JPWO2019054368A1 - Substrate joining method and sealing structure - Google Patents

Substrate joining method and sealing structure Download PDF

Info

Publication number
JPWO2019054368A1
JPWO2019054368A1 JP2019542064A JP2019542064A JPWO2019054368A1 JP WO2019054368 A1 JPWO2019054368 A1 JP WO2019054368A1 JP 2019542064 A JP2019542064 A JP 2019542064A JP 2019542064 A JP2019542064 A JP 2019542064A JP WO2019054368 A1 JPWO2019054368 A1 JP WO2019054368A1
Authority
JP
Japan
Prior art keywords
substrate
substrates
joining
base layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019542064A
Other languages
Japanese (ja)
Other versions
JP7028473B2 (en
Inventor
貴司 松前
貴司 松前
優一 倉島
優一 倉島
高木 秀樹
秀樹 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2019054368A1 publication Critical patent/JPWO2019054368A1/en
Application granted granted Critical
Publication of JP7028473B2 publication Critical patent/JP7028473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Micromachines (AREA)

Abstract

2枚の基板を接合することにより形成する封止構造において、基板と接合層であるAuまたはAu合金の間の下地層として、Ru、Ta、Mo、Hf、Wのような常温での拡散係数が1×10−60(m2/s)以下である金属を用いる。あるいは下地層としてTi、Cr等一般的に使用されている材料を用い、かつ下地層と接合層の間にPt、Co、Ru、Ta、TiN、 TaN、 WN、In2O3、Niなどの拡散バリア材料の層を配置する。In a sealing structure formed by joining two substrates, a diffusion coefficient at room temperature such as Ru, Ta, Mo, Hf, W as a base layer between the substrate and Au or Au alloy which is a bonding layer. Use a metal having a value of 1 × 10-60 (m2 / s) or less. Alternatively, a commonly used material such as Ti or Cr is used as the base layer, and a diffusion barrier material such as Pt, Co, Ru, Ta, TiN, TaN, WN, In2O3, or Ni is used between the base layer and the bonding layer. Place layers of.

Description

本発明は、2枚以上のウェハサイズの基板の封止により作製した、基板の内部に半導体素子、光学素子、MEMS、ガスセル等の素子を封じ込めたチップの製造工程で必要な、基板同士の気密封止のための接合方法に関する。 The present invention is required in the manufacturing process of a chip in which elements such as semiconductor elements, optical elements, MEMS, and gas cells are enclosed inside a substrate, which is produced by sealing two or more wafer-sized substrates. The present invention relates to a joining method for tight sealing.

集積化デバイスのパッケージング法の一つとして、図1にその工程概要を模式的に示すように、2枚のウェハサイズの基板同士を貼り合わせて、素子形成基板11の凹部13内部に作製した素子を封止基板12で封止して、貼り合わせ基板内に素子を封止した後、切り出し(ダイシング)により個片化してチップ14を作製するプロセスが、簡便に量産化が可能なプロセスとして近年多く行われている。 As one of the packaging methods for integrated devices, as shown schematically in FIG. 1, two wafer-sized substrates are bonded to each other to be formed inside the recess 13 of the device forming substrate 11. The process of sealing the element with the sealing substrate 12, sealing the element in the bonded substrate, and then cutting out (dicing) to individualize the chip 14 to produce the chip 14 is a process that can be easily mass-produced. It has been done a lot in recent years.

具体的な接合技術としては、2枚の基板を重ね合わせ、高熱・高加圧を加えて接合させる技術が一般的に利用されている。しかしながら、このような接合手法では、高熱・高加圧により素子、基板等がダメージを受けるため、低温かつ低加圧で接合する手法として原子拡散接合が提案されている(特許文献1)。原子拡散接合では、図2に示すように、被接合材である平滑基板の接合面に、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)といった下地層と、金(Au)あるいは拡散係数が1×10−45(m/s)以上である単金属・合金から成る接合層を真空下で形成しこれらを接触させる。すると接合界面、結晶粒界において原子拡散が起こり、室温でも強固な接合が達成される。As a specific joining technique, a technique of superimposing two substrates and applying high heat and high pressure to join them is generally used. However, in such a joining method, elements, substrates and the like are damaged by high heat and high pressure, so atomic diffusion bonding has been proposed as a method of bonding at low temperature and low pressure (Patent Document 1). In atomic diffusion bonding, as shown in FIG. 2, titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), and molybdenum are formed on the bonding surface of the smooth substrate to be bonded. From underlayers such as (Mo), hafnium (Hf), titanium (Ta), tungsten (W) and single metals / alloys with gold (Au) or diffusion coefficient of 1 × 10-45 (m 2 / s) or more. Bonding layers are formed under vacuum and brought into contact with each other. Then, atomic diffusion occurs at the bonding interface and grain boundaries, and strong bonding is achieved even at room temperature.

しかしこの手法においては、上記の接合膜の厚さが増大すると、非特許文献1にあるように、気密封止に望ましい欠陥のない接合界面を達成することが困難となる。欠陥のない接合のためには、非特許文献2にあるように接合膜の厚さは50nm程度以下に制限される。 However, in this method, when the thickness of the bonding film increases, it becomes difficult to achieve a bonding interface without defects desirable for airtight sealing, as described in Non-Patent Document 1. For defect-free bonding, the thickness of the bonding film is limited to about 50 nm or less as described in Non-Patent Document 2.

特許第5569964号公報Japanese Patent No. 5569964 特開2016−171393号明細書JP-A-2016-171393

倉島優一、前田敦彦、多喜川良、高木秀樹、「Room temperature wafer bonding of metal films using flattening by thermal imprint process」、 Microelectronic Engineering、第112版、2013年6月10日、p.52−56Yuichi Kurashima, Atsuhiko Maeda, Ryo Takigawa, Hideki Takagi, "Room temperature wafer wafer bonding of metal films using flattening by thermal imprint process", MICROELECTRONIC 12th month, 13th edition, 13th edition, MICROELECTRONIC. 52-56 日暮栄治、奥村 拳、國宗 豊、須賀唯知、萩原 啓、「Room Temperature Bonding of Wafers with Smooth Au Thin Films in Ambient Air Using a Surface −Activated Bonding Method」、IEICE Transaction on Electronics、第E100−C版、2017年2月、p.156−160Eiji Higurashi, Ken Okumura, Yutaka Kunimune, Yuichi Suga, Kei Hagiwara, "Room Temperature Bonding of Wafers with Smart Auto Engine Electronics in Ambient Electronics Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine Engine , February 2017, p. 156-160 北田正弘、清水 昇、「Effects of temperature,thickness and atmosphere on mixing in Au−Ti bilayer thin films」Journal of Material Science,第28版、p.5088−5091Masahiro Kitada, Noboru Shimizu, "Effects of temperature, chicness and atmosphere on mixing in Au-Ti bilayer thin films", Journal of Materials science, 28th edition, p. 5088-5091

上記の下地層及び接合層は、成膜時に雰囲気から取り込まれた水素等の分子を内包しており、また素子の表面にも製造プロセス中でガス分子が付着する。これらの分子は、封止後に素子の温度上昇あるいは電気的作用によってガスとして封止された凹部(キャビティ)内部に放出され、素子の動作精度や製品寿命を劣化させる原因となる。そのため、一般的な基板の封止工程においては、内包及び付着した分子を脱ガスさせるため、封止前にアニール処理(焼き出し)を行うことが必須となる。 The base layer and the bonding layer contain molecules such as hydrogen taken in from the atmosphere during film formation, and gas molecules adhere to the surface of the device during the manufacturing process. After sealing, these molecules are released into the recess (cavity) sealed as a gas by the temperature rise of the device or an electric action, which causes deterioration of the operating accuracy of the device and the product life. Therefore, in a general substrate sealing process, it is essential to perform an annealing treatment (baking) before sealing in order to degas the inclusions and adhered molecules.

特許文献2には、MEMS振動子の作製工程において、素子ウェハの凹部に素子を作製した後に高温焼き出しを行い、その後封止したウェハを真空中で接合することが開示されている。しかしながら、焼き出し工程の後に封止ウェハ表面に形成される接合層(接続電極)を形成する工程を行っており、その後は焼き出しを行っていないので、この層からの脱ガス、及びこれらの工程で付着した表面物質の脱ガスにより封止環境が劣化するという問題がある。また特許文献2では、接合に390℃以上が必要になるという問題もある。 Patent Document 2 discloses that in a manufacturing process of a MEMS oscillator, a device is manufactured in a recess of a device wafer, then high-temperature baking is performed, and then the sealed wafer is joined in a vacuum. However, since the step of forming the bonding layer (connection electrode) formed on the surface of the sealed wafer is performed after the baking step and the baking is not performed thereafter, degassing from this layer and these are performed. There is a problem that the sealing environment deteriorates due to degassing of the surface substance adhering in the process. Further, Patent Document 2 has a problem that 390 ° C. or higher is required for joining.

また、素子の種類によっては、封止されたキャビティ内部の雰囲気を制御するために、Ti等のゲッター材を凹部内に予め配置しておくことも行われるが、この場合にはゲッター材に対しても、接合前にアニールにより脱ガス処理を行う必要がある。 Further, depending on the type of the element, a getter material such as Ti may be arranged in advance in the recess in order to control the atmosphere inside the sealed cavity. In this case, the getter material is used. However, it is necessary to perform degassing treatment by annealing before joining.

しかしながら、アニール処理を行うと、接合層と下地層の間で金属拡散が起こり、酸化しやすい下地層の原子が表面まで拡散して表面に酸化膜を形成する。この現象は非特許文献3にあるように接合層が薄い際により顕著に発現する。このような状態で基板を接合すると、接合界面での原子間結合の形成がこの酸化膜により阻害され、その結果接合強度が小さくなるという問題が発生する。特に原子拡散接合に用いられる非常に薄い接合層では比較的低温・短時間のアニール処理によっても表面に酸化層が形成され接合が阻害される。 However, when the annealing treatment is performed, metal diffusion occurs between the bonding layer and the underlying layer, and the atoms of the underlying layer, which are easily oxidized, diffuse to the surface to form an oxide film on the surface. This phenomenon is more prominent when the bonding layer is thin as described in Non-Patent Document 3. When the substrates are bonded in such a state, the formation of interatomic bonds at the bonding interface is inhibited by this oxide film, and as a result, there arises a problem that the bonding strength is reduced. In particular, in a very thin bonding layer used for atomic diffusion bonding, an oxide layer is formed on the surface even by annealing at a relatively low temperature for a short time, and the bonding is hindered.

このように、基板や内部構造からの脱ガスは封止内部の雰囲気を劣化させる原因となるため、接合前のアニールによる脱ガス処理は必須であり、このアニール処理後も強固な接合が達成できる接合手法が求められている。 In this way, degassing from the substrate and internal structure causes deterioration of the atmosphere inside the seal, so degassing treatment by annealing before joining is essential, and strong joining can be achieved even after this annealing treatment. A joining method is required.

発明の解決手段Solution of the invention

上記課題を解決するため、本発明では基板と接合層である厚さ50nm以下のAuまたはAu−AgあるいはAu−CuのようなAu合金の間の下地層として、Ru、Ta、Mo、W等の常温での拡散係数が1×10−60(m/s)以下である金属を用いる。あるいは、下地層としてTi、Cr等一般的に使用されている材料を使用し、かつ下地層と接合層の間に白金(Pt)、コバルト(Co)、ルテニウム(Ru)、タンタル(Ta)、窒化チタン(TiN)、 窒化タンタル(TaN)、 窒化タングステン(WN)、酸化インジウム(In)、ニッケル(Ni)等の拡散バリア材料の層を配置する。In order to solve the above problems, in the present invention, as a base layer between a substrate and an Au alloy such as Au or Au-Ag or Au-Cu having a thickness of 50 nm or less, which is a bonding layer, Ru, Ta, Mo, W and the like are used. Use a metal having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less at room temperature. Alternatively, a commonly used material such as Ti or Cr is used as the base layer, and platinum (Pt), cobalt (Co), ruthenium (Ru), tantalum (Ta), etc. are used between the base layer and the bonding layer. Layers of diffusion barrier material such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), indium oxide (In 2 O 3 ), nickel (Ni) are arranged.

そして、図3に模式的に示すように、焼き出しを行わない場合には封止後脱ガスが生じ、キャビティ内の雰囲気が劣化する。これに対して、下地層と接合層を基板上に成膜した後に真空中または不活性ガス中でアニールして脱ガス処理し、その後に接合を行うことにより、封止後もガス放出による内部雰囲気の劣化が少ない接合が実現できる。アニール温度は最低でも水の沸点である100℃以上、さらに好ましくは200℃以上で行う必要がある。一方、300℃を超える高温下では金属の再結晶化による表面粗さの増加や下地膜の拡散により接合が困難なるため、アニール温度は300℃以下が望ましい。 Then, as schematically shown in FIG. 3, if the baking is not performed, degassing occurs after sealing, and the atmosphere in the cavity deteriorates. On the other hand, after the base layer and the bonding layer are formed on the substrate, they are annealed in vacuum or in an inert gas to be degassed, and then bonded, so that the inside is released by gas even after sealing. It is possible to realize joining with less deterioration of the atmosphere. The annealing temperature should be at least 100 ° C., which is the boiling point of water, and more preferably 200 ° C. or higher. On the other hand, at a high temperature of more than 300 ° C., the annealing temperature is preferably 300 ° C. or lower because bonding becomes difficult due to an increase in surface roughness due to recrystallization of the metal and diffusion of the base film.

接合は、封止後の熱残留応力の影響を低減するため、好適な温度まで冷却して低温接合を行う。基板としてはシリコン(Si)、ガラス、水晶、サファイア等が用いられるが、素子形成基板と封止基板に異種材料を用いることにより、素子形成基板には微細加工が容易なSi等の半導体材料を、封止基板には透明で光を透過するサファイアなどを使用することが可能となる。しかしこのような異種基板同士を接合させる場合には、両者の熱膨張率の差により接合体の変形等の不具合が生じるため、特に低温接合が好ましい。 In order to reduce the influence of thermal residual stress after sealing, the bonding is performed by cooling to a suitable temperature and performing low temperature bonding. Silicon (Si), glass, crystal, sapphire, etc. are used as the substrate, but by using different materials for the element forming substrate and the sealing substrate, a semiconductor material such as Si, which is easy to be finely processed, is used for the element forming substrate. , It is possible to use transparent and light-transmitting sapphire for the sealing substrate. However, when such dissimilar substrates are bonded to each other, problems such as deformation of the bonded body occur due to the difference in the coefficient of thermal expansion between the two, so low temperature bonding is particularly preferable.

本発明の2枚の基板を接合して封止構造を形成する方法は以下のステップを含む。
少なくとも1つの凹部とその周りの平坦な表面を有する第1の基板と、平坦な表面を有する第2の基板を準備するステップ、
前記第1の基板の前記平坦な表面と、前記第2の基板の前記平坦な表面に下地層を形成するステップ、
前記第1及び前記第2の基板の前記下地層の上に金属接合層を形成するステップと、
前記下地層及び前記金属接合層が形成された前記第1及び前記第2の基板をアニールにより脱ガス処理するステップ、
前記アニールによる脱ガス処理後の前記第1及び前記第2の基板の各々の前記金属接合層同士を原子拡散接合することにより、前記第1基板の前記凹部を前記第2の基板により封止するステップ。
The method of joining two substrates of the present invention to form a sealed structure includes the following steps.
A step of preparing a first substrate having at least one recess and a flat surface around it and a second substrate having a flat surface.
A step of forming an underlayer on the flat surface of the first substrate and the flat surface of the second substrate.
A step of forming a metal bonding layer on the base layer of the first and second substrates, and
A step of degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing.
The recesses of the first substrate are sealed by the second substrate by atomic diffusion bonding between the metal bonding layers of the first and second substrates after the degassing treatment by the annealing. Step.

本発明の接合方法による前記下地層は、常温での拡散係数が1×10−60(m/s)以下の金属材料を用いてもよく、特に、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含んでいてもよい。For the base layer according to the bonding method of the present invention, a metal material having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less at room temperature may be used, and in particular, Ta, Ru, Mo, Hf, and W. It may contain at least one of.

あるいは、本発明の接合方法では、前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層を形成するステップをさらに含んでもよく、特に、前記下地層がTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In及びNiの内の少なくとも1つであってもよい。Alternatively, the bonding method of the present invention may further include a step of forming a diffusion barrier layer between the base layer and the metal bonding layer of the first and second substrates, and in particular, the base layer is Ti. Alternatively, the diffusion barrier layer containing Cr may be at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni.

また、本発明の接合方法による前記金属接合層はAuを含んでいてもよい。 Further, the metal bonding layer according to the bonding method of the present invention may contain Au.

また、本発明の接合方法による前記第1及び前記第2の基板の少なくとも一方はSi基板であってよい。 Further, at least one of the first and second substrates according to the joining method of the present invention may be a Si substrate.

本発明の接合方法による前記アニールによる脱ガス処理は、乾燥空気中、減圧雰囲気または不活性雰囲気中において、前記第1及び前記第2の基板を100℃以上、好ましくは200℃以上の温度で加熱してもよい。 The degassing treatment by annealing according to the bonding method of the present invention heats the first and second substrates at a temperature of 100 ° C. or higher, preferably 200 ° C. or higher, in dry air, a reduced pressure atmosphere or an inert atmosphere. You may.

また、本発明の接合方法による前記第1及び前記第2の基板を前記原子拡散接合するステップは、前記脱ガス処理の温度より低い温度で行ってもよい。 Further, the step of atomic diffusion bonding of the first and second substrates by the bonding method of the present invention may be performed at a temperature lower than the temperature of the degassing treatment.

また、本発明の上記接合方法による前記封止構造は原子時計のガスセルを含んでもよい。本発明によるガスセルは、第1及び第2の基板が透光性であり、前記第1の基板に凹部が2つ以上形成されており、1つの前記凹部内にはCs原子供給源(セシウムディスペンサー)とゲッター材が予め配置され、複数の前記凹部内は、封止時の雰囲気であるネオン(Ne)と前記Cs原子供給源から発生したCs原子を含む雰囲気になされており、封止により形成されたセルの内、前記Cs原子供給源とゲッター材が予め配置されていないセルに光を透過させて共鳴周波数を計測することにより、原子時計として用いる。なお 、ディスペンサはセシウムディスペンサに限られることはなく、ルビジウム(Rb)ディスペンサ等でも良い。また封止時の雰囲気ガスは、Neガスに限られることはなく、Ar等の他の不活性ガス、あるいはNeを含めてそれらの混合ガスであっても良い。 Further, the sealing structure according to the joining method of the present invention may include a gas cell of an atomic clock. In the gas cell according to the present invention, the first and second substrates are translucent, two or more recesses are formed in the first substrate, and a Cs atom supply source (cesium dispenser) is formed in one recess. ) And the getter material are arranged in advance, and the plurality of recesses are formed in an atmosphere containing neon (Ne), which is the atmosphere at the time of sealing, and Cs atoms generated from the Cs atom source, and are formed by sealing. It is used as an atomic clock by transmitting light through a cell in which the Cs atom supply source and the getter material are not arranged in advance and measuring the resonance frequency among the cells. The dispenser is not limited to the cesium dispenser, and may be a rubidium (Rb) dispenser or the like. Further, the atmospheric gas at the time of sealing is not limited to Ne gas, and may be another inert gas such as Ar, or a mixed gas thereof including Ne.

本発明の接合方法によれば、素子形成基板の凹部内に作製した素子を、封止基板で封止接合することにより作製した、半導体素子、光学素子、MEMS、ガスセル等の素子の長期的安定性を実現することができる。 According to the joining method of the present invention, long-term stability of devices such as semiconductor devices, optical devices, MEMS, gas cells, etc., which are manufactured by sealing and joining the devices manufactured in the recesses of the device forming substrate with a sealing substrate. Sex can be realized.

また、特に原子時計のガスセルの場合には、セル内に封止したNe中に分散したCsが脱ガス成分と反応しやすいため、封止前にCs供給源と気体ゲッター材を凹部に配置しておき、アニールによる脱ガス処理後封止することにより、Csを安定にセル内に封止することができる。 Further, especially in the case of a gas cell of an atomic clock, since Cs dispersed in Ne sealed in the cell easily reacts with a degassing component, a Cs supply source and a gas getter material are arranged in a recess before sealing. Cs can be stably sealed in the cell by sealing after the degassing treatment by annealing.

図1は、ウェハサイズ基板の接合により素子を作製する工程を示す模式的説明図である。FIG. 1 is a schematic explanatory view showing a process of manufacturing an element by joining wafer-sized substrates. 図2は、従来の方法による接合工程を示す模式的説明図である。FIG. 2 is a schematic explanatory view showing a joining process by a conventional method. 図3は、「焼き出し」の効果を示す模式的説明図である。FIG. 3 is a schematic explanatory view showing the effect of “burning”. 図4は、本発明による接合工程を示す模式的説明図である。FIG. 4 is a schematic explanatory view showing a joining process according to the present invention. 図5は、接合強度の測定法(クラックオープニング法)の原理を示す説明図である。FIG. 5 is an explanatory diagram showing the principle of a method for measuring joint strength (crack opening method). 図6は、本発明の実施例、比較例による接合強度を比較した表である。FIG. 6 is a table comparing the bonding strengths according to the examples and comparative examples of the present invention. 図7は、ガスセルの製造工程を示す模式図である。FIG. 7 is a schematic view showing a manufacturing process of a gas cell. 図8は、ガスセルの断面を示す模式図である。FIG. 8 is a schematic view showing a cross section of the gas cell. 図9(A)は焼き出しを行ったガスセルのセル部を上から顕微鏡で観察した写真である。(B)は(A)のセルを用いて計測したNeガス中のCsに固有の遷移周波数のスペクトルである。(C)は焼き出しを行なわないガスセルのセル部を上から顕微鏡で観察した写真である。FIG. 9A is a photograph of the cell portion of the calcined gas cell observed from above with a microscope. (B) is a spectrum of a transition frequency peculiar to Cs in Ne gas measured using the cell of (A). (C) is a photograph of the cell portion of the gas cell that is not baked, observed from above with a microscope. 図10は、Au/Ti/Si積層構造のアニール処理後のXPSによる深さ方向の原子分布を示す図である。FIG. 10 is a diagram showing the atomic distribution in the depth direction by XPS after the annealing treatment of the Au / Ti / Si laminated structure. 図11は、Au/Cr/Si積層構造のアニール処理後のXPSによる深さ方向の原子分布を示す図である。FIG. 11 is a diagram showing the atomic distribution in the depth direction by XPS after the annealing treatment of the Au / Cr / Si laminated structure. 図10は、Au/Pt/Ti/Si積層構造のアニール処理後のXPSによる深さ方向の原子分布を示す図である。FIG. 10 is a diagram showing the atomic distribution in the depth direction by XPS after the annealing treatment of the Au / Pt / Ti / Si laminated structure. 図13は、Au/Ta/Si積層構造のアニール処理後のXPSによる深さ方向の原子分布を示す図である。FIG. 13 is a diagram showing the atomic distribution in the depth direction by XPS after the annealing treatment of the Au / Ta / Si laminated structure. 図14は、各積層構造について、AFMで測定したスパッタ後、プラズマ処理後、アニール処理後の表面粗さを示す図である。FIG. 14 is a diagram showing the surface roughness of each laminated structure after sputtering, plasma treatment, and annealing treatment measured by AFM.

本発明の実施形態を、図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

1.基板接合
本発明による基板接合の方法の概要を図4に示す。第1の方法としては下地層として拡散係数が1×10−60(m/s)以下の金属を用いる。表1は半導体プロセスで用いられる主な金属の常温での自己拡散係数を示したものである。1×10−60(m/s)以下の拡散係数を有する金属には、Hf、Mo、Nb、Ta、Wが挙げられる。ここでは、400μm厚のSi基板に下地層としてTaを10nm、接合層としてAuを12nmスパッタリング法により成膜した。これらの試料同士を接合する前に、1×10−3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して両基板を接合した。接合強度はMaszaraブレード試験で測定した。Maszaraブレード試験は図5に原理の概要を示すように、ブレード(ここでは安全カミソリの歯)を接合した基板間に入れ差し込んで行き、基板を剥離させるのに必要なエネルギーγを測定する方法である。その結果、本実施例では5.0(J/m)という大きな値が得られた。
1. 1. Substrate bonding Fig. 4 shows an outline of the substrate bonding method according to the present invention. As the first method, a metal having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less is used as the base layer. Table 1 shows the self-diffusion coefficient of the main metals used in the semiconductor process at room temperature. Examples of the metal having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less include Hf, Mo, Nb, Ta, and W. Here, Ta was formed as a base layer at 10 nm and Au was formed as a bonding layer on a 400 μm-thick Si substrate by a 12 nm sputtering method. Before joining these samples together, annealing treatment was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 -3 (Pa). After that, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to join the two substrates. Bond strength was measured in the Massara blade test. The Maszara blade test is a method of measuring the energy γ required to peel off the substrate by inserting the blade (here, the teeth of a safety razor) between the bonded substrates, as shown in the outline of the principle in FIG. is there. As a result, a large value of 5.0 (J / m 2 ) was obtained in this example.

本発明による基板接合の第2の方法は、下地層と接合層との間に拡散バリア効果を持つ材料を用いた拡散バリア層を挟む方法である。その実施例を次に説明する。400μm厚のSi基板に下地層としてTiを5nmと、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜した。このように作製した試料同士を接合する前に、1×10−3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合した。Maszaraブレード試験で測定した接合強度は3.2(J/m)であった。The second method of substrate bonding according to the present invention is a method of sandwiching a diffusion barrier layer using a material having a diffusion barrier effect between the base layer and the bonding layer. The embodiment will be described below. On a 400 μm-thick Si substrate, Ti was formed as a base layer at 5 nm, followed by Pt as a diffusion barrier layer at 10 nm, and Au was formed as a bonding layer on the Si substrate by 12 nm sputtering. Before joining the samples prepared in this way, annealing treatment was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 -3 (Pa). The sample was then cooled to 40 ° C. and a load of 123 kPa was applied to the sample for bonding. The bonding strength measured in the Massara blade test was 3.2 (J / m 2 ).

400μm厚のSi基板に下地層としてTiを5nmと、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜した。このように作製した試料同士を接合する前に、1×10−3(Pa)程度の減圧雰囲気において250℃で10分間アニール処理を行なった。その後試料を40℃付近まで冷却し、123kPaの荷重を試料に印加して接合を行った。Maszaraブレード試験を行うと接合界面からではなくSi基板から破断した。On a 400 μm-thick Si substrate, Ti was formed as a base layer at 5 nm, followed by Pt as a diffusion barrier layer at 10 nm, and Au was formed as a bonding layer on the Si substrate by 12 nm sputtering. Before joining the samples thus prepared, annealing treatment was performed at 250 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 -3 (Pa). After that, the sample was cooled to around 40 ° C., and a load of 123 kPa was applied to the sample for joining. When the Massara blade test was performed, the fracture occurred from the Si substrate, not from the bonding interface.

比較例1Comparative Example 1

次に比較例として、下地層として拡散係数が1×10―60(m/s)より大きい値を有する金属を用いた場合の結果について述べる。400μm厚のSi基板に下地層としてCrを5nm、その上にAu接合層を12nm成膜した試料をスタッパリングにより作製し、これらの試料同士を接合する前に、1×10−3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合した。この場合、接合Maszaraブレード試験で測定した接合強度は0.04(J/m)と非常に小さい値であった(図6)。Next, as a comparative example, the results when a metal having a diffusion coefficient larger than 1 × 10-60 (m 2 / s) is used as the base layer will be described. A sample in which Cr was 5 nm as a base layer and an Au bonding layer was formed on the Si substrate with a thickness of 400 μm at 12 nm was prepared by stappering, and before joining these samples, 1 × 10 -3 (Pa) was prepared. Annealing treatment was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere. The sample was then cooled to 40 ° C. and a load of 123 kPa was applied to the sample for bonding. In this case, the bonding strength measured in the bonding Massara blade test was 0.04 (J / m 2 ), which was a very small value (FIG. 6).

比較例2Comparative Example 2

400μm厚のSi基板に下地層としてTiを5nm、その上にAu接合層を12nmスタッパリングにより成膜した試料を作製し、これらの試料同士を接合する前に、1×10−3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合を行ったが、接合しなかった(図6)。A sample in which Ti was formed as a base layer on a 400 μm-thick Si substrate by 5 nm and an Au bonding layer was formed on it by 12 nm stappering was prepared, and before joining these samples, 1 × 10 -3 (Pa) was prepared. Annealing treatment was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere. After that, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to perform bonding, but bonding was not performed (FIG. 6).

このようにして得られた各層構造、接合条件による接合強度(J/m)を図6にまとめた。なお、「接合(室温)」の欄は従来の研究の結果を比較のために示したものである。「母材破壊」は、接合強度がSi母材の強度(2.5 J/m)よりもずっと大きかったため母材が破壊したことを表わし、「接合失敗」は接合できなかったことを表わす。図6に示すように、本発明によるAu/Ta/SiまたはAu/Pt/Ti/Siの層構造を用いる方法により、良好な接合強度が得られた。
2.本発明によるガスセルの作製
The bonding strength (J / m 2 ) according to each layer structure and bonding conditions obtained in this manner is summarized in FIG. The column of "Joining (room temperature)" shows the results of conventional studies for comparison. "Base material fracture" means that the base metal was broken because the joint strength was much higher than the strength of the Si base material (2.5 J / m 2 ), and "joining failure" means that the joint could not be joined. .. As shown in FIG. 6, good bonding strength was obtained by the method using the layer structure of Au / Ta / Si or Au / Pt / Ti / Si according to the present invention.
2. 2. Fabrication of gas cell according to the present invention

図7は、本発明を用いたガスセルの作製工程の概要を示す。素子形成用の基板21には透明なサファイアを用い、基板の片面から直径及び深さ26が2mmの円柱状の凹部23が中心間隔4mmを隔てて2つ形成され、その2つの凹部は、表面側に設けた線幅0.5mm、深さ0.1mmの溝25により連結されている。これは必ずしも2つに限られることはなく、3つ以上形成してそれぞれを溝で連結してもよい。また、上側の封止用基板22にも平坦なサファイア基板を用いた。 FIG. 7 shows an outline of a gas cell manufacturing process using the present invention. A transparent sapphire is used for the substrate 21 for forming the element, and two columnar recesses 23 having a diameter and a depth of 26 mm of 2 mm are formed from one side of the substrate with a center spacing of 4 mm, and the two recesses are surfaces. It is connected by a groove 25 having a line width of 0.5 mm and a depth of 0.1 mm provided on the side. This is not necessarily limited to two, and three or more may be formed and each may be connected by a groove. A flat sapphire substrate was also used for the upper sealing substrate 22.

次に、素子形成基板21の平坦な最表面に下地層としてTiを5nm、それに続いて拡散バリア層としてPtを10nm、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜し、多層金属構造31を作製した。一方封止基板22には、素子形成基板の凹部23、溝25に対応する部分以外の面に、同様に下地層としてTiを5nm、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜し、同様に多層金属構造32を作製した。 Next, Ti was formed as a base layer at 5 nm on the flat outermost surface of the device forming substrate 21, Pt was formed at 10 nm as a diffusion barrier layer, and Au was formed on the flat outermost surface as a bonding layer by 12 nm sputtering to form a multilayer metal structure. 31 was prepared. On the other hand, on the sealing substrate 22, Ti was similarly formed at 5 nm as a base layer and then Pt at 10 nm as a diffusion barrier layer on the surfaces other than the portions corresponding to the recesses 23 and the grooves 25 of the element forming substrate. Au was formed as a bonding layer on the film by 12 nm sputtering, respectively, and a multilayer metal structure 32 was similarly produced.

次に、両基板上のそれぞれのAu表面に、Arプラズマを200Wで30秒間照射して接合表面に付着した有機物を除去した後に、素子形成基板の一方の凹部23にセシウムディスペンサ41及びゲッター材42を配置した。その後、気密封止接合装置を用いて、10−4Pa程度まで接合装置内部を真空状態にした後、両基板を200℃まで加熱して10分間焼き出しを行った。次に、Neガスを10Paの気圧まで装置内部に導入し、凹部の内部をNeガス雰囲気として気密接合を行いこれらの凹部をガスセルとした。Next, after irradiating each Au surface on both substrates with Ar plasma at 200 W for 30 seconds to remove organic substances adhering to the bonded surface, the cesium dispenser 41 and the getter material 42 are placed in one recess 23 of the element forming substrate. Was placed. Then, using an airtight sealing joining device, the inside of the joining device was evacuated to about 10-4 Pa, and then both substrates were heated to 200 ° C. and baked for 10 minutes. Next, the Ne gas was introduced into the apparatus until air pressure in the 10 4 Pa, these recesses do hermetically joining the inside of the recess as Ne gas atmosphere was gas cell.

接合後、セシウムディスペンサに5Wのレーザーを1分間照射して加熱し、セシウム原子をガスセル中に放出させた。図9の(A)は、このように作製し、セシウムを放出させた後のセルを上から顕微鏡で観察した写真を示す。円筒状の凹部の側面にCs金属の堆積に起因する光沢が見られた。一方、2つの凹部の間の溝25の存在により、セシウムディスペンサ及びゲッター材を配置しなかった凹部にもCs原子は拡散しており、時刻の測定にはこのセシウムディスペンサ及びゲッター材のない凹部を用いる。即ち図8に示すように、このセルに光源44からの光を通過させて検出器46で検出することで、図9の(B)に示すようにNeガス中のCsに固有の遷移周波数を計測した。 After bonding, the cesium dispenser was irradiated with a 5 W laser for 1 minute and heated to release cesium atoms into the gas cell. FIG. 9A shows a photograph of the cell prepared in this way and after releasing cesium, observed from above with a microscope. Gloss due to the deposition of Cs metal was observed on the side surface of the cylindrical recess. On the other hand, due to the presence of the groove 25 between the two recesses, Cs atoms are diffused even in the recesses where the cesium dispenser and the getter material are not arranged, and the recesses without the cesium dispenser and the getter material are used for time measurement. Use. That is, as shown in FIG. 8, by passing the light from the light source 44 through this cell and detecting it with the detector 46, as shown in FIG. 9B, the transition frequency peculiar to Cs in Ne gas is obtained. I measured it.

比較例3Comparative Example 3

上記実施例の多層金属構造(Au/Pt/Ti)の代わりに、Ptを用いず、Tiを5nm、その上にAu接合層を12nmスパッタリングによりそれぞれ成膜し、それ以外は上記実施例と全く同じ工程により封止接合を試みた。結果として接合は出来なかった。 Instead of the multilayer metal structure (Au / Pt / Ti) of the above example, Ti was formed by 5 nm and an Au bonding layer was formed on it by 12 nm sputtering without using Pt. Sealing and joining was attempted by the same process. As a result, joining was not possible.

比較例4Comparative Example 4

実施例3と同じ多層金属構造(Au/Pt/Ti)を用い、焼き出し工程を行わずにNeガス中で常温で封止接合を行った。それ以外の工程は実施例3と同じ工程である。実施例3と同条件でセシウムディスペンサにレーザーを照射してCs放出を試みたが、図9の(C)に示すように、凹部の側面に金属状態のセシウムに起因する金属光沢が確認出来なかった。接合前に焼き出し処理を行わなかったため、ガスセル内部に水、その他のガスが発生し、セシウムが水と反応して水酸化セシウムとなったためである。
3.成分拡散分析
Using the same multilayer metal structure (Au / Pt / Ti) as in Example 3, sealing and bonding were performed in Ne gas at room temperature without performing a baking step. The other steps are the same as in the third embodiment. An attempt was made to emit Cs by irradiating the cesium dispenser with a laser under the same conditions as in Example 3, but as shown in FIG. 9 (C), metallic luster due to metallic cesium could not be confirmed on the side surface of the recess. It was. This is because water and other gases were generated inside the gas cell because the baking treatment was not performed before joining, and cesium reacted with water to form cesium hydroxide.
3. 3. Component diffusion analysis

上述した層構造の違いによる接合強度の違いの要因を調べるため、アニール処理(焼き出し)を行った後の膜の成分元素の深さ方向分布をXPS(X−ray Photoelectron Spectroscopy)により調べた。その結果を図10〜13に示す。図10はスパッタリングで作製したAu(12nm)/Ti(5nm)/Si(400μm)の層構造の試料を超音波洗浄、Arプラズマによる表面洗浄の後、1×10−3(Pa)で200℃、10分間のアニール処理を行った後の成分元素の深さ方向分布を示す。この結果から分かるように、表面にTiとOが検出され、TiOxが形成されていることがわかる。従って、この酸化膜の存在が接合強度を低下させていると推測できる。In order to investigate the cause of the difference in the bonding strength due to the difference in the layer structure described above, the distribution in the depth direction of the component elements of the film after the annealing treatment (baking) was examined by XPS (X-ray Photoelectron Spectroscopy). The results are shown in FIGS. 10 to 13. In FIG. 10, a sample having a layered structure of Au (12 nm) / Ti (5 nm) / Si (400 μm) prepared by sputtering is ultrasonically cleaned, surface-cleaned with Ar plasma, and then 200 ° C. at 1 × 10 -3 (Pa). The distribution in the depth direction of the component elements after the annealing treatment for 10 minutes is shown. As can be seen from this result, Ti and O are detected on the surface, and it can be seen that TiOx is formed. Therefore, it can be inferred that the presence of this oxide film reduces the bonding strength.

図11は、同様に作製したAu(12nm)/Cr(5nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。図10と同様に、表面にCrとOが検出され、CrOxが形成されていることがわかる。従って、同様にこの酸化膜の存在が接合強度を低下させていることが推測できる。 FIG. 11 shows the depth distribution of the component elements of the similarly prepared sample having a layer structure of Au (12 nm) / Cr (5 nm) / Si (400 μm) after undergoing exactly the same treatment as the above sample. Similar to FIG. 10, Cr and O are detected on the surface, and it can be seen that CrOx is formed. Therefore, it can be inferred that the presence of this oxide film also reduces the bonding strength.

図12は、同様に作製したAu(12nm)/Pt(10nm)/Ti(5nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。図10と異なり表面にTi元素は全く見られず、表面にTiOxが形成されていないことが分かる。このため、接合強度が低下しないと推測できる。これはPtが熱拡散バリアとして働くためと考えられる。 FIG. 12 shows the depth of the component elements of the similarly prepared sample having a layer structure of Au (12 nm) / Pt (10 nm) / Ti (5 nm) / Si (400 μm) after the same treatment as the above sample. Shows the directional distribution. Unlike FIG. 10, no Ti element was found on the surface, indicating that TiOx was not formed on the surface. Therefore, it can be inferred that the joint strength does not decrease. It is considered that this is because Pt acts as a heat diffusion barrier.

図13は、同様に作製したAu(12nm)/Ta(10nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。表面にはTa元素が全く見られないことが分かる。従って、表面に酸化物は形成されていないため接合強度が低下しないと推測できる。これは、Taの体拡散係数が非常に小さいため、この程度の温度、時間のアニール処理では表面まで拡散しないためと考えられる。 FIG. 13 shows the distribution of the component elements in the depth direction of the similarly prepared sample having a layer structure of Au (12 nm) / Ta (10 nm) / Si (400 μm) after undergoing exactly the same treatment as the above sample. It can be seen that no Ta element is found on the surface. Therefore, it can be inferred that the bonding strength does not decrease because no oxide is formed on the surface. It is considered that this is because the body diffusion coefficient of Ta is very small, so that the annealing treatment at such a temperature and time does not diffuse to the surface.

接合強度に影響を及ぼす表面酸化物以外の要素として、アニール処理による表面の平滑性の変化が挙げられる。そこで、上記各試料の各処理後の平滑性を調べるため、AFM(Atomic Force Microscope;原子間力顕微鏡)の表面プロファイルのRMS(Root Mean Square;二乗平均平方根)を測定した結果を図14に示す。表面に酸化膜が形成されたAu/Ti/SiとAu/Cr/Siの場合は、アニール後、表面のRMS(粗さ)が大きく増加しているのに対して、表面に酸化膜が形成されなかったAu/Pt/Ti/SiとAu/Ta/Siの場合は、アニール後もRMSの増加は小さく0.6nm以下であることがわかる。このアニール処理による表面の平滑性の劣化が少ないことも、接合強度が低下しない要因の1つと考えられる。 Factors other than surface oxides that affect the bonding strength include changes in surface smoothness due to annealing treatment. Therefore, in order to investigate the smoothness of each of the above samples after each treatment, the result of measuring the RMS (Root Mean Square) of the surface profile of AFM (Atomic Force Microscope) is shown in FIG. .. In the case of Au / Ti / Si and Au / Cr / Si having an oxide film formed on the surface, the RMS (roughness) of the surface is greatly increased after annealing, whereas the oxide film is formed on the surface. In the case of Au / Pt / Ti / Si and Au / Ta / Si that were not used, it can be seen that the increase in RMS was small even after annealing and was 0.6 nm or less. It is considered that one of the factors that the bonding strength does not decrease is that the deterioration of the surface smoothness due to this annealing treatment is small.

上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。例えば、上記実施例では、凹部に素子を形成した素子形成基板の表面と、凹部を封止する封止基板の表面の層構造が同じ場合について説明したが、両方の基板で層構成が異なっていてもよい。例えば素子形成基板は拡散係数が1×10−60(m/s)以下の金属を用いる方法で形成し、封止基板は拡散バリア層を用いる方法で形成してもよく、またはその逆でもよい。さらに、第3の基板の両面に本発明の下地層と接合層を形成し、これを、素子形成基板と封止基板の中間に挟んで配置して、3枚の基板を接合させて素子を作製してもよい。Although the above description has been made for Examples, it will be apparent to those skilled in the art that the present invention is not limited thereto and various modifications and modifications can be made within the scope of the spirit of the present invention and the appended claims. For example, in the above embodiment, the case where the surface of the element-forming substrate in which the element is formed in the recess and the surface of the sealing substrate for sealing the recess are the same has been described, but the layer configurations are different in both substrates. You may. For example, the device forming substrate may be formed by a method using a metal having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less, and the sealing substrate may be formed by a method using a diffusion barrier layer, or vice versa. Good. Further, the base layer and the bonding layer of the present invention are formed on both sides of the third substrate, and the layers are arranged so as to be sandwiched between the element forming substrate and the sealing substrate, and the three substrates are bonded to form the element. It may be produced.

11、21 素子形成基板
12、22 封止基板
13、23 凹部
14 チップ
25 溝
26 凹部深さ
31、32 多層金属構造
40 ガスセル
41 セシウムディスペンサ
42 ゲッター材
44 光源
46 検出器
11, 21 Element forming board 12, 22 Encapsulation board 13, 23 Recess 14 Chip 25 Groove 26 Recess depth 31, 32 Multi-layer metal structure 40 Gas cell 41 Cesium dispenser 42 Getter material 44 Light source 46 Detector

Claims (20)

2枚の基板を接合することにより封止構造を形成する方法であって、
少なくとも1つの凹部とその周りの平坦な表面を有する第1の基板と、平坦な表面を有する第2の基板を準備するステップと、
前記第1の基板の前記平坦な表面と、前記第2の基板の前記平坦な表面に下地層を形成するステップと、
前記第1及び前記第2の基板の前記下地層の上に金属接合層を形成するステップと、
前記下地層及び前記金属接合層が形成された前記第1及び前記第2の基板をアニールにより脱ガス処理するステップと、
前記アニールによる脱ガス処理後の前記第1及び前記第2の基板の各々の前記金属接合層同士を原子拡散接合することにより、前記第1基板の前記凹部を前記第2の基板により封止するステップと
を含む基板の接合方法。
It is a method of forming a sealing structure by joining two substrates.
A step of preparing a first substrate having at least one recess and a flat surface around it, and a second substrate having a flat surface.
A step of forming a base layer on the flat surface of the first substrate and the flat surface of the second substrate.
A step of forming a metal bonding layer on the base layer of the first and second substrates, and
A step of degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing.
The recesses of the first substrate are sealed by the second substrate by atomic diffusion bonding between the metal bonding layers of the first and second substrates after the degassing treatment by the annealing. Substrate joining method including steps.
前記下地層は、常温での拡散係数が1×10−60(m/s)以下の金属材料から成る、請求項1に記載の基板の接合方法。The method for joining a substrate according to claim 1, wherein the base layer is made of a metal material having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less at room temperature. 前記下地層は、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含む、請求項2に記載の基板の接合方法。 The method for joining a substrate according to claim 2, wherein the base layer contains at least one of Ta, Ru, Mo, Hf, and W. 前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層を形成するステップをさらに含む、請求項1に記載の基板の接合方法。 The method for joining a substrate according to claim 1, further comprising a step of forming a diffusion barrier layer between the base layer and the metal bonding layer of the first and second substrates. 前記下地層はTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In及びNiの内の少なくとも1つを含む、請求項4に記載の基板の接合方法。The fourth aspect of the present invention, wherein the base layer contains Ti or Cr, and the diffusion barrier layer contains at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni. How to join the substrates. 前記金属接合層はAuを含む、請求項1〜5のいずれか1項に記載の基板の接合方法。 The method for joining a substrate according to any one of claims 1 to 5, wherein the metal bonding layer contains Au. 前記金属接合層の膜厚を50nm以下としたことを特徴とする請求項1〜6のいずれか1項に記載の基板の接合方法。 The method for joining a substrate according to any one of claims 1 to 6, wherein the thickness of the metal bonding layer is 50 nm or less. アニールによる脱ガス処理後の前記金属接合層の表面粗さが、二乗平均粗さで0.6nm以下であることを特徴とする請求項1〜7のいずれか1項に記載の基板の接合方法。 The method for joining a substrate according to any one of claims 1 to 7, wherein the surface roughness of the metal bonding layer after the degassing treatment by annealing is 0.6 nm or less in terms of root mean square roughness. .. 前記アニールによる脱ガス処理は、減圧雰囲気中または不活性雰囲気中において前記第1及び前記第2の基板を100℃以上で300℃以下の温度で加熱することを含む、請求項1〜8のいずれか1項に記載の基板の接合方法。 Any of claims 1 to 8, wherein the degassing treatment by annealing includes heating the first and second substrates at a temperature of 100 ° C. or higher and 300 ° C. or lower in a reduced pressure atmosphere or an inert atmosphere. The method for joining the substrates according to item 1. 前記アニールによる脱ガス処理は、減圧雰囲気中または不活性雰囲気中において前記第1及び前記第2の基板を200℃以上で300℃以下の温度で加熱することを含む、請求項9に記載の基板の接合方法。 The substrate according to claim 9, wherein the degassing treatment by annealing includes heating the first and second substrates at a temperature of 200 ° C. or higher and 300 ° C. or lower in a reduced pressure atmosphere or an inert atmosphere. Joining method. 前記第1及び前記第2の基板を前記原子拡散接合するステップは、前記脱ガス処理の温度より低い温度で行うことを含む、請求項9または10に記載の基板の接合方法。 The method for joining a substrate according to claim 9 or 10, wherein the step of atomic diffusion bonding of the first and second substrates is performed at a temperature lower than the temperature of the degassing treatment. 2枚の基板を接合することにより形成したガスセルを含む封止構造であって、該封止構造は、
少なくとも1つの凹部とその周りの平坦な表面を有し、前記平坦な表面上に形成された下地層とその上に形成された金属接合層とを含む第1の基板と、平坦な表面を有し、前記平坦な表面上に形成された下地層とその上に形成された金属接合層とを含む第2の基板とを含み、
前記第1及び第2の基板上にそれぞれ形成された前記下地層と前記金属接合層、及び前記凹部が、少なくとも100℃以上で300℃以下の温度でアニールされ脱ガス処理された後、前記第1及び第2の基板の前記金属接合層同士が接合されている
封止構造。
It is a sealing structure including a gas cell formed by joining two substrates, and the sealing structure is
It has a first substrate having at least one recess and a flat surface around it, including a base layer formed on the flat surface and a metal bonding layer formed on the base layer, and a flat surface. A second substrate including a base layer formed on the flat surface and a metal bonding layer formed on the base layer is included.
The base layer, the metal bonding layer, and the recess formed on the first and second substrates, respectively, are annealed at a temperature of at least 100 ° C. or higher and 300 ° C. or lower, degassed, and then degassed. A sealing structure in which the metal bonding layers of the first and second substrates are bonded to each other.
前記第1及び第2の基板が透光性であり、前記第1の基板に前記凹部が複数形成されており、少なくとも1つの前記凹部内にはCsまたはRbの金属原子供給源が予め配置され、不活性ガスの外部雰囲気中で封止されて前記複数の凹部が複数のセルとして形成され、各セル内は前記金属原子供給源から発生した金属原子を含む前記不活性ガス雰囲気となっており、前記金属原子供給源が予め配置されていないセルに光を透過させて前記金属原子の共鳴周波数を計測し、時間を測定する、請求項12に記載のガスセル。 The first and second substrates are translucent, a plurality of the recesses are formed in the first substrate, and a metal atom source of Cs or Rb is arranged in advance in at least one of the recesses. , The plurality of recesses are formed as a plurality of cells by being sealed in the external atmosphere of the inert gas, and each cell has the inert gas atmosphere containing metal atoms generated from the metal atom supply source. The gas cell according to claim 12, wherein light is transmitted through a cell in which the metal atom supply source is not arranged in advance, the resonance frequency of the metal atom is measured, and the time is measured. 前記不活性ガスがNeまたはそれ以外の希ガス、またはNeと前記Ne以外の希ガスとの混合ガスである、請求項13に記載のガスセル。 The gas cell according to claim 13, wherein the inert gas is Ne or a rare gas other than Ne, or a mixed gas of Ne and a rare gas other than Ne. 前記下地層は、常温での拡散係数が1×10−60(m/s)以下の金属材料から成る、請求項12〜14のいずれか1項に記載の封止構造。The sealing structure according to any one of claims 12 to 14, wherein the base layer is made of a metal material having a diffusion coefficient at room temperature of 1 × 10 -60 (m 2 / s) or less. 前記下地層は、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含む、請求項15に記載の封止構造。 The sealing structure according to claim 15, wherein the base layer contains at least one of Ta, Ru, Mo, Hf, and W. 前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層が形成されている、請求項12〜14のいずれか1項に記載の封止構造。 The sealing structure according to any one of claims 12 to 14, wherein a diffusion barrier layer is formed between the base layer and the metal bonding layer of the first and second substrates. 前記下地層はTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In及びNiの内の少なくとも1つを含む、請求項17に記載の封止構造。17. The underlying layer comprises Ti or Cr, and the diffusion barrier layer comprises at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni. Sealing structure. 前記金属接合層はAuを含む、請求項12〜18のいずれか1項に記載の封止構造。 The sealing structure according to any one of claims 12 to 18, wherein the metal bonding layer contains Au. 前記金属接合層の膜厚を50nm以下としたことを特徴とする請求項12〜19のいずれか1項に記載の封止構造。
The sealing structure according to any one of claims 12 to 19, wherein the thickness of the metal bonding layer is 50 nm or less.
JP2019542064A 2017-09-15 2018-09-11 Substrate joining method and sealing structure Active JP7028473B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017177695 2017-09-15
JP2017177695 2017-09-15
PCT/JP2018/033626 WO2019054368A1 (en) 2017-09-15 2018-09-11 Method for joining substrates, and sealing structure

Publications (2)

Publication Number Publication Date
JPWO2019054368A1 true JPWO2019054368A1 (en) 2020-12-17
JP7028473B2 JP7028473B2 (en) 2022-03-02

Family

ID=65723961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542064A Active JP7028473B2 (en) 2017-09-15 2018-09-11 Substrate joining method and sealing structure

Country Status (2)

Country Link
JP (1) JP7028473B2 (en)
WO (1) WO2019054368A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113371675A (en) * 2020-02-25 2021-09-10 中国科学院苏州纳米技术与纳米仿生研究所 Atomic gas chamber and manufacturing method thereof
JP7390619B2 (en) 2020-06-01 2023-12-04 国立大学法人東北大学 Atomic diffusion bonding method and bonded structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728689A (en) * 1980-07-25 1982-02-16 Hitachi Ltd Method for diffusion joining
JP2004055924A (en) * 2002-07-22 2004-02-19 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer laminate
US20050184815A1 (en) * 2004-01-06 2005-08-25 Lipp Steven A. Anodically bonded cell, method for making same and systems incorporating same
JP2010056224A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Electronic component package,and method of manufacturing electronic component package
JP2011200933A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Joining method
JP2013038382A (en) * 2011-07-13 2013-02-21 Ricoh Co Ltd Atomic oscillator, and method of manufacturing the same
JP2014120635A (en) * 2012-12-18 2014-06-30 Seiko Instruments Inc Optical device and method of manufacturing optical device
JP2016021455A (en) * 2014-07-14 2016-02-04 株式会社リコー Alkali metal cell and atomic oscillator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728689A (en) * 1980-07-25 1982-02-16 Hitachi Ltd Method for diffusion joining
JP2004055924A (en) * 2002-07-22 2004-02-19 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer laminate
US20050184815A1 (en) * 2004-01-06 2005-08-25 Lipp Steven A. Anodically bonded cell, method for making same and systems incorporating same
JP2010056224A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Electronic component package,and method of manufacturing electronic component package
JP2011200933A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Joining method
JP2013038382A (en) * 2011-07-13 2013-02-21 Ricoh Co Ltd Atomic oscillator, and method of manufacturing the same
JP2014120635A (en) * 2012-12-18 2014-06-30 Seiko Instruments Inc Optical device and method of manufacturing optical device
JP2016021455A (en) * 2014-07-14 2016-02-04 株式会社リコー Alkali metal cell and atomic oscillator

Also Published As

Publication number Publication date
WO2019054368A1 (en) 2019-03-21
JP7028473B2 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP4407127B2 (en) Manufacturing method of SOI wafer
JP5571988B2 (en) Joining method
KR101101896B1 (en) Device by cold junction, process for manufacturing device, and cold junction apparatus
Matsumae et al. Surface activated bonding of Ti/Au and Ti/Pt/Au films after vacuum annealing for MEMS packaging
JP7028473B2 (en) Substrate joining method and sealing structure
TWI673177B (en) Composite substrate, nano carbon film manufacturing method and nano carbon film
JP7152711B2 (en) Bonded substrate manufacturing method and bonded substrate
US7067200B2 (en) Joined bodies and a method of producing the same
US6820795B2 (en) Joined article of a supporting member for a semiconductor wafer and a method of producing the same
JP2020078047A (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP2013238738A (en) Optical device and method for manufacturing the same
JP5547413B2 (en) Hollow structure element for thermal sensor
JP2011187867A (en) Bonding method and crystal element
JP3196923B2 (en) Manufacturing method of semiconductor type dynamic quantity sensor
US20230391055A1 (en) Composite wafer and manufacturing method therefor
JP2015051452A (en) Joining method and structural body having joint part joined by the same
Gibbesch et al. Ultrahigh vacuum diffusion bonding of metals to ceramics
JP7420922B2 (en) bonded substrate
Sevinç Wafer level packaging of MEMS devices using microalloyed lead-free solders
JP2010054451A (en) Micro analysis device, manufacturing method therefor, and manufacturing apparatus therefor
JP2021136413A (en) Sealing structure body and manufacturing method thereof
JP2022112336A (en) Lid of light emitting device
TW202236427A (en) Silica heat-reflecting plate
JP2010040700A (en) Stuck substrate manufacturing device, and method for manufacturing stuck substrate
JP2020131210A (en) Metal joint film, and structure using the metal joint film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7028473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150