WO2021200861A1 - Bonded substrate - Google Patents

Bonded substrate Download PDF

Info

Publication number
WO2021200861A1
WO2021200861A1 PCT/JP2021/013385 JP2021013385W WO2021200861A1 WO 2021200861 A1 WO2021200861 A1 WO 2021200861A1 JP 2021013385 W JP2021013385 W JP 2021013385W WO 2021200861 A1 WO2021200861 A1 WO 2021200861A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
amorphous layer
support substrate
measurement points
piezoelectric substrate
Prior art date
Application number
PCT/JP2021/013385
Other languages
French (fr)
Japanese (ja)
Inventor
賢英 楢原
光広 梶原
雅紀 栗田
陽介 清水
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022512235A priority Critical patent/JP7420922B2/en
Publication of WO2021200861A1 publication Critical patent/WO2021200861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to a bonding substrate between a piezoelectric substrate and a support substrate, which is a surface acoustic wave element.
  • the surface acoustic wave element is manufactured by using a bonded substrate in which a piezoelectric substrate such as lithium tantalate (LT) or lithium niobate (LN) is bonded to a support substrate such as silicon. Will be done.
  • a piezoelectric substrate such as lithium tantalate (LT) or lithium niobate (LN)
  • LT lithium tantalate
  • LN lithium niobate
  • room temperature bonding has been proposed in which high bond strength can be obtained immediately after bonding.
  • a high-speed argon (Ar) neutral atom beam is applied to the surface of the piezoelectric substrate and the surface of the support substrate to activate both surfaces, and then the surface of the piezoelectric substrate and the surface of the support substrate are attached. Join together. At that time, an amorphous layer containing Ar is formed near the bonding interface.
  • Patent Documents 1 to 3 describe that Ar is contained in the amorphous layer at the bonding interface, and a bonded substrate having high bonding strength can be produced by specifying the content.
  • a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate form an amorphous layer formed between the support substrate and the piezoelectric substrate. It is joined through.
  • the amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and the first amorphous layer to the second amorphous layer pass through the bonding interface.
  • the amount of increase in oxygen contained in the portion that switches to the amorphous layer is 15 atomic% or more.
  • a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are formed between the support substrate and the piezoelectric substrate.
  • the amorphous layer bonded via the layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and is said to be directed toward the support substrate.
  • measurement points II and I are set in order in the first amorphous layer
  • measurement points III and IV are set in order in the second amorphous layer toward the piezoelectric substrate
  • the interval shall be 0.4 nm or more and 0.8 nm or less
  • measurement points II and III shall be the positions closest to the junction interface
  • at least one of the changes in oxygen content with respect to the interval between each measurement point is 30% / It is nm or more.
  • a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are formed between the support substrate and the piezoelectric substrate. It is joined via a layer.
  • the amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and has a diameter of 0.4 nm or more from the support substrate to the piezoelectric substrate.
  • FIG. 1 is a cross-sectional view schematically showing the bonding substrate of the present disclosure.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of the bonding substrate according to the embodiment of the present disclosure.
  • a support substrate 2 made of a single crystal of silicon and a piezoelectric substrate 3 made of a single crystal of lithium tantalate (LT) or lithium niobate (LN) are supported substrates. It has a structure bonded via an amorphous layer 4 formed between the 2 and the piezoelectric substrate 3.
  • the support substrate 2 supports the piezoelectric substrate 3 which is a thin film in the bonding substrate 1.
  • the coefficient of thermal expansion of the support substrate 2 is smaller than the coefficient of thermal expansion of the piezoelectric substrate 3.
  • a silicon single crystal substrate is used as the support substrate 2.
  • a silicon single crystal substrate is used as the support substrate 2.
  • the piezoelectric substrate 3 is provided on the surface of the support substrate 2.
  • the piezoelectric substrate 3 is a thin-film piezoelectric material film supported by the support substrate 2.
  • the piezoelectric substrate 3 has a thickness of several ⁇ m to several tens of ⁇ m by grinding, polishing, or the like.
  • the piezoelectric substrate 3 is preferably unipolarized.
  • Lithium tantalate or lithium niobate is used for the piezoelectric substrate 3.
  • a case where lithium tantalate is used as the oxide single crystal layer 20 is taken as an example.
  • the amorphous layer 4 in the present embodiment contains tantalum (Ta), lithium (Li), oxygen (O), silicon (Si) and argon (Ar).
  • the amorphous layer 4 is formed in the vicinity of the bonding interface when the support substrate 2 and the piezoelectric substrate 3 are bonded to each other.
  • Ar is Ar used to activate the bonded surfaces of the support substrate 2 and the piezoelectric substrate 3 in the method for manufacturing a bonded substrate, which will be described later.
  • the amorphous layer 4 is divided into a first amorphous region 21 located on the support substrate 2 side and a second amorphous region 31 located on the piezoelectric substrate 3 side.
  • the boundary between the first amorphous region 21 and the second amorphous region 31 is the bonding interface 5 for bonding.
  • the amorphous layer 4 has a thickness of 1 nm or more and 50 nm or less as a whole.
  • FIG. 2 is a TEM photograph showing a cross section of the bonded substrate 1, showing the amorphous layer 4 and its vicinity. The existence of the amorphous layer 4 in the vicinity of the bonding interface 5 of the bonding substrate 1 can be confirmed from the appearance and shading of the crystal lattice in the cross-sectional TEM image.
  • the proportion of silicon (Si) is higher than the proportion of tantalum (Ta).
  • the proportion of Ta is higher than the proportion of Si. Since the contrast of the TEM image reflects the crystallinity and the type of element (difference in atomic weight), it is possible that the first amorphous region 21 and the second amorphous region 31 exist. , Can be confirmed from the cross-sectional TEM image.
  • the amorphous layer 4 contains an oxygen atom (O) in addition to Si, Ta and Ar.
  • the oxygen atoms are mainly derived from oxygen atoms contained in the surface oxide film of the support substrate 2 (Si) and oxygen which is a constituent element of the piezoelectric substrate 3.
  • the surface of the support substrate 2 is irradiated with Ar neutral atoms to remove the Si oxide film, but the amorphous layer 4 formed at that time contains oxygen atoms (O) that could not be completely removed. Will be. From the viewpoint of bond strength, it is considered preferable that the amount of oxygen derived from the Si oxide film is small.
  • the present inventor considered that the distribution (profile) of the oxygen content in the amorphous layer 4 reflects the origin of oxygen and the bonding state, and verified a suitable distribution (profile) of the oxygen content.
  • the amount of increase in oxygen contained in the portion where the first amorphous layer 21 is switched to the second amorphous layer 31 via the bonding interface 5 is preferably 15 atomic% or more, and 45 atomic% or less. good. When the amount of increase in oxygen content is 15 atomic% or more, the bonding substrate 1 having high bonding strength can be stably produced.
  • the amount of increase in oxygen content can be determined as follows. Based on the TEM image, energy dispersive X-ray analysis (EDS) is performed on the contained elements at predetermined intervals from the support substrate 2 to the piezoelectric substrate 3. In the first amorphous layer 21 and the second amorphous layer 31, the positions closest to the bonding interface 5 were set as measurement points II and III, and the amount of oxygen (atomic%) at the respective measurement points II and III was measured. By taking the difference, the amount of increase in oxygen content can be obtained.
  • EDS energy dispersive X-ray analysis
  • Measurement points II and III are shown in graphs showing the EDS analysis results shown in FIGS. 3 to 5, respectively.
  • 3 to 5 show, in Examples and Comparative Examples described later, a Fab (Fast atom Beam) gun is used to irradiate each joint surface of the support substrate 2 and the piezoelectric substrate 3 with high-speed Ar neutral atoms.
  • the result of EDS analysis is shown for the bonded substrate 1 in which the bonded surfaces are pressed against each other and bonded at room temperature. Note that FIG. 5 corresponds to a comparative example of the present disclosure.
  • the distance between measurement points II and III across the bonding interface 5 should be 0.4 nm or more and 0.8 nm or less.
  • the amount of increase in oxygen content may be determined by the difference in the amount of oxygen (atomic%) obtained at measurement points II and III. According to the EDS analysis results shown in FIGS. 3 to 5, the amount of increase in oxygen content was 27 atomic% in FIG. 3, 19 atomic% in FIG. 4, and 13 atomic% in FIG. 5, which is a comparative example. The amount of oxygen is higher at the measurement point on the piezoelectric substrate 3 than at the measurement point on the support substrate 2.
  • the measured information may include information on the adjacent region. Therefore, the measurement points II and I were set in the first amorphous layer 21 in order toward the support substrate 2, and the measurement points III and IV were set in the second amorphous layer 31 in order toward the piezoelectric substrate 3.
  • at least one of the changes in oxygen content with respect to the interval between each measurement point is preferably 30% / nm or more.
  • the bonding substrate 1 having high bonding strength can be stably produced.
  • the distance between the adjacent measurement points is 0.4 nm or more and 0.8 nm or less, and the measurement points II and III are located closest to the bonding interface 5 as described above.
  • the amount of change in oxygen content with respect to the interval between measurement points can be obtained from ⁇ O / L when the interval between each measurement point is L and the amount of change in oxygen content is ⁇ O.
  • the amount of change in the oxygen content was 51 atomic% / nm between the measurement points II and III shown in FIG. 3 and between the measurement points II and III shown in FIG. Is 36 atomic% / nm, and is 24 atomic% / nm between the measurement points II and III shown in FIG. 5, which is a comparative example.
  • the amount of change in the oxygen content is 30 atomic% / nm or more between the measurement points II and III closest to the bonding interface 5.
  • the point where the amount of change in oxygen content is maximum (the two measurement points where the amount of change in oxygen content with respect to the interval between each measurement point is the largest) is near the junction interface 5.
  • the two measurement points having the largest change in oxygen content are in the first amorphous layer 21. Therefore, when the contained elements are analyzed at intervals of 0.4 nm or more and 0.8 nm or less from the support substrate to the piezoelectric substrate, the change amount of the oxygen content with respect to the interval between the measurement points is the largest. It is preferable that one of the two large measurement points is in the second amorphous layer 31 in order to increase the bonding strength.
  • a silicon single crystal substrate to be the support substrate 2 is prepared. Further, as the piezoelectric substrate 3, a single crystal substrate of lithium tantalate or lithium niobate is used. In this embodiment, a lithium tantalate single crystal substrate is prepared.
  • the surfaces of the silicon single crystal substrate and the lithium tantalate single crystal substrate should be flattened.
  • the surface roughness of both substrates is preferably 1.0 nm or less in arithmetic average roughness Ra.
  • the bonded surface of the silicon single crystal substrate and the lithium tantalate single crystal substrate is activated by Ar.
  • a Fab gun may be used to irradiate Ar neutral atoms.
  • a Fab gun can be used to obtain an electrically high concentration neutral Ar atom beam.
  • Fab etching is performed under high pressure, and the inert film such as adsorbed molecules and oxide film on the substrate surface is removed with an inert gas beam, that is, an Ar neutral atom beam, which is unstable.
  • the active surface can be exposed.
  • At least one of the changes in oxygen content with respect to the interval between the measurement points is set to 30% / nm or more, and among the changes in oxygen content, the two measurement points having the largest change.
  • the current value at the time of irradiation of the Fab gun, and therefore the irradiation energy may be adjusted in the same manner as described above.
  • the irradiation energy is not particularly limited, but is preferably 20 kJ or more and 80 kJ or less.
  • the silicon single crystal substrate and the lithium tantalate single crystal substrate are bonded together. That is, the surfaces of the silicon single crystal substrate activated by Ar and the lithium tantalate single crystal substrate are bonded to each other. Since the surface is activated, it is possible to join at room temperature. By this bonding, amorphous layers 4 (first amorphous region 21 and second amorphous region 31) are formed on both sides of the bonding interface 5.
  • the lithium tantalate single crystal substrate is ground and polished to a desired thickness (for example, 50 ⁇ m or less) to form a thin-film piezoelectric substrate 3.
  • heat treatment is performed as necessary to obtain a bonded substrate 1.
  • lithium tantalate is used as the piezoelectric substrate, but the same effect can be obtained when lithium niobate is used instead of lithium tantalate.
  • Example 1 A lithium tantalate single crystal substrate (hereinafter, may be referred to as LT substrate) and a silicon single crystal substrate (hereinafter, may be referred to as Si substrate) having a diameter of 100 mm and a thickness of 0.20 mm are prepared.
  • the surfaces of these substrates were irradiated with an Ar beam with a Fab gun at an irradiation energy of 60 kJ under a high decompression atmosphere to activate the surface and then bonded.
  • the LT substrate was thinned to 15 ⁇ m to obtain a bonded substrate having a thickness of 245 ⁇ m.
  • FIG. 2 is a cross-sectional TEM photograph of the bonding substrate obtained in Example 1.
  • EDS analysis was performed on the cross section of the obtained bonded substrate. That is, with respect to the cross section of the bonded substrate, a plurality of measurements were performed at predetermined intervals from one end of the support substrate to the other multiple ends of the piezoelectric substrate, and the concentrations of oxygen, Si, Ta, and Ar at each measurement point were measured. The result is shown in FIG. In FIG. 3, the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 27 atomic%. Further, among the amount of change in oxygen content with respect to the interval between the measurement points A to D shown in FIG. 3, the amount of change in oxygen content between the measurement points BC was 51 atomic% / nm.
  • the obtained bonded substrate was subjected to a peeling test. As a result, no peeling or the like was observed between the support substrate and the piezoelectric substrate.
  • the peeling test was carried out by cutting the bonded substrate using the outer peripheral tooth blade and confirming the peeling of the bonded portion due to the cutting load by microscopic observation at 50 times.
  • Example 2 A bonded substrate was obtained in the same manner as in Example 1 except that the Ar beam was irradiated with the Fab gun at an irradiation energy of 30 kJ.
  • the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 19 atomic%.
  • the amount of change in oxygen content between measurement points BC was 36 atomic% / nm.
  • the obtained bonded substrate was subjected to a peeling test in the same manner as in Example 1. As a result, no peeling or the like was observed between the support substrate and the piezoelectric substrate.
  • Example 1 A bonded substrate was obtained in the same manner as in Example 1 except that the Ar beam was irradiated with the Fab gun at an irradiation energy of 15 kJ.
  • the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 13 atomic%.
  • the amount of change in the oxygen content between the measurement points BC is 24 atomic% / nm, and the like.
  • the amount of change in oxygen content between the measurement points AB and CD did not exceed 30 atomic% / nm.
  • the two measurement points with the largest change in oxygen content were in the first amorphous layer, and the change was 31 atomic% / nm.
  • the obtained bonded substrate was subjected to a peeling test in the same manner as in Example 1. As a result, some peeling was observed at the bonding interface between the support substrate and the piezoelectric substrate.

Abstract

This bonded substrate is obtained by bonding a support substrate containing silicon single crystals and a piezoelectric substrate containing lithium tantalate or lithium niobate single crystals with, interposed therebetween, an amorphous layer formed between the support substrate and the piezoelectric substrate. The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and has an increase amount of contained oxygen of 15 atom% or more at a portion where layers are switched from the first amorphous layer to the second amorphous layer via a joining interface.

Description

接合基板Bonded substrate
 本開示は、表面弾性波素子となる圧電基板と支持基板との接合基板に関する。 The present disclosure relates to a bonding substrate between a piezoelectric substrate and a support substrate, which is a surface acoustic wave element.
 表面弾性波素子(SAW素子)は、例えば、タンタル酸リチウ ム(LT)やニオブ酸リチウム(LN)のような圧電基板と、シリコンのような支持基板とを接合した接合基板を利用して作製される。これらの基板を接合する場合、熱処理を加えようとすると 両基板の膨張係数の差により基板の反りや剥がれ、割れなどが生じてしまうことが知られている。この問題を回避するために、貼り合せた直後に高い結合強度が得られる常温接合が提案されている。 The surface acoustic wave element (SAW element) is manufactured by using a bonded substrate in which a piezoelectric substrate such as lithium tantalate (LT) or lithium niobate (LN) is bonded to a support substrate such as silicon. Will be done. When joining these substrates, it is known that if heat treatment is applied, the substrates will warp, peel off, or crack due to the difference in expansion coefficient between the two substrates. In order to avoid this problem, room temperature bonding has been proposed in which high bond strength can be obtained immediately after bonding.
 すなわち、常温接合では、高速アルゴン(Ar)中性原子ビームを圧電基板の表面と支持基板の表面に照射して両表面を活性化させた後、圧電基板の表面と支持基板の表面とを貼り合わせて接合する。その際、接合界面付近には、Arを含有する非晶質層が形成されている。 That is, in room temperature bonding, a high-speed argon (Ar) neutral atom beam is applied to the surface of the piezoelectric substrate and the surface of the support substrate to activate both surfaces, and then the surface of the piezoelectric substrate and the surface of the support substrate are attached. Join together. At that time, an amorphous layer containing Ar is formed near the bonding interface.
 特許文献1~3は、接合界面の非晶質層にArが含有しており、その含有量の規定をすることで接合強度が高い接合基板を作製することが出来ることが記載されている。 Patent Documents 1 to 3 describe that Ar is contained in the amorphous layer at the bonding interface, and a bonded substrate having high bonding strength can be produced by specifying the content.
特許第6549054号公報Japanese Patent No. 6549054 特許第5583875号公報Japanese Patent No. 5583875 特許第5583876号公報Japanese Patent No. 5583876
 本開示の接合基板は、シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、支持基板と圧電基板との間に形成された非晶質層を介して接合されている。非晶質層は、支持基板側に位置する第1非晶質層と、圧電基板側に位置する第2非晶質層とを含み、接合界面を介して第1非晶質層から第2非晶質層に切り替わる部分の含有酸素の増加量が15原子%以上である。 In the bonding substrate of the present disclosure, a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate form an amorphous layer formed between the support substrate and the piezoelectric substrate. It is joined through. The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and the first amorphous layer to the second amorphous layer pass through the bonding interface. The amount of increase in oxygen contained in the portion that switches to the amorphous layer is 15 atomic% or more.
 本開示の他の接合基板は、シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、支持基板と圧電基板との間に形成された非晶質層を介して接合されている、非晶質層は 支持基板側に位置する第1非晶質層と、圧電基板側に位置する第2非晶質層とを含み、支持基板に向かって前記第1非晶質層内に順に測定点II、Iを設定し、前記圧電基板に向かって前記第2非晶質層に順に測定点III、IVを設定したとき(但し、隣接する測定点の間隔は0.4nm以上0.8nm以下とし、測定点IIとIIIを接合界面に最も近い位置とする)、各測定点間の間隔に対する酸素含有量の変化量のうち、少なくとも1つが30%/nm以上である。 In the other bonded substrate of the present disclosure, a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are formed between the support substrate and the piezoelectric substrate. The amorphous layer bonded via the layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and is said to be directed toward the support substrate. When measurement points II and I are set in order in the first amorphous layer, and measurement points III and IV are set in order in the second amorphous layer toward the piezoelectric substrate (however, of adjacent measurement points The interval shall be 0.4 nm or more and 0.8 nm or less, and measurement points II and III shall be the positions closest to the junction interface), and at least one of the changes in oxygen content with respect to the interval between each measurement point is 30% / It is nm or more.
 本開示のさらに他の接合基板は、シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、支持基板と圧電基板との間に形成された非晶質層を介して接合されている。非晶質層は、支持基板側に位置する第1非晶質層と、圧電基板側に位置する第2非晶質層とを含み、支持基板から前記圧電基板にかけて、0.4nm以上0.8nm以下の間隔で含有元素の分析を行ったとき、各測定点間の間隔に対する酸素含有量の変化量のうち、最も変化量が大きい2測定点のうちの1つの測定点が第2非晶質層内にある。 In yet another bonding substrate of the present disclosure, a support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are formed between the support substrate and the piezoelectric substrate. It is joined via a layer. The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and has a diameter of 0.4 nm or more from the support substrate to the piezoelectric substrate. When the contained elements were analyzed at intervals of 8 nm or less, one of the two measurement points with the largest change in the oxygen content with respect to the interval between the measurement points was the second amorphous. It is in the stratum.
本開示の接合基板を模式的に示す断面図である。It is sectional drawing which shows typically the bonding substrate of this disclosure. 本開示の一実施形態に係る接合基板の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of the bonding substrate which concerns on one Embodiment of this disclosure. 照射エネルギー60kJでFabガンから高速Ar中性原子ビームを照射して作製した接合基板のエネルギー分散型X線分析(EDS)による分析結果を示すグラフである。It is a graph which shows the analysis result by the energy dispersive X-ray analysis (EDS) of the bonding substrate produced by irradiating a high-speed Ar neutral atom beam from a Fab gun with an irradiation energy of 60 kJ. 照射エネルギー30kJでFabガンから高速Ar中性原子ビームを照射して作製した接合基板のEDS分析結果を示すグラフである。It is a graph which shows the EDS analysis result of the bonding substrate produced by irradiating a high-speed Ar neutral atom beam from a Fab gun with an irradiation energy of 30 kJ. 照射エネルギー15kJの電流でFabガンから高速Ar中性原子ビームを照射して作製した接合基板のEDS分析結果を示すグラフである。It is a graph which shows the EDS analysis result of the bonding substrate produced by irradiating a high-speed Ar neutral atom beam from a Fab gun with a current of an irradiation energy of 15 kJ.
 以下、本開示の一実施形態に係る接合基板について、図面を参照して説明する。本実施形態は、圧電基板と支持基板との貼り合わせにおいて十分な接合強度を得ることができる接合基板を提供する。図1は、本開示の接合基板を模式的に示す断面図である。図2は、本開示の一実施形態に係る接合基板の透過型電子顕微鏡(TEM)写真である。 Hereinafter, the bonding substrate according to the embodiment of the present disclosure will be described with reference to the drawings. The present embodiment provides a bonding substrate capable of obtaining sufficient bonding strength in bonding the piezoelectric substrate and the supporting substrate. FIG. 1 is a cross-sectional view schematically showing the bonding substrate of the present disclosure. FIG. 2 is a transmission electron microscope (TEM) photograph of the bonding substrate according to the embodiment of the present disclosure.
 図1に示す本実施形態の接合基板1は、シリコンの単結晶からなる支持基板2と、タンタル酸リチウム(LT)またはニオブ酸リチウム(LN)の単結晶からなる圧電基板3とが、支持基板2と圧電基板3との間に形成された非晶質層4を介して接合された構造を有する。 In the bonding substrate 1 of the present embodiment shown in FIG. 1, a support substrate 2 made of a single crystal of silicon and a piezoelectric substrate 3 made of a single crystal of lithium tantalate (LT) or lithium niobate (LN) are supported substrates. It has a structure bonded via an amorphous layer 4 formed between the 2 and the piezoelectric substrate 3.
 支持基板2は、接合基板1において薄膜である圧電基板3を支持する。支持基板2の熱膨張係数は、圧電基板3の熱膨張係数よりも小さい。支持基板2には、シリコン単結晶基板が用いられる。本実施形態では、支持基板2としてシリコン単結晶基板を用いている。 The support substrate 2 supports the piezoelectric substrate 3 which is a thin film in the bonding substrate 1. The coefficient of thermal expansion of the support substrate 2 is smaller than the coefficient of thermal expansion of the piezoelectric substrate 3. A silicon single crystal substrate is used as the support substrate 2. In this embodiment, a silicon single crystal substrate is used as the support substrate 2.
 圧電基板3は、支持基板2の表面上に設けられる。圧電基板3は 、支持基板2によって支持される薄膜状の圧電材料膜である。圧電基板3は、研削や研磨等によって数μm~数十μmの厚さになっている。圧電基板3は、単一分極となっているとよい。 The piezoelectric substrate 3 is provided on the surface of the support substrate 2. The piezoelectric substrate 3 is a thin-film piezoelectric material film supported by the support substrate 2. The piezoelectric substrate 3 has a thickness of several μm to several tens of μm by grinding, polishing, or the like. The piezoelectric substrate 3 is preferably unipolarized.
 圧電基板3には、タンタル酸リチウムまたはニオブ酸リチウムが用いられる。本実施形態では、酸化物単結晶層20としてタンタル酸リチウムを用いる場合を例とする。 Lithium tantalate or lithium niobate is used for the piezoelectric substrate 3. In this embodiment, a case where lithium tantalate is used as the oxide single crystal layer 20 is taken as an example.
 本実施形態における非晶質層4は、タンタル(Ta)、リチウム(Li)、酸素(O)、シリコン(Si)およびアルゴン(Ar)を含む。非晶質層4は、支持基板2と圧電基板3との貼り合わせの際に、貼り合わせの界面近傍に形成される。Arは、後述する接合基板の製造方法において、支持基板2および圧電基板3のそれぞれ貼り合わせ面を活性化するのに用いたArである。 The amorphous layer 4 in the present embodiment contains tantalum (Ta), lithium (Li), oxygen (O), silicon (Si) and argon (Ar). The amorphous layer 4 is formed in the vicinity of the bonding interface when the support substrate 2 and the piezoelectric substrate 3 are bonded to each other. Ar is Ar used to activate the bonded surfaces of the support substrate 2 and the piezoelectric substrate 3 in the method for manufacturing a bonded substrate, which will be described later.
 非晶質層4は、支持基板2側に位置する第1非晶質領域21と、圧電基板3側に位置する第2非晶質領域31とに分かれる。第1非晶質領域21と第2非晶質領域31との境界が貼り合わせの接合界面5となる。非晶質層4は、全体として1nm以上50nm以下の厚さを有する。 The amorphous layer 4 is divided into a first amorphous region 21 located on the support substrate 2 side and a second amorphous region 31 located on the piezoelectric substrate 3 side. The boundary between the first amorphous region 21 and the second amorphous region 31 is the bonding interface 5 for bonding. The amorphous layer 4 has a thickness of 1 nm or more and 50 nm or less as a whole.
 図2は、接合基板1の断面を示すTEM写真であり、非晶質層4およびその近傍付近を示している。接合基板1の接合界面5付近に非晶質層4が存在していることは、断面TEM像の結晶格子の見え方と濃淡から確認することができる。 FIG. 2 is a TEM photograph showing a cross section of the bonded substrate 1, showing the amorphous layer 4 and its vicinity. The existence of the amorphous layer 4 in the vicinity of the bonding interface 5 of the bonding substrate 1 can be confirmed from the appearance and shading of the crystal lattice in the cross-sectional TEM image.
 支持基板側に位置する第1非晶質領域21は、シリコン(Si)の割合がタンタル(Ta)の割合よりも高くなっている。一方、圧電基板3側に位置する第2非晶質領域31は、Taの割合がSiの割合よりも高くなっている。TEM像の濃淡(コントラスト)は、結晶性と元素の種類(原子量の違い)を反映しているので、第1非晶質領域21と第2非晶質領域31とが存在していることは、断面TEM像から確認することができる。 In the first amorphous region 21 located on the support substrate side, the proportion of silicon (Si) is higher than the proportion of tantalum (Ta). On the other hand, in the second amorphous region 31 located on the piezoelectric substrate 3 side, the proportion of Ta is higher than the proportion of Si. Since the contrast of the TEM image reflects the crystallinity and the type of element (difference in atomic weight), it is possible that the first amorphous region 21 and the second amorphous region 31 exist. , Can be confirmed from the cross-sectional TEM image.
 また、非晶質層4には、Si,TaおよびArの他に、酸素原子(O)が含まれている。この酸素原子は、主に支持基板2(Si)の表面酸化膜に含まれる酸素原子と圧電基板3の構成元素である酸素に由来する。支持基板2の表面にAr中性原子を照射して、Si酸化膜は除去されるが、その際に形成された非晶質層4には、除去しきれなかった酸素原子(O)が含まれることになる。接合強度の観点からは、Si酸化膜由来の酸素は少ない方が好ましいと考えられる。本発明者は、非晶質層4中の酸素含有量の分布(プロファイル)が、酸素の由来や接合状態を反映していると考え、好適な酸素含有量の分布(プロファイル)を検証した。 Further, the amorphous layer 4 contains an oxygen atom (O) in addition to Si, Ta and Ar. The oxygen atoms are mainly derived from oxygen atoms contained in the surface oxide film of the support substrate 2 (Si) and oxygen which is a constituent element of the piezoelectric substrate 3. The surface of the support substrate 2 is irradiated with Ar neutral atoms to remove the Si oxide film, but the amorphous layer 4 formed at that time contains oxygen atoms (O) that could not be completely removed. Will be. From the viewpoint of bond strength, it is considered preferable that the amount of oxygen derived from the Si oxide film is small. The present inventor considered that the distribution (profile) of the oxygen content in the amorphous layer 4 reflects the origin of oxygen and the bonding state, and verified a suitable distribution (profile) of the oxygen content.
 接合界面5を介して第1非晶質層21から第2非晶質層31に切り替わる部分の含有酸素の増加量は、15原子%以上であるのがよく、45原子%以下であるのがよい。含有酸素の増加量が15原子%以上であることにより、接合強度の高い接合基板1を安定的に作製することができる。 The amount of increase in oxygen contained in the portion where the first amorphous layer 21 is switched to the second amorphous layer 31 via the bonding interface 5 is preferably 15 atomic% or more, and 45 atomic% or less. good. When the amount of increase in oxygen content is 15 atomic% or more, the bonding substrate 1 having high bonding strength can be stably produced.
 含有酸素の増加量は以下のようにして求めることができる。TEM像を基に、支持基板2から圧電基板3にかけて、含有元素を所定の間隔でエネルギー分散型X線分析(EDS)を行う。第1非晶質層21および第2非晶質層31において、接合界面5に最も近い位置を測定点II、IIIとし、それぞれの測定点II、IIIにおける酸素量(原子%)を測定し、その差をとることにより、含有酸素の増加量を得ることができる。 The amount of increase in oxygen content can be determined as follows. Based on the TEM image, energy dispersive X-ray analysis (EDS) is performed on the contained elements at predetermined intervals from the support substrate 2 to the piezoelectric substrate 3. In the first amorphous layer 21 and the second amorphous layer 31, the positions closest to the bonding interface 5 were set as measurement points II and III, and the amount of oxygen (atomic%) at the respective measurement points II and III was measured. By taking the difference, the amount of increase in oxygen content can be obtained.
 測定点II、IIIは、図3~図5に示すEDS分析結果を示すグラフにそれぞれ示してある。図3~図5は、後述する実施例および比較例において、Fab(Fast atom Beam,高速原子線)ガンにより高速Ar中性原子を支持基板2および圧電基板3の各接合面に照射し、各接合面同士を加圧して常温接合した接合基板1について、EDS分析を行った結果を示している。なお、図5は、本開示の比較例に相当する。 Measurement points II and III are shown in graphs showing the EDS analysis results shown in FIGS. 3 to 5, respectively. 3 to 5 show, in Examples and Comparative Examples described later, a Fab (Fast atom Beam) gun is used to irradiate each joint surface of the support substrate 2 and the piezoelectric substrate 3 with high-speed Ar neutral atoms. The result of EDS analysis is shown for the bonded substrate 1 in which the bonded surfaces are pressed against each other and bonded at room temperature. Note that FIG. 5 corresponds to a comparative example of the present disclosure.
 接合界面5を挟んだ測定点II、IIIの間隔は、0.4nm以上0.8nm以下であるのがよい。含有酸素の増加量は、測定点II、IIIで求めた酸素量(原子%)の差を求めればよい。図3~図5に示すEDS分析結果によれば、含有酸素の増加量は、図3で27原子%、図4で19原子%、比較例である図5で13原子%であった。なお、支持基板2における測定点よりも圧電基板3における測定点のほうが酸素量は高くなっている。 The distance between measurement points II and III across the bonding interface 5 should be 0.4 nm or more and 0.8 nm or less. The amount of increase in oxygen content may be determined by the difference in the amount of oxygen (atomic%) obtained at measurement points II and III. According to the EDS analysis results shown in FIGS. 3 to 5, the amount of increase in oxygen content was 27 atomic% in FIG. 3, 19 atomic% in FIG. 4, and 13 atomic% in FIG. 5, which is a comparative example. The amount of oxygen is higher at the measurement point on the piezoelectric substrate 3 than at the measurement point on the support substrate 2.
 接合界面5をはさんだ測定点II、IIIの一方が、接合界面5のごく近傍となった場合、測定した情報に、隣接する領域の情報を含む恐れがある。そのため、支持基板2に向かって第1非晶質層21内に順に測定点II、Iを設定し、圧電基板3に向かって第2非晶質層31に順に測定点III、IVを設定したとき、各測定点間(すなわち、I-II、II-III、III-IV間)の間隔に対する酸素含有量の変化量のうち、少なくとも1つが30%/nm以上であるのがよい。これにより、接合強度の高い接合基板1を安定的に作成することができる。
 ここで、隣接する測定点の間隔は0.4nm以上0.8nm以下とし、測定点IIとIIIを接合界面5に最も近い位置とするのは,前記した通りである。
When one of the measurement points II and III sandwiching the bonding interface 5 is in the immediate vicinity of the bonding interface 5, the measured information may include information on the adjacent region. Therefore, the measurement points II and I were set in the first amorphous layer 21 in order toward the support substrate 2, and the measurement points III and IV were set in the second amorphous layer 31 in order toward the piezoelectric substrate 3. When, at least one of the changes in oxygen content with respect to the interval between each measurement point (that is, between I-II, II-III, III-IV) is preferably 30% / nm or more. As a result, the bonding substrate 1 having high bonding strength can be stably produced.
Here, the distance between the adjacent measurement points is 0.4 nm or more and 0.8 nm or less, and the measurement points II and III are located closest to the bonding interface 5 as described above.
 測定点間の間隔に対する酸素含有量の変化量は、各測定点間の間隔をL、酸素含有量の変化量をΔOとしてとき、ΔO/Lから求めることができる。
 図3~図5に示すEDS分析結果によれば、上記酸素含有量の変化量は、図3に示す測定点II、III間で51原子%/nm、図4に示す測定点II、III間で36原子%/nm、比較例である図5に示す測定点II、III間で24原子%/nmである。実施例では上記酸素含有量の変化量は、接合界面5に最も近い測定点II、III間で30原子%/nm以上である。
The amount of change in oxygen content with respect to the interval between measurement points can be obtained from ΔO / L when the interval between each measurement point is L and the amount of change in oxygen content is ΔO.
According to the EDS analysis results shown in FIGS. 3 to 5, the amount of change in the oxygen content was 51 atomic% / nm between the measurement points II and III shown in FIG. 3 and between the measurement points II and III shown in FIG. Is 36 atomic% / nm, and is 24 atomic% / nm between the measurement points II and III shown in FIG. 5, which is a comparative example. In the example, the amount of change in the oxygen content is 30 atomic% / nm or more between the measurement points II and III closest to the bonding interface 5.
 後述のように、実施例では、酸素含有量の変化量が最大となる箇所(各測定点間の間隔に対する酸素含有量の変化量が最も大きい2測定点)は接合界面5の近傍にあるのに対し、比較例は、酸素含有量の変化量が最も大きい2測定点は第1非晶質層21にある。したがって、支持基板から前記圧電基板にかけて、0.4nm以上0.8nm以下の間隔で含有元素の分析を行ったとき、各測定点間の間隔に対する酸素含有量の変化量のうち、最も変化量が大きい2測定点のうちの1つの測定点が第2非晶質層31内にあるのが、接合強度を高めるうえで好ましい。 As will be described later, in the embodiment, the point where the amount of change in oxygen content is maximum (the two measurement points where the amount of change in oxygen content with respect to the interval between each measurement point is the largest) is near the junction interface 5. On the other hand, in the comparative example, the two measurement points having the largest change in oxygen content are in the first amorphous layer 21. Therefore, when the contained elements are analyzed at intervals of 0.4 nm or more and 0.8 nm or less from the support substrate to the piezoelectric substrate, the change amount of the oxygen content with respect to the interval between the measurement points is the largest. It is preferable that one of the two large measurement points is in the second amorphous layer 31 in order to increase the bonding strength.
 次に、上述した接合基板1の製造方法を説明する。
 先ず、支持基板2となるシリコン単結晶基板を用意する。また、圧電基板3には、タンタル酸リチウムまたはニオブ酸リチウムの単結晶基板が用いられる。本実施形態では、タンタル酸リチウム単結晶基板を用意する。
Next, the manufacturing method of the above-mentioned bonding substrate 1 will be described.
First, a silicon single crystal substrate to be the support substrate 2 is prepared. Further, as the piezoelectric substrate 3, a single crystal substrate of lithium tantalate or lithium niobate is used. In this embodiment, a lithium tantalate single crystal substrate is prepared.
 シリコン単結晶基板およびタンタル酸リチウム単結晶基板のそれぞれの表面は平坦化 されているのがよい。例えば、両基板の表面粗さは算術平均粗さRaで1.0nm以下にしておくのがよい。 The surfaces of the silicon single crystal substrate and the lithium tantalate single crystal substrate should be flattened. For example, the surface roughness of both substrates is preferably 1.0 nm or less in arithmetic average roughness Ra.
 次に、シリコン単結晶基板とタンタル酸リチウム単結晶基板の貼り合わせ面をArにより活性化する。これには、例えば、Fabガンを使用して、Ar中性原子を照射するのがよい。Fabガンを使用すれば、電気的に高濃度の中性されたAr原子ビームを得ることができる。Fabガンを使用することにより、高減圧下でFabエッチングが行われ、基板表面の吸着分子や酸化膜等の不活性な膜を不活性ガスビーム、すなわちAr中性原子ビームで除去し、不安定で活性な面を露出させることができる。 Next, the bonded surface of the silicon single crystal substrate and the lithium tantalate single crystal substrate is activated by Ar. For this, for example, a Fab gun may be used to irradiate Ar neutral atoms. A Fab gun can be used to obtain an electrically high concentration neutral Ar atom beam. By using the Fab gun, Fab etching is performed under high pressure, and the inert film such as adsorbed molecules and oxide film on the substrate surface is removed with an inert gas beam, that is, an Ar neutral atom beam, which is unstable. The active surface can be exposed.
 その際、得られた接合基板1の接合界面5を介して第1非晶質層21から第2非晶質層31に切り替わる部分の含有酸素の増加量を15原子%以上とするには、照射エネルギーを設定するためのFabガン照射条件である電流値、加速電圧値、照射時間のうち、特に電流値を調節することにより達成可能である。 At that time, in order to increase the amount of oxygen contained in the portion switching from the first amorphous layer 21 to the second amorphous layer 31 via the bonding interface 5 of the obtained bonding substrate 1 to 15 atomic% or more, It can be achieved by adjusting the current value, the acceleration voltage value, and the irradiation time, which are the Fab gun irradiation conditions for setting the irradiation energy.
 また、各測定点間の間隔に対する酸素含有量の変化量のうち、少なくとも1つを30%/nm以上とし、かつ、この酸素含有量の変化量のうち、最も変化量が大きい2測定点のうちの1つの測定点が前記第2非晶質層内にあるようにするには、前記と同様に、Fabガンの照射時の電流値、従って照射エネルギーを調節すればよい。照射エネルギーは、特に限定されないが、20kJ以上80kJ以下であるのがよい。 Further, at least one of the changes in oxygen content with respect to the interval between the measurement points is set to 30% / nm or more, and among the changes in oxygen content, the two measurement points having the largest change. In order to make one of the measurement points in the second amorphous layer, the current value at the time of irradiation of the Fab gun, and therefore the irradiation energy may be adjusted in the same manner as described above. The irradiation energy is not particularly limited, but is preferably 20 kJ or more and 80 kJ or less.
 Arで活性化した後、シリコン単結晶基板およびタンタル酸リチウム単結晶基板の貼り合わせを行う。すなわち、Arにより活性化されたシリコン単結晶基板およびタンタル酸リチウム単結晶基板の互いの面を貼り合わせる。表面は活性化されているため、常温での接合が可能となる。この貼り合わせによって、接合界面5の両側に非晶質層4(第1非晶質領域21および第2非晶質領域31)が形成される。 After activation with Ar, the silicon single crystal substrate and the lithium tantalate single crystal substrate are bonded together. That is, the surfaces of the silicon single crystal substrate activated by Ar and the lithium tantalate single crystal substrate are bonded to each other. Since the surface is activated, it is possible to join at room temperature. By this bonding, amorphous layers 4 (first amorphous region 21 and second amorphous region 31) are formed on both sides of the bonding interface 5.
 次に、タンタル酸リチウム単結晶基板を研削および研磨して、所望の厚さ(例えば、50μm以下)にして、薄膜化した圧電基板3を形成する。次に、必要に応じて熱処理を行って、接合基板1を得る。
 なお、以上の実施形態では、圧電基板としてタンタル酸リチウムを使用する場合について、説明したが、タンタル酸リチウムに代えてニオブ酸リチウムを使用する場合も同様の効果を得ることができる。
Next, the lithium tantalate single crystal substrate is ground and polished to a desired thickness (for example, 50 μm or less) to form a thin-film piezoelectric substrate 3. Next, heat treatment is performed as necessary to obtain a bonded substrate 1.
In the above embodiment, the case where lithium tantalate is used as the piezoelectric substrate has been described, but the same effect can be obtained when lithium niobate is used instead of lithium tantalate.
 以下、実施例をあげて、本開示の接合基板1を詳細に説明するが、本開示は以上の実施形態および以下の実施例に限定されるものではない。 Hereinafter, the bonding substrate 1 of the present disclosure will be described in detail with reference to examples, but the present disclosure is not limited to the above embodiments and the following examples.
(実施例1)
 直径100mm、厚さ0.20mmのタンタル酸リチウム単結晶基板(以下、LT基板ということがある。)とシリコン単結晶基板(以下、Si基板ということがある。)を用意する。これらの基板の表面に高減圧雰囲気下において、照射エネルギー60kJでFabガンによりArビームを照射して、表面活性化を行った後、貼り合わせを行った。貼り合せ後、LT基板を15μmまで薄化して、厚さ245μmの接合基板を得た。図2は、実施例1で得た接合基板の断面TEM写真である。
 得られた接合基板の断面に対してEDS分析を行った。すなわち、接合基板の断面について、支持基板の一端から圧電基板の他多端までの間で、所定間隔で複数の測定を行い、各測定点における酸素、Si、Ta、Arの濃度を測定した。その結果を図3に示す。
 図3において、接合界面を介して第1非晶質層から第2非晶質層に切り替わる部分の測定点B、Cで求めた含有酸素の増加量は、27原子%であった。
 また、図3に示す測定点A~Dの各測定点間の間隔に対する酸素含有量の変化量のうち、測定点BC間での酸素含有量の変化量は51原子%/nmであった。
 得られた接合基板について、剥離試験を行った。その結果、支持基板と圧電基板には剥離等が認められなかった。剥離試験は外周歯ブレードを用いた接合基板の切断を行い、切断負荷による接合部の剥離を50倍での顕微鏡観察にて確認する方法で実施した。
(Example 1)
A lithium tantalate single crystal substrate (hereinafter, may be referred to as LT substrate) and a silicon single crystal substrate (hereinafter, may be referred to as Si substrate) having a diameter of 100 mm and a thickness of 0.20 mm are prepared. The surfaces of these substrates were irradiated with an Ar beam with a Fab gun at an irradiation energy of 60 kJ under a high decompression atmosphere to activate the surface and then bonded. After bonding, the LT substrate was thinned to 15 μm to obtain a bonded substrate having a thickness of 245 μm. FIG. 2 is a cross-sectional TEM photograph of the bonding substrate obtained in Example 1.
EDS analysis was performed on the cross section of the obtained bonded substrate. That is, with respect to the cross section of the bonded substrate, a plurality of measurements were performed at predetermined intervals from one end of the support substrate to the other multiple ends of the piezoelectric substrate, and the concentrations of oxygen, Si, Ta, and Ar at each measurement point were measured. The result is shown in FIG.
In FIG. 3, the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 27 atomic%.
Further, among the amount of change in oxygen content with respect to the interval between the measurement points A to D shown in FIG. 3, the amount of change in oxygen content between the measurement points BC was 51 atomic% / nm.
The obtained bonded substrate was subjected to a peeling test. As a result, no peeling or the like was observed between the support substrate and the piezoelectric substrate. The peeling test was carried out by cutting the bonded substrate using the outer peripheral tooth blade and confirming the peeling of the bonded portion due to the cutting load by microscopic observation at 50 times.
(実施例2)
 照射エネルギー30kJでFabガンによりArビームを照射した他は、実施例1と同様にして接合基板を得た。
 図4において、接合界面を介して第1非晶質層から第2非晶質層に切り替わる部分の測定点B、Cで求めた含有酸素の増加量は、19原子%であった。
 また、図4に示す測定点A~Dの各測定点間の間隔に対する酸素含有量の変化量のうち、測定点BC間での酸素含有量の変化量は36原子%/nmであった。
 得られた接合基板について、実施例1と同様にして剥離試験を行った。その結果、支持基板と圧電基板には剥離等が認められなかった。
(Example 2)
A bonded substrate was obtained in the same manner as in Example 1 except that the Ar beam was irradiated with the Fab gun at an irradiation energy of 30 kJ.
In FIG. 4, the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 19 atomic%.
Further, among the amount of change in oxygen content with respect to the interval between the measurement points A to D shown in FIG. 4, the amount of change in oxygen content between measurement points BC was 36 atomic% / nm.
The obtained bonded substrate was subjected to a peeling test in the same manner as in Example 1. As a result, no peeling or the like was observed between the support substrate and the piezoelectric substrate.
(比較例1)
 照射エネルギー15kJでFabガンによりArビームを照射した他は、実施例1と同様にして接合基板を得た。
 図5において、接合界面を介して第1非晶質層から第2非晶質層に切り替わる部分の測定点B、Cで求めた含有酸素の増加量は、13原子%であった。
 また、図5に示す測定点A~Dの各測定点間の間隔に対する酸素含有量の変化量のうち、測定点BC間での酸素含有量の変化量は24原子%/nmであり、他の測定点AB,CD間での酸素含有量の変化量も30原子%/nmを超えることはなかった。酸素含有量の変化量が最も大きい2測定点は第1非晶質層にあり、その変化量は、31原子%/nmであった。
 得られた接合基板について、実施例1と同様にして剥離試験を行った。その結果、支持基板と圧電基板の接合界面において、一部剥離が認められた。
(Comparative Example 1)
A bonded substrate was obtained in the same manner as in Example 1 except that the Ar beam was irradiated with the Fab gun at an irradiation energy of 15 kJ.
In FIG. 5, the amount of increase in oxygen contained at the measurement points B and C at the portion where the first amorphous layer is switched to the second amorphous layer via the bonding interface was 13 atomic%.
Further, among the amount of change in the oxygen content with respect to the interval between the measurement points A to D shown in FIG. 5, the amount of change in the oxygen content between the measurement points BC is 24 atomic% / nm, and the like. The amount of change in oxygen content between the measurement points AB and CD did not exceed 30 atomic% / nm. The two measurement points with the largest change in oxygen content were in the first amorphous layer, and the change was 31 atomic% / nm.
The obtained bonded substrate was subjected to a peeling test in the same manner as in Example 1. As a result, some peeling was observed at the bonding interface between the support substrate and the piezoelectric substrate.
 1  接合基板
 2  支持基板
 3  圧電基板
 4  非晶質層
  21 第1非晶質層
  31 第2非晶質層
 5  接合界面
1 Bonded substrate 2 Support substrate 3 Piezoelectric substrate 4 Amorphous layer 21 First amorphous layer 31 Second amorphous layer 5 Bonded interface

Claims (4)

  1.  シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、前記支持基板と前記圧電基板との間に形成された非晶質層を介して接合された接合基板であって、
     前記非晶質層は、前記支持基板側に位置する第1非晶質層と、前記圧電基板側に位置する第2非晶質層とを含み、接合界面を介して前記第1非晶質層から前記第2非晶質層に切り替わる部分の含有酸素の増加量が15原子%以上である、接合基板。
    A support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are bonded via an amorphous layer formed between the support substrate and the piezoelectric substrate. It is a bonded substrate
    The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side, and the first amorphous layer is interposed through a bonding interface. A bonded substrate in which the amount of increase in oxygen contained in the portion switching from the layer to the second amorphous layer is 15 atomic% or more.
  2.  前記非晶質層の厚さが、1nm以上50nm以下である、請求項1に記載の接合基板。 The bonded substrate according to claim 1, wherein the thickness of the amorphous layer is 1 nm or more and 50 nm or less.
  3.  シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、前記支持基板と前記圧電基板との間に形成された非晶質層を介して接合された接合基板であって、
     前記非晶質層は、前記支持基板側に位置する第1非晶質層と、前記圧電基板側に位置する第2非晶質層とを含み、
     前記支持基板に向かって前記第1非晶質層内に順に測定点II、Iを設定し、前記圧電基板に向かって前記第2非晶質層に順に測定点III、IVを設定したとき(但し、隣接する測定点の間隔は0.4nm以上0.8nm以下とし、測定点IIとIIIを接合界面に最も近い位置とする)、
     各測定点間の間隔に対する酸素含有量の変化量のうち、少なくとも1つが30%/nm以上である、接合基板。
    A support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are bonded via an amorphous layer formed between the support substrate and the piezoelectric substrate. It is a bonded substrate
    The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side.
    When measurement points II and I are set in order in the first amorphous layer toward the support substrate, and measurement points III and IV are set in order in the second amorphous layer toward the piezoelectric substrate ( However, the distance between adjacent measurement points shall be 0.4 nm or more and 0.8 nm or less, and measurement points II and III shall be the positions closest to the junction interface).
    A bonded substrate in which at least one of the changes in oxygen content with respect to the interval between measurement points is 30% / nm or more.
  4.  シリコン単結晶からなる支持基板と、タンタル酸リチウムまたはニオブ酸リチウムの単結晶からなる圧電基板とが、前記支持基板と前記圧電基板との間に形成された非晶質層を介して接合された接合基板であって、
     前記非晶質層は、前記支持基板側に位置する第1非晶質層と、前記圧電基板側に位置する第2非晶質層とを含み、
     前記支持基板から前記圧電基板にかけて、0.4nm以上0.8nm以下の間隔で含有元素の分析を行ったとき、
     各測定点間の間隔に対する酸素含有量の変化量のうち、最も変化量が大きい2測定点のうちの1つの測定点が前記第2非晶質層内にある、接合基板。
     
    A support substrate made of a silicon single crystal and a piezoelectric substrate made of a single crystal of lithium tantalate or lithium niobate are bonded via an amorphous layer formed between the support substrate and the piezoelectric substrate. It is a bonded substrate
    The amorphous layer includes a first amorphous layer located on the support substrate side and a second amorphous layer located on the piezoelectric substrate side.
    When the contained elements were analyzed at intervals of 0.4 nm or more and 0.8 nm or less from the support substrate to the piezoelectric substrate,
    A bonding substrate in which one of the two measurement points having the largest change in the oxygen content with respect to the interval between the measurement points is in the second amorphous layer.
PCT/JP2021/013385 2020-03-31 2021-03-29 Bonded substrate WO2021200861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512235A JP7420922B2 (en) 2020-03-31 2021-03-29 bonded substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063065 2020-03-31
JP2020063065 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200861A1 true WO2021200861A1 (en) 2021-10-07

Family

ID=77930397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013385 WO2021200861A1 (en) 2020-03-31 2021-03-29 Bonded substrate

Country Status (2)

Country Link
JP (1) JP7420922B2 (en)
WO (1) WO2021200861A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139720A (en) * 2016-02-02 2017-08-10 信越化学工業株式会社 Composite substrate, and method for manufacturing composite substrate
WO2019159555A1 (en) * 2018-02-13 2019-08-22 日本碍子株式会社 Joined body of piezoelectric material substrate and support substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698954B2 (en) 2018-05-17 2020-05-27 日本碍子株式会社 Bonded body of piezoelectric single crystal substrate and supporting substrate
JP7152711B2 (en) 2018-06-20 2022-10-13 日本電産マシンツール株式会社 Bonded substrate manufacturing method and bonded substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139720A (en) * 2016-02-02 2017-08-10 信越化学工業株式会社 Composite substrate, and method for manufacturing composite substrate
WO2019159555A1 (en) * 2018-02-13 2019-08-22 日本碍子株式会社 Joined body of piezoelectric material substrate and support substrate

Also Published As

Publication number Publication date
JPWO2021200861A1 (en) 2021-10-07
JP7420922B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
KR101846299B1 (en) Manufacturing method for semiconductor substrate
KR101972728B1 (en) Bonded body and acoustic wave element
JP6549054B2 (en) Composite substrate and method of manufacturing composite substrate
DE112017001546B4 (en) Connection procedure
TW201501378A (en) Composite substrate, semiconductor device and method for manufacturing semiconductor device
US10998878B2 (en) Joined body of piezoelectric material substrate and support substrate
JP2004337927A (en) Substrates joining method and substrates joining device
JP6098048B2 (en) Manufacturing method of semiconductor device
KR102287005B1 (en) Bonded body and acoustic wave element
TW201947070A (en) Joined body of piezoelectric material substrate and support substrate
JP5926401B2 (en) Composite substrate and manufacturing method thereof
KR102287003B1 (en) Bonded body and acoustic wave element
WO2021215466A1 (en) Bonded substrate
JP7152711B2 (en) Bonded substrate manufacturing method and bonded substrate
WO2021200861A1 (en) Bonded substrate
KR20170097056A (en) Composite substrate, method for forming nanocarbon film, and nanocarbon film
KR20210002734A (en) Assembly of piezoelectric material substrate and support substrate
TW201941938A (en) Joint and elastic wave element
WO2021131966A1 (en) Aln laminate board
WO2023182246A1 (en) Bonded substrate
US11411547B2 (en) Joint and elastic wave element
WO2022071184A1 (en) Bonded substrate
WO2014038694A1 (en) Composite substrate and method for producing same
JP2023040025A (en) Electrooptical element composite substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778955

Country of ref document: EP

Kind code of ref document: A1