JP5787647B2 - Method for producing copper material for sputtering target - Google Patents

Method for producing copper material for sputtering target Download PDF

Info

Publication number
JP5787647B2
JP5787647B2 JP2011152275A JP2011152275A JP5787647B2 JP 5787647 B2 JP5787647 B2 JP 5787647B2 JP 2011152275 A JP2011152275 A JP 2011152275A JP 2011152275 A JP2011152275 A JP 2011152275A JP 5787647 B2 JP5787647 B2 JP 5787647B2
Authority
JP
Japan
Prior art keywords
rolling
sputtering
thickness
copper
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011152275A
Other languages
Japanese (ja)
Other versions
JP2013019010A5 (en
JP2013019010A (en
Inventor
清慈 廣瀬
清慈 廣瀬
大輔 菊地
大輔 菊地
宏明 金森
宏明 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011152275A priority Critical patent/JP5787647B2/en
Publication of JP2013019010A publication Critical patent/JP2013019010A/en
Publication of JP2013019010A5 publication Critical patent/JP2013019010A5/ja
Application granted granted Critical
Publication of JP5787647B2 publication Critical patent/JP5787647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、スパッタリングターゲットとして用いられる銅合金材製造方法に関するものである。 The present invention relates to a manufacturing method of the copper alloy material used as a sputtering target.

近年、モバイルPC、携帯電話端末などの小型電子機器から大型のテレビまで、種々のサイズにおいてフラットパネルディスプレイが使用されている。フラットパネルディスプレイに分類される、液晶ディスプレイや有機ELディスプレイにおいては、高画質・動画の高速描画への要求を満たすために、画素のドットに薄膜トランジスタ(Thin Film Transistor:以下TFTと言う)素子を組み込んだものが開発され、現在主流となっている。   In recent years, flat panel displays have been used in various sizes from small electronic devices such as mobile PCs and mobile phone terminals to large televisions. In liquid crystal displays and organic EL displays, which are classified as flat panel displays, thin film transistor (hereinafter referred to as TFT) elements are incorporated in pixel dots in order to meet the demands for high-quality and high-speed drawing of moving images. Has been developed and is now mainstream.

従来、TFTの走査線、ゲート電極、ソース−ドレイン電極にはアルミニウムとその合金などが用いられてきた。しかしながら、液晶ディスプレイの大型化や高画素化に伴い配線長が増大され、信号遅延、電力損失等による、画像表示むら等の問題が顕在化した。そこで電気抵抗率の低い銅配線が着目されるようになった。   Conventionally, aluminum and its alloys have been used for TFT scanning lines, gate electrodes, and source-drain electrodes. However, as the liquid crystal display is enlarged and the number of pixels is increased, the wiring length is increased, and problems such as image display unevenness due to signal delay, power loss, etc. have become apparent. Therefore, attention has been focused on copper wiring with low electrical resistivity.

TFT素子の配線に銅配線膜を用いることでの問題点は、ガラス基板上に直接銅膜を形成すると、Cu/ガラス界面における密着性が悪いために形成した銅配線膜がガラスから剥離するという問題が生起することがあげられる。その剥離の問題を解消するために、下記の特許文献1〜3等に記載された技術が提案されている。   The problem with using a copper wiring film for TFT element wiring is that when a copper film is formed directly on a glass substrate, the formed copper wiring film peels off from the glass due to poor adhesion at the Cu / glass interface. Problems can arise. In order to solve the problem of peeling, techniques described in the following Patent Documents 1 to 3 have been proposed.

特許文献1の発明は、銅配線とガラス基板の間にモリブデンなどの高融点金属を介在させ、ガラス基板との密着性に優れるバリア層を形成することで、剥離を抑制している。   The invention of Patent Document 1 suppresses peeling by interposing a refractory metal such as molybdenum between a copper wiring and a glass substrate and forming a barrier layer having excellent adhesion to the glass substrate.

特許文献2および3の発明は、銅を合金化したターゲットを用いることで、酸化物を銅配線とガラス基板界面に形成させる、合金元素を銅配線とガラス基板界面に濃化させるなどの手法により、剥離を抑制している。   The inventions of Patent Documents 2 and 3 use a target obtained by alloying copper to form an oxide at the interface between the copper wiring and the glass substrate, or concentrate an alloy element at the interface between the copper wiring and the glass substrate. , Peeling is suppressed.

上記特許文献2および3の発明の様に銅合金化などの手法も開発されているが、現在工業的には、特許文献1に記載発明の様に、ガラスと密着性のよいMoやTiなどをバリア層として銅配線の下に形成することで剥離を改善し、スパッタリングにより純銅の配線を形成している。   Techniques such as copper alloying have also been developed as in the inventions of Patent Documents 2 and 3, but industrially, as in the invention described in Patent Document 1, Mo, Ti, etc. having good adhesion to glass Is formed under the copper wiring as a barrier layer to improve peeling, and pure copper wiring is formed by sputtering.

TFT素子のゲート電極の形成工程において要求される重要な特性の一つに、配線膜の基板面内均一性が挙げられる。膜の均一性、すなわち膜厚の違いや凹凸などの存在により、TFT内での電気容量が不均一になるため、表示に悪影響が発生する。また、TFT素子製造工程において、膜厚の違いや、粗大なクラスタ(パーティクル等)が存在すると、エッチングにて配線電極を作成した際に、断線および短絡などの配線不良を引き起こすことが懸念される。   One of the important characteristics required in the process of forming the gate electrode of the TFT element is the uniformity of the wiring film within the substrate surface. Due to the uniformity of the film, that is, the difference in film thickness and the presence of irregularities, the electric capacity within the TFT becomes non-uniform, which adversely affects the display. In addition, in the TFT element manufacturing process, if there is a difference in film thickness or coarse clusters (particles, etc.), there is a concern that wiring defects such as disconnection and short circuit may be caused when wiring electrodes are created by etching. .

半導体配線等となる純銅膜をスパッタリング工程にて形成する場合に、均一な配線膜が作成でき、粗大クラスタの抑制および断線不良を抑制できるスパッタリングターゲットの発明としては、特許文献4〜8等に記載された技術が提案されている。   In the case of forming a pure copper film to be a semiconductor wiring or the like in the sputtering process, the invention of a sputtering target capable of forming a uniform wiring film and suppressing coarse clusters and suppressing disconnection failure is described in Patent Documents 4 to 8, etc. Technology has been proposed.

特許文献4には、酸素、窒素、炭素および水素のガス成分を除いた純度99.9999%以上の銅を基体とし、酸素濃度0.1ppm以下で溶解、凝固させて製造することで、不良断線率の少ない、超LSI用の配線を得ることが可能なスパッタリングターゲットが記載されている。このターゲット材では、銅材料中の不純物量を低減させることで、断線不良などを低減させる効果がある。   Patent Document 4 discloses that a defective disconnection is produced by using copper having a purity of 99.9999% or more excluding gas components of oxygen, nitrogen, carbon and hydrogen as a base and melting and solidifying at an oxygen concentration of 0.1 ppm or less. A sputtering target capable of obtaining wiring for VLSI with a low rate is described. This target material has an effect of reducing disconnection failure by reducing the amount of impurities in the copper material.

特許文献5には、純度99.995%以上の銅において、再結晶組織の平均結晶粒径を80μm以下にして、且つ、ビッカース硬さを100以下にしたスパッタリングターゲット材を用いることで、スパッタ粒子の飛び出しの拡がりと粗大クラスタ発生を抑制することが記載されている。   Patent Document 5 uses a sputtering target material in which the average crystal grain size of the recrystallized structure is 80 μm or less and the Vickers hardness is 100 or less in copper having a purity of 99.995% or more. It is described that the expansion of protrusions and the generation of coarse clusters are suppressed.

特許文献6には、ガス成分を除いた純度99.999%以上の銅において、スパッタ面内における(111)面のX線回折ピーク強度I(111)を高め、平均粒径を250μm以下にして、場所による粒径のばらつきを20%以内にすることで、膜厚均一性を良好にすることが記載されている。
特許文献7には、表面に(110)面を向いた結晶の体積を80%以上にし、それらの結晶が表面から中心に均一に分布させることにより、銅原子の飛び出しを表面から垂直方向にさせ、アスペクト比の大きな溝の深奥部まで製膜可能にすることが記載されている。
特許文献8には、99.999%以上の純度の銅において、平均結晶粒径を10〜30μmに制御し、(111)(200)(220)及び(311)の各々の配向を有する粒子の量を50%よりも少なくして、ランダムな配向を有することで、均一性及び最小の粒子発生を達成できることが記載されている。
Patent Document 6 discloses that in copper having a purity of 99.999% or more excluding gas components, the X-ray diffraction peak intensity I (111) of the (111) plane in the sputtering surface is increased, and the average particle size is 250 μm or less. In addition, it is described that the uniformity of the film thickness is improved by setting the variation of the particle diameter depending on the location within 20%.
In Patent Document 7, the volume of crystals facing the (110) plane on the surface is set to 80% or more, and the crystals are uniformly distributed from the surface to the center, so that the copper atoms jump out from the surface in the vertical direction. Further, it is described that a film can be formed up to a deep part of a groove having a large aspect ratio.
Patent Document 8 discloses that in copper having a purity of 99.999% or more, the average crystal grain size is controlled to 10 to 30 μm, and the particles having the orientations of (111), (200), (220), and (311) are used. It is described that uniformity and minimal particle generation can be achieved by reducing the amount to less than 50% and having a random orientation.

特開平7−66423号公報JP-A-7-66423 特許第4065959号公報Japanese Patent No. 4065959 特開2008−166742号公報JP 2008-166742 A 特許第3727115号公報Japanese Patent No. 3727115 特許第3975414号公報Japanese Patent No. 3975414 特許第3403918号公報Japanese Patent No. 3403918 特許第3997375号公報Japanese Patent No. 3997375 特許第3971171号公報Japanese Patent No. 3971171

上記の従来の発明によって、成分、結晶粒径、歪および結晶配向の制御により、スパッタ粒子の飛び出しを制御し、均一な膜生成および粗大クラスタを抑制することが、一応可能になった。しかしながら、近年、大型テレビ用の液晶ディスプレイなど基板サイズの大型化が進行し、第7世代などでは1870mm×2200mmなど、2mを超える基板サイズとなった。それに伴い配線を作成するスパッタリング工程においても大型の基板に製膜する必要が出てきている。大型基板での製膜において印加する電力が大きくなるにつれて、製造上の課題として異常放電の問題が顕在化した。異常放電はスパッタリング中に急激に電力が増加する現象であり、局所的なアーク放電によって引き起される現象である。異常放電が起こると、ターゲット物質が急激に飛び出すため、膜の均一性に大きな影響を及ぼすと共に装置負荷にも繋がるため、軽減することが望まれている。   According to the above-described conventional invention, it has become possible to control spattering of sputtered particles and control uniform film formation and coarse clusters by controlling the components, crystal grain size, strain and crystal orientation. However, in recent years, the size of a substrate such as a liquid crystal display for a large television has been increased, and the substrate size exceeding 2 m, such as 1870 mm × 2200 mm, has been achieved in the seventh generation. Accordingly, it has become necessary to form a film on a large substrate also in a sputtering process for creating wiring. As the power applied in film formation on a large substrate has increased, the problem of abnormal discharge has become apparent as a manufacturing problem. Abnormal discharge is a phenomenon in which electric power increases rapidly during sputtering, and is a phenomenon caused by local arc discharge. When an abnormal discharge occurs, the target material jumps out rapidly, which greatly affects the uniformity of the film and leads to a load on the apparatus.

本発明は上述の要望に鑑みて、TFT液晶パネルなどに使用される大型の基板に対してスパッタリング工程で配線を作成する際に、高電力を印加した際も使用中の異常放電の頻度を減少し、スプラッシュ等の発生を抑制する、スパッタリングターゲット用銅材料の製造方法を提供することを課題とする。 In view of the above-mentioned demands, the present invention reduces the frequency of abnormal discharge during use even when high power is applied when creating wiring in a sputtering process on a large substrate used for a TFT liquid crystal panel or the like. It is another object of the present invention to provide a method for producing a copper material for a sputtering target that suppresses the occurrence of splash or the like.

本発明者らは、上述の従来の技術の問題点を解決するため鋭意研究を重ねたところ、スパッタリングターゲット材中の欠陥(マイクロボイド、酸化物)が異常放電を引き起こす要因であることを知見し、それら欠陥のサイズおよび数をスパッタリング面内で管理することにより、異常放電を減少するスパッタリングターゲットに好適な銅材料を提供することができることを見出した。
本発明は、この知見に基づきなされたものである。
The inventors of the present invention have made extensive studies to solve the above-described problems of the conventional techniques, and found that defects (microvoids, oxides) in the sputtering target material cause abnormal discharge. It was found that a copper material suitable for a sputtering target that reduces abnormal discharge can be provided by controlling the size and number of these defects in the sputtering plane.
The present invention has been made based on this finding.

すなわち、本発明品は、
(1)純度99.99%質量以上の純銅からなり、ターゲット内部のボイドおよび介在物欠陥の平均サイズが30μm以下であり、且つ、欠陥の数が、スパッタリングに供する面の単位面積辺り、10個/m以下であるスパッタリングターゲット用銅材料の製造方法であって、
純度99.99質量%以上の純銅を熱間圧延にて製造する工程を有し、温度700〜1000℃で、加工率が総和で20%以上の熱間圧延を施した後、最終パスとして、温度400〜600℃で、加工率10%以上の熱間加工を施すことを特徴とする、スパッタリングターゲット用銅材料の製造方法、
(2)前記スパッタリングターゲット用銅材料において、スパッタリング面における平均結晶粒径が50〜200μmであり、スパッタリング面における硬さの算術平均60〜100Hvであることを特徴とする、(1)に記載のスパッタリングターゲット用銅材料の製造方法、ならびに
(3)前記熱間圧延の直後に冷却速度50℃/秒以上で水冷を行う工程の後に、冷間圧延を行うこと特徴とする、(1)または(2)に記載のスパッタリングターゲット用銅材料の製造方法
を提供するものである。
That is, the product of the present invention is
(1) It is made of pure copper having a purity of 99.99% by mass , the average size of voids and inclusion defects inside the target is 30 μm or less, and the number of defects is 10 per unit area of the surface to be subjected to sputtering. / M 2 or less, a method for producing a copper material for a sputtering target ,
It has a step of producing pure copper having a purity of 99.99% by mass or more by hot rolling, and after hot rolling with a processing rate of 20% or more in total at a temperature of 700 to 1000 ° C., as a final pass, A method for producing a copper material for a sputtering target, characterized by performing hot working at a processing rate of 10% or more at a temperature of 400 to 600 ° C. ,
(2) In the copper material for a sputtering target, the average crystal grain size on the sputtering surface is 50 to 200 μm, and the arithmetic average of hardness on the sputtering surface is 60 to 100 Hv. the process for producing a sputtering target for a copper material, and (3) after the step of performing water cooling at a cooling rate 50 ° C. / sec or more immediately after the hot rolling, characterized by performing the cold rolling, (1) or The manufacturing method of the copper material for sputtering targets as described in (2) is provided.

本発明のスパッタリングターゲット用銅材料の製造方法により、TFT液晶パネル等に使用される大型の基板に対してスパッタリング工程で配線膜を製膜する際に、異常放電の発生頻度が低くなり、結果、均一な製膜が可能となるスパッタリングターゲット用銅材料を提供できる
When a wiring film is formed in a sputtering process on a large substrate used for a TFT liquid crystal panel or the like by the method for producing a copper material for a sputtering target of the present invention, the frequency of occurrence of abnormal discharge is reduced. A copper material for a sputtering target capable of uniform film formation can be provided .

本発明のスパッタリングターゲット用の銅材料としては、好ましくは99.99質量%以上の純度を有する銅である。純銅の鋳塊を製造する際の原料である電気銅にはある程度の不純物が含有されており、純銅の鋳塊にもそれらが不可避の不純物として現れる。不純物は特に、B、Al、Si、P、As、Sb、Biの含有量を各々5ppm以下に抑制することが望ましい。これらの元素はSi半導体のドーパントとして利用される元素であり、半導体特性に悪影響を及ぼす可能性があるため、より好ましい純度は銅99.995質量%以上である。   The copper material for the sputtering target of the present invention is preferably copper having a purity of 99.99% by mass or more. Electrolytic copper, which is a raw material for producing a pure copper ingot, contains a certain amount of impurities, and they also appear as inevitable impurities in the pure copper ingot. In particular, it is desirable that the impurities contain B, Al, Si, P, As, Sb, and Bi in an amount of 5 ppm or less. Since these elements are elements used as dopants for Si semiconductors and may adversely affect semiconductor characteristics, the more preferable purity is 99.995% by mass or more of copper.

スパッタリングターゲット用の銅材料銅材料中の欠陥は、異常放電の要因になるため、管理する必要がある。ここで言う欠陥とは、ボイドおよび酸化物等の介在物を指す。ここでボイドとは銅材料中の空隙のことをいい、ガス欠陥、割れ等によって生じたものと考えられる。また酸化物とは酸化銅、亜酸化銅、等の酸化物である。欠陥のサイズは30μm以下であれば異常放電への寄与度は小さいため、欠陥サイズを管理する必要がある。欠陥サイズは小さい方が好ましいく、より好ましくは20μm以下である。さらに10μm以下の欠陥は異常放電にほぼ寄与しない。欠陥の数は、スパッタ面における単位面積1m当たり、10個以下が良い。欠陥の数がこれよりも多い場合、異常放電の発生頻度が多くなる。
本発明で平均欠陥サイズとは、上記の各欠陥サイズの単位面積1m当たりの個数の平均を言う。本発明において「欠陥」とは内部欠陥(表面でなく内部に存在する欠陥)をいう。
Defects in the copper material copper material for the sputtering target cause abnormal discharge and must be managed. The defect here refers to inclusions such as voids and oxides. Here, the void means a void in the copper material, which is considered to be caused by a gas defect, crack or the like. The oxide is an oxide such as copper oxide or cuprous oxide. Since the contribution to abnormal discharge is small if the size of the defect is 30 μm or less, it is necessary to manage the defect size. The defect size is preferably smaller, more preferably 20 μm or less. Furthermore, defects of 10 μm or less do not substantially contribute to abnormal discharge. The number of defects is preferably 10 or less per unit area of 1 m 2 on the sputtering surface. When the number of defects is larger than this, the frequency of occurrence of abnormal discharge increases.
In the present invention, the average defect size means an average of the number of each defect size per unit area 1 m 2 . In the present invention, “defect” refers to an internal defect (a defect existing inside, not on the surface).

スパッタリングターゲット中の欠陥は、具体的には、超音波探傷装置などを用い検出することが可能である。   Specifically, the defect in the sputtering target can be detected using an ultrasonic flaw detector or the like.

本発明のスパッタリングターゲット用の銅材料は組織の均一さが求められるため、実質的に再結晶組織を有することが望ましい。結晶粒径が大きい場合は、ターゲット物質を飛び立たせるために高いエネルギーが必要であり、ターゲット原子が多く固まって飛び出して粗大クラスタの形成が増え形成する膜が不均一になり易い。好ましい結晶粒径は50〜200μmである。結晶粒径が小さすぎると、結晶粒内にひずみが多く残存して、ターゲット物質が不均一に飛び出す。また大きすぎるとターゲット原子を飛び出させるのに高エネルギーが必要となるため、異常放電を発生し易く、また、生成した膜が不均一になる。この結晶粒径の制御は下記の熱間加工の工程で実施できる。   Since the copper material for the sputtering target of the present invention is required to have a uniform structure, it is desirable that the copper material has a substantially recrystallized structure. When the crystal grain size is large, high energy is required to make the target material fly off, and a large number of target atoms solidify and fly out, so that the formation of coarse clusters tends to be uneven and the formed film tends to be non-uniform. A preferable crystal grain size is 50 to 200 μm. If the crystal grain size is too small, a large amount of strain remains in the crystal grains and the target material jumps out unevenly. On the other hand, if it is too large, high energy is required to make the target atoms jump out, so that abnormal discharge is likely to occur, and the generated film becomes non-uniform. The control of the crystal grain size can be carried out in the following hot working process.

また、本発明の銅材料にひずみが内在するときはターゲット物質の飛び出しに影響を及ぼすので、これを制御するのが好ましい。材料に内在するひずみが部位毎にバラつくと、周囲とエネルギーが異なるためにターゲット物質の飛び出し方が部位毎に変わり均一な製膜が出来ない。銅材料内部のひずみは硬さ測定を行う事により評価することができる。硬さは60〜100Hvの範囲が望ましい。ひずみが多すぎると、ターゲット原子が多く固まって飛び出して粗大クラスタの形成が増え形成する膜が不均一になり易く、硬さを100HV以下にすることが望ましい。スパッタリング装置のバッキングプレートに取り付ける工程では、スパッタリングターゲットは硬い方が、取り付け時の変形等を防ぐ点では望ましい。硬さが60Hvを下回ると取り付け工程において、不具合が発生し易い。   In addition, when strain is inherent in the copper material of the present invention, it affects the pop-out of the target material, so it is preferable to control this. If the strain inherent in the material varies from site to site, the energy differs from the surroundings, and the target material jumps out from site to site, making uniform film formation impossible. The strain inside the copper material can be evaluated by measuring the hardness. The hardness is desirably in the range of 60 to 100 Hv. If the strain is too large, a large number of target atoms will harden and fly out, and the formation of coarse clusters will increase, resulting in non-uniform film formation, and it is desirable that the hardness be 100 HV or less. In the step of attaching to the backing plate of the sputtering apparatus, it is desirable that the sputtering target is hard in terms of preventing deformation and the like during attachment. If the hardness is less than 60 Hv, defects are likely to occur in the attachment process.

スパッタリングターゲットにおいて、欠陥のサイズおよび数を制御するためには、製造プロセスにおいて次に示すような点に留意するのが良い。本発明における銅材料の製造は、溶解鋳造−熱間加工―冷間圧延―熱処理の工程を取る。必要に応じて、熱間加工と冷間加工の間に面削の工程を含んでも良い。また、冷間圧延と熱処理を繰り返しても良い。ここにおいて、熱間加工は熱間圧延および熱間押出などであり、溶解鋳造プロセスで得られた鋳塊を高温にて加工するプロセスを指す。次に示すことに留意して製造することにより、前述の金属組織の規定を満たす銅材料が作製可能になり、ターゲット製造を短冊状の板を組み合わせて行う様な大型のディスプレイ用のターゲット材として使用する時に、異常放電が少なく、スパッタリング膜を均一に形成しやすくする効果が得られる。   In order to control the size and number of defects in the sputtering target, the following points should be noted in the manufacturing process. The production of the copper material in the present invention takes the steps of melt casting, hot working, cold rolling, and heat treatment. If necessary, a chamfering step may be included between hot working and cold working. Further, cold rolling and heat treatment may be repeated. Here, hot working is hot rolling, hot extrusion, or the like, and refers to a process of working an ingot obtained by a melt casting process at a high temperature. By manufacturing in consideration of the following, it becomes possible to produce a copper material that satisfies the above-mentioned metal structure specifications, and as a target material for a large display that performs target production by combining strip-shaped plates. When used, the effect of facilitating uniform formation of a sputtering film with little abnormal discharge is obtained.

溶解鋳造では、欠陥を可能な限り少なくすることが望ましい。不活性ガス雰囲気または、真空鋳造などにて純度99.99%以上の純銅の溶解を行い、鋳型に鋳造を実施する。   In melt casting, it is desirable to minimize defects as much as possible. Pure copper having a purity of 99.99% or more is dissolved in an inert gas atmosphere or vacuum casting, and cast into a mold.

熱間加工プロセスは、熱間圧延、熱間押出、熱間鍛造などで実施できる。スパッタリングターゲットとして使用する銅材料において、結晶粒径はこの熱間加工でほぼ決定される。また、鋳造で生じた凝固欠陥を熱間加工により圧着することが可能である。   The hot working process can be performed by hot rolling, hot extrusion, hot forging, or the like. In a copper material used as a sputtering target, the crystal grain size is almost determined by this hot working. Further, it is possible to press-bond solidification defects caused by casting by hot working.

熱間加工プロセスのうち、鋳造で生じた凝固欠陥を高温にて圧着させるためには、熱間圧延前の材料の加熱温度は700〜1000℃の範囲で行うことが望ましい。材料の加熱温度が700℃より低い場合は熱間加工での欠陥の圧着が不十分且つ、動的再結晶が十分に生じず均一な金属組織が得られない。1000℃より高い場合には、結晶粒径の制御が困難になる。圧延の圧着には、700℃〜1000℃の間で、20%以上の加工率で熱間加工を施すことが望ましい。また、結晶粒径の制御の観点からは熱間圧延前の材料の上記温度での加熱は30〜300分行うのが好ましい。   In the hot working process, in order to press the solidification defects caused by casting at a high temperature, it is desirable that the heating temperature of the material before hot rolling is in the range of 700 to 1000 ° C. When the heating temperature of the material is lower than 700 ° C., defects are not pressure-bonded by hot working, and dynamic recrystallization does not occur sufficiently and a uniform metal structure cannot be obtained. When the temperature is higher than 1000 ° C., it is difficult to control the crystal grain size. For pressure bonding of rolling, it is desirable to perform hot working between 700 ° C. and 1000 ° C. at a working rate of 20% or more. From the viewpoint of controlling the crystal grain size, it is preferable to heat the material before hot rolling at the above temperature for 30 to 300 minutes.

熱間加工を熱間圧延で実施する場合には、端部からの冷却を避けるため、材料を停滞させないことが必要である。結晶粒径の制御には、熱間圧延の最終パスにおいて、温度400〜600℃で10%以上の加工率の加工を施すことが望ましい。最終のパス後には水冷にて冷却することが望ましい。結晶粒径を前述の50〜200μmとするには、最終パス直後から水冷を行うまでの時間を60秒以内にして、水冷の冷却速度を50℃/秒以上にすることが望ましい。   When hot working is performed by hot rolling, it is necessary not to stagnate the material in order to avoid cooling from the end. In order to control the crystal grain size, it is desirable to perform processing at a processing rate of 10% or more at a temperature of 400 to 600 ° C. in the final pass of hot rolling. It is desirable to cool with water cooling after the final pass. In order to set the crystal grain size to the above-mentioned 50 to 200 μm, it is desirable that the time from the last pass to the water cooling is within 60 seconds and the water cooling rate is 50 ° C./second or more.

本発明における熱間押出プロセスでは押出された材料を大気中に暴露させること無く直ぐに水冷できるため、動的再結晶直後に大きな速度で冷却を行うことが可能である。そのため、材料内部での温度変動が少なく長手方向および幅方向で結晶粒径及び硬さのバラつきが非常に小さい金属組織が得られる。熱間押出プロセスで行う場合には、熱間押出前の材料の加工温度を700〜1000℃の範囲にて1パスで行うのが好ましい。
材料の加熱温度が700℃より低い場合は、欠陥の圧着がなされず、また、押出中に動的再結晶が十分に生じず均一な金属組織が得られない。1000℃より高温の場合には、結晶粒径の制御が困難になる。結晶粒径制御の点から、熱間押出直後の冷却速度を50℃/秒以上にすることが望ましい。
In the hot extrusion process of the present invention, the extruded material can be immediately water-cooled without being exposed to the atmosphere, so that it is possible to cool at a high rate immediately after dynamic recrystallization. Therefore, a metal structure with little variation in temperature inside the material and a very small variation in crystal grain size and hardness in the longitudinal direction and the width direction can be obtained. When performing by a hot extrusion process, it is preferable to carry out by one pass in the processing temperature of the material before a hot extrusion in the range of 700-1000 degreeC.
When the heating temperature of the material is lower than 700 ° C., defects are not pressed and dynamic recrystallization does not occur sufficiently during extrusion, and a uniform metal structure cannot be obtained. When the temperature is higher than 1000 ° C., it is difficult to control the crystal grain size. From the viewpoint of controlling the crystal grain size, it is desirable to set the cooling rate immediately after hot extrusion to 50 ° C./second or more.

熱間加工後の材料は、冷間圧延及び焼鈍を行って調質をしてもよい。冷間加工率の総和は30%以下(0%も含み、圧延しないことを意味する)にすることが望ましい。冷間加工率の総和が30%を超えると材料内部の歪量が多くなり、硬さの規定値を超えてしまうことがある。   The material after hot working may be tempered by cold rolling and annealing. The total cold working rate is desirably 30% or less (including 0%, which means that rolling is not performed). If the sum of the cold working rates exceeds 30%, the amount of strain inside the material increases, which may exceed the specified hardness value.

以下に、本発明を実施例に基づき更に詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例)
表1に示す純度の銅を用いて発明例No.1〜8および比較例No.9〜18の板厚180mm、幅720mm、長さ3000mmのサイズの鋳塊を、それぞれ、作製した。それらを表1に記載の温度で加熱した後、熱間圧延を行い、厚さ23mm、幅720mm、長さ約23mの板を作成したが、熱間圧延中の材料の温度は放射温度計にて計測し、各パス間の時間を制御することにより温度を調整した。次に各発明例および比較例の詳細な製造条件について詳述する。
(Example)
Invention Example No. using the purity copper shown in Table 1. 1-8 and Comparative Example No. Ingots having a thickness of 9 to 18 with a plate thickness of 180 mm, a width of 720 mm, and a length of 3000 mm were produced. After heating them at the temperature shown in Table 1, hot rolling was performed to produce a plate having a thickness of 23 mm, a width of 720 mm, and a length of about 23 m. The temperature of the material during hot rolling was measured by a radiation thermometer. The temperature was adjusted by controlling the time between each pass. Next, detailed manufacturing conditions of each invention example and comparative example will be described in detail.

発明例No.1では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜550℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. 1, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in a temperature range of 850 to 750 ° C. Carried out. Moreover, after that, the pass was repeated at 750 to 550 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.2では、No.1の素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を18mmにし、冷間圧延を施さなかった。   Invention Example No. In No. 2, no. A length of 3 m was cut from 1 base plate and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 18 mm, and cold rolling was not performed.

発明例No.3では、熱間圧延前に980℃で加熱を行い、次いで、950〜850℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後850〜600℃でパスを繰り返し、最終パスを580℃で圧延率11.5%で施し、上述の厚さ23mmとした。熱延後は、可及的に直ちに水冷シャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. 3, heating is performed at 980 ° C. before hot rolling, and then a pass of a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is performed in a temperature range of 950 to 850 ° C. Carried out. Moreover, after that, the pass was repeated at 850 to 600 ° C., and the final pass was applied at 580 ° C. with a rolling rate of 11.5%, so that the thickness was 23 mm. After hot rolling, it was passed as soon as possible through a water-cooling zone equipped with a water-cooled shower, and the cooling rate was approximately 50 ° C./second. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.4では、熱間圧延前に780℃で加熱を行い、次いで、750〜700℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後700〜500℃でパスを繰り返し、最終パスを500℃で圧延率14.8%で施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. In No. 4, heating is performed at 780 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in a temperature range of 750 to 700 ° C. Carried out. Further, the pass was repeated thereafter at 700 to 500 ° C., and the final pass was applied at 500 ° C. with a rolling rate of 14.8%, so that the above-mentioned thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.5では、熱間圧延前に890℃で加熱を行い、次いで、840〜720℃の温度域で、圧延率11.1%→12.5%→7.1%のパスを実施した。また、その後720〜600℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. In No. 5, heating was performed at 890 ° C. before hot rolling, and then a rolling rate of 11.1% → 12.5% → 7.1% was performed in a temperature range of 840 to 720 ° C. Further, the pass was repeated thereafter at 720 to 600 ° C., and the final pass was applied at a rolling rate of 14.8% at 550 ° C. to obtain the above-mentioned thickness of 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.6では、熱間圧延前に900℃で加熱を行い、次いで、850〜700℃の温度域で、圧延率5.6%→5.9%→4.7%→4.3%のパスを実施した。また、その後700〜600℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. 6, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 4.7% → 4.3% is performed in a temperature range of 850 to 700 ° C. Carried out. Moreover, after that, the pass was repeated at 700 to 600 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.7では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜430℃でパスを繰り返し、最終パスを430℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. 7, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in the temperature range of 850 to 750 ° C. Carried out. Moreover, after that, the pass was repeated at 750 to 430 ° C., and the final pass was applied at 430 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

発明例No.8では、熱間圧延前に850℃で加熱を行い、次いで、800〜720℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後720〜550℃でパスを繰り返し、最終パスを550℃で圧延率10.2%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Invention Example No. 8, heating is performed at 850 ° C. before hot rolling, and then a pass of a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is performed in a temperature range of 800 to 720 ° C. Carried out. Further, the pass was repeated thereafter at 720 to 550 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 10.2%, so that the above-mentioned thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.9では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜550℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 9, heating is performed at 900 ° C. before hot rolling, and then a pass of a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is performed in a temperature range of 850 to 750 ° C. Carried out. Moreover, after that, the pass was repeated at 750 to 550 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.10では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜550℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後冷却を水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね10℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 10, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in a temperature range of 850 to 750 ° C. Carried out. Moreover, after that, the pass was repeated at 750 to 550 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Cooling after hot rolling was performed at a cooling rate of approximately 10 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.11では、熱間圧延前に1020℃で加熱を行い、次いで、1000〜950℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後950〜700℃でパスを繰り返し、最終パスを700℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 11, heating is performed at 1020 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in a temperature range of 1000 to 950 ° C. Carried out. Further, after that, the pass was repeated at 950 to 700 ° C., and the final pass was applied to the rolling rate of 14.8% at 700 ° C. to the above-mentioned thickness of 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.12では、熱間圧延前に780℃で加熱を行い、次いで、690〜620℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後620〜500℃でパスを繰り返し、最終パスを450℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 12, heating is performed at 780 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in the temperature range of 690 to 620 ° C. Carried out. Further, the pass was repeated thereafter at 620 to 500 ° C., and the final pass was applied at 450 ° C. to a rolling rate of 14.8%, so that the above-mentioned thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.13では、熱間圧延前に850℃で加熱を行い、次いで、800〜700℃の温度域で、圧延率2.8%→2.9%→2.9%→3.0%のパスを実施した。また、その後700〜550℃でパスを繰り返し、最終パスを550℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 13, heating is performed at 850 ° C. before hot rolling, and then a pass of a rolling rate of 2.8% → 2.9% → 2.9% → 3.0% is performed in a temperature range of 800 to 700 ° C. Carried out. Moreover, after that, the pass was repeated at 700 to 550 ° C., and the final pass was applied at a rolling rate of 14.8% at 550 ° C. to the above-mentioned thickness of 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.14では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜650℃でパスを繰り返し、最終パスを620℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 14, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in the temperature range of 850 to 750 ° C. Carried out. Moreover, after that, the pass was repeated at 750 to 650 ° C., and the final pass was applied at 620 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.15では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜400℃でパスを繰り返し、最終パスを385℃で圧延率14.8%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 15, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in a temperature range of 850 to 750 ° C. Carried out. Further, the pass was repeated thereafter at 750 to 400 ° C., and the final pass was applied at 385 ° C. to a rolling rate of 14.8%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.16では、熱間圧延前に900℃で加熱を行い、次いで、850〜750℃の温度域で、圧延率5.6%→5.9%→7.5%→5.4%のパスを実施した。また、その後750〜550℃でパスを繰り返し、最終パスを550℃で圧延率6.1%に施し、上述の厚さ23mmとした。熱延後は、なるべく直ちに水冷はシャワーが搭載された水冷ゾーンを通過させ、冷却速度を概ね50℃/秒で行った。得られた素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにした。その後、冷間圧延で厚さ18mm×幅720mmの平板を作成した。   Comparative Example No. 16, heating is performed at 900 ° C. before hot rolling, and then a rolling rate of 5.6% → 5.9% → 7.5% → 5.4% is passed in the temperature range of 850 to 750 ° C. Carried out. Further, the pass was repeated thereafter at 750 to 550 ° C., and the final pass was applied at 550 ° C. to a rolling rate of 6.1%, so that the thickness was 23 mm. Immediately after hot rolling, water cooling was performed at a cooling rate of about 50 ° C./second through a water cooling zone equipped with a shower. From the obtained base plate, a length of 3 m was cut and sampled, and the oxide film on the surface of the obtained base plate was chamfered to a plate thickness of 20 mm. Then, the flat plate of thickness 18mm * width 720mm was created by cold rolling.

比較例No.17では、No.1の素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を20mmにし、冷間圧延で厚さ15mm×幅720mmの平板を作成した。   Comparative Example No. In No. 17, no. Cut and sample 3 mm length from the base plate of 1 and chamfer the oxide film on the surface of the obtained base plate to a plate thickness of 20 mm, then cold-roll a plate 15 mm thick x 720 mm wide It was created.

比較例No.18では、No.3の素板から、長さ3m分を切断、サンプリングを行い、得られた素板の表面の酸化膜を面削して板厚を18mmにし、冷間圧延を施さなかった。
なお、比較例No.9、12、13は上記(1)の発明に対する比較例であり、比較例No.10、11、14〜18は上記(2)の発明に対する比較例である。
Comparative Example No. 18, no. A length of 3 m was cut from the base plate of 3 and sampled. The oxide film on the surface of the base plate was chamfered to a plate thickness of 18 mm, and cold rolling was not performed.
Comparative Example No. Nos. 9, 12, and 13 are comparative examples for the invention of the above (1). Reference numerals 10, 11, and 14 to 18 are comparative examples for the invention of (2).

このようにして得られた平板について、以下の方法で、内部欠陥の径と数、板表面での結晶粒径、硬さを測定した。また、スパッタリング特性を調査した。   With respect to the flat plate thus obtained, the diameter and number of internal defects, the crystal grain size on the plate surface, and the hardness were measured by the following methods. In addition, sputtering characteristics were investigated.

[1]内部欠陥評価
得られた平板約3mうち先端部、後端部各1mのサンプリングを行い、それらのターゲット面にて、日本クラウトクレーマー社製超音波探傷映像化処理装置を用い、欠陥のサイズと数を測定した。欠陥の径は円相当とみなし、平均値を求めた。欠陥の数は10μm以上の欠陥の数を単位面積1m当たりの数として換算した。
[1] Evaluation of internal defects 1 m of each of the obtained flat plate of about 3 m was sampled, and at the target surface, an ultrasonic flaw detection imaging apparatus manufactured by Nippon Kraut Kramer Co., Ltd. was used. Size and number were measured. The defect diameter was regarded as equivalent to a circle, and the average value was obtained. The number of defects was converted to the number of defects of 10 μm or more as the number per 1 m 2 of unit area.

[2]結晶粒径
内部欠陥評価を実施したサンプルを用い、圧延先端部、後端部の各々6箇所にてターゲット面にてミクロ組織観察を行い、JIS H 0501(切断法)に基づき測定した。得られた6箇所の値を平均して、そのターゲットの平均結晶粒径とした。
[2] Crystal grain size Using samples subjected to internal defect evaluation, the microstructure was observed on the target surface at each of the rolling front end and the rear end at 6 locations, and measured based on JIS H 0501 (cutting method). . The obtained six values were averaged to obtain the average crystal grain size of the target.

[3]硬さ測定
内部欠陥評価を実施したサンプルを用い、圧延先端部、後端部の各々6箇所にてターゲット面にてJIS Z 2244に準拠してマイクロビッカース硬さ試験機にて測定を行った。得られた6箇所の値を平均して、そのターゲットの平均硬さとした。
[3] Hardness measurement Using samples subjected to internal defect evaluation, measurement was performed with a micro Vickers hardness tester in accordance with JIS Z 2244 at the target surface at each of the rolling front end portion and the rear end portion. went. The obtained six values were averaged to obtain the average hardness of the target.

[4]スパッタリング特性
得られた平板から、幅630×長710をサンプリングし、上下面を面削・研磨を実施して厚さ10mmのスパッタリングターゲットを作成した。ターゲット面の粗さの影響を除外するため、粗さは全て最大粗さRaを0.5〜0.8μmに研磨して揃えた。DCマグネトロンスパッタリング装置にて、膜厚0.7mmの日本電気硝子社製OA−10ガラス基板にスパッタリングを実施し0.3μm膜厚の銅配線を作成した。スパッタリング条件はArガス圧力を0.4Pa、放電電力を12W/cmとした。その後真空中にて300℃、30minの熱処理を行った。熱処理後の銅配線の膜厚を10点測定した。測定位置は得られたターゲット材の全面に亘るように、基盤の中心を基準として、300mm四方おきに9点、基板の中心を2点測定した。同じ板から切出したターゲット材9枚の合計90点の総データにおいて最大膜厚および最小膜厚のレンジが±7%になった板を「良」、それ以上のバラつきが存在したものを「不良」とした。
[4] Sputtering characteristics From the obtained flat plate, a width of 630 × length 710 was sampled, and the upper and lower surfaces were chamfered and polished to prepare a sputtering target having a thickness of 10 mm. In order to exclude the influence of the roughness of the target surface, the roughness was all adjusted by polishing the maximum roughness Ra to 0.5 to 0.8 μm. Using a DC magnetron sputtering apparatus, sputtering was performed on an OA-10 glass substrate manufactured by Nippon Electric Glass Co., Ltd. having a film thickness of 0.7 mm, thereby forming a copper wiring having a thickness of 0.3 μm. The sputtering conditions were an Ar gas pressure of 0.4 Pa and a discharge power of 12 W / cm 2 . Thereafter, heat treatment was performed in a vacuum at 300 ° C. for 30 minutes. Ten film thicknesses of the copper wiring after the heat treatment were measured. The measurement position was measured at 9 points every 300 mm square and 2 points at the center of the substrate with the center of the base as a reference so as to cover the entire surface of the obtained target material. In the total data of 90 target materials cut out from the same plate, the plate with the maximum film thickness and the minimum film thickness range of ± 7% is “good” and the one with more variation is “bad” "

[5]異常放電発生の頻度
異常放電の頻度は、スパッタリングを10バッチ当たり、15回以下の発生を良、16回より多く発生した場合を不可とした。異常放電はアークカウンターにより観察した(アーキングが発生した回数をカウントした)。
[5] Frequency of abnormal discharge The frequency of abnormal discharge was determined to be good when the sputtering was generated 15 times or less per 10 batches, but not when it was generated more than 16 times. Abnormal discharge was observed with an arc counter (the number of times arcing occurred was counted).

結果を表1に併せて示す。本発明例は、いずれにおいても異常放電が少なく、良好なスパッタリング特性を呈している。比較例No.9は不純物量が多いため、スパッタリング特性が不良となった。比較例No.10、11、13、および16は結晶粒径の規定が、比較例No.12、13は欠陥の規定が、比較例No.15は、結晶粒径と硬さの規定が、比較例No.17は硬さの規定が外れたため、異常放電多い、又は、スパッタリング特性が劣化した。比較例No.18は硬さが低すぎて、バッキングプレートに接合するときに、ゆがんだため、評価できなかった。   The results are also shown in Table 1. In all of the examples of the present invention, the abnormal discharge is small and excellent sputtering characteristics are exhibited. Comparative Example No. 9 had a large amount of impurities, resulting in poor sputtering characteristics. Comparative Example No. Nos. 10, 11, 13, and 16 have a crystal grain size defined by Comparative Example No. Nos. 12 and 13 indicate that the defect is defined as Comparative Example No. No. 15 is a comparative example No. 15 in terms of crystal grain size and hardness. In No. 17, the hardness was not specified, so there were many abnormal discharges or the sputtering characteristics deteriorated. Comparative Example No. 18 was too hard to be evaluated because it was distorted when joined to the backing plate.

Figure 0005787647
Figure 0005787647

Claims (3)

純度99.99質量%以上の純銅からなり、ターゲット内部のボイドおよび介在物欠陥の平均サイズが30μm以下であり、且つ、欠陥の数が、スパッタリングに供する面の単位面積辺り、10個/m以下であるスパッタリングターゲット用銅材料の製造方法であって、
純度99.99質量%以上の純銅を熱間圧延にて製造する工程を有し、温度700〜1000℃で、加工率が総和で20%以上の熱間圧延を施した後、最終パスとして、温度400〜600℃で、加工率10%以上の熱間加工を施すことを特徴とする、スパッタリングターゲット用銅材料の製造方法。
It is made of pure copper having a purity of 99.99% by mass or more, the average size of voids and inclusion defects inside the target is 30 μm or less, and the number of defects is 10 / m 2 per unit area of the surface used for sputtering. A method for producing a copper material for a sputtering target , which is as follows:
It has a step of producing pure copper having a purity of 99.99% by mass or more by hot rolling, and after hot rolling with a processing rate of 20% or more in total at a temperature of 700 to 1000 ° C., as a final pass, A method for producing a copper material for a sputtering target, characterized by performing hot working at a processing rate of 10% or more at a temperature of 400 to 600 ° C.
前記スパッタリングターゲット用銅材料において、スパッタリング面における平均結晶粒径が50〜200μmであり、スパッタリング面における硬さの算術平均60〜100Hvであることを特徴とする、請求項1に記載のスパッタリングターゲット用銅材料の製造方法 2. The sputtering target according to claim 1, wherein the copper material for a sputtering target has an average crystal grain size of 50 to 200 μm on a sputtering surface and an arithmetic average of hardness on the sputtering surface of 60 to 100 Hv. Method for manufacturing copper material. 前記熱間圧延の直後に冷却速度50℃/秒以上で水冷を行う工程の後に、冷間圧延を行うこと特徴とする、請求項1または2に記載のスパッタリングターゲット用銅材料の製造方法。 The method for producing a copper material for a sputtering target according to claim 1 or 2 , wherein cold rolling is performed immediately after the hot rolling after the step of water cooling at a cooling rate of 50 ° C / second or more.
JP2011152275A 2011-07-08 2011-07-08 Method for producing copper material for sputtering target Active JP5787647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152275A JP5787647B2 (en) 2011-07-08 2011-07-08 Method for producing copper material for sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152275A JP5787647B2 (en) 2011-07-08 2011-07-08 Method for producing copper material for sputtering target

Publications (3)

Publication Number Publication Date
JP2013019010A JP2013019010A (en) 2013-01-31
JP2013019010A5 JP2013019010A5 (en) 2014-04-03
JP5787647B2 true JP5787647B2 (en) 2015-09-30

Family

ID=47690724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152275A Active JP5787647B2 (en) 2011-07-08 2011-07-08 Method for producing copper material for sputtering target

Country Status (1)

Country Link
JP (1) JP5787647B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882248B2 (en) * 2013-03-21 2016-03-09 Jx金属株式会社 Cu-Ga alloy sputtering target, casting product for the sputtering target, and production method thereof
WO2015099119A1 (en) * 2013-12-27 2015-07-02 Jx日鉱日石金属株式会社 High-purity copper or copper alloy sputtering target, and method for producing same
JP6067927B2 (en) * 2014-03-31 2017-01-25 Jx金属株式会社 Copper or copper alloy sputtering target
US10844475B2 (en) 2015-12-28 2020-11-24 Jx Nippon Mining & Metals Corporation Method for manufacturing sputtering target
TWI663274B (en) * 2017-03-30 2019-06-21 日商Jx金屬股份有限公司 Sputtering target and manufacturing method thereof
JP7131376B2 (en) * 2018-12-27 2022-09-06 三菱マテリアル株式会社 Copper material for sputtering targets
KR102249087B1 (en) * 2019-11-13 2021-05-07 (주)하나금속 SHEET TYPED Cu SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
KR102476165B1 (en) * 2020-08-10 2022-12-08 오리엔탈 카퍼 씨오., 엘티디. Method for producing copper target for thin film coating technology by sputtering through hot extusion process
JP2022042859A (en) * 2020-09-03 2022-03-15 オリエンタル コッパー シーオー.エルティーディー. Production of copper target for thin film coating by sputtering from hot extrusion process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195609A (en) * 1996-12-27 1998-07-28 Dowa Mining Co Ltd Fcc metal in which crystal orientation is regulated and its production
JP2000239836A (en) * 1999-02-23 2000-09-05 Japan Energy Corp High purity copper or copper alloy sputtering target and its production
US6946039B1 (en) * 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
KR101515341B1 (en) * 2009-09-18 2015-04-24 후루카와 덴키 고교 가부시키가이샤 Method for producing copper material for use as sputtering target

Also Published As

Publication number Publication date
JP2013019010A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5787647B2 (en) Method for producing copper material for sputtering target
JP4974197B2 (en) Copper material for sputtering target and method for producing the same
JP4869415B2 (en) Pure copper plate manufacturing method and pure copper plate
JP6077102B2 (en) Titanium target for sputtering and manufacturing method thereof
JP4974198B2 (en) Copper material used for sputtering target and method for producing the same
JP4792116B2 (en) Pure copper plate manufacturing method and pure copper plate
TWI525203B (en) Silver alloy sputtering target for forming conductive film and its manufacturing method
JP5520746B2 (en) Copper material for sputtering target and method for producing the same
US10770274B2 (en) Copper alloy sputtering target and manufacturing method of copper alloy sputtering target
JP6091911B2 (en) Cu-Mn alloy sputtering target material, method for producing Cu-Mn alloy sputtering target material, and semiconductor element
JP2015203148A (en) Copper alloy material, ceramic wiring board and production method of ceramic wiring board
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
JP2011106025A (en) Al-BASED ALLOY SPUTTERING TARGET
WO2018163861A1 (en) Cu-Ni ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP7236299B2 (en) High-purity aluminum sheet, manufacturing method thereof, and power semiconductor module using the high-purity aluminum sheet
JP6582159B1 (en) Insulating substrate and manufacturing method thereof
JP2006113577A (en) Method for manufacturing liquid crystal display apparatus
US9518320B2 (en) Copper alloy sputtering target
JP2017048446A (en) Target material and wiring film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5787647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350