JPWO2019156038A1 - 低分子量ポリテトラフルオロエチレンの製造方法 - Google Patents

低分子量ポリテトラフルオロエチレンの製造方法 Download PDF

Info

Publication number
JPWO2019156038A1
JPWO2019156038A1 JP2019570742A JP2019570742A JPWO2019156038A1 JP WO2019156038 A1 JPWO2019156038 A1 JP WO2019156038A1 JP 2019570742 A JP2019570742 A JP 2019570742A JP 2019570742 A JP2019570742 A JP 2019570742A JP WO2019156038 A1 JPWO2019156038 A1 JP WO2019156038A1
Authority
JP
Japan
Prior art keywords
molecular weight
low molecular
weight ptfe
weight polytetrafluoroethylene
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019570742A
Other languages
English (en)
Other versions
JP7037085B2 (ja
Inventor
辻 雅之
雅之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2019156038A1 publication Critical patent/JPWO2019156038A1/ja
Application granted granted Critical
Publication of JP7037085B2 publication Critical patent/JP7037085B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

炭素数6〜14のパーフルオロカルボン酸及びその塩の含有量を低減させた低分子量ポリテトラフルオロエチレンの製造方法を提供する。高分子量ポリテトラフルオロエチレンに、放射線を照射して、380℃における溶融粘度が1.0×102〜7.0×105Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(1)、及び、前記低分子量ポリテトラフルオロエチレンに、前記低分子量ポリテトラフルオロエチレンが分解しない線量の放射線を照射する工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法である。

Description

本開示は、低分子量ポリテトラフルオロエチレンの製造方法に関する。
分子量数千から数十万の低分子量ポリテトラフルオロエチレン(「ポリテトラフルオロエチレンワックス」や「ポリテトラフルオロエチレンマイクロパウダー」とも呼ばれる)は、化学的安定性に優れ、表面エネルギーが極めて低いことに加え、フィブリル化が生じにくいので、滑り性や塗膜表面の質感を向上させる添加剤として、プラスチックス、インク、化粧品、塗料、グリース等の製造に用いられている(例えば、特許文献1参照)。
低分子量ポリテトラフルオロエチレンの製造方法としては、重合法、放射線分解法、熱分解法等が知られている。放射線分解法では、従来、空気雰囲気下で高分子量ポリテトラフルオロエチレンに放射線を照射して低分子量ポリテトラフルオロエチレンを得るのが一般的である。
特開平10−147617号公報
本開示は、炭素数6〜14のパーフルオロカルボン酸及びその塩の含有量を低減させた低分子量ポリテトラフルオロエチレンの製造方法を提供することを目的とする。
本開示は、高分子量ポリテトラフルオロエチレンに、放射線を照射して、380℃における溶融粘度が1.0×10〜7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(1)、及び、上記低分子量ポリテトラフルオロエチレンに、上記低分子量ポリテトラフルオロエチレンが分解しない線量の放射線を照射する工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法に関する。
工程(2)における線量は、0.1〜25kGyであることが好ましい。
工程(2)の実施後に得られる低分子量ポリテトラフルオロエチレンは、炭素数6〜14のパーフルオロカルボン酸及びその塩を実質的に含まないことが好ましい。
上記高分子量ポリテトラフルオロエチレンは、標準比重が2.130〜2.230であることが好ましい。
上記高分子量ポリテトラフルオロエチレン及び上記低分子量ポリテトラフルオロエチレンがいずれも粉末であることが好ましい。
工程(1)の前に、更に、上記高分子量ポリテトラフルオロエチレンを、その一次融点以上に加熱することにより成形品を得る工程(3)を含み、上記成形品は、比重が1.0g/cm以上であることが好ましい。
本開示によれば、炭素数6〜14のパーフルオロカルボン酸及びその塩の含有量を低減させた低分子量ポリテトラフルオロエチレンの製造方法を提供することができる。
以下、本開示を具体的に説明する。
本開示は、高分子量ポリテトラフルオロエチレン(PTFE)に、放射線を照射して、380℃における溶融粘度が1.0×10〜7.0×10Pa・sである低分子量PTFEを得る工程(1)、及び、上記低分子量PTFEに、上記低分子量PTFEが分解しない線量の放射線を照射する工程(2)を含むことを特徴とする低分子量PTFEの製造方法に関する。
従来の照射条件で上記高分子量PTFEに放射線を照射すると、上記高分子量PTFEよりも溶融粘度が大きい上記低分子量PTFEが生成すると同時に、炭素数6〜14のパーフルオロカルボン酸又はその塩が生成する。これらの化合物には、自然界には存在せず分解され難い物質であり、更には、生物蓄積性が高いことが指摘されている炭素数が8のパーフルオロオクタン酸又はその塩、炭素数が9のパーフルオロノナン酸又はその塩、及び炭素数が10、11、12、13、14の、それぞれパーフルオロデカン酸パーフルオロウンデカン酸、パーフルオロドデカン酸、パーフルオロトリデカン酸、パーフルオロテトラデカン酸、又はそれぞれの塩、が含まれている。
従来の照射条件で高分子量PTFEに放射線を照射した場合、炭素数8のパーフルオロオクタン酸又はその塩が25ppb以上生成してしまう。
本開示の製造方法では、低分子量化(工程(1))を実施した後に、工程(2)において低分子量PTFEが分解しない比較的低線量の放射線を照射することにより、上記パーフルオロカルボン酸及びその塩を上記低分子量PTFEから除去できる。
また、低分子量PTFEには炭素数6〜14のパーフルオロスルホン酸又はその塩が含まれることもあるが、本開示の製造方法によれば、これらの化合物も除去することができる。
工程(1)において、上記高分子量PTFEへの上記放射線の照射は、従来公知の方法及び条件により行うことができる。
上記放射線としては、電離性放射線であれば特に限定されず、電子線、ガンマ線、X線、中性子線、高エネルギーイオン等が挙げられるが、電子線又はガンマ線が好ましい。
上記放射線の照射線量としては、30〜2500kGyが好ましく、1000kGy以下がより好ましく、750kGy以下が更に好ましい。また、50kGy以上がより好ましい。上記放射線の照射線量は、分解(低分子量化)したいPTFEの分子量(後述する標準比重)に応じて決定される。
上記放射線の照射温度としては、5℃以上、PTFEの融点以下であれば特に限定されない。融点近傍付近ではPTFEの分子鎖が架橋することも知られており、低分子量PTFEを得る上では、320℃以下が好ましく、300℃以下がより好ましく、260℃以下が更に好ましい。経済的には常温で照射することが好ましい。
工程(1)において、上記放射線の照射は、従来と同様の雰囲気中で実施してもよく、例えば、空気中等で実施できる。低コストで実施できる観点からは、空気中での照射が好ましい。
工程(1)においては、好ましくは、平均粒子径が500μm以下である上記低分子量PTFEの粒子が得られる。上記低分子量PTFEの粒子の平均粒子径は、300μm以下がより好ましく、100μm以下が更に好ましい。また、下限については特に限定されないが、30μm超であってよい。上記低分子量PTFEの粒子の平均粒子径が上記範囲内にあると、平均粒子径の比較的小さい低分子量PTFEの粉末を容易に得ることができる。
上記平均粒子径は、日本電子株式会社製レーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて、カスケードは使用せず、分散圧力1.0barで測定を行い、粒度分布積算の50%に対応する粒子径に等しいとする。
工程(2)における放射線の照射は、工程(1)で得られた低分子量PTFEが分解しない線量で行う。このように、工程(1)で高分子量PTFEを低分子量化する(分解する)ための放射線照射を行った後で、低分子量PTFEが分解しない比較的低線量の照射を行うことにより、工程(1)で生成した炭素数6〜14のパーフルオロカルボン酸及びその塩を除去することができる。
上記放射線の照射線量としては、例えば、0.1〜25kGyが好ましく、20kGy以下がより好ましく、15kGy以下が更に好ましい。また、0.5kGy以上がより好ましく、1.0kGy以上が更に好ましい。
工程(2)における照射に用いる放射線の種類、照射温度、雰囲気としては、工程(1)における照射と同様のものが挙げられる。
本開示の製造方法は、工程(1)の前に、更に、上記高分子量PTFEを、その一次融点以上に加熱することにより成形品を得る工程(3)を含むこともできる。この場合、工程(3)で得られた成形品を工程(1)における上記高分子量PTFEとして使用することができる。上記一次融点は、好ましくは300℃以上、より好ましくは310℃以上、更に好ましくは320℃以上である。上記一次融点は、未焼成の高分子量PTFEを示差走査熱量計で測定した場合に、結晶融解曲線上に現れる吸熱カーブの最大ピーク温度を意味する。上記吸熱カーブは、示差走査熱量計を用いて、昇温速度10℃/分の条件で昇温させて得られたものである。
工程(3)における上記成形品は、比重が1.0g/cm以上であることが好ましく、1.5g/cm以上であることがより好ましく、また、2.5g/cm以下であることが好ましい。上記成形品の比重が上記範囲内にあると、表面の細孔や凸凹が小さくなり、結果的に比表面積の小さい低分子量PTFEを得ることが出来る。
上記比重は、水中置換法により測定することができる。
本開示の製造方法は、工程(3)の後に、更に、上記成形品を粉砕して、上記PTFEの粉末を得る工程を含むこともできる。上記成形品を粗く粉砕してから、更に小さく粉砕してもよい。
本開示の製造方法は、更に、工程(2)の実施後に得られる低分子量PTFEを粉砕する工程(4)を含むこともできる。これにより、平均粒子径の小さい低分子量PTFEの粉末が得られる。
次に、本開示の製造方法の工程(1)において放射線を照射する高分子量PTFE、及び、放射線を照射した後に得られる低分子量PTFEについて説明する。
上記低分子量PTFEは、380℃における溶融粘度が1.0×10〜7.0×10Pa・sである。本開示において、「低分子量」とは、上記溶融粘度が上記の範囲内にあることを意味する。
上記溶融粘度は、1.5×10Pa・s以上であることが好ましく、また、3.0×10Pa・s以下であることが好ましく、1.0×10Pa・s以下であることがより好ましい。
上記溶融粘度は、ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ−8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定した値である。
上記放射線を照射する上記高分子量PTFEは、標準比重(SSG)が2.130〜2.230であることが好ましい。上記標準比重(SSG)はASTM D 4895に準拠し、測定した値である。
上記高分子量PTFEは、上記低分子量PTFEよりも溶融粘度が極めて高く、その正確な溶融粘度を測定することは困難である。他方、低分子量PTFEの溶融粘度は測定可能であるが、低分子量PTFEからは、標準比重の測定に使用可能な成形品を得ることが難しく、その正確な標準比重を測定することが困難である。従って、本開示では、放射線を照射する上記高分子量PTFEの分子量の指標として、標準比重を採用し、上記低分子量PTFEの分子量の指標として、溶融粘度を採用する。なお、上記高分子量PTFE及び上記低分子量PTFEのいずれについても、直接に分子量を特定できる測定方法は知られていない。
上記低分子量PTFEは、融点が320〜340℃であることが好ましく、324〜336℃であることがより好ましい。
上記融点は、示差走査熱量計(DSC)を用い、事前に標準サンプルとして、インジウム、鉛を用いて温度校正した上で、低分子量PTFE約3mgをアルミ製パン(クリンプ容器)に入れ、200ml/分のエアー気流下で、250〜380℃の温度領域を10℃/分で昇温させて行い、上記領域における融解熱量の極小点を融点とする。
本開示の製造方法において、上記高分子量PTFEの形状は特に限定されず、粉末であってもよいし、上記高分子量PTFEの成形品であってもよいし、上記高分子量PTFEの成形品を切削加工した場合に生じる切削屑であってもよい。上記高分子量PTFEが粉末であると、上記低分子量PTFEの粉末を容易に得ることができる。
また、本開示の製造方法によって得られる低分子量PTFEの形状は、特に限定されないが、粉末であることが好ましい。
本開示の製造方法によって得られる低分子量PTFEが粉末である場合、比表面積が0.5〜20m/gであることが好ましい。上記比表面積としては、7.0m/g以上がより好ましい。
低分子量PTFE粉末としては、比表面積が0.5m/g以上、7.0m/g未満の比表面積の低いタイプと、比表面積が7.0m/g以上、20m/g以下の比表面積の高いタイプがそれぞれ求められている。
比表面積の低いタイプの低分子量PTFE粉末は、例えば塗料等のマトリクス材料に容易に分散する利点がある一方、マトリクス材料への分散粒径が大きく、微分散に劣る。
比表面積の低いタイプの低分子量PTFE粉末の比表面積は、1.0m/g以上が好ましく、5.0m/g以下が好ましく、3.0m/g以下がより好ましい。マトリクス材料としては、プラスチック、インクの他、塗料等も好適に用いられる。
比表面積の高いタイプの低分子量PTFE粉末は、例えば塗料等のマトリクス材料に分散させた場合、マトリクス材料への分散粒径が小さく、塗膜表面の質感を向上させる等、表面を改質する効果が高く、吸油量も多くなるが、マトリクス材料への分散に必要な時間が長い等容易に分散しないおそれがあり、また、塗料等の粘度が上昇するおそれもある。
比表面積の高いタイプの低分子量PTFE粉末の比表面積は、8.0m/g以上が好ましく、25m/g以下が好ましく、20m/g以下がより好ましい。マトリクス材料としては、オイル、グリース、塗料の他、プラスチック等も好適に用いられる。
上記比表面積は、表面分析計(商品名:BELSORP−miniII、マイクロトラック・ベル株式会社製)を用い、キャリアガスとして窒素30%、ヘリウム70%の混合ガスを用い、冷却に液体窒素を用いて、BET法により測定する。
本開示の製造方法によって得られる低分子量PTFEが粉末である場合、平均粒子径が0.5〜200μmであることが好ましく、50μm以下がより好ましく、25μm以下が更に好ましく、10μm以下が特に好ましく、5μm以下が殊更好ましい。下限は、1.0μmであってよい。このように、平均粒子径が比較的小さい粉末であることで、例えば、塗料の添加剤として用いた場合等に、より優れた表面平滑性を有する塗膜を形成することができる。
上記平均粒子径は、日本電子株式会社製レーザー回折式粒度分布測定装置(HELOS&RODOS)を用いて、カスケードは使用せず、分散圧力1.0barで測定を行い、粒度分布積算の50%に対応する粒子径に等しいとする。
本開示の製造方法では、工程(2)を実施した後に、炭素数6〜14のパーフルオロカルボン酸及びその塩を実質的に含まない低分子量PTFEを得ることができる。本開示の製造方法により得られる低分子量PTFEは、炭素数6〜14のパーフルオロカルボン酸及びその塩の総量が質量基準で50ppb以下であることが好ましく、25ppb未満であることがより好ましく、15ppb以下であることが更に好ましく、10ppb以下であることが更により好ましく、5ppb以下であることが特に好ましく、5ppb未満であることが最も好ましい。下限は特に限定されず、検出限界未満の量であってよい。
上記パーフルオロカルボン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
また、本開示の製造方法により得られる低分子量PTFEは、パーフルオロオクタン酸及びその塩を実質的に含まない点にも特徴がある。本開示の製造方法により得られる低分子量PTFEは、パーフルオロオクタン酸及びその塩の量が質量基準で25ppb未満であることが好ましい。15ppb以下であることがより好ましく、10ppb以下であることが更に好ましく、5ppb以下であることが更により好ましく、5ppb未満であることが特に好ましい。下限は特に限定されず、検出限界未満の量であってよい。
上記パーフルオロオクタン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
また、本開示の製造方法により得られる低分子量PTFEは、炭素数6〜14のパーフルオロスルホン酸及びその塩を実質的に含まない点にも特徴がある。本開示の製造方法により得られる低分子量PTFEは、炭素数6〜14のパーフルオロスルホン酸及びその塩の量が質量基準で25ppb未満であることが好ましい。15ppb以下であることがより好ましく、10ppb以下であることが更に好ましく、5ppb以下であることが更により好ましく、5ppb未満であることが特に好ましい。下限は特に限定されず、検出限界未満の量であってよい。
上記パーフルオロスルホン酸及びその塩の量は、液体クロマトグラフィーにより測定できる。
上記低分子量PTFEは、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有していることが好ましい。上記カルボキシル基は、主鎖炭素数10個あたり35個以上がより好ましい。また、上記カルボキシル基の上限値は特に限定されないが、例えば、主鎖炭素数10個あたり500個が好ましく、350個がより好ましい。上記カルボキシル基は、例えば、上記高分子量PTFEに酸素存在下で上記放射線を照射することにより、上記低分子量PTFEの分子鎖末端に生じる。上記高分子量PTFEの変性量によって放射線照射後のカルボキシル基数が増加する。上記低分子量PTFEは、分子鎖末端に主鎖炭素数10個あたり30個以上のカルボキシル基を有することにより、成形材料、インク、化粧品、塗料、グリース、オフィスオートメーション機器用部材、トナーを改質する添加剤、めっき液への添加剤等との分散性に優れる。例えば、マイクロパウダーは、摺動性や摩耗量低下、鳴き防止、撥水性・撥油性向上を目的として、ハイドロカーボン系のマトリックス樹脂やインク、塗料に配合されるが、パーフルオロ樹脂であるマイクロパウダーは、もともと上記マトリックス樹脂やインク、塗料とはなじみが悪く、均一に分散することが難しい。一方、高分子PTFEを照射分解して製造されたマイクロパウダーは、その製法故に副生成物としてPFOA(パーフルオロオクタン酸及びその塩)やカルボキシル基が生成される。得られたマイクロパウダーの末端他に存在するカルボキシル基は、結果的にハイドロカーボン系である上記マトリックス樹脂やインク、塗料への分散剤としても作用する。
上記カルボキシル基の数は、下記方法により測定した値である。この測定方法による検出限界は0.5個である。
(測定方法)
特開平4−20507号公報記載の末端基の分析方法に準拠し、以下の測定を行う。
低分子量PTFE粉末をハンドプレスにて予備成形し、およそ0.1mm厚みのフィルムを作製する。作製したフィルムについて赤外吸収スペクトル分析する。PTFEにフッ素ガスを接触させて作製した末端を完全フッ素化したPTFEの赤外吸収スペクトル分析も行い、両者の差スペクトルから次式により末端カルボキシル基の個数を算出する。
末端カルボキシル基の個数(炭素数10個あたり)=(l×K)/t
l:吸光度
K:補正係数
t:フィルムの厚み(mm)
カルボキシル基の吸収周波数は3560cm−1、補正係数は440とする。
上記低分子量PTFEの分子鎖末端には、上記PTFEの重合反応において使用された重合開始剤又は連鎖移動剤の化学構造に由来する不安定末端基が生じていてもよい。上記不安定末端基としては特に限定されず、例えば、−CHOH、−COOH、−COOCH等が挙げられる。
上記低分子量PTFEは、不安定末端基の安定化を行ったものであってもよい。上記不安定末端基の安定化の方法としては特に限定されず、例えば、フッ素含有ガスに曝露することにより末端をトリフルオロメチル基〔−CF〕に変化させる方法等が挙げられる。
上記低分子量PTFEはまた、末端アミド化を行ったものであってもよい。上記末端アミド化の方法としては特に限定されず、例えば、特開平4−20507号公報に開示されているように、フッ素含有ガスに曝露する等して得られたフルオロカルボニル基〔−COF〕をアンモニアガスと接触させる方法等が挙げられる。
上記低分子量PTFEが上述の不安定末端基の安定化又は末端アミド化を行ったものであると、塗料、グリース、化粧品、メッキ液、トナー、プラスチックス等の相手材への添加剤として用いる場合に、相手材となじみやすく、分散性を向上させることができる。
上記高分子量PTFEは、テトラフルオロエチレン(TFE)単位のみからなるホモPTFEであってもよいし、TFE単位及びTFEと共重合可能な変性モノマーに基づく変性モノマー単位を含む変性PTFEであってもよい。本開示の製造方法において、ポリマーの組成は変化しないので、上記低分子量PTFEは、上記高分子量PTFEが有する組成をそのまま有する。
上記変性PTFEにおいて、上記変性モノマー単位の含有量は、全単量体単位の0.001〜1質量%であることが好ましく、0.01質量%以上がより好ましく、また、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。本明細書において、上記変性モノマー単位とは、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味し、全単量体単位とは、変性PTFEの分子構造における全ての単量体に由来する部分を意味する。上記変性モノマー単位の含有量は、フーリエ変換型赤外分光法(FT−IR)等の公知の方法により求めることができる。
上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン;エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(1)
CF=CF−ORf(1)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(1)において、Rfが炭素数1〜10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1〜5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロプロピル基であるパープルオロ(プロピルビニルエーテル)〔PPVE〕が好ましい。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(1)において、Rfが炭素数4〜9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure 2019156038
(式中、mは、0又は1〜4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure 2019156038
(式中、nは、1〜4の整数を表す。)で表される基であるもの等が挙げられる。
パーフルオロアルキルエチレンとしては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン、(パーフルオロオクチル)エチレン等が挙げられる。
上記変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PPVE、PFBE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。より好ましくは、PPVE、HFP及びCTFEからなる群より選択される少なくとも1種である。
本開示の製造方法により得られる低分子量PTFEは、成形材料、インク、化粧品、塗料、グリース、オフィスオートメーション機器用部材、トナーを改質する添加剤、複写機の有機感光体材料、めっき液への添加剤等として好適に使用することができる。上記成形材料としては、例えば、ポリオキシベンゾイルポリエステル、ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド等のエンジニアリングプラスチックが挙げられる。上記低分子量PTFEは、特に、グリース用粘稠剤として好適である。
上記低分子量PTFEは、成形材料の添加剤として、例えば、コピーロールの非粘着性・摺動特性の向上、家具の表層シート、自動車のダッシュボード、家電製品のカバー等のエンジニアリングプラスチック成形品の質感を向上させる用途、軽荷重軸受、歯車、カム、プッシュホンのボタン、映写機、カメラ部品、摺動材等の機械的摩擦を生じる機械部品の滑り性や耐摩耗性を向上させる用途に用いることができる。
上記低分子量PTFEは、塗料の添加剤として、ニスやペンキの滑り性向上の目的に用いることができる。上記低分子量PTFE及び上記粉末は、化粧品の添加剤として、ファンデーション等の化粧品の滑り性向上等の目的に用いることができる。
上記低分子量PTFEは、更に、ワックス等の撥油性又は撥水性を向上させる用途や、グリースやトナーの滑り性を向上させる用途にも好適である。
上記低分子量PTFEは、二次電池や燃料電池の電極バインダー、電極バインダーの硬度調整剤、電極表面の撥水処理剤等としても使用できる。
上記低分子量PTFEと潤滑油とを使用してグリースを調製することもできる。上記グリースは、上記低分子量PTFEと潤滑油とを含有することを特徴とすることから、潤滑油中に上記低分子量PTFEが均一かつ安定に分散しており、耐荷重性、電気絶縁性、低吸湿性等の特性に優れている。
上記潤滑油(基油)は、鉱物油であっても、合成油であってもよい。上記潤滑油(基油)としては、例えば、パラフィン系やナフテン系の鉱物油、合成炭化水素油、エステル油、フッ素オイル、シリコーンオイルのような合成油等が挙げられる。耐熱性の観点からはフッ素オイルが好ましい。上記フッ素オイルとしては、パーフルオロポリエーテルオイル、三フッ化塩化エチレンの低重合物等が挙げられる。三フッ化塩化エチレンの低重合物は、重量平均分子量が500〜1200であってよい。
上記グリースは、更に、増稠剤を含むものであってもよい。上記増稠剤としては、金属石けん、複合金属石けん、ベントナイト、フタロシアニン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物、イミド化合物等が挙げられる。上記金属石けんとしては、例えばナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられる。また上記ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えばジウレア化合物、トリウレア化合物、テトラウレア化合物、その他のポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。
上記グリースは、上記低分子量PTFEを0.1〜60質量%含むことが好ましく、0.5質量%以上含むことがより好ましく、5質量%以上含むことが更に好ましく、50質量%以下含むことがより好ましい。上記低分子量PTFEの量が多すぎると、グリースが硬くなりすぎて、充分な潤滑性を発揮できないおそれがあり、上記低分子量PTFEの量が少なすぎると、シール性が発揮できないおそれがある。
上記グリースは、固体潤滑剤、極圧剤、酸化防止剤、油性剤、さび止め剤、粘度指数向上剤、清浄分散剤等を含むこともできる。
次に実施例を挙げて本開示を更に詳しく説明するが、本開示はこれらの実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
溶融粘度
ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ−8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定を行った。
パーフルオロオクタン酸及びその塩(PFOA)の含有量
液体クロマトグラフ質量分析計(Waters, LC−MS ACQUITY UPLC/TQD)を用い、パーフルオロオクタン酸及びその塩の含有量の測定を行った。測定粉末1gにアセトニトリル5mlを加え、60分間の超音波処理を行い、パーフルオロオクタン酸を抽出した。得られた液相について、MRM(Multiple Reaction Monitoring)法を用いて測定した。移動相としてアセトニトリル(A)と酢酸アンモニウム水溶液(20mmol/L)(B)を、濃度勾配(A/B=40/60−2min−80/20−1min)で送液した。分離カラム(ACQUITY UPLC BEH C18 1.7μm)を使用し、カラム温度は40℃、注入量は5μLとした。イオン化法はESI(Electrospray ionization)Negativeを使用し、コーン電圧は25Vに設定し、プリカーサーイオン分子量/プロダクトイオン分子量は413/369を測定した。パーフルオロオクタン酸及びその塩の含有量は外部標準法を用い、算出した。この測定における検出限界は5ppbである。
炭素数6〜14のパーフルオロカルボン酸及びその塩(PFC)の含有量
液体クロマトグラフ質量分析計(Waters, LC−MS ACQUITY UPLC/TQD)を用い、炭素数6〜14のパーフルオロカルボン酸及びその塩を測定した。溶液はパーフルオロオクタン酸の測定にて抽出した液相を使用し、MRM法を用いて測定した。測定条件はパーフルオロオクタン酸の測定条件から、濃度勾配を変更し(A/B=10/90−1.5min−90/10−3.5min)、プリカーサーイオン分子量/プロダクトイオン分子量は、パーフルオロヘキサン酸(炭素数6)は313/269、パーフルオロヘプタン酸(炭素数7)は363/319、パーフルオロオクタン酸(炭素数8)は413/369、パーフルオロノナン酸(炭素数9)は463/419、パーフルオロデカン酸(炭素数10)は513/469、パーフルオロウンデカン酸(炭素数11)は563/519、パーフルオロドデカン酸(炭素数12)は613/569、パーフルオロトリデカン酸(炭素数13)は663/619、パーフルオロテトラデカン酸(炭素数14)は713/669を測定した。
炭素数6〜14のパーフルオロカルボン酸及びその塩の合計量は、上記測定より得られたパーフルオロオクタン酸の含有量(X)から下記式を用いて算出した。この測定における検出限界は5ppbである。
(AC6+AC7+AC8+AC9+AC10+AC11+AC12+AC13+AC14)/AC8×X
C6:パーフルオロヘキサン酸のピーク面積
C7:パーフルオロヘプタン酸のピーク面積
C8:パーフルオロオクタン酸のピーク面積
C9:パーフルオロノナン酸のピーク面積
C10:パーフルオロデカン酸のピーク面積
C11:パーフルオロウンデカン酸のピーク面積
C12:パーフルオロノデカン酸のピーク面積
C13:パーフルオロトリデカン酸のピーク面積
C14:パーフルオロテトラデカン酸のピーク面積
X:MRM法を用いた測定結果から外部標準法を用いて算出したパーフルオロオクタン酸の含有量
比較例1
市販のホモPTFEファインパウダー(ASTM D 4895に準拠し、測定した標準比重:2.175、PFC及びPFOAの濃度は検出限界以下である)に、室温にて空気中においてコバルト−60γ線を200kGy照射して、低分子量PTFE粉末を得た。
得られた低分子量PTFE粉末の各種物性を測定した。結果を表1に示す。
実施例1
比較例1で得られた低分子量PTFE粉末に、室温にて空気中においてコバルト−60γ線を1kGy照射して、低分子量PTFE粉末を得た。
比較例1と同様に、得られた低分子量PTFE粉末の各種物性を測定した。結果を表1に示す。
実施例2〜4
比較例1で得られた低分子量PTFE粉末に照射する放射線の線量を表1に示すように変更した点以外は実施例1と同様にして、低分子量PTFE粉末を得た。
比較例1と同様に、得られた低分子量PTFE粉末の各種物性を測定した。結果を表1に示す。
比較例2〜4
ホモPTFEファインパウダーに照射する放射線の線量を表1に示すように変更した点以外は比較例1と同様にして、低分子量PTFE粉末を得た。
比較例1と同様に、得られた低分子量PTFE粉末の各種物性を測定した。結果を表1に示す。
Figure 2019156038

Claims (6)

  1. 高分子量ポリテトラフルオロエチレンに、放射線を照射して、380℃における溶融粘度が1.0×10〜7.0×10Pa・sである低分子量ポリテトラフルオロエチレンを得る工程(1)、及び、前記低分子量ポリテトラフルオロエチレンに、前記低分子量ポリテトラフルオロエチレンが分解しない線量の放射線を照射する工程(2)を含むことを特徴とする低分子量ポリテトラフルオロエチレンの製造方法。
  2. 工程(2)における線量は、0.1〜25kGyである請求項1記載の製造方法。
  3. 工程(2)の実施後に得られる低分子量ポリテトラフルオロエチレンは、炭素数6〜14のパーフルオロカルボン酸及びその塩を実質的に含まない請求項1又は2記載の製造方法。
  4. 前記高分子量ポリテトラフルオロエチレンは、標準比重が2.130〜2.230である請求項1、2又は3記載の製造方法。
  5. 前記高分子量ポリテトラフルオロエチレン及び前記低分子量ポリテトラフルオロエチレンがいずれも粉末である請求項1、2、3又は4記載の製造方法。
  6. 工程(1)の前に、更に、前記高分子量ポリテトラフルオロエチレンを、その一次融点以上に加熱することにより成形品を得る工程(3)を含み、前記成形品は、比重が1.0g/cm以上である請求項1、2、3、4又は5記載の製造方法。
JP2019570742A 2018-02-07 2019-02-05 低分子量ポリテトラフルオロエチレンの製造方法 Active JP7037085B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018020457 2018-02-07
JP2018020457 2018-02-07
PCT/JP2019/003936 WO2019156038A1 (ja) 2018-02-07 2019-02-05 低分子量ポリテトラフルオロエチレンの製造方法

Publications (2)

Publication Number Publication Date
JPWO2019156038A1 true JPWO2019156038A1 (ja) 2020-12-03
JP7037085B2 JP7037085B2 (ja) 2022-03-16

Family

ID=67549046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019570742A Active JP7037085B2 (ja) 2018-02-07 2019-02-05 低分子量ポリテトラフルオロエチレンの製造方法

Country Status (5)

Country Link
US (1) US11542375B2 (ja)
EP (1) EP3730540B1 (ja)
JP (1) JP7037085B2 (ja)
CN (1) CN111683998B (ja)
WO (1) WO2019156038A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791423B1 (ja) 2019-12-25 2020-11-25 ダイキン工業株式会社 冷凍サイクル装置、冷凍機油および冷媒漏洩防止剤

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891190A (ja) * 1971-11-30 1973-11-27 Japan Atomic Energy Res Inst
JPH01294010A (ja) * 1988-05-19 1989-11-28 Shamrock Chem Corp 材料の放射処理装置および方法
JPH0491134A (ja) * 1990-08-07 1992-03-24 Sumitomo Heavy Ind Ltd ポリマーの微粉末化方法
JP2002105124A (ja) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology 低分子量フッ素樹脂を原料とする多孔質炭素材料の製造方法及びその用途
JP2002327067A (ja) * 2001-05-07 2002-11-15 Reitekku:Kk 架橋フッ素樹脂の製造方法
JP2005523964A (ja) * 2002-04-23 2005-08-11 ラウレル プロダクツ,エルエルシー フルオロポリマーを処理する方法、およびその生成物
JP2006063140A (ja) * 2004-08-25 2006-03-09 Asahi Glass Co Ltd 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
JP2015078374A (ja) * 2008-09-30 2015-04-23 株式会社レイテック 成形加工が可能なポリテトラフルオロエチレン樹脂と応用製品およびその製造方法
WO2018026012A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末
WO2018026017A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921026B2 (ja) 1990-05-14 1999-07-19 ダイキン工業株式会社 テトラフルオロエチレン共重合体およびその製法
JP3931382B2 (ja) 1996-09-18 2007-06-13 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末及びその製造方法
US6824872B2 (en) * 2002-04-23 2004-11-30 Laurel Products Llc Surface-treating fluoropolymer powders using atmospheric plasma
CN103172880B (zh) * 2013-04-03 2015-02-04 太仓金凯特种线缆有限公司 γ射线制备PTFE超细粉的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891190A (ja) * 1971-11-30 1973-11-27 Japan Atomic Energy Res Inst
JPH01294010A (ja) * 1988-05-19 1989-11-28 Shamrock Chem Corp 材料の放射処理装置および方法
JPH0491134A (ja) * 1990-08-07 1992-03-24 Sumitomo Heavy Ind Ltd ポリマーの微粉末化方法
JP2002105124A (ja) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology 低分子量フッ素樹脂を原料とする多孔質炭素材料の製造方法及びその用途
JP2002327067A (ja) * 2001-05-07 2002-11-15 Reitekku:Kk 架橋フッ素樹脂の製造方法
JP2005523964A (ja) * 2002-04-23 2005-08-11 ラウレル プロダクツ,エルエルシー フルオロポリマーを処理する方法、およびその生成物
JP2006063140A (ja) * 2004-08-25 2006-03-09 Asahi Glass Co Ltd 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
JP2015078374A (ja) * 2008-09-30 2015-04-23 株式会社レイテック 成形加工が可能なポリテトラフルオロエチレン樹脂と応用製品およびその製造方法
WO2018026012A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末
WO2018026017A1 (ja) * 2016-08-04 2018-02-08 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末

Also Published As

Publication number Publication date
JP7037085B2 (ja) 2022-03-16
EP3730540B1 (en) 2022-07-27
EP3730540A4 (en) 2021-08-18
WO2019156038A1 (ja) 2019-08-15
US20210371603A1 (en) 2021-12-02
CN111683998B (zh) 2023-05-12
EP3730540A1 (en) 2020-10-28
US11542375B2 (en) 2023-01-03
CN111683998A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
US12006407B2 (en) Method for producing low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene, and powder
US10538605B2 (en) Method for producing low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene, and powder
JP6590096B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法及び粉末
JP6860093B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法
US20220127391A1 (en) Method for producing low-molecular weight polytetrafluoroethylene, and powder
JP7037085B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法
JP6927445B1 (ja) 低分子量ポリテトラフルオロエチレンの製造方法及び粉末

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7037085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151