JPWO2019171508A1 - ロータリ圧縮機 - Google Patents

ロータリ圧縮機 Download PDF

Info

Publication number
JPWO2019171508A1
JPWO2019171508A1 JP2020504564A JP2020504564A JPWO2019171508A1 JP WO2019171508 A1 JPWO2019171508 A1 JP WO2019171508A1 JP 2020504564 A JP2020504564 A JP 2020504564A JP 2020504564 A JP2020504564 A JP 2020504564A JP WO2019171508 A1 JPWO2019171508 A1 JP WO2019171508A1
Authority
JP
Japan
Prior art keywords
flow path
compression chamber
injection flow
refrigerant
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020504564A
Other languages
English (en)
Other versions
JP6910534B2 (ja
Inventor
祐策 石部
祐策 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019171508A1 publication Critical patent/JPWO2019171508A1/ja
Application granted granted Critical
Publication of JP6910534B2 publication Critical patent/JP6910534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本発明に係るロータリ圧縮機は、第1圧縮室に冷媒をインジェクションする第1インジェクション流路と、第2圧縮室に冷媒をインジェクションする第2インジェクション流路と、第1インジェクション流路に設けられた第1逆止弁と、第2インジェクション流路に設けられた第2逆止弁と、を備えている。第1逆止弁の第1弁体には、第1インジェクション流路において該第1弁体よりも第1圧縮室から離れた側に存在する冷媒の圧力が、第1インジェクション流路を開く方向に作用し、第1圧縮室の冷媒の圧力が、第1インジェクション流路を閉じる方向に作用する。第2逆止弁の第2弁体には、第2インジェクション流路において該第2弁体よりも第2圧縮室から離れた側に存在する冷媒の圧力が、第2インジェクション流路を開く方向に作用し、第2圧縮室の冷媒の圧力が、第2インジェクション流路を閉じる方向に作用する。

Description

本発明は、圧縮室に冷媒をインジェクション(注入)する機能を有するロータリ圧縮機に関する。
圧縮機は、吸入口から圧縮室内に吸入された冷媒を圧縮する。このような圧縮機の一つとして、密閉容器にロータリ型の圧縮機構部を収容したロータリ圧縮機が知られている。また、従来のロータリ圧縮機には、冷凍サイクル装置の効率の向上等を目的として、吸入口とは異なる位置で圧縮室と連通するインジェクション流路が圧縮機構部に設けられた圧縮機も存在する。インジェクション流路は、ロータリ圧縮機の外部に設けられたインジェクション配管と接続される。そして、インジェクション配管を介して冷媒回路内からインジェクション流路に供給された冷媒は、圧縮室にインジェクション(注入)される。
また、従来のロータリ圧縮機には、圧縮機構部が2つの圧縮室を有する圧縮機も知られている。以下、圧縮機構部が2つの圧縮室を有するロータリ圧縮機を、ツインロータリ圧縮機と称することとする。従来のツインロータリ圧縮機においても、インジェクション流路が圧縮機構部に設けられた圧縮機も存在する。ツインロータリ圧縮機の場合、インジェクション流路は、2つの圧縮室のそれぞれに連通している。すなわち、インジェクション配管を介して冷媒回路内からインジェクション流路に供給された冷媒は、2つの圧縮室のそれぞれにインジェクションされる。
ここで、インジェクション配管内及びインジェクション流路内は死容積となるため、圧縮機の圧縮効率が低下してしまう。なお、死容積とは、冷媒を圧縮途中の圧縮室と連通する空間であり、圧縮室から流出した冷媒が再膨張する空間である。そこで、圧縮機構部にインジェクション流路を備えた従来のツインロータリ圧縮機には、インジェクション流路に、圧縮室からインジェクション流路に流出する冷媒の流れを規制する逆止弁を備えた圧縮機も提案されている(特許文献1参照)。換言すると、特許文献1に記載のツインロータリ圧縮機は、密閉容器の内部に、圧縮室からインジェクション流路に流出する冷媒の流れを規制する逆止弁を備えている。すなわち、特許文献1に記載のツインロータリ圧縮機は、インジェクション流路から圧縮室に冷媒をインジェクションしていない状態においては、インジェクション流路が逆止弁で閉じられる。したがって、このように逆止弁を設けることにより、インジェクション配管内及びインジェクション流路内のうち、逆止弁よりも上流側の空間が死容積とならないため、圧縮機の圧縮効率の低下を抑制できる。なお、インジェクション配管及びインジェクション流路のうちの逆止弁よりも上流側とは、インジェクション配管及びインジェクション流路のうち、冷媒インジェクション時の冷媒流れにおいて逆止弁よりも上流側となる部分である。すなわち、インジェクション配管及びインジェクション流路のうちの逆止弁よりも上流側とは、インジェクション配管及びインジェクション流路のうち、逆止弁よりも圧縮室から離れた側に存在する部分を示している。
特開2013−36442号公報
特許文献1に記載のツインロータリ圧縮機は、逆止弁よりも上流側となるインジェクション流路部分に存在する冷媒の圧力が規定圧力以上になった際、逆止弁がインジェクション流路を開いて、インジェクション流路と圧縮室の双方とが連通する状態となる。この際、特許文献1に記載のツインロータリ圧縮機の逆止弁は、逆止弁よりも上流側となるインジェクション流路部分に存在する冷媒の圧力が規定圧力以上になった際、圧縮室内の冷媒の圧力にかかわらず開く。このため、特許文献1に記載のツインロータリ圧縮機は、2つの圧縮室のうち、逆止弁よりも上流側の冷媒よりも内部の冷媒の圧力が高くなっている圧縮室がある場合、当該圧縮室から圧縮途中の冷媒がインジェクション流路へ漏れてしまう。そして、この冷媒漏れにより、ツインロータリ圧縮機の圧縮性能が低下してしまう。すなわち、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えた従来のツインロータリ圧縮機は、圧縮室からの冷媒漏れにより、圧縮性能が低下してしまうという課題があった。
本発明は、上述の課題を解決するためになされたもので、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えたツインロータリ圧縮機であって、圧縮室からの冷媒漏れを従来よりも抑制できるツインロータリ圧縮機を提案することを目的とする。
本発明に係るロータリ圧縮機は、密閉容器と、該密閉容器に収容されたロータリ型の圧縮機構部と、を備え、前記圧縮機構部は、第1吸入口と、前記第1吸入口から吸入した冷媒を圧縮する第1圧縮室と、第2吸入口と、前記第2吸入口から吸入した冷媒を圧縮する第2圧縮室と、前記第1吸入口とは異なる位置で前記第1圧縮室と連通し、前記第1圧縮室に冷媒をインジェクションする第1インジェクション流路と、前記第2吸入口とは異なる位置で前記第2圧縮室と連通し、前記第2圧縮室に冷媒をインジェクションする第2インジェクション流路と、前記第1インジェクション流路に設けられ、前記第1圧縮室から前記第1インジェクション流路に流出する冷媒の流れを規制する第1逆止弁と、前記第2インジェクション流路に設けられ、前記第2圧縮室から前記第2インジェクション流路に流出する冷媒の流れを規制する第2逆止弁と、を備え、前記第1逆止弁は、往復動自在に設けられ、前記第1インジェクション流路を開閉する第1弁体を有し、該第1弁体には、前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力が、前記第1インジェクション流路を開く方向に作用し、前記第1圧縮室の冷媒の圧力が、前記第1インジェクション流路を閉じる方向に作用する構成であり、前記第2逆止弁は、往復動自在に設けられ、前記第2インジェクション流路を開閉する第2弁体を有し、該第2弁体には、前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力が、前記第2インジェクション流路を開く方向に作用し、前記第2圧縮室の冷媒の圧力が、前記第2インジェクション流路を閉じる方向に作用する構成となっている。
本発明に係るロータリ圧縮機は、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えたツインロータリ圧縮機である。本発明に係るロータリ圧縮機においては、第1圧縮室の冷媒の圧力が第1インジェクション流路において第1弁体よりも第1圧縮室から離れた側に存在する冷媒の圧力よりも高い状態になると、第1インジェクション流路と第1圧縮室とが連通しない状態となる。また、本発明に係るロータリ圧縮機においては、第2圧縮室内の冷媒の圧力が第2インジェクション流路において第2弁体よりも第2圧縮室から離れた側に存在する冷媒の圧力よりも高い状態になると、第2インジェクション流路と第2圧縮室とが連通しない状態となる。したがって、本発明に係るロータリ圧縮機は、圧縮室からの冷媒漏れを従来よりも抑制できる。
本発明の実施の形態に係るロータリ圧縮機を備えた冷凍サイクル装置の一例を示す冷媒回路図である。 本発明の実施の形態に係るロータリ圧縮機を示す縦断面図である。 図2のA−A断面図である。 図2のB−B断面図である。 本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。 本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。 従来のロータリ圧縮機の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。 従来のロータリ圧縮機の別の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。 本発明の実施の形態に係るロータリ圧縮機における第1逆止弁及び第2逆止弁の動作を説明するための図である。 本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。 本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
実施の形態.
図1は、本発明の実施の形態に係るロータリ圧縮機を備えた冷凍サイクル装置の一例を示す冷媒回路図である。
本実施の形態に係る冷凍サイクル装置100は、ロータリ圧縮機1と、蒸発器2と、膨張装置4と、凝縮器3とを備えている。
ロータリ圧縮機1は、吸入した冷媒を高温高圧のガス状冷媒に圧縮するものである。ロータリ圧縮機1の詳細は後述する。蒸発器2は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器又はプレート熱交換器等で構成することができる。蒸発器2は、ロータリ圧縮機1の吐出配管21と、膨張装置4とに、冷媒配管で接続されている。ロータリ圧縮機1から吐出された高温高圧のガス状冷媒は、蒸発器2の冷媒流路を流れる際、蒸発器2に供給された空気等の熱交換対象に放熱して凝縮し、高圧の液状冷媒となる。
膨張装置4は、例えば、冷媒の流量を調整可能な電動膨張弁等で構成することができる。膨張装置4は、蒸発器2と、凝縮器3とに、冷媒配管で接続されている。膨張装置4は、蒸発器2から流出した高圧の液状冷媒を膨張させて、低温低圧の気液二相冷媒にする。なお、膨張装置4としては、受圧部にダイアフラムを採用した機械式膨張弁又はキャピラリーチューブ等を適用することも可能である。
また、蒸発器2と膨張装置4との間には、インジェクション配管5が接続されている。このインジェクション配管5は、ロータリ圧縮機1の後述する第1インジェクション流路31及び第2インジェクション流路32とも接続されている。なお、本実施の形態に係るロータリ圧縮機1は、後述する密閉容器8の外部に、第1インジェクション流路31及び第2インジェクション流路32と接続されたインジェクション配管6を備えている。そして、インジェクション配管5は、このインジェクション配管6に接続されている。すなわち、インジェクション配管5は、インジェクション配管6を介して、第1インジェクション流路31及び第2インジェクション流路32と接続されている。
凝縮器3は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器又はプレート熱交換器等で構成することができる。凝縮器3は、膨張装置4と、ロータリ圧縮機1の吸入マフラ7とに、冷媒配管で接続されている。膨張装置4から流出した低温低圧の気液二相冷媒は、凝縮器3の冷媒流路を流れる際、凝縮器3に供給された空気等の熱交換対象に加熱されて蒸発し、低圧のガス状冷媒となる。このガス状冷媒は、吸入マフラ7からロータリ圧縮機1に吸入される。なお、吸入マフラ7は、凝縮器3から気液二相冷媒が流出した場合、内部でガス状冷媒と液状冷媒とに分離し、ガス状冷媒を後述の圧縮機構部11に供給する機能を果たすものである。
図2は、本発明の実施の形態に係るロータリ圧縮機を示す縦断面図である。図3は、図2のA−A断面図である。図4は、図2のB−B断面図である。また、図5及び図6は、本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
なお、図5は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が閉じられ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が閉じられた状態を示している。また、図6は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が開かれ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が開かれた状態を示している。また、図3及び図4と、図2とでは、一部の構成の位置が異なっている。これらの構成の認識を容易とするためである。
ロータリ圧縮機1は、後述のように、第1圧縮室14a及び第2圧縮室15aを備えている。すなわち、ロータリ圧縮機1は、ツインロータリ圧縮機となっている。このロータリ圧縮機1は、密閉容器8を備えている。密閉容器8の内部には、圧縮機構部11と、圧縮機構部11の駆動源であるモータ9と、モータ9の駆動力を圧縮機構部11に伝達するクランクシャフト10とが収容されている。
モータ9は、固定子9aと、回転子9bとを備えている。固定子9aは、密閉容器8の内周面に固定されている。回転子9bは、固定子9aの内側に規定の空隙を空けて設置されている。この回転子9bには、クランクシャフト10が固定されている。すなわち、回転子9bが回転すると、回転子9bと共にクランクシャフト10も回転する。
圧縮機構部11は、上軸受12、下軸受13、上シリンダ14、下シリンダ15、及び中間板17等を備えている。詳しくは、上シリンダ14は、略円筒状の第1圧縮室14aを有している。また、下シリンダ15は、略円筒状の第2圧縮室15aを有している。これら上シリンダ14及び下シリンダ15の間には、中間板17が配置されている。
上軸受12は、上シリンダ14の上面部に設けられており、第1圧縮室14aの上部開口を閉塞している。つまり、上シリンダ14の第1圧縮室14aは、上軸受12と中間板17とによって、機密性が確保されている。また、下軸受13は、下シリンダ15の下面部に設けられており、第2圧縮室15aの下部開口を閉塞する。つまり、下シリンダ15の第2圧縮室15aは、下軸受13と中間板17とによって、機密性が確保されている。
順次積層された上軸受12、上シリンダ14、中間板17、下シリンダ15及び下軸受13には、クランクシャフト10が貫通している。このクランクシャフト10は、上軸受12及び下軸受13によって回転自在に支持されている。また、クランクシャフト10には、上シリンダ14の第1圧縮室14aと対応する位置に第1偏心部10aが形成され、下シリンダ15の第2圧縮室15aと対応する位置に第2偏心部10bが形成されている。また、第1偏心部10aには略円筒状の第1ピストン16aが設けられ、第2偏心部10bには略円筒状の第2ピストン16bが設けられている。
上シリンダ14には、第1ベーン24aが摺動自在に設けられている。モータ9によってクランクシャフト10が回転すると、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転する。このとき第1ベーン24aが第1ピストン16aの外周部に追従するように、第1ベーン24aは、図示せぬスプリングによって第1ピストン16aに向かって付勢されている。同様に、下シリンダ15には、第2ベーン24bが摺動自在に設けられている。モータ9によってクランクシャフト10が回転すると、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転する。このとき第2ベーン24bが第2ピストン16bの外周部に追従するように、第2ベーン24bは、図示せぬスプリングによって第2ピストン16bに向かって付勢されている。
上シリンダ14の第1圧縮室14aには、第1吸入口25aが連通している。そして、第1吸入口25aには、第1吸入配管27aを介して、吸入マフラ7が接続されている。また、上シリンダ14の第1圧縮室14aには、第1吐出口26aが連通している。つまり、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転すると、吸入マフラ7に流入した冷媒は、第1吸入口25aから第1圧縮室14aに吸入される。この際、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転することにより、第1圧縮室14aにおける第1ベーン24aと第1ピストン16aの外周面とで囲まれた空間は、容積が徐々に縮小していく。これにより、第1圧縮室14a内の冷媒は、圧縮される。そして、第1圧縮室14aで圧縮された冷媒は、第1吐出口26aから吐出される。
なお、第1吐出口26aの吐出側端部は、例えば上軸受12のフランジ部に開口している。そして、本実施の形態では、第1吐出口26aの吐出側端部を覆うように、上吐出マフラ18が設けられている。すなわち、第1吐出口26aから吐出された冷媒は、一旦上吐出マフラ18に入り、その後上吐出マフラ18から密閉容器8の内部空間に放出される。上吐出マフラ18を設けることにより、密閉容器8の内部空間の共振により増幅される騒音を低減させることができる。
同様に、下シリンダ15の第2圧縮室15aには、第2吸入口25bが連通している。そして、第2吸入口25bには、第2吸入配管27bを介して、吸入マフラ7が接続されている。また、下シリンダ15の第2圧縮室15aには、第2吐出口26bが連通している。つまり、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転すると、吸入マフラ7に流入した冷媒は、第2吸入口25bから第2圧縮室15aに吸入される。この際、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転することにより、第2圧縮室15aにおける第2ベーン24bと第2ピストン16bの外周面とで囲まれた空間は、容積が徐々に縮小していく。これにより、第2圧縮室15a内の冷媒は、圧縮される。そして、第2圧縮室15aで圧縮された冷媒は、第2吐出口26bから吐出される。
なお、第2吐出口26bの吐出側端部は、例えば下軸受13のフランジ部に開口している。そして、本実施の形態では、第2吐出口26bの吐出側端部を覆うように、下吐出マフラ19が設けられている。すなわち、第2吐出口26bから吐出された冷媒は、一旦下吐出マフラ19に入り、その後下吐出マフラ19から密閉容器8の内部空間に放出される。下吐出マフラ19を設けることにより、密閉容器8の内部空間の共振により増幅される騒音を低減させることができる。
密閉容器8の内部空間に放出された冷媒は、モータ9の固定子9aと回転子9bとの間等を通過し、吐出配管21から密閉容器8外へ流出する。
ところで、密閉容器8の底部には、冷凍機油が貯留されている。この冷凍機油は、圧縮機構部11の各摺動部へ供給される。圧縮機構部11の各摺動部とは、例えば、クランクシャフト10と第1ピストン16aとの間、第1ピストン16aと上シリンダ14との間、第1ピストン16aと中間板17との間、クランクシャフト10と第2ピストン16bとの間、第2ピストン16bと下シリンダ15との間、及び、第2ピストン16bと中間板17との間である。圧縮機構部11の各摺動部へ冷凍機油を供給することにより、圧縮機構部11の構成部品同士が直接接触することを防止でき、構成部品が損傷することを防止できる。また、圧縮機構部11の各摺動部へ冷凍機油を供給することにより、冷凍機油が摺動部をシールするため、摺動部からの冷媒漏れを防止することもできる。なお、本実施の形態に係るロータリ圧縮機1では、クランクシャフト10内に図示せぬ流路が形成されている。クランクシャフト10の回転によって、遠心ポンプの要領で、密閉容器8の底部に貯留されている冷凍機油がクランクシャフト10内の流路に吸い上げられ、圧縮機構部11の各摺動部へ冷凍機油が供給される。
圧縮機構部11の各摺動部へ供給された冷凍機油の一部は、圧縮された冷媒と共に、第1圧縮室14a及び第2圧縮室15aから吐出される。このため、冷凍機油が吐出配管21からロータリ圧縮機1外へ出て行くことを抑制するため、本実施の形態に係るロータリ圧縮機1は、油分離器20を備えている。油分離器20は、第1圧縮室14a及び第2圧縮室15aから吐出された冷媒が吐出配管21へ向かう流路を遮るように、クランクシャフト10に固定されている。油分離器20を設けることにより、冷媒と冷凍機油との混合流体が油分離器20に衝突し、冷媒と冷凍機油とが分離し、冷凍機油を密閉容器8の底部に戻すことができる。このため、油分離器20を設けることにより、冷凍機油が吐出配管21からロータリ圧縮機1外へ出て行くことを抑制できる。
ここで、本実施の形態に係るロータリ圧縮機1の圧縮機構部11は、第1圧縮室14a及び第2圧縮室15aに冷媒をインジェクションするインジェクション流路を備えている。具体的には、圧縮機構部11は、第1インジェクション流路31と第2インジェクション流路32とを備えている。
第1インジェクション流路31は、上述のように、インジェクション配管6を介してインジェクション配管5と接続されている。また、第1インジェクション流路31は、第1吸入口25aとは異なる位置で、第1圧縮室14aと連通している。すなわち、第1インジェクション流路31は、第1圧縮室14aに、インジェクション配管5から供給された冷媒をインジェクションする流路である。本実施の形態では、第1インジェクション流路31は、インジェクション配管6と接続され、第1逆止弁40が設けられる逆止弁設置部31a、逆止弁設置部31aと連通する凹部31b、及び、凹部31bと第1圧縮室14aとを連通する連通孔31cを備えている。また、本実施の形態では、第1インジェクション流路31は、上軸受12に形成されている。
第1逆止弁40は、第1インジェクション流路31の逆止弁設置部31aに設けられている。すなわち、第1逆止弁40は、密閉容器8内に設けられている。第1逆止弁40は、第1圧縮室14aから第1インジェクション流路31に流出する冷媒の流れを規制するものである。この第1逆止弁40は、ケーシング41と、ケーシング41内に往復動自在に設けられた第1弁体44とを備えている。第1弁体44は、例えば、中心軸が往復動方向の略円筒形状をしている。第1弁体44には、往復動方向に貫通する第1貫通孔44aが形成されている。ケーシング41は、例えば略円筒形状をしており、第1弁体44の往復動方向に端部42及び端部43を有している。
端部42は、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に配置されている端部である。換言すると、第1インジェクション流路31から第1圧縮室14aへ冷媒をインジェクションする際の冷媒流れにおいて、端部42は、第1弁体44よりも上流側となる。この端部42には、貫通孔42aが形成されている。したがって、インジェクション配管5の冷媒は、貫通孔42aからケーシング41内に流入することとなる。そして、第1弁体44における端部42側の端部には、インジェクション配管5から第1逆止弁40に供給された冷媒の圧力が作用することとなる。なお、貫通孔42aは、第1弁体44の第1貫通孔44aと対向しない位置に配置されている。このため、第1弁体44が端部42に接触した際、貫通孔42aは、第1弁体44によって塞がれる。すなわち、第1弁体44が端部42に接触した際、第1逆止弁40内の流路が閉じられる。換言すると、第1弁体44が端部42に接触した際、第1インジェクション流路31が閉じられる。
端部43は、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aに近い側に配置されている端部である。換言すると、第1インジェクション流路31から第1圧縮室14aへ冷媒をインジェクションする際の冷媒流れにおいて、端部43は、第1弁体44よりも下流側となる。この端部43には、貫通孔43aが形成されている。したがって、第1弁体44における端部42側の端部には、連通孔31c及び凹部31bを介して、第1圧縮室14aの冷媒の圧力が作用することとなる。なお、貫通孔43aは、第1弁体44の第1貫通孔44aと対向する位置に配置されている。このため、第1弁体44が端部43に接触しても、貫通孔43aは、第1弁体44によって塞がれない。すなわち、第1弁体44が端部43に接触しても、第1逆止弁40内の流路が閉じられない。換言すると、第1弁体44が端部43に接触しても、第1インジェクション流路31は開かれた状態となっている。
すなわち、第1弁体44は、第1インジェクション流路31を開閉するものである。そして、第1弁体44には、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が、第1インジェクション流路31を開く方向に作用する。また、第1弁体44には、第1圧縮室14aの冷媒の圧力が、第1インジェクション流路31を閉じる方向に作用する。したがって、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも高い場合、第1弁体44はケーシング41の端部42側へ移動する。そして、第1弁体44が端部42に接触し、第1インジェクション流路31が閉じられる。また、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも低い場合、第1弁体44はケーシング41の端部43側へ移動する。すなわち、第1弁体44が端部42から離れた状態となり、第1インジェクション流路31が開かれた状態となる。
ここで、本実施の形態に係る第1弁体44においては、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力を受ける第1受圧部45の面積が、第1圧縮室14aの冷媒の圧力を受ける第2受圧部46の面積よりも大きい構成となっている。このように第1弁体44を構成することにより、第1弁体44の端部43側への移動が容易となる。すなわち、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が第1圧縮室14aの冷媒の圧力よりも高くなった際、第1インジェクション流路31が開きやすくなる。
具体的には、本実施の形態では、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって直径が小さくなっている。換言すると、第1貫通孔44aは、端部43側から端部42側へ向かうにしたがって直径が大きくなっている。この様に第1貫通孔44aを形成した場合、第2受圧部46は、第1弁体44の端部43側の端部となる。また、第1受圧部45は、第1弁体44の端部42側の端部と、第1貫通孔44aの内周面とになる。したがって、第1受圧部45の面積を第2受圧部46の面積よりも大きくすることができる。
なお、第1逆止弁40の構成は、あくまでも一例である。例えば、本実施の形態では、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって、滑らかに直径が小さくなっている。これに限らず、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって、階段状に直径が小さくなっていてもよい。また例えば、第1弁体44の端部42側の端部に凸部を形成する等により、第1受圧部45の面積を第2受圧部46の面積よりも大きくしてもよい。また、第1受圧部45の面積が第2受圧部46の面積よりも大きいという構成は、第1逆止弁40において必須の構成ではない。第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が第1インジェクション流路31を開く方向に作用し、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31を閉じる方向に作用すれば、第1逆止弁40の構成を適宜変更してもよい。
また、上述した第1インジェクション流路31も、あくまでも一例である。例えば、第1インジェクション流路31の少なくとも一部が、上軸受12以外の圧縮機構部11の構成部品に形成されていてもよい。また、第1逆止弁40の配置位置も、上述の位置に限定されない。第1インジェクション流路31における第1圧縮室14a側の端部と第1逆止弁40との間に第2インジェクション流路32が合流していなければ、第1インジェクション流路31の任意の位置に第1逆止弁40を配置することができる。
第2インジェクション流路32は、上述のように、インジェクション配管6を介してインジェクション配管5と接続されている。また、第2インジェクション流路32は、第2吸入口25bとは異なる位置で、第2圧縮室15aと連通している。すなわち、第2インジェクション流路32は、第2圧縮室15aに、インジェクション配管5から供給された冷媒をインジェクションする流路である。本実施の形態では、第2インジェクション流路32は、インジェクション配管6と接続され、第2逆止弁50が設けられる逆止弁設置部32a、逆止弁設置部32aと連通する凹部32b、及び、凹部32bと第2圧縮室15aとを連通する連通孔32cを備えている。また、本実施の形態では、第2インジェクション流路32は、下軸受13に形成されている。
第2逆止弁50は、第2インジェクション流路32の逆止弁設置部32aに設けられている。すなわち、第2逆止弁50は、密閉容器8内に設けられている。第2逆止弁50は、第2圧縮室15aから第2インジェクション流路32に流出する冷媒の流れを規制するものである。この第2逆止弁50は、ケーシング51と、ケーシング51内に往復動自在に設けられた第2弁体54とを備えている。第2弁体54は、例えば、中心軸が往復動方向の略円筒形状をしている。第2弁体54には、往復動方向に貫通する第2貫通孔54aが形成されている。ケーシング51は、例えば略円筒形状をしており、第2弁体54の往復動方向に端部52及び端部53を有している。
端部52は、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に配置されている端部である。換言すると、第2インジェクション流路32から第2圧縮室15aへ冷媒をインジェクションする際の冷媒流れにおいて、端部52は、第2弁体54よりも上流側となる。この端部52には、貫通孔52aが形成されている。したがって、インジェクション配管5の冷媒は、貫通孔52aからケーシング51内に流入することとなる。そして、第2弁体54における端部52側の端部には、インジェクション配管5から第2逆止弁50に供給された冷媒の圧力が作用することとなる。なお、貫通孔52aは、第2弁体54の第2貫通孔54aと対向しない位置に配置されている。このため、第2弁体54が端部52に接触した際、貫通孔52aは、第2弁体54によって塞がれる。すなわち、第2弁体54が端部52に接触した際、第2逆止弁50内の流路が閉じられる。換言すると、第2弁体54が端部52に接触した際、第2インジェクション流路32が閉じられる。
端部53は、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aに近い側に配置されている端部である。換言すると、第2インジェクション流路32から第2圧縮室15aへ冷媒をインジェクションする際の冷媒流れにおいて、端部53は、第2弁体54よりも下流側となる。この端部53には、貫通孔53aが形成されている。したがって、第2弁体54における端部52側の端部には、連通孔32c及び凹部32bを介して、第2圧縮室15aの冷媒の圧力が作用することとなる。なお、貫通孔53aは、第2弁体54の第2貫通孔54aと対向する位置に配置されている。このため、第2弁体54が端部53に接触しても、貫通孔53aは、第2弁体54によって塞がれない。すなわち、第2弁体54が端部53に接触しても、第2逆止弁50内の流路が閉じられない。換言すると、第2弁体54が端部53に接触しても、第2インジェクション流路32は開かれた状態となっている。
すなわち、第2弁体54は、第2インジェクション流路32を開閉するものである。そして、第2弁体54には、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が、第2インジェクション流路32を開く方向に作用する。また、第2弁体54には、第2圧縮室15aの冷媒の圧力が、第2インジェクション流路32を閉じる方向に作用する。したがって、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも高い場合、第2弁体54はケーシング51の端部52側へ移動する。そして、第2弁体54が端部52に接触し、第2インジェクション流路32が閉じられる。また、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも低い場合、第2弁体54はケーシング51の端部53側へ移動する。すなわち、第2弁体54が端部52から離れた状態となり、第2インジェクション流路32が開かれた状態となる。
ここで、本実施の形態に係る第2弁体54においては、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力を受ける第3受圧部55の面積が、第2圧縮室15aの冷媒の圧力を受ける第4受圧部56の面積よりも大きい構成となっている。このように第2弁体54を構成することにより、第2弁体54の端部53側への移動が容易となる。すなわち、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が第2圧縮室15aの冷媒の圧力よりも高くなった際、第2インジェクション流路32が開きやすくなる。
具体的には、本実施の形態では、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって直径が小さくなっている。換言すると、第2貫通孔54aは、端部53側から端部52側へ向かうにしたがって直径が大きくなっている。この様に第2貫通孔54aを形成した場合、第4受圧部56は、第2弁体54の端部53側の端部となる。また、第3受圧部55は、第2弁体54の端部52側の端部と、第2貫通孔54aの内周面とになる。したがって、第3受圧部55の面積を第4受圧部56の面積よりも大きくすることができる。
なお、第2逆止弁50の構成は、あくまでも一例である。例えば、本実施の形態では、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって、滑らかに直径が小さくなっている。これに限らず、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって、階段状に直径が小さくなっていてもよい。また例えば、第2弁体54の端部52側の端部に凸部を形成する等により、第3受圧部55の面積を第4受圧部56の面積よりも大きくしてもよい。また、第3受圧部55の面積が第4受圧部56の面積よりも大きいという構成は、第2逆止弁50において必須の構成ではない。第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が第2インジェクション流路32を開く方向に作用し、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32を閉じる方向に作用すれば、第2逆止弁50の構成を適宜変更してもよい。
また、上述した第2インジェクション流路32も、あくまでも一例である。例えば、第2インジェクション流路32の少なくとも一部が、下軸受13以外の圧縮機構部11の構成部品に形成されていてもよい。また、第2逆止弁50の配置位置も、上述の位置に限定されない。第2インジェクション流路32における第2圧縮室15a側の端部と第2逆止弁50との間に第1インジェクション流路31が合流していなければ、第2インジェクション流路32の任意の位置に第2逆止弁50を配置することができる。
続いて、本実施の形態に係るロータリ圧縮機1の動作について説明する。ここで、以下では、本実施の形態に係るロータリ圧縮機1の効果がわかりやすくなるように、まず、インジェクション流路が圧縮機構部に設けられた従来のツインロータリ圧縮機の動作について説明する。そして、その後に、本実施の形態に係るロータリ圧縮機1の動作について説明する。なお、以下では、インジェクション流路が圧縮機構部に設けられた従来のツインロータリ圧縮機を、従来のロータリ圧縮機と称することとする。また、以下では、従来のロータリ圧縮機を説明する際、従来のロータリ圧縮機の各構成には、これらの構成に対応する本実施の形態に係るロータリ圧縮機1の各構成の符号に、「200」を加えた符号を付すこととする。例えば、従来のロータリ圧縮機の中間板には、符号「217」を付す。
図7は、従来のロータリ圧縮機の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
図7に示す従来のロータリ圧縮機201の第1インジェクション流路231及び第2インジェクション流路232は、中間板217に設けられている。
詳しくは、第1インジェクション流路231は、凹部231b及び連通孔231cで構成されている。凹部231bは、インジェクション配管206と接続されている箇所である。連通孔231cは、凹部231bと、上シリンダ214の第1圧縮室214aとを連通している箇所である。また、第2インジェクション流路232は、凹部231b及び連通孔232cで構成されている。連通孔232cは、凹部231bと、下シリンダ215の第2圧縮室215aとを連通している箇所である。すなわち、凹部231bは、第1インジェクション流路231の一部として機能すると共に、第2インジェクション流路232の一部としても機能している。換言すると、第1インジェクション流路231と第2インジェクション流路232とは、凹部231bで合流しており、連通孔231c及び連通孔232cで分岐している。
このように構成された図7に示す従来のロータリ圧縮機201においては、第1圧縮室214aは、常に、第1インジェクション流路231及びインジェクション配管206と連通している。このため、第1圧縮室214aで圧縮途中の冷媒が、第1インジェクション流路231及びインジェクション配管206に漏れ出てしまう。また、図7に示す従来のロータリ圧縮機201においては、第2圧縮室215aは、常に、第2インジェクション流路232及びインジェクション配管206と連通している。このため、第2圧縮室215aで圧縮途中の冷媒が、第2インジェクション流路232及びインジェクション配管206に漏れ出てしまう。
ここで、第1インジェクション流路231内、第2インジェクション流路232内及びインジェクション配管206内は、死容積となる。このため、図7に示す従来のロータリ圧縮機201は、冷媒の圧縮性能が低下してしまう。
また、図7に示す従来のロータリ圧縮機201においては、第1圧縮室214aと第2圧縮室215aとは、常に連通している。このため、冷媒の圧力が高い側の圧縮室から冷媒の圧力が低い側の圧縮室へ、圧縮途中の冷媒が漏れ出してしまう。例えば、第1圧縮室214aの冷媒の圧力が第2圧縮室215aの冷媒の圧力よりも高い場合、図7に矢印で示すように、第1圧縮室214aから第2圧縮室215aへ、第1圧縮室214aで圧縮途中の冷媒が漏れ出してしまう。この点においても、図7に示す従来のロータリ圧縮機201は、冷媒の圧縮性能が低下してしまう。
図8は、従来のロータリ圧縮機の別の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
図8に示す従来のロータリ圧縮機201の第1インジェクション流路231は、上軸受212に設けられている。詳しくは、第1インジェクション流路231は、凹部231b及び連通孔231cで構成されている。凹部231bは、インジェクション配管206と接続されている箇所である。連通孔231cは、凹部231bと、上シリンダ214の第1圧縮室214aとを連通している箇所である。また、図8に示す従来のロータリ圧縮機201の第2インジェクション流路232は、下軸受213に設けられている。詳しくは、第2インジェクション流路232は、凹部232b及び連通孔231cで構成されている。凹部232bは、インジェクション配管206と接続されている箇所である。連通孔232cは、凹部232bと、下シリンダ215の第2圧縮室215aとを連通している箇所である。
また、図8に示す従来のロータリ圧縮機201の第1インジェクション流路231には、第1圧縮室214aから第1インジェクション流路231に流出する冷媒の流れを規制する第1逆止弁240が設けられている。また、図8に示す従来のロータリ圧縮機201の第2インジェクション流路232には、第2圧縮室215aから第2インジェクション流路232に流出する冷媒の流れを規制する第2逆止弁250が設けられている。図8に示す従来のロータリ圧縮機201は、第1インジェクション流路231から第1圧縮室214aに冷媒をインジェクションしていない状態においては、第1インジェクション流路231が第1逆止弁240で閉じられる。また、図8に示す従来のロータリ圧縮機201は、第2インジェクション流路232から第2圧縮室215aに冷媒をインジェクションしていない状態においては、第2インジェクション流路232が第2逆止弁250で閉じられる。このため、図8に示す従来のロータリ圧縮機201は、死容積を低減することができる。
しかしながら、図8に示すように、第1逆止弁240は、該第1逆止弁240よりも第1圧縮室214aから離れた側に存在する冷媒の圧力が規定圧力以上になった際、第1インジェクション流路231を開く構成となっている。換言すると、第1逆止弁240は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1インジェクション流路231を開く構成となっている。この際、第1逆止弁240は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1圧縮室214aの冷媒の圧力にかかわらず開く。すなわち、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1圧縮室214aの冷媒の圧力がインジェクション配管206から供給される冷媒の圧力よりも高い場合でも、第1逆止弁240が開く。このような状態では、図8に示すロータリ圧縮機201は、第1圧縮室214aから第1インジェクション流路231へ、第1圧縮室214aで圧縮途中の冷媒が漏れ出してしまう。
同様に、第2逆止弁250は、該第2逆止弁250よりも第2圧縮室215aから離れた側に存在する冷媒の圧力が規定圧力以上になった際、第2インジェクション流路232を開く構成となっている。換言すると、第2逆止弁250は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2インジェクション流路232を開く構成となっている。この際、第2逆止弁250は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2圧縮室215aの冷媒の圧力にかかわらず開く。すなわち、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2圧縮室215aの冷媒の圧力がインジェクション配管206から供給される冷媒の圧力よりも高い場合でも、第2逆止弁250が開く。このような状態では、図8に示すロータリ圧縮機201は、第2圧縮室215aから第2インジェクション流路232へ、第2圧縮室215aで圧縮途中の冷媒が漏れ出してしまう。
このため、図8に示すロータリ圧縮機201もまた、圧縮室からの冷媒漏れにより、圧縮性能が低下してしまう。
一方、本実施の形態に係る第1逆止弁40の第1弁体44は、第1圧縮室14aの冷媒の圧力と、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力との差によって動作する。すなわち、本実施の形態に係る第1逆止弁40の第1弁体44は、第1圧縮室14aの冷媒の圧力と、インジェクション配管6から供給される冷媒の圧力との差によって動作する。また、本実施の形態に係る第2逆止弁50の第2弁体54は、第2圧縮室15aの冷媒の圧力と、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力との差によって動作する。すなわち、本実施の形態に係る第2逆止弁50の第2弁体54は、第2圧縮室15aの冷媒の圧力と、インジェクション配管6から供給される冷媒の圧力との差によって動作する。したがって、第1逆止弁40及び第2逆止弁50は、第1圧縮室14aの冷媒の圧力、第2圧縮室15aの冷媒の圧力、及びインジェクション配管6から供給される冷媒の圧力により、図9のように動作することとなる。
図9は、本発明の実施の形態に係るロータリ圧縮機における第1逆止弁及び第2逆止弁の動作を説明するための図である。
図9に示すように、インジェクション配管6から供給される冷媒の圧力が第1圧縮室14aの冷媒の圧力よりも大きい場合、第1逆止弁40が開く。すなわち、第1インジェクション流路31が開かれる。これにより、インジェクション配管6から第1インジェクション流路31に供給された冷媒が、第1圧縮室14aへインジェクションされる。一方、第1圧縮室14aの冷媒の圧力がインジェクション配管6から供給される冷媒の圧力よりも大きい場合、第1逆止弁40が閉じる。すなわち、第1圧縮室14aで圧縮途中の冷媒が第1インジェクション流路31に漏れ出す条件になると、第1インジェクション流路31が閉じる。このため、本実施の形態に係るロータリ圧縮機1は、第1圧縮室14aで圧縮途中の冷媒が第1インジェクション流路31に漏れ出すことを抑制できる。
また、図9に示すように、インジェクション配管6から供給される冷媒の圧力が第2圧縮室15aの冷媒の圧力よりも大きい場合、第2逆止弁50が開く。すなわち、第2インジェクション流路32が開かれる。これにより、インジェクション配管6から第2インジェクション流路32に供給された冷媒が、第2圧縮室15aへインジェクションされる。一方、第2圧縮室15aの冷媒の圧力がインジェクション配管6から供給される冷媒の圧力よりも大きい場合、第2逆止弁50が閉じる。すなわち、第2圧縮室15aで圧縮途中の冷媒が第2インジェクション流路32に漏れ出す条件になると、第2インジェクション流路32が閉じる。このため、本実施の形態に係るロータリ圧縮機1は、第2圧縮室15aで圧縮途中の冷媒が第2インジェクション流路32に漏れ出すことを抑制できる。
なお、上述のように、本実施の形態で示した第1逆止弁40及び第2逆止弁50は、一例である。最後に、図10及び図11にて、第1逆止弁40の別の一例及び第2逆止弁50の別の一例を紹介する。
図10及び図11は、本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
なお、図10は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が閉じられ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が閉じられた状態を示している。また、図11は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が開かれ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が開かれた状態を示している。
図10及び図11に示す第1逆止弁40は、図5及び図6で説明した構成に加えて、スプリング47を備えている。スプリング47は、第1逆止弁40内の流路を閉じる方向に、換言すると第1インジェクション流路31を閉じる方向に、第1弁体44を付勢している。すなわち、スプリング47は、第1圧縮室14aの冷媒の圧力が第1弁体44に作用する方向に、第1弁体44を付勢している。このため、図10及び図11に示す第1逆止弁40は、インジェクション配管6から供給される冷媒の圧力が第1圧縮室14aの冷媒の圧力に対してスプリング47の付勢力に対応した分だけ高くなった際、第1インジェクション流路31を開くこととなる。
同様に、図10及び図11に示す第2逆止弁50は、図5及び図6で説明した構成に加えて、スプリング57を備えている。スプリング57は、第2逆止弁50内の流路を閉じる方向に、換言すると第2インジェクション流路32を閉じる方向に、第2弁体54を付勢している。すなわち、スプリング57は、第2圧縮室15aの冷媒の圧力が第2弁体54に作用する方向に、第2弁体54を付勢している。このため、図10及び図11に示す第2逆止弁50は、インジェクション配管6から供給される冷媒の圧力が第2圧縮室15aの冷媒の圧力に対してスプリング57の付勢力に対応した分だけ高くなった際、第2インジェクション流路32を開くこととなる。
以上、本実施の形態に係るロータリ圧縮機1は、密閉容器8と、該密閉容器8に収容されたロータリ型の圧縮機構部11と、を備えている。圧縮機構部11は、第1吸入口25aと、第1圧縮室14aと、第2吸入口25bと、第2圧縮室15aと、第1インジェクション流路31と、第2インジェクション流路32と、第1逆止弁40と、第2逆止弁50と、を備えている。第1圧縮室14aは、第1吸入口25aから吸入した冷媒を圧縮する圧縮室である。第2圧縮室15aは、第2吸入口25bから吸入した冷媒を圧縮する圧縮室である。第1インジェクション流路31は、第1吸入口25aとは異なる位置で第1圧縮室14aと連通し、第1圧縮室14aに冷媒をインジェクションする流路である。第2インジェクション流路32は、第2吸入口25bとは異なる位置で第2圧縮室15aと連通し、第2圧縮室15aに冷媒をインジェクションする流路である。第1逆止弁40は、第1インジェクション流路31に設けられ、第1圧縮室14aから第1インジェクション流路31に流出する冷媒の流れを規制する逆止弁である。第2逆止弁50は、第2インジェクション流路32に設けられ、第2圧縮室15aから第2インジェクション流路32に流出する冷媒の流れを規制する逆止弁である。第1逆止弁40は、往復動自在に設けられ、第1インジェクション流路31を開閉する第1弁体44を有している。この第1弁体44には、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が、第1インジェクション流路31を開く方向に作用する。また、この第1弁体44には、第1圧縮室14aの冷媒の圧力が、第1インジェクション流路31を閉じる方向に作用する。第2逆止弁50は、往復動自在に設けられ、第2インジェクション流路32を開閉する第2弁体54を有している。この第2弁体54には、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が、第2インジェクション流路32を開く方向に作用する。また、この第2弁体54には、第2圧縮室15aの冷媒の圧力が、第2インジェクション流路32を閉じる方向に作用する。
このように構成されたロータリ圧縮機1は、第1圧縮室14a内の冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも高い状態になると、第1インジェクション流路31と第1圧縮室14aとが連通しない状態となる。また、このように構成されたロータリ圧縮機1においては、第2圧縮室15a内の冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも高い状態になると、第2インジェクション流路32と第2圧縮室15aとが連通しない状態となる。したがって、本実施の形態に係るロータリ圧縮機1は、第1圧縮室14a及び第2圧縮室15aからの冷媒漏れを従来よりも抑制できる。
また、本実施の形態に係るロータリ圧縮機1は、第1逆止弁40及び第2逆止弁50を圧縮機構部11に備えているので、死容積を低減することもできる。
したがって、本実施の形態に係るロータリ圧縮機1は、従来よりも圧縮性能が向上する。
ここで、第1圧縮室14a及び第2圧縮室15aから冷媒が漏れ出した際、漏れ出した冷媒によって、第1圧縮室14a内及び第2圧縮室15a内の冷凍機油も、第1圧縮室14a及び第2圧縮室15aから漏れ出す。このため、第1圧縮室14a及び第2圧縮室15aからの冷媒漏れを従来よりも抑制できる本実施の形態に係るロータリ圧縮機1は、第1圧縮室14a及び第2圧縮室15aから冷凍機油が漏れ出すことも従来より抑制できる。したがって、本実施の形態に係るロータリ圧縮機1は、圧縮機構部11の各摺動部において冷凍機油が不足することも抑制でき、圧縮機構部11の故障を従来より抑制することもできる。
1 ロータリ圧縮機、2 蒸発器、3 凝縮器、4 膨張装置、5 インジェクション配管、6 インジェクション配管、7 吸入マフラ、8 密閉容器、9 モータ、9a 固定子、9b 回転子、10 クランクシャフト、10a 第1偏心部、10b 第2偏心部、11 圧縮機構部、12 上軸受、13 下軸受、14 上シリンダ、14a 第1圧縮室、15 下シリンダ、15a 第2圧縮室、16a 第1ピストン、16b 第2ピストン、17 中間板、18 上吐出マフラ、19 下吐出マフラ、20 油分離器、21 吐出配管、24a 第1ベーン、24b 第2ベーン、25a 第1吸入口、25b 第2吸入口、26a 第1吐出口、26b 第2吐出口、27a 第1吸入配管、27b 第2吸入配管、31 第1インジェクション流路、31a 逆止弁設置部、31b 凹部、31c 連通孔、32 第2インジェクション流路、32a 逆止弁設置部、32b 凹部、32c 連通孔、40 第1逆止弁、41 ケーシング、42 端部、42a 貫通孔、43 端部、43a 貫通孔、44 第1弁体、44a 第1貫通孔、45 第1受圧部、46 第2受圧部、47 スプリング、50 第2逆止弁、51 ケーシング、52 端部、52a 貫通孔、53 端部、53a 貫通孔、54 第2弁体、54a 第2貫通孔、55 第3受圧部、56 第4受圧部、57 スプリング、100 冷凍サイクル装置、201 ロータリ圧縮機(従来)、206 インジェクション配管(従来)、212 上軸受(従来)、213 下軸受(従来)、214 上シリンダ(従来)、214a 第1圧縮室(従来)、215 下シリンダ(従来)、215a 第2圧縮室(従来)、217 中間板(従来)、231 第1インジェクション流路(従来)、231b 凹部(従来)、231c 連通孔(従来)、232 第2インジェクション流路(従来)、232b 凹部(従来)、232c 連通孔(従来)、240 第1逆止弁(従来)、250 第2逆止弁(従来)。

Claims (5)

  1. 密閉容器と、
    該密閉容器に収容されたロータリ型の圧縮機構部と、
    を備え、
    前記圧縮機構部は、
    第1吸入口と、
    前記第1吸入口から吸入した冷媒を圧縮する第1圧縮室と、
    第2吸入口と、
    前記第2吸入口から吸入した冷媒を圧縮する第2圧縮室と、
    前記第1吸入口とは異なる位置で前記第1圧縮室と連通し、前記第1圧縮室に冷媒をインジェクションする第1インジェクション流路と、
    前記第2吸入口とは異なる位置で前記第2圧縮室と連通し、前記第2圧縮室に冷媒をインジェクションする第2インジェクション流路と、
    前記第1インジェクション流路に設けられ、前記第1圧縮室から前記第1インジェクション流路に流出する冷媒の流れを規制する第1逆止弁と、
    前記第2インジェクション流路に設けられ、前記第2圧縮室から前記第2インジェクション流路に流出する冷媒の流れを規制する第2逆止弁と、
    を備え、
    前記第1逆止弁は、往復動自在に設けられ、前記第1インジェクション流路を開閉する第1弁体を有し、
    該第1弁体には、
    前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力が、前記第1インジェクション流路を開く方向に作用し、
    前記第1圧縮室の冷媒の圧力が、前記第1インジェクション流路を閉じる方向に作用する構成であり、
    前記第2逆止弁は、往復動自在に設けられ、前記第2インジェクション流路を開閉する第2弁体を有し、
    該第2弁体には、
    前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力が、前記第2インジェクション流路を開く方向に作用し、
    前記第2圧縮室の冷媒の圧力が、前記第2インジェクション流路を閉じる方向に作用する構成であるロータリ圧縮機。
  2. 前記第1弁体は、
    前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力を受ける第1受圧部の面積が、前記第1圧縮室の冷媒の圧力を受ける第2受圧部の面積よりも大きい請求項1に記載のロータリ圧縮機。
  3. 前記第1弁体は、該第1弁体の往復動方向に貫通する第1貫通孔が形成され、
    該第1貫通孔は、前記第1圧縮室に向かうにしたがって直径が小さくなっている請求項2に記載のロータリ圧縮機。
  4. 前記第2弁体は、
    前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力を受ける第3受圧部の面積が、前記第2圧縮室の冷媒の圧力を受ける第4受圧部の面積よりも大きい請求項1〜請求項3のいずれか一項に記載のロータリ圧縮機。
  5. 前記第2弁体は、該第2弁体の往復動方向に貫通する第2貫通孔が形成され、
    該第2貫通孔は、前記第2圧縮室に向かうにしたがって直径が小さくなっている請求項4に記載のロータリ圧縮機。
JP2020504564A 2018-03-07 2018-03-07 ロータリ圧縮機 Active JP6910534B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008815 WO2019171508A1 (ja) 2018-03-07 2018-03-07 ロータリ圧縮機

Publications (2)

Publication Number Publication Date
JPWO2019171508A1 true JPWO2019171508A1 (ja) 2020-12-10
JP6910534B2 JP6910534B2 (ja) 2021-07-28

Family

ID=67845597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020504564A Active JP6910534B2 (ja) 2018-03-07 2018-03-07 ロータリ圧縮機

Country Status (3)

Country Link
JP (1) JP6910534B2 (ja)
CN (1) CN111788391B (ja)
WO (1) WO2019171508A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023040761A (ja) * 2021-09-10 2023-03-23 ダイキン工業株式会社 圧縮機、および、空気調和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113664A (ja) * 1997-06-27 1999-01-19 Daikin Ind Ltd ロータリ圧縮機
JPH11107950A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd 圧縮機のインジェクション装置
JPH11304037A (ja) * 1998-04-22 1999-11-05 Aisin Seiki Co Ltd バルブ
WO2018003016A1 (ja) * 2016-06-28 2018-01-04 三菱電機株式会社 スクロール圧縮機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699723B2 (ja) * 1991-11-12 1998-01-19 松下電器産業株式会社 逆止弁装置を備えた2段圧縮冷凍装置
CN202117924U (zh) * 2011-06-13 2012-01-18 广东美芝制冷设备有限公司 冷媒喷射式旋转压缩机
CN205101227U (zh) * 2015-10-26 2016-03-23 艾默生环境优化技术(苏州)有限公司 旋转式压缩机构及包括该旋转式压缩机构的压缩机和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113664A (ja) * 1997-06-27 1999-01-19 Daikin Ind Ltd ロータリ圧縮機
JPH11107950A (ja) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd 圧縮機のインジェクション装置
JPH11304037A (ja) * 1998-04-22 1999-11-05 Aisin Seiki Co Ltd バルブ
WO2018003016A1 (ja) * 2016-06-28 2018-01-04 三菱電機株式会社 スクロール圧縮機

Also Published As

Publication number Publication date
WO2019171508A1 (ja) 2019-09-12
CN111788391B (zh) 2022-10-04
JP6910534B2 (ja) 2021-07-28
CN111788391A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5358608B2 (ja) スクリュー圧縮機及びこれを用いたチラーユニット
US20070041852A1 (en) Rotary compressor
US8353693B2 (en) Fluid machine
JP5586537B2 (ja) ロータリ二段圧縮機
WO2015062048A1 (zh) 旋转式压缩机及制冷循环装置
KR101442549B1 (ko) 로터리 압축기
JPWO2011148453A1 (ja) 二段回転式圧縮機及びヒートポンプ装置
EP2423508A2 (en) capacity control for a screw compressor
KR101056882B1 (ko) 스크롤 압축기
WO2019202976A1 (ja) 密閉型圧縮機および冷凍サイクル装置
CN111322240A (zh) 旋转式压缩机和具有其的制冷系统
EP3184822B1 (en) Rotary compressor and refrigeration cycle device
JP6910534B2 (ja) ロータリ圧縮機
JP2003148366A (ja) 多段気体圧縮機
KR101587174B1 (ko) 로터리 압축기
WO2016076064A1 (ja) 回転式圧縮機及び冷凍サイクル装置
JP2012107568A (ja) ロータリ圧縮機及び冷凍サイクル装置
KR101044872B1 (ko) 스크롤 압축기
CN110520625B (zh) 密闭型压缩机以及制冷循环装置
WO2022269752A1 (ja) ロータリ圧縮機および冷凍サイクル装置
JP4384368B2 (ja) 密閉型回転圧縮機及び冷凍・空調装置
JP2017172346A (ja) スクロール圧縮機、及び、空気調和機
US10968911B2 (en) Oscillating piston-type compressor
JP5595324B2 (ja) 圧縮機
CN112412785B (zh) 压缩机及冷冻循环装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6910534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150