JPWO2019143576A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019143576A5
JPWO2019143576A5 JP2020560110A JP2020560110A JPWO2019143576A5 JP WO2019143576 A5 JPWO2019143576 A5 JP WO2019143576A5 JP 2020560110 A JP2020560110 A JP 2020560110A JP 2020560110 A JP2020560110 A JP 2020560110A JP WO2019143576 A5 JPWO2019143576 A5 JP WO2019143576A5
Authority
JP
Japan
Prior art keywords
electrode layer
storage device
energy storage
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020560110A
Other languages
Japanese (ja)
Other versions
JP7337844B2 (en
JP2021510919A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/013544 external-priority patent/WO2019143576A1/en
Publication of JP2021510919A publication Critical patent/JP2021510919A/en
Publication of JPWO2019143576A5 publication Critical patent/JPWO2019143576A5/ja
Priority to JP2023135522A priority Critical patent/JP2023164458A/en
Application granted granted Critical
Publication of JP7337844B2 publication Critical patent/JP7337844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (20)

電気的に絶縁の基板にわたって横方向で隣接して配置される第1の集電層および第2の集電層と、
前記第1の集電層にわたる第1の種類の第1の電極層と、
前記第1の電極層にわたる分離体と、
前記第2の集電層から鉛直方向で延びる基礎部分、および、前記第1の電極層に重なるように前記基礎部分から前記横方向に延びる横延在部分を備える、前記第1の種類と異なる第2の種類の第2の電極層と
を備え、
前記第1の集電層、前記第1の電極層、前記分離体、前記第2の電極層、および前記第2の集電層のうちの1つまたは複数は、印刷された層を備える、エネルギー貯蔵装置。
A first collector layer and a second collector layer arranged laterally adjacent to each other across an electrically insulated substrate,
The first type of first electrode layer over the first current collector layer and
With the separator over the first electrode layer,
It is different from the first type, which includes a foundation portion extending in the vertical direction from the second current collector layer and a laterally extending portion extending in the lateral direction from the foundation portion so as to overlap the first electrode layer. With a second type of second electrode layer,
One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer, and the second current collector layer comprises a printed layer. Energy storage device.
前記エネルギー貯蔵装置は、前記エネルギー貯蔵装置によって電力供給されるように構成される主要装置と、前記電気的に絶縁の基板の同じ側に印刷される、請求項1に記載のエネルギー貯蔵装置。 The energy storage device according to claim 1, wherein the energy storage device is printed on the same side of the electrically insulated substrate as a main device configured to be powered by the energy storage device. 前記電気的に絶縁の基板は高分子基板を備える、請求項1に記載のエネルギー貯蔵装置。 The energy storage device according to claim 1, wherein the electrically insulated substrate comprises a polymer substrate. 前記電気的に絶縁の基板は柔軟な基板を備える、請求項1に記載のエネルギー貯蔵装置。 The energy storage device according to claim 1, wherein the electrically insulated substrate comprises a flexible substrate. 前記分離体は、
前記横方向において、前記第2の電極層の前記基礎部分と前記第1の電極層の側面との間で介在させられる鉛直部分と、
前記鉛直方向において、前記第2の電極層の前記横延在部分と前記第1の電極層との間で介在させられる水平部分と
を備える、請求項1~4の何れか一項に記載のエネルギー貯蔵装置。
The separated body is
In the lateral direction, a vertical portion interposed between the foundation portion of the second electrode layer and the side surface of the first electrode layer, and
The invention according to any one of claims 1 to 4, further comprising a horizontally extending portion of the second electrode layer and a horizontal portion interposed between the first electrode layer in the vertical direction. Energy storage device.
前記第2の電極層の前記基礎部分は、前記第2の電極層の前記横延在部分の厚さより厚い幅を有する、請求項1~4の何れか一項に記載のエネルギー貯蔵装置。 The energy storage device according to any one of claims 1 to 4 , wherein the foundation portion of the second electrode layer has a width thicker than the thickness of the laterally extending portion of the second electrode layer. 前記第2の電極層の前記基礎部分の前記幅は、2倍から10倍の間で前記第2の電極層の前記横延在部分の前記厚さより大きい、請求項6に記載のエネルギー貯蔵装置。 The energy storage device of claim 6, wherein the width of the foundation portion of the second electrode layer is between 2 and 10 times greater than the thickness of the transversely extending portion of the second electrode layer. .. 前記第1の電極層は第1の電極活物質を備え、前記第2の電極層は第2の電極活物質を備え、前記第1の電極活物質と前記第2の電極活物質との間のモル比が0.25から4.0の間である、請求項1~4の何れか一項に記載のエネルギー貯蔵装置。 The first electrode layer comprises a first electrode active material, the second electrode layer comprises a second electrode active material, and between the first electrode active material and the second electrode active material. The energy storage device according to any one of claims 1 to 4 , wherein the molar ratio of the electrodes is between 0.25 and 4.0. 電気的に絶縁の基板と、
前記電気的に絶縁の基板にわたる第1の集電層であって、複数の第1の集電指構造を備える第1の集電層と、
前記電気的に絶縁の基板にわたる第2の集電層であって、前記第2の集電層は複数の第2の集電指構造を備え、前記第1の集電指構造と前記第2の集電指構造とは、横方向において交互になるように交互配置される、第2の集電層と、
前記第1の集電層にわたる第1の種類の第1の電極層と、
前記第2の集電層にわたる第2の種類の第2の電極層と、
前記第1の電極層と前記第2の電極層とを分離する分離層と
を備えるエネルギー貯蔵装置。
With an electrically insulated board
A first current collector layer that spans the electrically insulated substrate and comprises a plurality of first current collector finger structures.
A second current collector layer that spans the electrically insulated substrate, wherein the second current collector layer comprises a plurality of second current collector finger structures, the first current collector finger structure and the second collector finger structure. The current collector finger structure is a second current collector layer that is alternately arranged in the horizontal direction.
The first type of first electrode layer over the first current collector layer and
A second type of second electrode layer over the second current collector layer, and
An energy storage device including a separation layer that separates the first electrode layer and the second electrode layer.
前記エネルギー貯蔵装置は、前記エネルギー貯蔵装置によって電力供給されるように構成される主要装置と、前記電気的に絶縁の基板の同じ側に印刷される、請求項9に記載のエネルギー貯蔵装置。 The energy storage device according to claim 9, wherein the energy storage device is printed on the same side of the electrically isolated substrate as a main device configured to be powered by the energy storage device. 前記第1の電極層は第1の電極活物質を備え、前記第2の電極層は第2の電極活物質を備え、前記第1の電極活物質と前記第2の電極活物質との間のモル比が0.25から4.0の間である、請求項9に記載のエネルギー貯蔵装置。 The first electrode layer comprises a first electrode active material, the second electrode layer comprises a second electrode active material, and between the first electrode active material and the second electrode active material. 9. The energy storage device according to claim 9, wherein the molar ratio of the electrodes is between 0.25 and 4.0. 前記第1の電極層は第1の電極活物質を備え、前記第2の電極層は第2の電極活物質を備え、前記第1の電極層の横面積と前記第2の電極層の横面積との間の比が前記モル比に比例する、請求項9に記載のエネルギー貯蔵装置。 The first electrode layer comprises a first electrode active material, the second electrode layer comprises a second electrode active material, and the lateral area of the first electrode layer and the lateral surface of the second electrode layer. The energy storage device according to claim 9, wherein the ratio to the area is proportional to the molar ratio. 前記第1の電極層は複数の第1の電極指構造を備え、前記第2の電極層は複数の第2の電極指構造を備え、前記第1の電極指構造と前記第2の電極指構造とは、前記横方向において交互になるように交互配置される、請求項9に記載のエネルギー貯蔵装置。 The first electrode layer comprises a plurality of first electrode finger structures, the second electrode layer comprises a plurality of second electrode finger structures, the first electrode finger structure and the second electrode finger structure. The energy storage device according to claim 9, wherein the structure is alternately arranged so as to be alternately arranged in the lateral direction. 前記分離層は前記第1の電極層および前記第2の電極層にわたる、請求項13に記載のエネルギー貯蔵装置。 13. The energy storage device according to claim 13, wherein the separation layer extends over the first electrode layer and the second electrode layer. 前記分離層は、前記横方向において交互である前記第1の電極指構造および前記第2の電極指構造の隣接する対同士の間に介在させられる、請求項14に記載のエネルギー貯蔵装置。 The energy storage device according to claim 14, wherein the separation layer is interposed between adjacent pairs of the first electrode finger structure and the second electrode finger structure which are alternated in the lateral direction. 前記分離層は、前記横方向において交互である前記第1の集電指構造および前記第2の集電指構造の隣接する対同士の間に介在させられる、請求項15に記載のエネルギー貯蔵装置。 The energy storage device according to claim 15, wherein the separation layer is interposed between adjacent pairs of the first collector finger structure and the second collector finger structure which are alternated in the lateral direction. .. 前記第1の電極層は複数の第1の電極指構造を備え、前記分離層は前記第1の電極指構造の各々にわたり、前記第2の電極層は前記分離層にわたる、請求項9~16の何れか一項に記載のエネルギー貯蔵装置。 The first electrode layer comprises a plurality of first electrode finger structures, the separation layer extends over each of the first electrode finger structures, and the second electrode layer extends over the separation layer, claims 9 to 16. The energy storage device according to any one of the above. 前記分離層は、前記横方向および前記鉛直方向において、前記第1の電極指構造を前記第2の電極層から分離する、請求項17に記載のエネルギー貯蔵装置。 The energy storage device according to claim 17, wherein the separation layer separates the first electrode finger structure from the second electrode layer in the lateral direction and the vertical direction. 前記分離層は、前記横方向において交互である前記第1の集電指構造および前記第2の集電指構造の隣接する対同士の間に介在させられる、請求項18に記載のエネルギー貯蔵装置。 The energy storage device according to claim 18, wherein the separation layer is interposed between adjacent pairs of the first collector finger structure and the second collector finger structure which are alternated in the lateral direction. .. 前記第1の集電指構造および前記第2の集電指構造の各々は、幅に対する長さの比を約2から100の間で有する、請求項9~16の何れか一項に記載のエネルギー貯蔵装置。 The first collector-finger structure and each of the second collector-finger structures has a ratio of length to width between about 2 and 100, according to any one of claims 9-16. Energy storage device.
JP2020560110A 2018-01-16 2019-01-14 Energy storage device based on thin films Active JP7337844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023135522A JP2023164458A (en) 2018-01-16 2023-08-23 Thin film-based energy storage device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862617856P 2018-01-16 2018-01-16
US62/617,856 2018-01-16
US201862669709P 2018-05-10 2018-05-10
US62/669,709 2018-05-10
US201862673673P 2018-05-18 2018-05-18
US62/673,673 2018-05-18
PCT/US2019/013544 WO2019143576A1 (en) 2018-01-16 2019-01-14 Thin film-based energy storage devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023135522A Division JP2023164458A (en) 2018-01-16 2023-08-23 Thin film-based energy storage device

Publications (3)

Publication Number Publication Date
JP2021510919A JP2021510919A (en) 2021-04-30
JPWO2019143576A5 true JPWO2019143576A5 (en) 2022-01-19
JP7337844B2 JP7337844B2 (en) 2023-09-04

Family

ID=67213372

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020560110A Active JP7337844B2 (en) 2018-01-16 2019-01-14 Energy storage device based on thin films
JP2023135522A Pending JP2023164458A (en) 2018-01-16 2023-08-23 Thin film-based energy storage device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023135522A Pending JP2023164458A (en) 2018-01-16 2023-08-23 Thin film-based energy storage device

Country Status (7)

Country Link
US (2) US11276885B2 (en)
EP (1) EP3740995A4 (en)
JP (2) JP7337844B2 (en)
KR (1) KR20200101473A (en)
CN (1) CN111684639A (en)
TW (2) TWI806957B (en)
WO (1) WO2019143576A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3740995A4 (en) 2018-01-16 2021-10-20 Printed Energy Pty Ltd Thin film-based energy storage devices
US11177476B2 (en) * 2018-09-04 2021-11-16 The Chinese University Of Hong Kong Complexed iodine-based electrolyte and redox flow battery comprising the same
AU2020253392B2 (en) * 2019-04-01 2023-10-19 Stinger Advanced Manufacturing Corporation Systems and methods for non-continuous deposition of a component
CN110931263B (en) * 2019-11-21 2021-08-03 杭州电子科技大学 Super capacitor electrode structure and reinforcing method
DE102020200815A1 (en) 2020-01-23 2021-07-29 Mahle International Gmbh Composition as an electrolyte for dissolving and / or depositing metals, metal oxides and / or metal alloys and uses of this composition
US20210242394A1 (en) * 2020-02-04 2021-08-05 Massachusetts Institute Of Technology Magnetoelectric heterostructures and related articles, systems, and methods
US11367914B2 (en) 2020-11-06 2022-06-21 ZAF Energy Systems, Incorporated Pouched metal-air battery cells
US20220270830A1 (en) * 2021-02-19 2022-08-25 Micron Technology, Inc. Supercapacitors and Integrated Assemblies Containing Supercapacitors
KR102543399B1 (en) * 2021-02-25 2023-06-14 성균관대학교산학협력단 Method for manufacturing multi-structure super capacitor using continuous roll-to-roll gravure printing, multi-structure super capacitor, and printed electronic device using the same
US11901858B2 (en) * 2021-10-29 2024-02-13 X Development Llc Multimode energy harvesting device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230115A (en) 1962-11-16 1966-01-18 Tamminen Pentti Juuse Printed battery and method of making the same
EP1275168A2 (en) 2000-03-24 2003-01-15 Cymbet Corporation Method and apparatus for integrated-battery devices
KR100436712B1 (en) * 2001-12-19 2004-06-22 삼성에스디아이 주식회사 Cathode electrode, method for manufacturing the same, and lithium battery containing the same
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
US8029927B2 (en) 2005-03-22 2011-10-04 Blue Spark Technologies, Inc. Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
DE102005017682A1 (en) 2005-04-08 2006-10-12 Varta Microbattery Gmbh Galvanic element
US8722233B2 (en) 2005-05-06 2014-05-13 Blue Spark Technologies, Inc. RFID antenna-battery assembly and the method to make the same
KR20100097217A (en) 2007-12-19 2010-09-02 블루 스파크 테크놀러지스, 인크. High current thin electrochemical cell and methods of making the same
EP2182574B1 (en) * 2008-10-29 2014-03-05 Samsung Electronics Co., Ltd. Electrolyte composition and catalyst ink used to form solid electrolyte membrane
JP5540643B2 (en) 2009-02-03 2014-07-02 ソニー株式会社 Thin-film solid lithium ion secondary battery and manufacturing method thereof
EP2395588B1 (en) * 2009-02-04 2015-03-25 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for manufacturing same
WO2011136028A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
DE102010023092A1 (en) 2010-05-31 2011-12-01 Varta Microbattery Gmbh Battery, method of making a battery and circuit with a battery
JP5644857B2 (en) 2010-08-09 2014-12-24 株式会社村田製作所 Stacked solid battery
WO2012078749A1 (en) 2010-12-07 2012-06-14 Thin Profile Technologies Printed battery using non-aqueous electrolyte and battery packaging
KR101368323B1 (en) * 2011-12-16 2014-02-28 지에스에너지 주식회사 Thin film battery with improved performance by surface treatment and method of manufacturing the thin film battery
US9343716B2 (en) 2011-12-29 2016-05-17 Apple Inc. Flexible battery pack
GB201203713D0 (en) 2012-03-02 2012-04-18 Energy Diagnostic Ltd Energy storage battery
US9520598B2 (en) * 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
EP2926401B1 (en) * 2012-11-27 2017-07-05 Blue Spark Technologies, Inc. Battery cell construction
US20140295244A1 (en) 2013-03-29 2014-10-02 Research Foundation Of The City University Of New York Printed flexible battery
JP6404214B2 (en) * 2013-06-21 2018-10-10 東京応化工業株式会社 Non-aqueous secondary battery and manufacturing method thereof
US10090566B2 (en) 2013-08-27 2018-10-02 Robert Bosch Gmbh Solid state battery with offset geometry
DE102014209263A1 (en) * 2014-05-15 2015-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microbattery and method of manufacturing a microbattery
CN106663750A (en) * 2014-06-23 2017-05-10 肖特股份有限公司 Electric storage system with a discrete disk-shaped element, discrete disk-shaped element, method for producing same, and use thereof
TWI485905B (en) 2014-07-18 2015-05-21 Iner Aec Executive Yuan Thin film battery structure and manufacturing method thereof
US9728494B2 (en) 2015-09-24 2017-08-08 Verily Life Sciences Llc Body-mountable device with a common substrate for electronics and battery
KR101782973B1 (en) * 2016-02-19 2017-09-28 (주)플렉스파워 Printable battery with high power
KR101832057B1 (en) 2016-05-26 2018-04-04 목포해양대학교 산학협력단 Battery integration packaging apparatus and method
EP3276706B1 (en) 2016-07-25 2018-12-26 VARTA Microbattery GmbH Electrochemical cell and sensor device driven with same
EP3740995A4 (en) 2018-01-16 2021-10-20 Printed Energy Pty Ltd Thin film-based energy storage devices

Similar Documents

Publication Publication Date Title
SG10201803316YA (en) Three-dimensional semiconductor device
ATE432537T1 (en) PIEZOELECTRIC ACTUATOR
TWI256655B (en) Stacked capacitor
JPWO2019143576A5 (en)
JP2012015480A5 (en)
JP2003197867A5 (en)
JP2013153189A5 (en)
JP2019036729A5 (en)
JP2014042029A5 (en)
JP2013093584A5 (en)
JP2002261339A (en) Laminated piezoelectric actuator
EP2031934A3 (en) Heating substrate equipped with conductive-thin-film and electrode and manufacturing method of the same
EP2107653A3 (en) Surface Emitting Laser Element Array
JP2010009439A5 (en)
EP2731137A3 (en) Light emitting device
JP2016092411A5 (en)
JP2013055318A5 (en)
JP2014131041A5 (en)
WO2013167338A3 (en) Ceramic multi-layered capacitor
JP2010212024A5 (en)
EP2073287A3 (en) Producing Layered Structures with Lamination
JP2020043237A5 (en)
JP4191048B2 (en) High temperature fuel cell module with miniaturized interconnector
JP2013103499A5 (en)
JP2021034388A5 (en)