JPWO2019176101A1 - 光監視装置及び方法 - Google Patents

光監視装置及び方法 Download PDF

Info

Publication number
JPWO2019176101A1
JPWO2019176101A1 JP2020506091A JP2020506091A JPWO2019176101A1 JP WO2019176101 A1 JPWO2019176101 A1 JP WO2019176101A1 JP 2020506091 A JP2020506091 A JP 2020506091A JP 2020506091 A JP2020506091 A JP 2020506091A JP WO2019176101 A1 JPWO2019176101 A1 JP WO2019176101A1
Authority
JP
Japan
Prior art keywords
light
lights
monitoring device
monitored area
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020506091A
Other languages
English (en)
Other versions
JP6923070B2 (ja
Inventor
栄実 野口
栄実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2019176101A1 publication Critical patent/JPWO2019176101A1/ja
Application granted granted Critical
Publication of JP6923070B2 publication Critical patent/JP6923070B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Burglar Alarm Systems (AREA)

Abstract


光監視装置において、監視対象領域に存在する物体の特徴を抽出可能とする。光放射手段(12)は、複数の光源(11)から出射した複数の光を監視対象領域(16)に放射する。このとき、光放射手段(12)は、複数の光のうちの少なくとも1つの光と、他の少なくとも1つの光とを、相互に異なるビーム径で監視対象領域(16)に放射する。受光手段(13)は、監視対象領域(16)から入射する、複数の光の反射光を受光する。測距手段(14)は、複数の光のそれぞれについて、反射光に基づいて監視対象領域内に存在する物体までの距離を計測する。特徴抽出手段(15)は、複数の光についての距離計測結果に基づいて、監視対象領域内に存在する物体の特徴を抽出する。

Description

本開示は、光監視装置及び方法に関し、更に詳しくは、光を放射し、放射した光の反射光に基づいて監視対象領域の監視を行う光監視装置及び方法に関する。
LiDAR(Light Detection and Ranging)などの光を用いたリモートセンシング技術が知られている。LiDAR装置は、例えばパルス状のレーザ光を物体に照射する。物体に照射されたレーザ光の一部は反射し、LiDAR装置は、照射したレーザ光に対する反射光を受光する。LiDAR装置は、受光した反射光に基づいて、物体の有無や物体までの距離を計算する。LiDAR装置から物体までの距離は、レーザ光の照射から、反射光を受光するまで時間に基づいて計算することができる。LiDAR装置は、例えば車両における前方監視や、重要施設などにおける侵入者の監視、空港などにおける障害物の検知などの用途に応用され得る。
LiDARに関し、特許文献1は、大気や海水などの観測に用いられる環境計測用レーザレーダ装置を開示する。特許文献1には、YAG(イットリウム・アルミニウム・ガーネット)レーザの3波長(基本波、2倍波、及び3倍波)の同時測定が可能なレーザレーダ装置が開示されている。このレーザレーダ装置において、光源から出射したYAGレーザ光は、ダイクロイックミラーを用いて波長ごとに分離され、波長ごとにビームエキスパンダを用いてビーム径が拡大された後、合成される。レーザレーダ装置は、合成されたレーザ光を、送信ビームとして上空などに向けて放射する。
また、特許文献2は、LiDARを利用した障害物検知装置を開示する。特許文献2に記載の障害物検知装置は、自動車などの車両に搭載される。障害物検知装置は、車両の進行方向に向けてビーム状の探査波を発信し、探査波に対する反射波を受信する。障害物検知装置は、探査波を車両の進行方向に対して左右方向に走査し、車両前方の障害物を捕捉する。障害物検知装置は、障害物が捕捉されると、障害物の移動に合わせて探査波の送信方向を変化させ、探査波を障害物に追従させる。
特許文献2には、上記探査波に加えて、探査波の走査範囲よりも広い範囲に向けて広角な他の探査波を発信することも記載されている。上記探査波は、車両前方の先行車を検知するために使用され、別の探査波は、車両の左右方向から車両の前方に割り込む車を検知するために使用される。
特開2000−206246号公報 特開平10−148675号公報
図7は、LiADR装置を侵入者の監視に用いた例を示す。LiDAR装置200は、監視対象領域にレーザビーム201を送信する。LiDAR装置200は、監視対象領域においてレーザビーム201を走査し、人物202で反射した反射光を受信することで、監視対象領域において人物202を検出する。
ここで、LiDAR装置200では、LiDAR装置200から送信(放射)されたレーザビームの範囲に何らかの物体がある場合に反射光が受光され、物体の有無や物体までの距離が検出される。LiDAR装置200から送信されるレーザビームが一定の角度ずつ走査される場合、遠方になるほどスキャン密度が低下し、レーザビームが人物202に当たらずにすり抜ける可能性が高くなる。
特に、レーザビーム201のビーム径が細い場合、レーザビーム201が照射される範囲が狭いため、レーザビーム201が人物をすり抜ける可能性が高くなる。この問題に対し、レーザビーム201を細かく走査した場合、スキャン密度を上げることができ、ビーム径が細いレーザビーム201が人物202などをすり抜ける可能性を低減できる。しかし、その場合、監視対象領域の走査に要する時間が長くなり、リアルタイム性を損ねるという問題がある。
図8は、LiADR装置を侵入者の監視に用いた別の例を示す。図8において、LiDAR装置200は、図7で用いられたレーザビーム201よりもビーム径が太いレーザビーム203を監視対象領域に送信する。レーザビームのビーム径を太くした場合、ビーム径が細い場合よりも広い範囲にレーザビームを照射できるため、レーザビームが人物をすり抜ける可能性を低減できる。
しかし、太いレーザビーム203が用いられる場合、雪や砂埃、落ち葉など、空中の浮遊物204にレーザビーム203が照射され、その反射光が受信されることがある。この場合、LiDAR装置200は、物体が存在することは検出できるものの、物体がある程度の大きさを持った塊であるのか、或いは小さな物体の疎な集合であるのかを判別することはできない。このため、空中の浮遊物204などを人物202と誤検出する可能性がある。
特許文献1では、基本波、2倍波、及び3倍波の3つのレーザビームのビーム径を、それぞれビームエキスパンダを用いて拡大して上空などに放射している。しかしながら、特許文献1には、各レーザビームのビーム径をどのように拡大するかについての記載はない。また、特許文献1において、3波長の測定は、波長ごとに独立して実施される。特許文献1に記載のレーザレーダ装置は、検出された物体の特徴を抽出することができず、従って、上記問題を解決するための手段を提供していない。
また、特許文献2では、車両前方の監視に、狭い範囲を探査するための細い探査波(第1の探査波)と、広い範囲を探査するための太い探査波(第2の探査波)とが用いられている。しかしながら、特許文献2では、第2の探査波は、単に隣のレーンなどから車両前方に割り込んでくる車両を検出するために用いられているだけである。従って、特許文献2も、特許文献1と同様に、上記問題を解決するための手段を提供していない。
本開示は、上記に鑑み、監視対象領域に存在する物体の特徴を抽出可能な光監視装置、及び方法を提供することを目的の1つとする。
上記課題を解決するために、本開示は、複数の光源と、前記複数の光源から出射した複数の光を監視対象領域に放射する光放射手段であって、前記複数の光のうちの少なくとも1つの光と、前記複数の光のうちの他の少なくとも1つの光とを、相互に異なるビーム径で監視対象領域に放射する光放射手段と、前記監視対象領域から入射する、前記複数の光の反射光を受光する受光手段と、前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する測距手段と、前記測距手段で計測された、前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する特徴抽出手段とを備える光監視装置を提供する。
また、本開示は、ビーム径が相互に異なる2つの光を含む複数の光を監視対象領域に放射し、前記監視対象領域から入射する、前記複数の光の反射光を受光し、前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測し、前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する光監視方法を提供する。
本開示の光監視装置及び方法は、監視対象領域に存在する物体の特徴を抽出することができる。
本開示の概略的な光監視装置を示すブロック図。 本開示の第1実施形態に係る光監視装置を示すブロック図。 光監視装置を用いた監視対象領域の監視の例を示す模式図。 光監視装置を用いた監視対象領域の監視を別の例示す模式図。 光監視装置を用いた監視対象領域の監視を更に別の例を示す模式図。 光監視装置を用いた監視対象領域の監視の他の例を示す模式図。 光監視装置における動作手順を示すフローチャート。 本開示の第2実施形態に係る光監視装置を示すブロック図。 LiADR装置を侵入者の監視に用いた例を示す模式図。 LiADR装置を侵入者の監視に用いた別の例を示す模式図。
本開示の実施形態の説明に先立って、本開示の概要を説明する。図1は、本開示の概略的な光監視装置を示す。光監視装置10は、複数の光源11、光放射手段12、受光手段13、測距手段14、及び特徴抽出手段15を有する。
複数の光源11は、それぞれ光を出射する。光放射手段12は、複数の光源11から出射した複数の光を監視対象領域16に放射する。このとき、光放射手段12は、複数の光のうちの少なくとも1つの光と、他の少なくとも1つの光とを、相互に異なるビーム径で監視対象領域16に放射する。別の言い方をすると、光放射手段12は、ビーム径が相互に異なる2つの光を含む複数の光を、監視対象領域16に放射する。
受光手段13は、監視対象領域16から入射する、光放射手段12が放射した複数の光のそれぞれについての反射光を受光する。測距手段14は、光放射手段12が放射した複数の光のそれぞれについて、受光手段13で受信された反射光に基づいて監視対象領域16内に存在する物体までの距離を計測する。特徴抽出手段15は、測距手段14で計測された、複数の光についての距離計測結果に基づいて、監視対象領域16内に存在する物体の特徴を抽出する。
本開示に係る光監視装置10は、光放射手段12から、ビーム径が互いに異なる2つの光を含む複数の光を監視対象領域16に放射する。測距手段14は、光放射手段12が放射した複数の光のそれぞれについて、それぞれの反射光に基づいて物体までの距離を計測する。特徴抽出手段15は、複数の光に対する距離計測結果に基づいて、物体の特徴を抽出する。監視対象領域16に放射される光のビーム径が異なる場合、光放射手段12が放射した複数の光の反射光に基づく距離計測結果は、監視対象領域16内の物体の特徴に応じて変化し得る。ビーム径が相互に異なる複数の光を用い、それぞれに対する距離計測結果を用いることで、監視対象領域内の物体の特徴を抽出することができる。
以下、図面を参照しつつ、本開示の実施の形態を詳細に説明する。図2は、本開示の第1実施形態に係る光監視装置を示す。光監視装置100は、光源101、サーキュレータ102、コリメートレンズ103、凸レンズ104、ミラー105、走査機構107、送信器108、光源111、コリメートレンズ112、送信器113、光受信器131、測距部132、及び識別検知器133を有する。光監視装置100は、例えば重要施設などにおいて、人物や自動車などの侵入を検知する目的で使用され得る。あるいは、光監視装置100は、空港などにおいて、ドローンや鳥などを監視する目的で使用され得る。
光源(第1の光源)101及び光源(第2の光源)111は、それぞれ所定波長の光を出射する。光源101及び111は、例えばそれぞれ半導体レーザを含む。光源101が出射する光の波長と、光源111が出射する光の波長とは、相互に異なっていてもよい。送信器108は、光源101が出射する光から、光信号である所定の測距信号を生成し、測距信号を送信する。送信器113は、光源111が出射する光から、光信号である所定の測距信号を生成し、測距信号を送信する。送信器108及び113は、例えばそれぞれパルスレーザ光を測距信号として送信する。あるいは、送信器108及び113の一方はパルスレーザ光を測距信号として出射し、他方は連続発振光(CW(Continuous Wave)光)を測距信号として出射してもよい。送信器108及び113が送信する光のタイプは、測距部132における距離計測手法に応じて決定される。例えば、パルスレーザ光を用いる距離計測手法としては、飛行時間計測法(ToF:Time of Flight)などが知られている。また、CW光を用いる距離計測手法としては、FMCW(Frequency Modulated CW)法などが知られている。光源101及び111は、図1の光源11に対応する。
光源101(送信器108)から出射した光は、サーキュレータ102に入射する。サーキュレータ102は、光源101側から入射した光をコリメートレンズ103側に通過させる。コリメートレンズ103は、光源101側から入射した光を平行光化する。凸レンズ104は、コリメートレンズ103側から入射した平行光を収束光として出射する。ミラー105は、凸レンズ104を通過した光を監視対象領域に向けて反射し、送信ビーム121として放射する。ミラー105には、例えば放物面ミラーが用いられる。ミラー105は、例えば平行光の送信ビーム121を監視対象領域に放射する。凸レンズ104及びミラー105は、ビームエキスパンダとしても機能し、コリメートレンズ103で平行光化された光のビーム径を拡大する。
光源111(送信器113)から出射した光は、コリメートレンズ112に入射する。コリメートレンズ112は、光源111側から入射した光を平行光化する。ミラー105には、穴106又はスリットが設けられている。コリメートレンズ112から出射した平行光は、穴106又はスリットを通過し、送信ビーム122として監視対象領域に向けて放射される。
本実施形態において、送信ビーム121のビーム径と送信ビーム122のビーム径とは、相互に異なる。図2では、送信ビーム122のビーム径は、送信ビーム121のビーム径よりも細い。例えば、穴106は送信ビーム121の光軸の位置に形成されており、ミラー105は、送信ビーム121及び122を、それぞれの光軸が一致した状態で監視対象領域に放射する。なお、送信ビーム121及び122は、必ずしもコリメートされた平行光として監視対象物に放射されていなくてもよい。送信ビーム121及び122の少なくとも一方は、例えば、距離に応じて意図的にビーム径が拡がるようなビームとして放射されてもよい。
走査機構107は、送信ビーム121及び122を監視対象領域内で走査する。走査機構107は、例えばレンズ、プリズム、及びミラーなどの光学素子を含み、光学素子を用いて、ミラー105側から入射する送信ビーム121及び122の放射方向を変化させる。例えば、走査機構107は、走査ごとに、送信ビーム121及び送信ビーム122を、監視対象領域の同じ方向に向けて同時に出射させる。凸レンズ104、ミラー105、並びに走査機構107は、図1の光放射手段12に対応する。
ミラー105は、監視対象領域側から送信ビーム121及び122のそれぞれに対する反射光を入射し、凸レンズ104側に反射する。反射光は、凸レンズ104、コリメートレンズ103を通過し、サーキュレータ102に入射する。サーキュレータ102は、コリメートレンズ103側から入射する反射光を光受信器131に向けて出射する。サーキュレータ102は、光源101側から入射して監視対象領域に向かう光(送信光)と、監視対象領域側から入射する光(受信光)とを分離する光分離手段として機能する。
光受信器131は、サーキュレータ102を介して入射する、送信ビーム121及び122の反射光を検出(受光)する。光受信器131は、受信器131aと受信器131bとを含む。受信器131a及び131bには、例えばフォトディテクタなどの受光素子を用いることができる。受信器131aは、送信ビーム121に対する反射光を受光する。受信器131bは、送信ビーム122に対する反射光を受光する。送信ビーム121と送信ビーム122とで波長が相互に異なる場合、送信ビーム121に対する反射光と、送信ビーム122に対する反射光とは、例えば、ローパスフィルタ、バンドパスフィルタ、又はハイパスフィルタなどの光フィルタを用いて分離される。あるいは、送信ビーム121に対する反射光と送信ビーム122に対する反射光とで、互いに異なる測距手法を用いて距離が計測される場合、それぞれの信号波形や周波数成分の特徴などを用いて、送信ビーム121に対する反射光と、送信ビーム122に対する反射光とを分離してもよい。受信器131a及び131bは、それぞれ受信した反射光の量に応じた電気信号を後段の測距部132に出力する。受信器131a及び131bと測距部132との間にそれぞれAD(Analog to Digital)変換器を配置し、AD変換器において、検出された反射光の量に応じたアナログ電気信号をデジタル信号に変換してもよい。その場合、測距部132は、反射光の量を示すデジタル信号を受け取る。光受信器131は、図1の受光手段13に対応する。
測距部132は、送信ビーム121及び122のそれぞれについて、光受信器131で検出された反射光に基づいて、監視対象領域内に存在する物体までの距離を計測する。測距部132は、測距部132aと測距部132bとを有する。測距部132aは、受信器131aで検出された送信ビーム121の反射光に基づいて、物体までの距離を計測する。測距部132bは、受信器131bで検出された送信ビーム122の反射光に基づいて、物体までの距離を計測する。測距部132a及び132bは、相互に異なる測距手法を用いて物体までの距離を計測してもよい。測距部132は、図1の測距手段14に対応する。
識別検知器133は、測距部132で計測された、送信ビーム121及び122の反射光に基づく距離計測結果に基づいて、監視対象領域内に存在する物体の特徴を抽出する。つまり、識別検知器133は、測距部132aの距離計測結果と測距部132bの距離計測結果とに基づいて、物体の特徴を抽出する。識別検知器133は、図1の特徴抽出手段15に対応する。
なお、上記では光受信器131が受信器131a及び132bを有する例を説明したが、光受信器131は、必ずしも受信器131a及び132bといった複数の受信器を有している必要はない。光受信器131を広帯域の受信器で構成し、その受信器を用いて送信ビーム121に対する反射光と送信ビーム122に対する反射光との双方を受光(受信)してもよい。その場合、光受信器131の後段に電気フィルタなどを配置し、その電気フィルタを用いてそれぞれの反射光に対応する電気信号を分離してもよい。また、光受信器131と測距部132との間にAD変換器が配置される場合は、AD変換器の後段において、デジタルフィルタを用いてそれぞれの反射光に対応するデジタル信号を分離してもよい。
ここで、送信ビーム122のビーム径は送信ビーム121のビーム径よりも細いため、送信ビーム122は、散らばっている物体をすり抜ける可能性がある。一方、送信ビーム121は、ビーム径が太いため、空中の浮遊物などにも過敏に反応し、送信ビーム121が物体をすり抜ける可能性は低い。本実施形態では、これら2つの送信ビームの距離計測結果を組み合わせることで、監視対象領域内の物体の特徴を抽出する。
図3A〜図3Cは、光監視装置100を用いた監視対象領域の監視の例を模式的に示す。図3A〜図3Cの例では、光監視装置100は、5つの走査方向#1〜#5において、ビーム径が太い送信ビーム121とビーム径が細い送信ビーム122とを、監視対象領域に同時に放射する。光監視装置100は、走査方向ごとに、送信ビーム121を用いた距離計測結果(物体検出結果)と、送信ビーム122を用いた距離計測結果とを取得する。送信ビーム121と送信ビーム122とは、光軸は一致するものの光の照射範囲が相互に異なっており、送信ビーム121と送信ビーム122とで、異なる距離計測結果が得られる場合がある。
図3Aは、監視対象領域に人間や自動車などの侵入物(侵入者)181が存在する場合を示す。人間や自動車などの侵入物(侵入者)は、ある程度の大きさの塊で、かつ形状を有している。図3Aの例では、走査方向#1及び#5において、送信ビーム121及び122が双方とも侵入者181に照射されない。この場合、走査方向#1及び#5では、送信ビーム121及び122の双方について物体が検出されない。一方、走査方向#2〜#4では、送信ビーム121及び122の双方が侵入者181に照射される。この場合、走査方向#2〜#4では、送信ビーム121及び122の双方で物体が検出される。この例のように、隣接する2つの走査方向において、2つの送信ビーム121及び122の双方で物体が検知される場合、監視対象領域に存在する物体は、ある程度の大きさを有する侵入者181であると判断できる。
図3B及び図3Cは、監視対象領域に落ち葉などの空中の浮遊物182が存在する場合を示す。落ち葉などの空中の浮遊物182は、細かい物体の集まりであり、ある程度散らばっている。つまり、浮遊物182は、小さな物体の疎な塊であるということができる。
図3Bの例では、走査方向#1及び#5において、送信ビーム121及び122が双方とも浮遊物182に照射されない。この場合、走査方向#1及び#5では、送信ビーム121及び122の双方で物体が検出されない。一方、走査方向#2〜#4では、送信ビーム121及び122のうち、送信ビーム121のみが浮遊物182に照射される。この場合、走査方向#2〜#4では、送信ビーム121で物体が検出される。このとき、走査方向#2〜#4において、送信ビーム122は浮遊物182をすり抜ける。この場合、走査方向#2〜#4では、送信ビーム122について物体が検出されない。
一方、図3Cの例では、走査方向#1及び#5において、上記と同様に、送信ビーム121及び122が双方とも浮遊物182に照射されない。この場合、走査方向#1及び#5において、送信ビーム121及び122の双方で物体が検出されない。一方、走査方向#2及び#4では、送信ビーム121及び122の双方が浮遊物182に照射される。この場合、走査方向#2及び#4では、送信ビーム121及び122の双方で物体が検出される。このとき、走査方向#3では、送信ビーム121及び122のうち、送信ビーム121のみが浮遊物182に照射され、送信ビーム122は浮遊物182をすり抜ける。この場合、走査方向#3では、送信ビーム121で物体が検出され、送信ビーム122では物体が検出されない。
監視対象領域に存在する物体が浮遊物182などの小さな物体の疎な塊である場合、送信ビームを走査すると、一部の走査方向において、ビーム径が細い送信ビーム122が浮遊物182をすり抜けることがある。このため、隣接する2つの走査方向を考えた場合に、一方の走査方向では送信ビーム122で物体が検出されるのに対し、他方の走査方向では送信ビーム122で物体が検出されない場合がある。一方、ビーム径が太い送信ビーム121については、各走査方向において、物体が検出される。このことから、複数の走査方向に送信ビームを走査した場合に、ビーム径が太い送信ビーム121では物体を検知できるが、ビーム径が細い送信ビーム122では一部歯抜けになるような対象は、空中の浮遊物182など、小さな物体の散らばった集合であると判断できる。
以上から、識別検知器133は、例えば、それぞれ複数の方向に放射された、ビーム径が太い送信ビーム121の反射光に基づく距離計測結果と、ビーム径が細い送信ビーム122の反射光に基づく距離計測結果とに基づいて、監視対象領域に存在する物体の大きさについての特徴を抽出する。識別検知器133は、例えば、隣接する複数の走査方向のそれぞれにおいて、送信ビーム121及び122の双方について距離計測結果が得られた場合は、監視対象領域にある程度の大きさを有する塊状の物体が存在するという特徴を抽出する。識別検知器133は、送信ビーム121では隣接する複数の走査方向のそれぞれにおいて距離計測結果が得られるものの、送信ビーム122ではそれら複数の走査方向のうちの一部において距離計測結果が得られない場合は、小さな物体の疎な集合物が存在するという特徴を抽出する。
ここで、所定の走査範囲において、ビーム径が細い送信ビーム122を高密度で走査する場合、物体の詳細の形状が認識でき、検出された物体が侵入者であるか、又は浮遊物であるかの判別が可能である。しかしながら、その場合、1回あたりの走査に要する時間が長くなり、走査の繰返し周期が長くなる。一方で、送信ビーム122の走査密度を低くした場合、繰返し周期は短縮できるものの、物体の詳細な形状は認識できない。本実施形態では、ビーム径が異なる2つの送信ビームを用いることで、走査密度をある程度低くした場合でも、ある程度の大きさを有する塊と、浮遊物などの小さな物体の疎な塊とを判別できる。
なお、図3Aにおいて、ビーム径が異なる2つの送信ビームの双方が2以上の連続する走査方向で対象物を検出した場合に、侵入者(大きな塊)が存在すると判断されている。しかしながら、図3Aは、説明簡略化のために、最も単純な判断手法を模式的に表したものであり、判断手法は、上記したものには限定されない。本実施形態において、監視対象となる物体の大きさ、及び送信ビームの走査密度などに応じて判断基準を好適に調整すれば、リアルタイム性を損なうほど走査密度を上げなくても、ある程度のスキャン密度で対象物を識別可能である。
上記に代えて、又は加えて、識別検知器133は、複数の方向に放射された送信ビーム121及び122に基づく距離計測結果に基づいて、監視対象領域に存在する物体の表面の粗さについての特徴を抽出してもよい。例えば、物体の表面が粗い場合、ビーム径が細い送信ビーム122について、走査位置に応じて距離計測結果、或いは反射強度(輝度情報)が大きく変化することが考えられる。一方、物体の表面が粗くない場合、送信ビーム122について、走査位置が変化しても、距離計測結果、或いは反射強度は大きく変化しないと考えられる。また、ビーム径が太い送信ビーム121に基づく距離計測結果は、物体の表面の粗さに依存しないものと考えられる。従って、このような送信ビーム121及び122に基づく距離計測結果を用いることで、物体の表面の粗さについての特徴を抽出できると考えられる。
さらに、上記に代えて、又は加えて、識別検知器133は、送信ビーム121に基づく距離計測結果と送信ビーム122に基づく距離計測結果とに基づいて、監視対象領域に存在する物体が移動しているか否かについての特徴を抽出してもよい。例えば、光監視装置100は、送信ビーム121及び122を複数回放射する。識別検知器133は、例えばある時刻で送信ビーム121及び122の双方で距離計測結果が得られた場合で、かつ、その後の時刻でビーム径が細い送信ビーム122で距離計測結果が得られなくなった場合は、物体が移動しているという特徴を抽出してもよい。
なお、上記では、監視対象領域に物体が存在するか否かに応じて物体の特徴を抽出することを説明したが、識別検知器133は、検出された物体までの距離の情報も用いて物体の特徴を抽出してもよい。図4は、光監視装置100を用いた監視対象領域の監視の他の例を模式的に示す。図4では、監視対象領域に侵入者182と浮遊物182とが存在する。監視対象領域において、浮遊物182は光監視装置100から見て手前側の領域Aに存在しており、侵入者181は奥側の領域Bに存在している。
図4の例では、走査方向#1及び#5において、送信ビーム121及び122が双方とも侵入者181及び浮遊物182に照射されない。この場合、走査方向#1及び#5において、送信ビーム121及び122の双方で距離計測結果が得られない。走査方向#2では、ビーム径が太い送信ビーム121は侵入者181及び浮遊物182に照射されるものの、ビーム径が細い送信ビーム122は手前側の浮遊物182にのみ照射される。この場合、送信ビーム121については、侵入者181に対応した距離計測結果と、浮遊物182に対応した距離計測結果とが得られる。一方、送信ビーム122については、浮遊物182に対応した距離計測結果が得られる。
走査方向#3及び#4では、ビーム径が太い送信ビーム121は、走査方向#2と同様に、侵入者181及び浮遊物182に照射される。このとき、ビーム径が細い送信ビーム122は手前側の浮遊物182をすり抜け、奥側の侵入者181にのみ照射される。この場合、送信ビーム121については、侵入者181に対応した距離計測結果と、浮遊物182に対応した距離計測結果とが得られる。また、送信ビーム122については、侵入者181に対応した距離計測結果が得られる。
識別検知器133は、例えば監視対象領域を、光監視装置100からの距離に応じて複数の領域に分割する。識別検知器133は、送信ビーム121についての距離計測結果と、送信ビーム122についての距離計測結果とに基づいて、各領域に存在する物体の特徴を抽出する。例えば図4の場合、ビーム径が太い送信ビーム121について、走査方向#2〜#4において、領域Aと領域Bとに距離計測結果が得られる。また、ビーム径が細い送信ビーム122については、走査方向#2で手前側の領域Aに距離計測結果が得られ、走査方向#3及び#4では奥側の領域Bに距離計測結果が得られる。この場合、領域Aについては、送信ビーム122について、隣接する2つの走査方向で距離計測結果が得られてないことから、識別検知器133は、小さな物体の疎な集合物が存在するという特徴を抽出する。一方、領域Bについては、送信ビーム122について、隣接する2つの走査方向で距離計測結果が得られていることから、識別検知器133は、ある程度の大きさを有する塊状の物体が存在するという特徴を抽出する。この例のように、距離計測結果を利用して、距離範囲ごとに、対象物の特徴を抽出してもよい。
続いて、動作手順を説明する。図5は、光監視装置100における動作手順を示す。送信器108及び113は、それぞれ光源101及び光源111から出射した光からパルスレーザ光などの測距信号を送信する。ミラー105は、送信器108及び113から送信された光を、それぞれ送信ビーム121及び122として監視対象領域に放射する(ステップS1)。ミラー105は、ステップS1では、送信ビーム121及び122を、相互に異なるビーム径で監視対象領域に放射する。
光受信器131は、送信ビーム121及び122が監視対象領域で反射した反射光を検出する(ステップS2)。ステップS2において、受信器131aは送信ビーム121の反射光を検出し、受信器131bは送信ビーム122の反射光を検出する。測距部132は、ステップS2で検出された送信ビーム121及び122の反射光に基づいて、物体までの距離を検出する(ステップS3)。ステップS3において、測距部132aは受信器131aが検出した反射光に基づいて距離を計測し、測距部132bは受信器131bが検出した反射光に基づいて距離を計測する。
識別検知器133は、ステップS3で得られた距離計測結果に基づいて、監視対象領域内の物体の特徴を抽出する(ステップS4)。識別検知器133は、ステップS4では、例えば測距部132aの距離計測結果と測距部132bの距離計測結果とを比較し、それら距離計測結果の組み合わせに基づいて、物体の特徴を抽出する。
本実施形態では、光監視装置100は、ビーム径が互いに異なる2つの送信ビーム121及び122を監視対象領域に放射する。識別検知器133は、送信ビーム121の反射光に基づく距離計測結果と、送信ビーム122の反射光に基づく距離計測結果とに基づいて、物体の特徴を抽出する。監視対象領域に放射される光のビーム径が相互に異なる場合、ビーム径の太さ(細さ)に応じて、距離計測結果が変化する場合がある。本実施形態では、そのような性質を利用して、2つの距離計測結果から、物体の特徴を抽出する。このようにすることで、例えば検出された物体の大小などを判別することができる。
次いで、本開示の第2実施形態を説明する。図6は、本開示の第2実施形態に係る光監視装置を示す。光監視装置100aは、3つの光源141〜143、3つの送信器153〜155、3つのビームエキスパンダ144〜146、3つのビームコンバイナ147〜149、偏光ビームスプリッタ150、1/4波長板151、集光レンズ152、走査機構107、光受信器131、測距部132、及び識別検知器133を有する。本実施形態に係る光監視装置100aは、3つの送信ビーム161〜163を用いて、監視対象領域内の物体の特徴を抽出する。
光源141〜143は、それぞれ所定波長の光を出射する。各光源が出射する光の波長は、相互に異なる。送信器153〜155は、それぞれ光源141〜143が出射する光から測距信号を生成し、送信する。ビームエキスパンダ144は、送信器153が送信する測距信号(光)のビーム径を拡大する。ビームエキスパンダ145は、送信器154が送信する測距信号(光)のビーム径を拡大する。ビームエキスパンダ146は、送信器155が送信する測距信号(光)のビーム径を拡大する。
ビームコンバイナ149は、ビームエキスパンダ146でビーム径が拡大された光を反射し、送信ビーム163として監視対象領域方向に放射する。ビームコンバイナ148は、ビームエキスパンダ145でビーム径が拡大された光を反射し、送信ビーム162として監視対象領域方向に放射する。また、ビームコンバイナ148は、送信ビーム163を通過させ、送信ビーム162と送信ビーム163とを合成する。ビームコンバイナ147は、ビームエキスパンダ144でビーム径が拡大された光を反射し、送信ビーム161として監視対象領域方向に放射する。また、ビームコンバイナ147は、送信ビーム162及び162を通過させ、送信ビーム161と送信ビーム162及び163とを合成する。
ビームコンバイナ147には、例えばハーフミラーや、送信ビーム161の波長の光を反射し、送信ビーム162及び163の波長の光を透過するダイクロイックミラーが用いられる。ビームコンバイナ148には、例えばハーフミラーや、送信ビーム162の波長の光を反射し、送信ビーム163の波長の光を透過するダイクロイックミラーが用いられる。ビームコンバイナ149には、例えば通常のミラーが用いられる。
ここで、本実施形態において、ビームエキスパンダ144〜146は、相互に異なる拡大率で、入射した光のビーム径を拡大する。つまり、本実施形態において、送信ビーム161〜163のビーム径は相互に異なる。送信ビーム161のビーム径は最も太く、送信ビーム163のビーム径は最も細い。送信ビーム162のビーム径は、送信ビーム161及び163のビーム径の中間である。ビームコンバイナ147〜149は、それぞれの光軸が一致するように配置されている。ビームコンバイナ147は、送信ビーム161〜163を、それぞれの光軸が一致した状態で監視対象領域に向けて放射する。本実施形態において、ビームエキスパンダ144〜146、及びビームコンバイナ147〜149は、図1の光放射手段12に対応する。
偏光ビームスプリッタ150は、所定偏光方向の光を透過し、所定偏光方向と直交する偏光方向の光を反射する。例えば、光源141〜143は所定偏波面の光を出射し、偏光ビームスプリッタ150は、所定偏波面の送信ビーム161〜163を監視対象領域側に透過する。光監視装置100aは、光源141〜143から偏光ビームスプリッタ150までの光路上に、光の偏波面を所定方向に揃える偏光板を更に有していてもよい。1/4波長板151は、送信ビーム161〜163の偏波面をλ/4だけ回転させ、監視対象領域側に出射する。走査機構107は、送信ビーム161〜163を監視対象領域内で走査する。
1/4波長板151には、監視対象領域側から、送信ビーム161〜163の反射光が入射する。1/4波長板151は、送信ビーム161〜163の反射光の偏波面をλ/4だけ回転させ、偏光ビームスプリッタ150側に出射する。偏光ビームスプリッタ150に1/4波長板151側から入射する光の偏波面は、ビームコンバイナ147側から入射する光の偏波面に対して90°回転している。偏光ビームスプリッタ150は、1/4波長板151側から入射する送信ビーム161〜163の反射光を集光レンズ152側に反射する。本実施形態において、偏光ビームスプリッタ150、及び1/4波長板151は、送信光と受信光とを分離する光分離手段を構成する。偏光ビームスプリッタ150に代えて、光の一部を反射し、一部を透過するハーフミラーを光分離手段として用いてもよい。その場合、1/4波長板151は不要である。
集光レンズ152は、送信ビーム161〜163の反射光を、光受信器131の光検出面に集光する。光受信器131は、送信ビーム161〜163の反射光を検出(受光)する。測距部132は、送信ビーム161〜163のそれぞれについて、光受信器131で検出された反射光に基づいて、監視対象領域内に存在する物体までの距離を計測する。識別検知器133は、測距部132で計測された、送信ビーム161〜163の反射光に基づく距離計測結果に基づいて、監視対象領域内に存在する物体の特徴を抽出する。光受信器131、測距部132、及び識別検知器133は、取り扱う反射光の数、及び距離計測結果の数が3つに増える点を除けば、第1実施形態で説明したものと同様でよい。
本実施形態では、光監視装置100aは、3つの送信ビーム161〜163を監視対象領域に放射する。識別検知器133は、送信ビーム161〜163の反射光のそれぞれに基づく距離計測結果に基づいて、物体の特徴を抽出する。本実施形態では、特徴抽出に用いる送信ビームの数が3つに増えており、2つの送信ビームを用いる第1実施形態に比べて、物体の詳細な特徴を抽出できる。その他の効果は第1実施形態と同様である。
なお、第1実施形態では、コリメートレンズを用いて送信ビームを平行光化する例を説明したが、これには限定されない。上記各実施形態において、監視対象領域に放射される送信ビームは平行光には限定されず、収束光であってもよいし、発散光であってもよい。また、第1実施形態では、送信光と受信光との分離にサーキュレータが用いられる例を説明したが、これには限定されない。第1実施形態において、偏光ビームスプリッタ及び1/4波長板を用いて送信光と受信光とを分離することも可能である。あるいは、ハーフミラーを用いて、送信光と受信光とを分離することも可能である。
第1実施形態では、2つの送信ビーム121及び122が用いられる例を説明したが、これには限定されない。第1実施形態において、監視対象領域に3つ以上の送信ビームが放射されることとしてもよい。例えば、光監視装置100において、ミラー105に複数の穴106、又は複数の送信ビームが通過可能なスリットを設け、ビーム径が細い複数の送信ビームが複数の穴106又はスリットを通して監視対象領域に放射されることとしてもよい。また、第2実施形態では、3つの送信ビーム161〜163のビーム径が相互に異なる例を説明したが、これには限定されない。3以上の送信ビームが監視対象領域に照射される場合、光放射手段12(図1を参照)は、複数の光のうちの1つの光を第1のビーム径で監視対象領域に放射し、複数の光のうちの残りの光を第1のビーム径よりも細い第2のビーム径で監視対象領域に放射してもよい。
上記各実施形態において、測距部132及び識別検知器133で実施される処理は、光監視装置100が有するASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)若しくはCPU(Central Processing Unit)又はこれらの組み合わせを含むコンピュータ・システムを用いて実現することができる。具体的には、測距部132及び識別検知器133の機能は、反射光に基づく距離計測を行うための計算や、複数の距離計測結果に基づく特徴抽出などの処理に関する命令群を含むプログラムをコンピュータ・システムに実行させることで、実現できる。
上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
以上、実施の形態を参照して本開示を説明したが、本開示は上記によって限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
複数の光源と、
前記複数の光源から出射した複数の光を監視対象領域に放射する光放射手段であって、前記複数の光のうちの少なくとも1つの光と、前記複数の光のうちの他の少なくとも1つの光とを、相互に異なるビーム径で監視対象領域に放射する光放射手段と、
前記監視対象領域から入射する、前記複数の光の反射光を受光する受光手段と、
前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する測距手段と、
前記測距手段で計測された、前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する特徴抽出手段とを備える光監視装置。
[付記2]
光放射手段は、前記複数の光を、それぞれの光軸が一致した状態で前記監視対象領域に放射する付記1に記載の光監視装置。
[付記3]
前記複数の光源が、第1の光を出射する第1の光源と、第2の光を出射する第2の光源とを含む付記1又は2に記載の光監視装置。
[付記4]
前記測距手段が、前記第1の光の反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する第1の測距手段と、前記第2の光の反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する第2の測距手段とを含む付記3に記載の光監視装置。
[付記5]
前記第1の測距手段と前記第2の測距手段とは、相互に異なる測距手法を用いて前記物体までの距離を計測する付記4に記載の光監視装置。
[付記6]
前記第1の光の波長と前記第2の光の波長とは相互に異なる付記4又は5に記載の光監視装置。
[付記7]
前記監視対象領域に放射される前記第2の光のビーム径は、前記監視対象領域に放射される前記第1の光のビーム径よりも細い付記3から6何れか1つに記載の光監視装置。
[付記8]
前記光放射手段が、前記第1の光を反射して前記監視対象領域に放射するミラーを含む付記3から7何れか1つに記載の光監視装置。
[付記9]
前記ミラーは放物面ミラーである付記8に記載の光監視装置。
[付記10]
前記ミラーは、更に、前記監視対象領域側から前記反射光を入射し、前記受光手段側に反射する付記8又は9に記載の光監視装置。
[付記11]
前記ミラーは穴又はスリットを有しており、前記第2の光は前記穴又はスリットを通過して前記監視対象領域に放射される付記8から10何れか1つに記載の光監視装置。
[付記12]
前記光放射手段は、前記複数の光源から出射した光を合成するビームコンバイナを含む付記1から7何れか1つに記載の光監視装置。
[付記13]
前記光放射手段から前記監視対象領域に放射される光と、前記反射光とを分離する光分離手段を更に有する付記1から12何れか1つに記載の光監視装置。
[付記14]
前記光分離手段はハーフミラーを含む付記13に記載の光監視装置。
[付記15]
前記光分離手段は、所定偏光方向の光を透過し、前記所定偏光方向と直交する偏光方向の光を反射する偏光ビームスプリッタと、該偏光ビームスプリッタと前記監視対象領域との間に配置された1/4波長板とを含む付記13に記載の光監視装置。
[付記16]
前記複数の光は、前記監視対象領域の複数の方向に向けて放射され、
前記特徴抽出手段は、複数の方向に放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体の大きさについての特徴を抽出する付記1から15何れか1つに記載の光監視装置。
[付記17]
前記複数の光は、前記監視対象領域の複数の方向に向けて放射され、
前記特徴抽出手段は、複数の方向に放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体の表面の粗さについての特徴を抽出する付記1から16何れか1つに記載の光監視装置。
[付記18]
前記光放射手段は、前記複数の光を前記監視対象領域に複数回放射し、
前記特徴抽出手段は、複数回放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体が移動しているか否かについての特徴を抽出する付記1から17何れか1つに記載の光監視装置。
[付記19]
前記光放射手段は、前記監視対象領域に放射される光を走査する光走査手段を含む付記1から18何れか1つに記載の光監視装置。
[付記20]
前記光放射手段と前記複数の光源の少なくとも一部との間に、前記光源から出射した光のビーム径を拡大するビームエキスパンダを更に有する付記1から19何れか1つに記載の光監視装置。
[付記21]
前記光放射手段と前記複数の光源の少なくとも一部との間に、前記光源から出射した光を平行光化するコリメートレンズを更に有する付記1から20何れか1つに記載の光監視装置。
[付記22]
前記光放射手段は、前記複数の光を、相互に異なるビーム径で前記監視対象領域に放射する付記1から21何れか1つに記載の光監視装置。
[付記23]
前記光放射手段は、前記複数の光のうちの1つの光を第1のビーム径で前記監視対象領域に放射し、前記複数の光のうちの残りの光を前記第1のビーム径よりも細い第2のビーム径で前記監視対象領域に放射する付記1から21何れか1つに記載の光監視装置。
[付記24]
ビーム径が相互に異なる2つの光を含む複数の光を監視対象領域に放射し、
前記監視対象領域から入射する、前記複数の光の反射光を受光し、
前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測し、
前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する光監視方法。
[付記25]
前記複数の光は、それぞれの光軸が一致した状態で前記監視対象領域に放射される付記24に記載の光監視方法。
10:光監視装置
11:光源
12:光放射手段
13:受光手段
14:測距手段
15:特徴抽出手段
16:監視対象領域
100:光監視装置
101、111、141〜143:光源
102:サーキュレータ
103、112:コリメートレンズ
104:凸レンズ
105:ミラー
106:穴
107:走査機構
108、113、153〜155:送信器
121、122、161〜163:送信ビーム
131:光受信器
132:測距部
133:識別検知器
144〜146:ビームエキスパンダ
147〜149:ビームコンバイナ
150:偏光ビームスプリッタ
151:1/4波長板
152:集光レンズ

Claims (25)

  1. 複数の光源と、
    前記複数の光源から出射した複数の光を監視対象領域に放射する光放射手段であって、前記複数の光のうちの少なくとも1つの光と、前記複数の光のうちの他の少なくとも1つの光とを、相互に異なるビーム径で監視対象領域に放射する光放射手段と、
    前記監視対象領域から入射する、前記複数の光の反射光を受光する受光手段と、
    前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する測距手段と、
    前記測距手段で計測された、前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する特徴抽出手段とを備える光監視装置。
  2. 光放射手段は、前記複数の光を、それぞれの光軸が一致した状態で前記監視対象領域に放射する請求項1に記載の光監視装置。
  3. 前記複数の光源が、第1の光を出射する第1の光源と、第2の光を出射する第2の光源とを含む請求項1又は2に記載の光監視装置。
  4. 前記測距手段が、前記第1の光の反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する第1の測距手段と、前記第2の光の反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測する第2の測距手段とを含む請求項3に記載の光監視装置。
  5. 前記第1の測距手段と前記第2の測距手段とは、相互に異なる測距手法を用いて前記物体までの距離を計測する請求項4に記載の光監視装置。
  6. 前記第1の光の波長と前記第2の光の波長とは相互に異なる請求項4又は5に記載の光監視装置。
  7. 前記監視対象領域に放射される前記第2の光のビーム径は、前記監視対象領域に放射される前記第1の光のビーム径よりも細い請求項3から6何れか1項に記載の光監視装置。
  8. 前記光放射手段が、前記第1の光を反射して前記監視対象領域に放射するミラーを含む請求項3から7何れか1項に記載の光監視装置。
  9. 前記ミラーは放物面ミラーである請求項8に記載の光監視装置。
  10. 前記ミラーは、更に、前記監視対象領域側から前記反射光を入射し、前記受光手段側に反射する請求項8又は9に記載の光監視装置。
  11. 前記ミラーは穴又はスリットを有しており、前記第2の光は前記穴又はスリットを通過して前記監視対象領域に放射される請求項8から10何れか1項に記載の光監視装置。
  12. 前記光放射手段は、前記複数の光源から出射した光を合成するビームコンバイナを含む請求項1から7何れか1項に記載の光監視装置。
  13. 前記光放射手段から前記監視対象領域に放射される光と、前記反射光とを分離する光分離手段を更に有する請求項1から12何れか1項に記載の光監視装置。
  14. 前記光分離手段はハーフミラーを含む請求項13に記載の光監視装置。
  15. 前記光分離手段は、所定偏光方向の光を透過し、前記所定偏光方向と直交する偏光方向の光を反射する偏光ビームスプリッタと、該偏光ビームスプリッタと前記監視対象領域との間に配置された1/4波長板とを含む請求項13に記載の光監視装置。
  16. 前記複数の光は、前記監視対象領域の複数の方向に向けて放射され、
    前記特徴抽出手段は、複数の方向に放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体の大きさについての特徴を抽出する請求項1から15何れか1項に記載の光監視装置。
  17. 前記複数の光は、前記監視対象領域の複数の方向に向けて放射され、
    前記特徴抽出手段は、複数の方向に放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体の表面の粗さについての特徴を抽出する請求項1から16何れか1項に記載の光監視装置。
  18. 前記光放射手段は、前記複数の光を前記監視対象領域に複数回放射し、
    前記特徴抽出手段は、複数回放射された前記複数の光のうち、前記光放射手段から第1のビーム径で放射される光の反射光についての前記距離計測結果、及び前記光放射手段から第1のビーム径よりも細い第2のビーム径で放射される光の反射光についての前記距離計測結果に基づいて、前記監視対象領域に存在する物体が移動しているか否かについての特徴を抽出する請求項1から17何れか1項に記載の光監視装置。
  19. 前記光放射手段は、前記監視対象領域に放射される光を走査する光走査手段を含む請求項1から18何れか1項に記載の光監視装置。
  20. 前記光放射手段と前記複数の光源の少なくとも一部との間に、前記光源から出射した光のビーム径を拡大するビームエキスパンダを更に有する請求項1から19何れか1項に記載の光監視装置。
  21. 前記光放射手段と前記複数の光源の少なくとも一部との間に、前記光源から出射した光を平行光化するコリメートレンズを更に有する請求項1から20何れか1項に記載の光監視装置。
  22. 前記光放射手段は、前記複数の光を、相互に異なるビーム径で前記監視対象領域に放射する請求項1から21何れか1項に記載の光監視装置。
  23. 前記光放射手段は、前記複数の光のうちの1つの光を第1のビーム径で前記監視対象領域に放射し、前記複数の光のうちの残りの光を前記第1のビーム径よりも細い第2のビーム径で前記監視対象領域に放射する請求項1から21何れか1項に記載の光監視装置。
  24. ビーム径が相互に異なる2つの光を含む複数の光を監視対象領域に放射し、
    前記監視対象領域から入射する、前記複数の光の反射光を受光し、
    前記複数の光のそれぞれについて、前記反射光に基づいて前記監視対象領域内に存在する物体までの距離を計測し、
    前記複数の光についての距離計測結果に基づいて、前記監視対象領域内に存在する物体の特徴を抽出する光監視方法。
  25. 前記複数の光は、それぞれの光軸が一致した状態で前記監視対象領域に放射される請求項24に記載の光監視方法。
JP2020506091A 2018-03-16 2018-03-16 光監視装置及び方法 Active JP6923070B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010549 WO2019176101A1 (ja) 2018-03-16 2018-03-16 光監視装置及び方法

Publications (2)

Publication Number Publication Date
JPWO2019176101A1 true JPWO2019176101A1 (ja) 2021-03-11
JP6923070B2 JP6923070B2 (ja) 2021-08-18

Family

ID=67907578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506091A Active JP6923070B2 (ja) 2018-03-16 2018-03-16 光監視装置及び方法

Country Status (4)

Country Link
US (1) US20210096257A1 (ja)
EP (1) EP3767336B1 (ja)
JP (1) JP6923070B2 (ja)
WO (1) WO2019176101A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218705A1 (ja) * 2022-05-13 2023-11-16 パナソニックIpマネジメント株式会社 測距装置、測距装置の制御方法、およびデータ処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712934A (ja) * 1993-06-28 1995-01-17 Rhythm Watch Co Ltd 測距装置
JP2000088566A (ja) * 1998-09-02 2000-03-31 Leica Geosystems Ag 光学的測距装置
JP2017219383A (ja) * 2016-06-06 2017-12-14 パイオニア株式会社 距離測定装置および距離測定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148675A (ja) 1996-11-19 1998-06-02 Unisia Jecs Corp 障害物検知装置
JP3156690B2 (ja) 1999-01-18 2001-04-16 日本電気株式会社 レーザレーダ装置
US7916898B2 (en) * 2003-09-15 2011-03-29 Deere & Company Method and system for identifying an edge of a crop
AU2010257107B2 (en) * 2009-02-20 2015-07-09 Digital Signal Corporation System and method for generating three dimensional images using lidar and video measurements
US8772719B2 (en) * 2009-06-23 2014-07-08 Leica Geosystems Ag Coordinate measuring device
JP5912234B2 (ja) * 2010-07-16 2016-04-27 株式会社トプコン 測定装置
US10061020B2 (en) * 2015-09-20 2018-08-28 Qualcomm Incorporated Light detection and ranging (LIDAR) system with dual beam steering
KR102496509B1 (ko) * 2016-09-20 2023-02-07 이노비즈 테크놀로지스 엘티디 Lidar 시스템 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712934A (ja) * 1993-06-28 1995-01-17 Rhythm Watch Co Ltd 測距装置
JP2000088566A (ja) * 1998-09-02 2000-03-31 Leica Geosystems Ag 光学的測距装置
JP2017219383A (ja) * 2016-06-06 2017-12-14 パイオニア株式会社 距離測定装置および距離測定方法

Also Published As

Publication number Publication date
US20210096257A1 (en) 2021-04-01
JP6923070B2 (ja) 2021-08-18
EP3767336B1 (en) 2023-03-08
EP3767336A1 (en) 2021-01-20
WO2019176101A1 (ja) 2019-09-19
EP3767336A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US11054508B2 (en) High resolution LiDAR using high frequency pulse firing
US10001559B2 (en) Passive millimeter-wave detector
KR101914281B1 (ko) 표적 추적 장치 및 방법
WO2006109298A3 (en) An optical screen, systems and methods for producing and operating same
US20200209356A1 (en) Three-dimensional light detection and ranging system using hybrid tdc and adc receiver
CN111257910A (zh) 激光雷达系统和激光雷达探测方法
JP6923070B2 (ja) 光監視装置及び方法
JP2013541696A (ja) 人物の識別装置および識別方法
EP3213111A1 (en) Scanning bistatic perimeter intrusion detection system
US6809991B1 (en) Method and apparatus for detecting hidden features disposed in an opaque environment
JP2011185837A (ja) 異物検出装置
US8368873B2 (en) Proximity to target detection system and method
US11567202B2 (en) SPAD-based LIDAR system
KR101604867B1 (ko) 분광기술을 적용한 검지장치
JP2009276248A (ja) レーザレーダ装置
DE502007000019D1 (de) Reflexionslichtschranke mit Zusatzstrahlungsquelle zum Nachweis von Objekten in einem Überwachungsbereich
US8994943B2 (en) Selectivity by polarization
RU2639689C1 (ru) Устройство обнаружения и распознавания объектов
RU2222031C1 (ru) Способ формирования зондирующих сигналов комплексной локационной системы
Hm et al. Target classification in forward scattering radar in noisy environment
CN102998668B (zh) 一种去除水下探测目标成像畸变的还原方法及装置
KR101670474B1 (ko) 광학 장치 및 이의 동작 방법
Tutusaus Evaluation of automotive commercial radar for human detection
JP2007256009A (ja) レーダシステム
CN108700647A (zh) 利用成像器的遥测方法和系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6923070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150