JPWO2019131707A1 - 燃料電池用触媒層および燃料電池 - Google Patents

燃料電池用触媒層および燃料電池 Download PDF

Info

Publication number
JPWO2019131707A1
JPWO2019131707A1 JP2019562069A JP2019562069A JPWO2019131707A1 JP WO2019131707 A1 JPWO2019131707 A1 JP WO2019131707A1 JP 2019562069 A JP2019562069 A JP 2019562069A JP 2019562069 A JP2019562069 A JP 2019562069A JP WO2019131707 A1 JPWO2019131707 A1 JP WO2019131707A1
Authority
JP
Japan
Prior art keywords
catalyst layer
conductive member
fibrous conductive
flow path
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019562069A
Other languages
English (en)
Inventor
武史 南浦
武史 南浦
仁 石本
仁 石本
真一郎 井村
真一郎 井村
和哉 山崎
和哉 山崎
幸博 島崎
幸博 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2019131707A1 publication Critical patent/JPWO2019131707A1/ja
Priority to JP2023091126A priority Critical patent/JP2023110024A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

ガス拡散層との接触抵抗が小さく、ガス拡散性に優れた触媒層を得る。燃料電池用触媒層は、厚みが均一であり、繊維状導電部材と、触媒粒子と、を備える。繊維状導電部材は触媒層の面方向に対して傾斜しており、かつ、繊維状導電部材の長さ方向は平均的に第1方向を向いている。

Description

本開示は、燃料電池用触媒層および燃料電池に関する。
燃料電池は、電解質膜およびそれを挟む一対の電極を有する膜電極接合体を備える。一対の電極は、それぞれ、電解質膜側から順に、触媒層およびガス拡散層を備える。
特許文献1では、電解質膜(触媒層)の面方向に対して略垂直方向に配向している導電性ナノ柱状体(以下、単に柱状体と称する。)および柱状体に担持された触媒を含む触媒層を用い、触媒層と電解質膜との間に埋め込み防止層を介在させることが提案されている。
触媒層は、化学気相成長法により基材上にその面方向に対して略垂直方向に配向する柱状体を形成し、基材上の柱状体を電解質膜に転写することにより、形成される。上記の埋め込み防止層は、上記の転写に伴う柱状体端部の電解質膜への埋め込みによる触媒の利用率低下を抑制するために設けられている。
特許文献2では、特許文献1と同様、導電性ナノ柱状体および柱状体に担持された触媒を用いており、柱状体が電解質膜の面方向に対して60°以下の傾斜をもって配向させること、柱状体の一端が電解質膜に埋設されることが提案されている。
特許文献3では、カーボン長繊維と触媒とを含む触媒層が開示されている。そして、電解質膜上で倒伏した状態のカーボン長繊維を一方向に揃えて積み重ね、カーボン長繊維の長さ方向とガスが流れる方向とが直交するように触媒層を配置し、ガスが流れる方向に対してカーボン長繊維を積み重ねる高さを変化させることが提案されている。これにより、ガスの乱流が発生するため、触媒層のガス拡散性が高められる。
国際公開第2013/065396号 特開2007−257886号公報 特開平3−145062号公報
特許文献1の柱状体は、触媒層(電解質膜)の面方向に対して略垂直方向に配向しつつ、その両端部は、それぞれ電解質膜およびガス拡散層と接触している。一方、膜電極接合体、単セル、または複数の単セルの積層体(セルスタック)の作製の際等において、膜電極接合体の厚み方向に外力が加えられることがある。上記の外力が加えられると、柱状体の両端部に応力が集中し、柱状体が屈曲したり、その端部が電解質膜またはガス拡散層に突き刺さったりするという不具合が生じ得る。上記の不具合が生じると、触媒層内に形成される空隙(ガス経路)に偏りが生じて、触媒層の一部においてガス拡散性が低下する。
特許文献2の柱状体は、電解質膜の面方向に対して斜めに配向されており、電解質膜側の一端は電解質膜に埋設した構成となっている。上記と同様、柱状体の厚み方向の外力が加えられると、柱状体に付加された応力が直接、電解質膜に付加されることになり、電解質膜の破損を招いてしまう。更に、上記と同様、厚み方向の外力が加えられると、柱状体が斜め方向に配向しているため、柱状体の側面部に応力が集中し、柱状体の屈曲させてしまう。このような屈曲が生じると、隣接する柱状体との距離が縮小することから、ガス経路の偏りを生じ、ガス拡散性の低下を招いてしまう。
特許文献3では、カーボン長繊維を積み重ねる高さ(触媒層の厚み)を変化させているため、ガス拡散層と触媒層との接触面積が減少して、接触抵抗が増大するおそれがある。一方、カーボン長繊維を積み重ねる高さを均一にすると、触媒層とガス拡散層との接触抵抗は小さくなるが、触媒層の厚み方向のガス拡散性が低下する。
また、電解質膜上で倒伏した状態のカーボン長繊維が一方向に揃えられた特許文献2に記載の触媒層を用い、カーボン長繊維の長さ方向に沿ってガスを流す場合、触媒層の面方向のガス拡散性は向上するが、触媒層の厚み方向のガス拡散性が低い。
本開示の一局面は、繊維状導電部材と、触媒粒子と、を備え、かつ、厚みが均一な燃料電池用触媒層に関する。繊維状導電部材は、触媒層の面方向に対して傾斜しており、かつ、繊維状導電部材の長さ方向は、平均的に第1方向を向いている。
本開示の他の一局面は、膜電極接合体と、膜電極接合体を挟む第1セパレータおよび第2セパレータと、を備える燃料電池に関する。膜電極接合体は、電解質膜と、電解質膜を挟む第1電極および第2電極と、を備える。第1電極は、電解質膜側から順に、第1触媒層および第1ガス拡散層を備える。第1触媒層は、上記の触媒層である。
本開示によれば、ガス拡散層との接触抵抗が小さく、ガス拡散性に優れた触媒層を提供することができる。また、出力特性に優れた燃料電池を提供することができる。
第1基準線(第1方向)の求め方を、触媒層の主面を用いて説明する説明図である。 繊維状導電部材の直線率Lおよび傾斜角度θの算出法を、触媒層の断面を用いて説明する説明図である。 触媒インクの塗布工程の一例を説明する説明図である。 本開示の実施形態に係る燃料電池の単セルの構造を模式的に示す断面図である。 本開示の実施形態に係る触媒層の内部をその面方向(第1方向と垂直な方向)から見た場合を模式的に示す図である。 図5に示す触媒層の内部をガス拡散層側から見た場合を模式的に示す図である。
[燃料電池用触媒層]
本開示の実施形態に係る燃料電池用触媒層は、厚みが均一であり、繊維状導電部材と、触媒粒子と、を備える。繊維状導電部材は、触媒層(電解質膜)の面方向に対して傾斜しており、かつ、繊維状導電部材の長さ方向は、平均的に第1方向を向いている。
繊維状導電部材の長さ方向が平均的に第1方向を向いているとは、触媒層をその面方向に対して垂直な方向から見たとき、第1方向に延びる第1基準線と、繊維状導電部材の長さ方向とが成す角度θd1(平均角度)が30°以下であることを指す。
第1基準線(第1方向)は、図1を用いて、以下のようにして求められる。図1は、第1基準線(第1方向)の求め方を、触媒層120(図2参照)の主面を用いて説明する説明図である。図1には、ガス拡散層側の第1主面120Xの領域R内の一部の繊維状導電部材121のみを示している。
まず、膜電極接合体100(図4参照)からガス拡散層を取り外して、触媒層120のガス拡散層側の第1主面120Xを露出させる。走査型電子顕微鏡(SEM)を用いて、第1主面120Xを撮影する。
得られたSEM画像を用いて、触媒層120の第1主面120Xにおいてガス流路と対向する領域であって、例えば20本以上の繊維状導電部材121が確認できる領域R(50μm×50μm)を任意に決める。領域R内の確認可能な繊維状導電部材121を任意に10本選び出す。10本の繊維状導電部材121に対して、観察できる長さの中間地点Cにおける接線Lを引く。
上記において、3つの領域Rを、互いに重複しないように決めて、それぞれ同様に、10本の接線Lを得る。得られた合計30本の接線Lの向きを平均化し、平均化した向きを第1方向とし、平均化した向き(第1方向)に延びる直線を第1基準線BLとする。
なお、ガス流路がサーペンタイン型の形状である等により、ガス流路が複数の直線部を有する場合、3つの領域Rは、触媒層120の第1主面120Xにおける1つの直線部と対向する範囲内で決めればよい。
触媒層をその面方向に対して垂直な方向から見たときの、第1方向に延びる第1基準線と、繊維状導電部材の長さ方向とが成す角度θd1は、以下のようにして求められる。
上記で得られた30本の接線Lについて、それぞれ、上記で得られた第1基準線BLと接線Lとが成す角度(0°以上90°以下)を求める。得られた角度の平均値を角度θd1とする。得られた角度θd1が30°以下である場合、繊維状導電部材の長さ方向が平均的に第1方向を向いているとする。
繊維状導電部材が触媒層の面方向に対して傾斜しているとは、触媒層内において、繊維状導電部材が、その直線性が確保された状態で、触媒層の面方向に対して傾いて存在していることを指す。なお、繊維状導電部材の直線性が確保されているとは、繊維状導電部材が大きく屈曲していないことであり、後述の方法により求められる直線率L(平均値)が0.6以上であることを指す。ガス拡散性の更なる向上の観点から、直線率L(平均値)は0.7以上が好ましい。
繊維状導電部材の長さ方向が平均的に第1方向を向いていることにより、触媒層の面方向のガス拡散性が向上する。また、繊維状導電部材が触媒層の面方向に対して傾斜していることにより、触媒層の面方向に対して垂直な方向(厚み方向)においても良好なガス拡散性が得られる。上記の触媒層では、触媒層内において空隙(ガス経路)を十分に形成することができ、触媒層全体において、効果的にガスを拡散させることができる。
繊維状導電部材が触媒層の面方向に対して傾斜していることにより、膜電極接合体(触媒層)の厚み方向への外力付与による繊維状導電部材の屈曲や電解質膜等への突き刺さりが抑制される。よって、上記の繊維状導電部材の屈曲や電解質膜等への突き刺さりに伴う触媒層の一部におけるガス拡散性の低下が抑制される。その結果、燃料電池の出力特性が高められる。さらに、上記の繊維状導電部材の屈曲や電解質膜等への突き刺さりにより繊維状導電部材の導電性に影響を及ぼす可能性も排除される。埋め込み防止層を設けなくても、触媒層の電解質膜への転写時の繊維状導電部材端部の電解質膜への埋め込みが抑制される。
上記の触媒層は、例えば、後述する触媒インクを用いて形成される厚みが均一な層である。よって、ガス拡散層と触媒層との接触面積が十分に確保され、接触面積が小さいことによる抵抗の増大が抑制される。なお、触媒層の厚みが均一であるとは、後述する触媒層の厚みT(図2参照)を求める際に得られる10個の測定値とそれらの平均値との差(絶対値)が、平均値の25%以下であることを指す。このとき、10個の測定値のうち、6個以上の測定値と平均値との差が上記25%以下であればよい。
繊維状導電部材の長さLと、触媒層の厚みTとが、関係式:L/T≦3を満たすことが好ましい。この場合、繊維状導電部材が触媒層の面方向に対して傾斜しており、かつ繊維状導電部材の長さ方向が平均的に第1方向を向いている触媒層が形成され易い。この場合、繊維状導電部材を、その直線性が確保された状態で、触媒層の面方向に対して傾斜させ易いため、触媒層の厚み方向のガス拡散層が、さらに向上する。触媒層のガス拡散性の更なる向上の観点から、L/Tは、0.25以上2.0以下であることがより好ましい。
繊維状導電部材の長さLは、平均繊維長さであり、触媒層から繊維状導電部材を任意に10本取り出し、これらの繊維状導電部材の繊維長さを平均化することにより、求められる。なお、上記の繊維状導電部材の繊維長さとは、繊維状導電部材の一端と、その他端とを直線で結んだときのその直線の長さを指す。
繊維状導電部材の長さLは、好ましくは0.2μm以上20μm以下であり、より好ましくは0.5μm以上10μm以下である。この場合、薄い触媒層(例えば厚みTが10μm以下)でも、繊維状導電部材を触媒層の面方向に対して容易に傾斜させることができる。また、上記範囲の短い繊維状導電部材を用いることにより、触媒層内で繊維状導電部材の両端が、それぞれ電解質膜およびガス拡散層に接触することが抑制される。これにより、触媒層の電解質膜への転写時の繊維状導電部材端部の電解質膜への埋め込みおよび膜電極接合体の厚み方向への外力付与時の繊維状導電部材の電解質膜等への突き刺さりが、さらに抑制される。
触媒層の厚みTは、平均厚みであり、触媒層の断面における任意の10箇所について、一方の主面から他方の主面まで、触媒層の厚み方向に沿った直線を引いたときの距離を平均化することにより、求められる。
触媒層の厚みTは、燃料電池の小型化を考慮すると、薄いことが望ましい一方で、強度の観点から、過度に薄くないことが好ましい。触媒層の厚みTは、例えば1μm以上50μm以下であり、好ましくは2μm以上20μm以下である。
触媒層の面方向に対する繊維状導電部材の傾斜角度θ(図2参照)は、好ましくは80°以下であり、より好ましくは70°以下である。傾斜角度θが80°以下の場合、触媒層の厚み方向に加え、触媒層の面方向におけるガス拡散性が、さらに向上する。傾斜角度θが70°以下の場合、膜電極接合体の厚み方向への外力付与による繊維状導電部材の屈曲や電解質膜等への突き刺さりが、さらに抑制される。
繊維状導電部材の直線率Lおよび傾斜角度θは、図2を用いて、以下のようにして求められる。図2は、繊維状導電部材の直線率Lの算出法および傾斜角度θの算出法を、触媒層120の断面を用いて説明する説明図である。図2には、一部の繊維状導電部材121のみを示している。
まず、ガス拡散層側の第1主面120Xおよび電解質膜側の第2主面120Yを有する触媒層120の厚み方向かつ第1方向に沿った断面を、走査型電子顕微鏡(SEM)で撮影する。
得られたSEM画像から、例えば20本以上の繊維状導電部材121が確認できる領域であって、触媒層120の厚みTを一辺とする正方形の領域Rを決める。領域Rは、以下のようにして決定できる。まず、触媒層120の厚み方向に沿った直線を引く。この直線と第2主面120Yとの交点を、領域Rを示す正方形の頂点の一つとする。次に、この頂点から、長さがTであって、互いに垂直に交わる2辺を引き、さらに、この2辺を含む正方形が形成されるように、残りの2辺を引く。
次に、領域R内の確認可能な繊維状導電部材121を任意に10本選び出す。10本の繊維状導電部材121に対して、観察できる長さ部分の一端と他端とを直線で結び、その直線の長さLを求める。また、観察できる長さ部分の実際の長さLを求める。Lに対するLの比:L/Lを直線率Lとする。
上記において、3つの領域Rを互いに重複しないように決めて、3つの領域Rに対してそれぞれ10本の繊維状導電部材121の直線率Lを求め、合計30本の繊維状導電部材121の直線率Lの平均値を求める。直線率L(平均値)が0.6以上である場合、繊維状導電部材121の直線性が確保されているとする。一方、直線率L(平均値)が0.6未満である場合、繊維状導電部材121は屈曲しており、後述の傾斜角度θは求められないとする。
上記の直線率により繊維状導電部材の直線性が確保されていることを確認した上で、繊維状導電部材の傾斜角度θは、図2を用いて、以下のようにして求められる。
上記の3つの領域R内でそれぞれ選び出した10本の繊維状導電部材121に対して、観察できる長さ部分の中間地点Cにおける接線Lを引く。この接線Lと第1主面120Xとが成す角度(0°以上90°以下)を、その繊維状導電部材121の傾斜角度θとし、合計30本の繊維状導電部材121の傾斜角度θの平均値を求める。なお、第1主面120Xが凹凸を有する場合、触媒層120の厚み方向に垂直な面、あるいは、平滑な第2主面120Yを、傾斜角度θを決定する際の基準としてもよい。
触媒層の厚み方向かつ第1方向に沿った断面において、繊維状導電部材が傾斜する向きは揃っていなくてもよいが、触媒層のガス拡散性向上の観点から、触媒層の厚み方向かつ第1方向に沿った断面において、繊維状導電部材が傾斜する向きは揃っていることが好ましい。
なお、触媒層の厚み方向かつ第1方向に沿った断面において、繊維状導電部材が傾斜する向きが揃っているとは、触媒層の厚み方向かつ第1方向に沿った断面において、繊維状導電部材の長さ方向が平均的に第2方向を向いていることを指す。繊維状導電部材の長さ方向が平均的に第2方向を向いているとは、触媒層を上記断面方向に対して垂直な方向から見たとき、第2方向に延びる第2基準線と、繊維状導電部材の長さ方向とが成す角度θd2が30°以下であることを指す。
第2基準線(第2方向)は、上記の繊維状導電部材の直線率Lおよび傾斜角度θを求める際に得られる合計30本の接線Lを用いて求められる。具体的には、得られた合計30本の接線Lの向きを平均化し、平均化した向きを第2方向とし、平均化した向き(第2方向)に延びる直線を第2基準線BLとする。
触媒層を上記断面方向に対して垂直な方向から見たときの、第2方向に延びる第2基準線BLと、繊維状導電部材の長さ方向とが成す角度θd2は、以下のようにして求められる。
上記で得られた30本の接線Lついて、それぞれ、上記で得られた基準線BLと接線Lとが成す角度(0°以上90°以下)を求める。得られた角度の平均値を角度θd2とする。得られた角度θd2が30°以下である場合、繊維状導電部材の長さ方向が平均的に第2方向に向いているとする。
繊維状導電部材の直径Dは、好ましくは200nm以下であり、より好ましくは5nm以上200nm以下であり、さらに好ましくは8nm以上100nm以下である。この場合、触媒層中に占める繊維状導電部材の体積割合を小さくして、ガス経路を十分に確保することができ、ガス拡散性をさらに高めることができる。
繊維状導電部材の直径Dは、触媒層から繊維状導電部材を任意に10本取り出し、これらの直径を平均化することにより、求められる。直径は、繊維状導電部材の長さ方向に垂直な方向の長さである。
繊維状導電部材の長さLと、繊維状導電部材の直径Dとが、関係式:D/L<1を満たすことが好ましい。この場合、触媒層全体で良好なガス拡散性が十分に得られる。
導電性向上の観点から、D/Lは0.002以上1未満がより好ましい。
繊維状導電部材としては、例えば、気相成長法炭素繊維(VGCF)、カーボンナノチューブ(CNT)、カーボンナノファイバー等の炭素繊維が挙げられる。
触媒粒子の少なくとも一部は、繊維状導電部材に担持されている。触媒粒子は、繊維状導電部材に加えて、後述する粒子状導電部材に担持されていることが好ましい。触媒粒子がガスに接触し易くなり、ガスの酸化反応あるいは還元反応の効率が高まるためである。
触媒粒子としては特に限定されないが、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体といった触媒金属が挙げられる。例えば、アノードに用いられる触媒粒子としては、Pt−Ru合金等が挙げられる。カソードに用いられる触媒金属としては、Pt、Pt−Co合金等が挙げられる。
導電パスを短くして導電性をさらに高める観点から、触媒層は、さらに、粒子状導電部材を含むことが好ましい。粒子状導電部材としては特に限定されないが、導電性に優れる点で、カーボンブラックが好ましい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック等が挙げられる。その粒径(あるいは、複数の連結した一次粒子で構成されたストラクチャーの長さ)は特に限定されず、従来、燃料電池の触媒層に用いられるものを使用することができる。
触媒層中の粒子状導電部材の含有量は、繊維状導電部材および粒子状導電部材の合計である100質量部あたり、好ましくは40質量部以下であり、より好ましくは5質量部以上35質量部以下であり、さらに好ましくは10質量部以上30質量部以下である。この場合、触媒層全体の良好なガス拡散性を確保しつつ、導電性を高めることができる。
触媒層の反応性向上の観点から、触媒層は、さらに、プロトン伝導性樹脂を含むことが好ましい。この場合、プロトン伝導性樹脂は、繊維状導電部材および触媒粒子の少なくとも一部を被覆している。繊維状導電部材が触媒層の面方向に対して傾斜しているため、膜電極接合体の厚み方向への外力付与による繊維状導電部材の屈曲や電解質膜等への突き刺さりに伴う触媒層の反応性(プロトン伝導性)への影響が抑制される。
プロトン伝導性樹脂としては特に限定されないが、パーフルオロカーボンスルホン酸系高分子、炭化水素系高分子等が例示される。なかでも、耐熱性と化学的安定性に優れる点で、パーフルオロカーボンスルホン酸系高分子等が好ましい。パーフルオロカーボンスルホン酸系高分子としては、例えばNafion(登録商標)が挙げられる。プロトン伝導性樹脂は、さらに粒子状導電部材の少なくとも一部を被覆していてもよい。
触媒層中の繊維状導電部材の含有量は、触媒粒子、粒子状炭素材料およびプロトン伝導性樹脂の合計である100質量部に対して、好ましくは15質量部以上65質量部以下であり、より好ましくは20質量部以上55質量部以下である。繊維状導電部材が所望の状態に配置され易くなって、ガス拡散性および電気化学反応の効率が高まり易いためである。
触媒層は、例えば、繊維状導電部材および触媒粒子を含む触媒インクを電解質膜の表面に塗布し、乾燥させて形成することができる。また、触媒インクを転写用基材シートに塗布し、乾燥させて、触媒層を形成し、基材シートに形成された触媒層を電解質膜に転写してもよい。触媒層の面方向に対して繊維状導電部材が傾斜しているため、電解質膜の表面に埋め込み防止層を配置しなくても、触媒層の転写の際の繊維状導電部材の電解質膜への埋め込みが抑制される。基材シートとしては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン等の平滑表面を有するシートを用いることが好ましい。
触媒インクは、繊維状導電部材および触媒粒子以外に、分散媒を含む。分散媒には、例えば、水、エタノール、プロパノール等が用いられる。触媒インクは、さらに、粒子状導電部材、プロトン伝導性樹脂等を含んでもよい。
塗布法は、スクリーン印刷法、および、ブレードコーター、ナイフコーター、グラビアコーター等の各種コーターを利用するコーティング法が好ましい。
上記の塗布法では、繊維状導電部材を傾斜させ易く、かつ、繊維状導電部材が傾斜する方向も制御し易い。一方向に塗布することで、繊維状導電部材が触媒層の面方向に対して傾斜しており、かつ繊維状導電部材の長さ方向が平均的に第1方向を向いている触媒層を容易に形成できる。また、一方向に塗布することで、触媒層の厚さ方向に沿った断面において、繊維状導電部材が傾斜する向きを容易に揃えることができる。
塗布量および塗布速度を一定とすることで、厚みが均一な触媒層を容易に形成できる。
触媒インクの塗布による触媒層の形成において、L/Tが3以下を満たすように繊維状導電部材の長さおよび触媒層の厚みを調節することが好ましい。この場合、上記の触媒層を形成し易い。特に、繊維状導電部材を触媒層の面方向に対して傾斜させ易い。触媒層の厚みは、触媒インクの塗布量等を変えることで調節できる。
繊維状導電部材の傾斜角度θは、例えば、繊維状導電部材の長さや、触媒インクの塗布量、塗布速度、粘度等を変えることで調節できる。
[燃料電池]
本開示の実施形態に係る燃料電池は、膜電極接合体と、膜電極接合体を挟む第1セパレータおよび第2セパレータと、を備え、膜電極接合体は、電解質膜と、電解質膜を挟む第1電極および第2電極と、を備える。第1電極は、電解質膜側から順に、第1触媒層および第1ガス拡散層を備える。第1触媒層は、上記の触媒層である。上記の触媒層を備えることにより、出力特性に優れた燃料電池が得られる。第1電極および第2電極の一方がアノードであり、その他方がカソードである。
第1セパレータは、第1ガス流路を有し、膜電極接合体の積層方向から見たとき、第1方向が第1ガス流路の平均的な流路方向を向いていることが好ましい。第1ガス流路は、1つの流路で構成されていてもよく、並行に配置された複数の流路で構成されていてもよい。
上記の第1方向が第1ガス流路の平均的な流路方向を向いているとは、膜電極接合体の積層方向から見たとき、第1方向と第1ガス流路の平均的な流路方向とが成す角度θが45°以下であることを指す。角度θは、好ましくは30°以下であり、より好ましくは10°以下である。第1ガス流路の平均的な流路方向とは、第1ガス流路の一方の端(ガス入口)から他方の端(ガス出口)に向かう方向を指す。
上記の触媒層では、繊維状導電部材の長さ方向が平均的に第1方向を向いているため、触媒層内に第1方向に沿って空隙が多く形成されている。また、第1方向が第1ガス流路の平均的な流路方向を向いている。よって、第1ガス流路から触媒層内へのガスの供給がスムーズに行われ、触媒層内から第1ガス流路への余剰ガスの排出もスムーズに行われる。これにより、触媒層の面方向のガス拡散性がさらに向上する。
触媒層の面方向におけるガス拡散性の向上の観点から、第1ガス流路が、第1方向を向く複数の第1直線部を有し、第1ガス流路の全長に対する複数の第1直線部の合計長さの割合が、80%以上かつ100%以下であることが好ましい。
第1ガス流路がサーペンタイン型の形状である場合、第1ガス流路は、第1方向を向く複数の第1直線部と、互いに隣り合う第1直線部の端部同士を繋ぐ複数の第1ターン部とを有する。複数の第1直線部を第1ターン部を介してガスが蛇行して流れる。第1直線部は、1つの流路で構成されていてもよく、並行に配置された複数の流路で構成されていてもよい。
第1触媒層において、繊維状導電部材の第1ガス拡散層側の端部が、繊維状導電部材の電解質膜側の端部よりも、第1ガス流路の平均的な流路方向の下流側に位置するように、繊維状導電部材が傾斜する向きが揃っていることが好ましい。この場合、触媒層の面方向のガス拡散性が、さらに向上する。また、第1触媒層がカソード触媒層である場合、触媒層で生成した水が、ガスの流れに沿って、ガス拡散層を通じて外部へ排出され易く、触媒層全体において良好なガス拡散性が維持される。
第1触媒層において、繊維状導電部材の第1ガス拡散層側の端部が、繊維状導電部材の電解質膜側の端部よりも、第1ガス流路の第1直線部の下流側に位置するように、繊維状導電部材が傾斜する向きが揃っていることがより好ましい。
ここで、サーペンタイン型の第1ガス流路を有する第1セパレータを用いる場合において、繊維状導電部材を含む触媒インクを電解質膜の表面に塗布する工程の一例を、図3を参照しながら説明する。図3中の破線は、電解質膜110の一方の表面に第1触媒層、第1ガス拡散層、および第1セパレータが順次配置された場合に積層方向から見た場合の第1ガス流路360を示し、第1ガス流路360は第1直線部361および第1ターン部362を有する。破線内の矢印はガスが流れる方向を示す。電解質膜110は一点鎖線により区切られた複数の領域を有し、複数の領域は、それぞれ1つの第1直線部361を含む。各種コーター等を用いて繊維状導電部材を含む触媒インクを電解質膜110の表面に塗布する際に、図3に示すように、第1直線部361のガスの流れの方向に合わせて領域毎に触媒インクを電解質膜110へ塗布する方向を変えてもよい。これにより、第1直線部の全てにおいて、繊維状導電部材の第1ガス拡散層側の端部が、繊維状導電部材の電解質膜側の端部よりも、第1ガス流路の第1直線部の下流側に位置するように、繊維状導電部材を傾斜させることができる。
第2電極は、電解質膜側から順に、第2触媒層および第2ガス拡散層を備える。第2セパレータは、第2ガス流路を有する。第1触媒層とともに第2触媒層にも、本発明に係る触媒層を用いることが好ましい。
電解質膜として、高分子電解質膜が好ましく用いられる。高分子電解質膜の材料としては、プロトン伝導性樹脂として例示した高分子電解質が挙げられる。電解質膜の厚みは、例えば5〜30μmである。
第1ガス拡散層および第2ガス拡散層は、基材層を有する構造でもよく、基材層を有さない構造でもよい。基材層を有する構造としては、例えば、基材層と、その触媒層側に設けられた微多孔層とを有する構造体が挙げられる。基材層には、カーボンクロスやカーボンペーパー等の導電性多孔質シートが用いられる。微多孔層には、フッ素樹脂等の撥水性樹脂と、導電性炭素材料と、プロトン伝導性樹脂(高分子電解質)との混合物等が用いられる。
第1セパレータおよび第2セパレータは、気密性、電子伝導性および電気化学的安定性を有すればよく、その材質は特に限定されない。このような材質としては、炭素材料、金属材料等が好ましい。金属材料には、カーボンを被覆してもよい。例えば、金属板を所定形状に打ち抜き、表面処理を施すことにより、第1セパレータおよび第2セパレータが得られる。
以下、本実施形態に係る燃料電池の構造の一例を、図4を参照しながら説明する。図4は、本開示の実施形態に係る燃料電池に配置される単セルの構造を模式的に示す断面図である。通常、複数の単セルは積層されて、セルスタックとして燃料電池に配置される。図4では、便宜上、1つの単セルを示している。
燃料電池200の単セルは、電解質膜110と、電解質膜110を挟むように配置された第1触媒層120Aおよび第2触媒層120Bと、を備える。燃料電池200の単セルは、さらに第1触媒層120Aおよび第2触媒層120Bをそれぞれ介して、電解質膜110を挟むように配置された第1ガス拡散層130Aおよび第2ガス拡散層130Bと、第1ガス拡散層130Aおよび第2ガス拡散層130Bをそれぞれ介して、電解質膜110を挟むように配置された第1セパレータ240Aおよび第2セパレータ240Bと、を備える。第1触媒層120Aおよび第2触媒層120Bのうちの一方はアノードとして機能し、他方は、カソードとして機能する。電解質膜110は、第1触媒層120Aおよび第2触媒層120Bより一回り大きいため、電解質膜110の周縁部は、第1触媒層120Aおよび第2触媒層120Bからはみ出している。電解質膜110の周縁部は、一対のシール部材250A、250Bで挟持されている。
第1触媒層120Aおよび第2触媒層120Bの少なくとも一方は、図5および6に示す触媒層120である。ここで、図5は、触媒層120の内部をその面方向(第1方向と垂直な方向)から見た場合を模式的に示す図である。繊維状導電部材が傾斜していることを示すため、便宜上、電解質膜110も示す。図6は、図5に示す触媒層120の内部をガス拡散層側から見た場合を模式的に示す図である。
図5および6に示すように、触媒層120は、繊維状導電部材121と、触媒粒子122と、を備える。図5に示すように、繊維状導電部材121は、電解質膜110の面方向に対して傾斜している。触媒層のガス拡散性の更なる向上の観点から、図5に示すように、触媒層の内部を面方向から見た場合に、繊維状導電部材121の傾斜する向きが揃っていることが好ましい。図6に示すように、繊維状導電部材121の長さ方向は、平均的に第1方向を向いている。第1触媒層120Aまたは第2触媒層120Bが上記触媒層120でない場合、触媒層としては、公知の材質および公知の構成が採用できる。
本実施形態においては、第1セパレータ240Aの第1ガス拡散層130Aと当接する側の面には、ガス流路260Aが形成されている。一方、第2セパレータ240Bの第2ガス拡散層130Bと当接する側の面には、ガス流路260Bが形成されている。ガス流路の形状は特に限定されず、パラレル型、サーペンタイン型等に形成すればよい。第1セパレータ240Aまたは第2セパレータ240Bがガス流路260Aまたは260Bを有さない場合、対応するガス拡散層のセパレータに対向する面に、ガス流路を形成する。
シール部材250A、250Bは、弾性を有する材料であり、ガス流路260A、260Bから燃料および/または酸化剤がリークすることを防止している。シール部材250A、250Bは、例えば、第1触媒層120Aおよび第2触媒層120Bの周縁部をループ状に取り囲むような枠状の形状を有する。シール部材250A、250Bとしては、それぞれ、公知の材質および公知の構成が採用できる。
以下、本開示にかかる発明を実施例に基づいて、更に詳細に説明する。ただし、本開示にかかる発明は以下の実施例に限定されるものではない。
[実施例1]
<膜電極接合体の作製>
触媒粒子(Pt−Co合金)を担持した繊維状導電部材を適量の水に添加した後、撹拌して、分散させた。繊維状導電部材には、CNT(平均直径15nm、平均繊維長5μm)を用いた。この際、触媒粒子と繊維状導電部材との合計100質量部に対して、触媒粒子は30質量部、繊維状導電部材は70質量部である。次に、得られた分散液を撹拌しながら適量のエタノールを加えた後、繊維状導電部材70質量部に対して、プロトン伝導性樹脂(Nafion(登録商標))56質量部を添加した。これを攪拌することにより、カソード側触媒層用の触媒インクを調製した。
別途、アノード側触媒層は、繊維状導電部材(カーボンナノチューブ)の代わりに粒子上導電部材(カーボンブラック)を使用したこと以外、カソード側触媒層用の触媒インクと同様にして、アノード側触媒層用の触媒インクを調製した。
次に、電解質膜として、厚さ15μmのNafion膜(登録商標)を準備した。ブレードコーターを用いて、電解質膜の一方の表面に、カソード側触媒層用の触媒インクを均一な厚さで塗布し、乾燥して、カソード側触媒層(厚み6μm)を形成した。この時、触媒インクを、四角形状の電解質膜における対辺の一方の辺から他方の辺に向けて一方向に塗布した。形成される触媒層の厚さが6μmとなるように触媒インクの塗布量を調節した。
次に、電解質膜の他方の表面に、スプレー法により、アノード側触媒層用の触媒インクを均一な厚さで塗布し、乾燥して、アノード側触媒層(厚み6μm)を形成した。アノード側触媒層およびカソード側触媒層を囲むように枠状シール部材を配置した。
ガス拡散層として、多孔質導電性カーボンシートを2枚準備した。一方のガス拡散層の面をアノード側触媒層に当接させた。他方のガス拡散層の面をカソード側触媒層に当接させた。このようにして、膜電極接合体を作製した。
<単セルの作製>
電解質膜に予め形成されているマニホールド近傍に、燃料または酸化剤を各ガス拡散層まで導くブリッジプレートを配置し、一対のステンレス鋼製平板(セパレータ)で全体を挟持して、試験用の単セルA1を完成させた。
なお、セパレータには、パラレル型の形状のガス流路を有するものを用いた。パラレル型の形状のガス流路は、セパレータの対辺の一方の辺から他方の辺に向けて並行して配置された複数のガス流路を含む直線部を有する。セパレータの対辺の一方の辺から他方の辺に向けてガスが並行して流れる。ガス流路全体の長さに対する直線部の長さの割合は、100%であり、ガス流路の平均的な流路方向は、直線部の長さ方向である。
また、カソード側では、触媒層およびセパレータを、電解質膜上に触媒インクを塗布した方向と、ガス流路(直線部)のガスが流れる方向とが直交するように配置した。
上記で得られた膜電極接合体を別途準備し、カソード側ガス拡散層を取り外し、カソード側触媒層のガス拡散層側の主面をSEMにより撮影した。SEM画像を用いて、既述の方法により、第1基準線(第1方向)が求められ、カソード側触媒層をその面方向に対して垂直な方向から見たとき、第1方向に延びる第1基準線と、繊維状導電部材の長さ方向とが成す角度θd1が30°以下であることが確かめられた。すなわち、繊維状導電部材の長さ方向が平均的に第1方向を向いていることが確認された。
第1方向とガス流路の平均的な流路方向(直線部の方向)とが成す角度θは45°超であった。
上記で得られた膜電極接合体を別途準備し、その断面をSEMにより撮影した。SEM画像から、触媒粒子の一部が繊維状導電部材に担持されていることが確認された。既述の方法により求められた繊維状導電部材の直線率Lは0.6以上であり、繊維状導電部材の直線性が確保されていた。既述の方法により求められた、カソード側触媒層の面方向に対する繊維状導電部材の傾斜角度θは、12°であった。既述の方法により求められた角度θd2は30°以下であり、カソード側触媒層の厚み方向(第1方向)に沿った断面において繊維状導電部材が傾斜する向きが揃っていることが確認された。
既述の方法により求められたカソード側触媒層の厚みTは6μmであった。既述の方法により触媒層の厚みが均一であることも確認された。既述の方法により求められた繊維状導電部材の長さLは5μmであった。よって、L/Tは5/6であることが算出された。
<評価>
実施例1の単セルA1の発電性能を評価した。具体的には、アノードに70%の利用率となるように燃料ガスを供給した。燃料ガスの露点は、約80℃であった。また、カソードに50%の利用率となるように酸化剤ガスを供給した。酸化剤ガス(空気)の露点は、約80℃であった。そして、電流が一定に流れるように負荷制御装置を制御し、アノードおよびカソードの電極面積に対する電流密度を変化させた。この時の単セルA1の最大出力密度を測定した。なお、最大出力密度は、比較例1の単セルB1の最大出力密度を100とした指数として表す。
[実施例2]
カソード側では、触媒層およびセパレータを、電解質膜上に触媒インクを塗布した方向と、ガス流路(直線部)のガスが流れる方向とが一致するように配置した。このようにして、繊維状導電部材のガス拡散層側の端部が、繊維状導電部材の電解質膜側の端部よりも、ガス流路(直線部)の下流側に位置するように、繊維状導電部材が傾斜する向きを揃えた。これ以外、実施例1と同様に単セルA2を作製し、評価した。
第1方向とガス流路の平均的な流路方向(直線部の方向)とが成す角度θは10°以下であり、第1方向がガス流路の平均的な流路方向を向いていた。
[比較例1]
スプレー法を用いてカソード側の触媒層を形成した以外、実施例1と同様に単セルB1を作製し、評価した。
得られた膜電極接合体からカソード側のガス拡散層を取り外し、触媒層のガス拡散層側の主面をSEMにより撮影した。既述の方法により、第1方向に延びる第1基準線を求め、さらに、触媒層をその面方向に対して垂直な方向から見たときの、第1方向に延びる第1基準線と、繊維状導電部材の長さ方向とが成す角度θd1を求めた。その結果、角度θd1が30°超であり、繊維状導電部材の長さ方向が平均的に第1方向を向いていないことが確認された。既述の方法により求められた傾斜角度θは、25°であった。
評価結果を表1に示す。
実施例1および2の単セルA1およびA2では、比較例1の単セルB1と比べて、触媒層のガス拡散性が向上するため、高い最大出力密度が得られた。中でも、実施例2の単セルA2が、優れた出力特性を示した。
本開示に係る燃料電池は、定置型の家庭用コジェネレーションシステム用電源や、車両用電源として、好適に用いることができる。本開示にかかる発明は、高分子電解質型燃料電池への適用に好適であるが、これに限定されるものではなく、燃料電池一般に適用することができる。
100 膜電極接合体
110 電解質膜
120 触媒層
120A 第1触媒層
120B 第2触媒層
120X 第1主面
120Y 第2主面
121 繊維状導電部材
122 触媒粒子
130A 第1ガス拡散層
130B 第2ガス拡散層
200 燃料電池
240A 第1セパレータ
240B 第2セパレータ
250A,250B シール部材
260A,260B ガス流路
360 第1ガス流路
361 第1直線部
362 第1ターン部
A1,A2,B1 単セル

Claims (7)

  1. 繊維状導電部材と、触媒粒子と、を備え、厚みが均一な燃料電池用触媒層であって、
    前記繊維状導電部材は、前記燃料電池用触媒層の面方向に対して傾斜しており、かつ、前記繊維状導電部材の長さ方向は、平均的に第1方向を向いている、燃料電池用触媒層。
  2. 前記触媒層を前記面方向に対して垂直な方向から見たとき、前記第1方向に延びる基準線と、前記繊維状導電部材の長さ方向とが成す平均角度が、30°以下である、請求項1記載の燃料電池用触媒層。
  3. 前記繊維状導電部材の長さLと、前記触媒層の厚みTとが、関係式:
    /T≦3
    を満たす、請求項1または2に記載の燃料電池用触媒層。
  4. 膜電極接合体と、前記膜電極接合体を挟む第1セパレータおよび第2セパレータと、を備え、
    前記膜電極接合体は、電解質膜と、積層方向で前記電解質膜を挟む第1電極および第2電極と、を備え、
    前記第1電極は、前記電解質膜側から順に、第1触媒層および第1ガス拡散層を備え、
    前記第1触媒層は、請求項1〜3のいずれか1項に記載の触媒層である、燃料電池。
  5. 前記第1セパレータは、第1ガス流路を有し、
    前記膜電極接合体の前記積層方向から見たとき、前記第1方向が前記第1ガス流路の平均的な流路方向を向いている、請求項4記載の燃料電池。
  6. 前記第1ガス流路が、前記第1方向を向く複数の第1直線部を有し、
    前記第1ガス流路の全長に対する前記複数の第1直線部の合計長さの割合が、80%以上100%以下である、請求項5に記載の燃料電池。
  7. 前記第1触媒層において、前記繊維状導電部材の前記第1ガス拡散層側の端部が、前記繊維状導電部材の前記電解質膜側の端部よりも、前記第1ガス流路における前記平均的な流路方向の下流側に位置するように、前記繊維状導電部材が傾斜する向きが揃っている、請求項5または6に記載の燃料電池。
JP2019562069A 2017-12-28 2018-12-26 燃料電池用触媒層および燃料電池 Pending JPWO2019131707A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023091126A JP2023110024A (ja) 2017-12-28 2023-06-01 燃料電池用触媒層および燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017254978 2017-12-28
JP2017254978 2017-12-28
PCT/JP2018/047730 WO2019131707A1 (ja) 2017-12-28 2018-12-26 燃料電池用触媒層および燃料電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023091126A Division JP2023110024A (ja) 2017-12-28 2023-06-01 燃料電池用触媒層および燃料電池

Publications (1)

Publication Number Publication Date
JPWO2019131707A1 true JPWO2019131707A1 (ja) 2020-12-24

Family

ID=67066425

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019562069A Pending JPWO2019131707A1 (ja) 2017-12-28 2018-12-26 燃料電池用触媒層および燃料電池
JP2023091126A Pending JP2023110024A (ja) 2017-12-28 2023-06-01 燃料電池用触媒層および燃料電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023091126A Pending JP2023110024A (ja) 2017-12-28 2023-06-01 燃料電池用触媒層および燃料電池

Country Status (4)

Country Link
US (1) US11923550B2 (ja)
JP (2) JPWO2019131707A1 (ja)
CN (1) CN111542956B (ja)
WO (1) WO2019131707A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131986A1 (ja) * 2019-12-26 2021-07-01 パナソニックIpマネジメント株式会社 膜電極接合体および燃料電池
CN113555565A (zh) * 2021-07-13 2021-10-26 广东兰氢科技有限公司 一种催化层制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143478A (ja) * 2003-09-26 2006-06-08 Toray Ind Inc 多孔質炭素基材ならびに該基材を用いてなるガス拡散体、膜−電極接合体および燃料電池
JP2010015908A (ja) * 2008-07-04 2010-01-21 Noritake Co Ltd ガス拡散電極用基材、その製造方法、および膜−電極接合体
JP2014154350A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 燃料電池とその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932533B2 (ja) 1989-10-30 1999-08-09 株式会社日本自動車部品総合研究所 燃料電池及びその製造方法
JP2001283878A (ja) 2000-03-30 2001-10-12 Toray Ind Inc 導電シートおよび該シートを用いた燃料電池用電極
JP2003100318A (ja) * 2001-09-26 2003-04-04 Asahi Glass Co Ltd 塗工膜の製造方法、該方法による塗工膜及び固体高分子型燃料電池の製造方法
JP4031463B2 (ja) * 2004-04-26 2008-01-09 株式会社東芝 液体燃料型固体高分子燃料電池用アノード電極、液体燃料型固体高分子燃料電池用膜電極複合体及び液体燃料型固体高分子燃料電池
JP5108240B2 (ja) * 2006-03-20 2012-12-26 トヨタ自動車株式会社 燃料電池及び燃料電池の製造方法
JP5052314B2 (ja) * 2007-12-06 2012-10-17 株式会社豊田中央研究所 固体高分子型燃料電池用電極
JP2009152128A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 膜・電極接合体
JP5278042B2 (ja) * 2009-02-27 2013-09-04 トヨタ自動車株式会社 燃料電池
WO2013065396A1 (ja) 2011-11-04 2013-05-10 トヨタ自動車株式会社 燃料電池用膜・電極接合体
JP5915283B2 (ja) 2012-03-14 2016-05-11 日産自動車株式会社 ガス拡散層およびそれを用いてなる燃料電池
JP2013206543A (ja) * 2012-03-27 2013-10-07 Panasonic Corp 燃料電池用触媒層構造体、膜電極接合体、燃料電池、燃料電池用触媒層構造体の作製法
JP6611056B2 (ja) * 2014-10-17 2019-11-27 パナソニックIpマネジメント株式会社 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の製造方法
JP6160591B2 (ja) * 2014-10-24 2017-07-12 トヨタ自動車株式会社 触媒電極層、膜電極接合体、および、燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143478A (ja) * 2003-09-26 2006-06-08 Toray Ind Inc 多孔質炭素基材ならびに該基材を用いてなるガス拡散体、膜−電極接合体および燃料電池
JP2010015908A (ja) * 2008-07-04 2010-01-21 Noritake Co Ltd ガス拡散電極用基材、その製造方法、および膜−電極接合体
JP2014154350A (ja) * 2013-02-08 2014-08-25 Toyota Motor Corp 燃料電池とその製造方法

Also Published As

Publication number Publication date
US11923550B2 (en) 2024-03-05
CN111542956B (zh) 2022-12-06
WO2019131707A1 (ja) 2019-07-04
US20210075024A1 (en) 2021-03-11
CN111542956A (zh) 2020-08-14
JP2023110024A (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
CN110383548B (zh) 膜电极接合体以及燃料电池
WO2020179583A1 (ja) 燃料電池のカソード触媒層および燃料電池
JP2023110024A (ja) 燃料電池用触媒層および燃料電池
JP2023110025A (ja) 燃料電池用触媒層、膜電極接合体および燃料電池
JP2023138761A (ja) 膜電極接合体および燃料電池
JP2022023117A (ja) 膜電極接合体および燃料電池
JP7437633B2 (ja) 燃料電池のカソード触媒層および燃料電池
WO2018155358A1 (ja) 膜電極接合体および燃料電池
JP7213453B2 (ja) 膜電極接合体および燃料電池
JP2021009777A (ja) 触媒層、膜電極接合体および燃料電池
JP2017168227A (ja) 燃料電池用ガス拡散層および燃料電池
WO2021131986A1 (ja) 膜電極接合体および燃料電池
JP2019169384A (ja) 燃料電池用触媒層および燃料電池
JP2019164962A (ja) 膜電極接合体および燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230608

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230825