper plate during a predetermined heat treatment may occur. It was insufficient, and it was confirmed that the average crystal grain size on the surface of the oxygen-free copper plate after the predetermined heat treatment was less than 500 μm.

試料4と試料11との比較から、銅(無酸素銅)中の酸素濃度が0.001質量%を超えると、所定の熱処理により無酸素銅板中に生じる再結晶や結晶成長が不充分であり、所定の熱処理後の無酸素銅板の表面の平均結晶粒径が500μm未満となることを確認した。また、無酸素銅板とセラミック基板との接合状態も「×」となり、ロウ付けの信頼性が低くなることも確認した。 From the comparison between sample 4 and sample 11, when the oxygen concentration in copper (oxygen-free copper) exceeds 0.001 mass %, recrystallization or crystal growth that occurs in the oxygen-free copper plate by the predetermined heat treatment is insufficient. It was confirmed that the average crystal grain size on the surface of the oxygen-free copper plate after the predetermined heat treatment was less than 500 μm. It was also confirmed that the bonding state between the oxygen-free copper plate and the ceramic substrate was "x", and the brazing reliability was low.

試料6,7と試料12との比較から、接合温度が800℃未満であると、熱処理によって無酸素銅板中に小実再結晶や結晶成長が不充分であり、所定の熱処理後の無酸素銅板の表面の平均結晶粒径が500μm未満となることを確認した。 From the comparison between Samples 6 and 7 and Sample 12, if the bonding temperature is less than 800° C., small solid recrystallization and crystal growth are insufficient in the oxygen-free copper plate due to the heat treatment, and the oxygen-free copper plate after the predetermined heat treatment. It was confirmed that the average crystal grain size on the surface of was less than 500 μm.

また、試料1,8と試料13との比較から、冷間圧延工程において1回の冷間圧延処理(圧延パス)の加工度rが40%を超えると、つまり、複数回行う冷間圧延処理のうち、1回の加工度rが40%を超える冷間圧延処理を1回でも行うと、所定の熱処理後の無酸素銅板の(211)面の配向性が80%未満となることを確認した。 Further, from the comparison between Samples 1 and 8 and Sample 13, when the workability r of one cold rolling process (rolling pass) exceeds 40% in the cold rolling process, that is, the cold rolling process performed a plurality of times. Among them, it was confirmed that the orientation of the (211) plane of the oxygen-free copper plate after the predetermined heat treatment becomes less than 80% if the cold rolling treatment in which the workability r exceeds 40% is performed once. did.

<好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment>
Hereinafter, the preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
圧延されることで平板状に形成された無酸素銅板であって、800℃以上1080℃以下の条件下で5分以上加熱した後、圧延面から測定した平均結晶粒径が500μm以上になり、かつ、前記無酸素銅板の前記圧延面と平行な面内に存在する各結晶面の結晶方位をそれぞれ測定し、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記圧延面に存在する前記(211)面の合計面積の割合が80%以上になる無酸素銅板が提供される。
[Appendix 1]
According to one aspect of the invention,
An oxygen-free copper plate formed into a flat plate by being rolled, and after heating for 5 minutes or more under conditions of 800° C. or higher and 1080° C. or lower, the average crystal grain size measured from the rolled surface becomes 500 μm or more, A crystal having a crystal orientation in which the crystal orientation of each crystal plane existing in the plane parallel to the rolled surface of the oxygen-free copper sheet is measured and the inclination from the crystal orientation of the (211) plane is within 15°. When the surface is regarded as the (211) surface, the oxygen-free copper plate is provided in which the ratio of the total area of the (211) surface present in the rolled surface to the area of the rolled surface is 80% or more.

[付記2]
本発明の他の態様によれば、
無酸素銅からなる鋳塊に対して圧延加工が行われることで平板状に形成されており、セラミック基板上に設けられた後に熱処理が行われて配線材になる無酸素銅板であって、
800℃以上1080℃以下の条件下で5分以上加熱する熱処理を行った後、圧延面の平均結晶粒径が500μm以上になるとともに、前記圧延面に存在する結晶粒が有する結晶面のうち(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記(211)面の合計面積の割合が80%以上になる無酸素銅板が提供される。
[Appendix 2]
According to another aspect of the invention,
An oxygen-free copper plate that is formed into a flat plate by performing rolling processing on an ingot made of oxygen-free copper and that is heat-treated after being provided on a ceramic substrate to be a wiring material,
After the heat treatment of heating for 5 minutes or more under the condition of 800° C. or higher and 1080° C. or lower, the average crystal grain size of the rolled surface becomes 500 μm or more, and among the crystal faces of the crystal grains present in the rolled surface ( When a crystal plane having a crystal orientation in which the inclination of the (211) plane from the crystal orientation is within 15° is regarded as the (211) plane, the ratio of the total area of the (211) plane to the area of the rolled plane is 80. % Oxygen-free copper plates are provided.

[付記3]
付記1又は2の無酸素銅板であって、好ましくは、
純度が99.96質量%以上の銅を用い、酸素濃度が0.001質量%以下であり、残部が不可避的不純物からなる無酸素銅で形成されている。例えば、無酸素銅板は、純度が99.96質量%以上であり、酸素濃度が0.001質量%以下であり、残部が不可避的不純物からなる無酸素銅に対して圧延加工が行われることで形成される。
[Appendix 3]
The oxygen-free copper plate according to supplementary note 1 or 2, preferably:
Copper having a purity of 99.96% by mass or more is used, the oxygen concentration is 0.001% by mass or less, and the balance is made of oxygen-free copper containing inevitable impurities. For example, the oxygen-free copper plate has a purity of 99.96% by mass or more, an oxygen concentration of 0.001% by mass or less, and the balance is obtained by rolling the oxygen-free copper containing inevitable impurities. It is formed.

[付記4]
付記1ないし3のいずれかに記載の無酸素銅板であって、好ましくは、
厚さが100μm以上である。
[Appendix 4]
The oxygen-free copper plate according to any one of appendices 1 to 3, preferably,
The thickness is 100 μm or more.

[付記5]
付記1ないし4のいずれかに記載の無酸素銅板であって、好ましくは、
厚さが100μm以上1mm以下である。
[Appendix 5]
The oxygen-free copper plate according to any one of appendices 1 to 4, preferably,
The thickness is 100 μm or more and 1 mm or less.

[付記6]
本発明のさらに他の態様によれば、
セラミック基板上に設けられた後に熱処理が行われることで配線材になる無酸素銅板の製造方法であって、
無酸素銅で形成された被圧延材に対して、1回の加工度が40%以下である冷間圧延処理を、総加工度が90%以上になるように複数回行う冷間圧延工程を有する無酸素銅板の製造方法が提供される。
[Appendix 6]
According to yet another aspect of the invention,
A method of manufacturing an oxygen-free copper plate which is a wiring material by being subjected to heat treatment after being provided on a ceramic substrate,
A cold rolling process in which a single cold rolling process with a workability of 40% or less is performed multiple times on the material to be rolled formed of oxygen-free copper so that the total workability is 90% or more. A method of manufacturing an oxygen-free copper plate having the same is provided.

[付記7]
付記6の無酸素銅板の製造方法であって、好ましくは、
前記冷間圧延工程では、焼鈍処理を行わない。
[Appendix 7]
The method for producing an oxygen-free copper plate according to appendix 6, preferably,
No annealing treatment is performed in the cold rolling step.

[付記8]
本発明のさらに他の態様によれば、
セラミック基板と、
無酸素銅に対して圧延加工を行うことで平板状に形成され、前記セラミック基板上に設けられた配線材としての無酸素銅板と、を備え、
前記無酸素銅板の圧延面の平均結晶粒径が500μm以上であるとともに、前記圧延面に存在する結晶粒が有する結晶面のうち(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記(211)面の合計面積の割合が80%以上であるセラミック配線基板が提供される。
[Appendix 8]
According to yet another aspect of the invention,
A ceramic substrate,
Formed into a flat plate by rolling oxygen-free copper, comprising an oxygen-free copper plate as a wiring material provided on the ceramic substrate,
A crystal having an average crystal grain size of 500 μm or more on the rolled surface of the oxygen-free copper sheet and having a tilt of 15° or less from the crystal orientation of the (211) plane among the crystal planes of the crystal grains present on the rolled surface. Provided is a ceramic wiring board in which the ratio of the total area of the (211) plane to the area of the rolled surface is 80% or more when the crystal plane having the orientation is regarded as the (211) plane.

Claims (6)

圧延されることで平板状に形成された無酸素銅板であって、800℃以上1080℃以下の条件下で5分加熱した後の前記無酸素銅板は、圧延面から測定した平均結晶粒径が500μm以上であり、かつ、前記無酸素銅板の前記圧延面と平行な面内に存在する各結晶面の結晶方位をそれぞれ測定し、(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記圧延面に存在する前記(211)面の合計面積の割合が80%以上である
無酸素銅板。
A free oxygen copper plate which is formed in a plate shape by being rolled, the oxygen free copper plate after heated 5 minutes pressurized under conditions of 800 ° C. or higher 1080 ° C. or less, the average crystal grain size measured from the rolled surface Is 500 μm or more, and the crystal orientation of each crystal plane existing in the plane parallel to the rolled surface of the oxygen-free copper sheet is measured, and the inclination from the crystal orientation of the (211) plane is within 15°. An oxygen-free copper plate in which the ratio of the total area of the (211) planes existing in the rolled surface to the area of the rolled surface is 80% or more when the crystal plane having a certain crystal orientation is regarded as the (211) plane.
純度が99.96質量%以上の銅を用い、酸素濃度が0.001質量%以下であり、残部が不可避的不純物からなる無酸素銅で形成されている
請求項1に記載の無酸素銅板。
The oxygen-free copper plate according to claim 1, wherein copper having a purity of 99.96% by mass or more is used, the oxygen concentration is 0.001% by mass or less, and the balance is made of oxygen-free copper containing inevitable impurities.
厚さが100μm以上である
請求項1又は2に記載の無酸素銅板。
The oxygen-free copper plate according to claim 1, which has a thickness of 100 μm or more.
セラミック基板上に設けられた後に熱処理が行われることで配線材になる請求項1〜3の何れか1項に記載の無酸素銅板の製造方法であって、
無酸素銅で形成された被圧延材に対して、1回の加工度が40%以下である冷間圧延処理を、総加工度が90%以上になるように複数回行う冷間圧延工程を有する
無酸素銅板の製造方法。
The method for producing an oxygen-free copper plate according to any one of claims 1 to 3, which is a wiring material by being subjected to heat treatment after being provided on a ceramic substrate.
A cold rolling process in which a single cold rolling process with a workability of 40% or less is performed multiple times on the material to be rolled formed of oxygen-free copper so that the total workability is 90% or more. A method for manufacturing an oxygen-free copper plate having the same.
前記冷間圧延工程では、焼鈍処理を行わない
請求項4に記載の無酸素銅板の製造方法。
The method for manufacturing an oxygen-free copper sheet according to claim 4, wherein annealing treatment is not performed in the cold rolling step.
セラミック基板と、
無酸素銅に対して圧延加工を行うことで平板状に形成され、前記セラミック基板上に設けられた配線材としての無酸素銅板と、を備え、
前記無酸素銅板の圧延面の平均結晶粒径が500μm以上であるとともに、前記圧延面に存在する結晶粒が有する結晶面のうち(211)面の結晶方位からの傾きが15°以内である結晶方位を有する結晶面を前記(211)面とみなしたとき、前記圧延面の面積に対する前記(211)面の合計面積の割合が80%以上である
セラミック配線基板。
A ceramic substrate,
Formed into a flat plate by rolling oxygen-free copper, comprising an oxygen-free copper plate as a wiring material provided on the ceramic substrate,
A crystal having an average crystal grain size of 500 μm or more on the rolled surface of the oxygen-free copper sheet and having a tilt of 15° or less from the crystal orientation of the (211) plane among the crystal planes of the crystal grains present on the rolled surface. A ceramic wiring board in which the ratio of the total area of the (211) planes to the area of the rolled planes is 80% or more when the crystal plane having the orientation is regarded as the (211) plane.
JP2015204814A 2015-10-16 2015-10-16 Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board Active JP6734033B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015204814A JP6734033B2 (en) 2015-10-16 2015-10-16 Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
KR1020160114753A KR20170045106A (en) 2015-10-16 2016-09-07 Oxygen free copper plate, method of manufacturing oxygen free copper plate and ceramic wiring board
CN201610879251.0A CN106604537A (en) 2015-10-16 2016-10-08 Oxygen free copper plate, method of manufacturing oxygen free copper plate and ceramic wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204814A JP6734033B2 (en) 2015-10-16 2015-10-16 Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board

Publications (2)

Publication Number Publication Date
JP2017075382A JP2017075382A (en) 2017-04-20
JP6734033B2 true JP6734033B2 (en) 2020-08-05

Family

ID=58551040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204814A Active JP6734033B2 (en) 2015-10-16 2015-10-16 Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board

Country Status (3)

Country Link
JP (1) JP6734033B2 (en)
KR (1) KR20170045106A (en)
CN (1) CN106604537A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104252B1 (en) * 2017-06-07 2020-04-24 가부시키가이샤 에스에이치 카퍼프로덕츠 Oxygen free copper plate and ceramics wiring board
ES2917407T3 (en) * 2018-03-20 2022-07-08 Aurubis Stolberg Gmbh & Co Kg Copper-ceramic substrate
JP6582159B1 (en) * 2018-03-29 2019-09-25 古河電気工業株式会社 Insulating substrate and manufacturing method thereof
WO2019187767A1 (en) * 2018-03-29 2019-10-03 古河電気工業株式会社 Insulating substrate and method for manufacturing same
EP3903980B1 (en) * 2018-12-28 2023-03-22 Denka Company Limited Ceramic-copper composite, ceramic circuit board, power module, and method for manufacturing ceramic-copper composite
US11939270B2 (en) 2019-02-04 2024-03-26 Mitsubishi Materials Corporation Production method for copper/ceramic joined body, production method for insulated circuit board, copper/ceramic joined body, and insulated circuit board
KR20220088412A (en) * 2020-01-15 2022-06-27 후루카와 덴키 고교 가부시키가이샤 Copper plate material, manufacturing method thereof, and insulated substrate with copper plate material
EP4116449A4 (en) * 2020-03-06 2024-03-20 Mitsubishi Materials Corp Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
CN115354163B (en) * 2022-07-15 2023-11-10 西安斯瑞先进铜合金科技有限公司 Preparation method of fine-grain high-purity oxygen-free copper plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285526B2 (en) * 2006-10-26 2009-06-24 日立電線株式会社 Rolled copper foil and method for producing the same

Also Published As

Publication number Publication date
JP2017075382A (en) 2017-04-20
KR20170045106A (en) 2017-04-26
CN106604537A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6734033B2 (en) Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
JP5285079B2 (en) Solder alloys and semiconductor devices
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
JP2011097038A (en) Ceramic wiring substrate and manufacturing method of the same
JP6038389B2 (en) Laminated body and manufacturing method thereof
JP6744174B2 (en) Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
JP5787647B2 (en) Method for producing copper material for sputtering target
WO2021177461A1 (en) Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
CN115279929A (en) Pure copper plate, copper-ceramic junction body, and insulated circuit board
JP2008127606A (en) High-strength copper alloy sheet having oxide film superior in adhesiveness
TW201821623A (en) Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP6202718B2 (en) Heat dissipation board
JP6425404B2 (en) Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate
TWI703645B (en) Welded joint and method for forming the welded joint
WO2016111206A1 (en) Heat dissipation substrate
CN111051546B (en) Insulating substrate and method for manufacturing same
WO2016002609A1 (en) Method for producing ceramic-aluminum bonded body, method for producing power module substrate, ceramic-aluminum bonded body, and power module substrate
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
KR102343189B1 (en) Insulation substrate and method for manufacturing the same
JP5211314B2 (en) Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
JP7236299B2 (en) High-purity aluminum sheet, manufacturing method thereof, and power semiconductor module using the high-purity aluminum sheet
JP4840173B2 (en) Laminated wiring and laminated electrode for liquid crystal display device having no thermal defect and excellent adhesion, and methods for forming them
TW202413659A (en) Pure copper materials, insulating substrates, electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200709

R150 Certificate of patent or registration of utility model

Ref document number: 6734033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150