WO2019054368A1 - Method for joining substrates, and sealing structure - Google Patents
Method for joining substrates, and sealing structure Download PDFInfo
- Publication number
- WO2019054368A1 WO2019054368A1 PCT/JP2018/033626 JP2018033626W WO2019054368A1 WO 2019054368 A1 WO2019054368 A1 WO 2019054368A1 JP 2018033626 W JP2018033626 W JP 2018033626W WO 2019054368 A1 WO2019054368 A1 WO 2019054368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- substrates
- bonding
- underlayer
- metal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
Definitions
- the present invention is a method for manufacturing a chip, which is produced by sealing two or more wafer-sized substrates, in the process of manufacturing chips in which elements such as semiconductor elements, optical elements, MEMS and gas cells are enclosed inside the substrates.
- the present invention relates to a bonding method for tight sealing.
- substrates of two wafer sizes were bonded to each other, and they were fabricated in the recess 13 of the element forming substrate 11.
- the process of fabricating the chip 14 into pieces by dicing is a process that can be easily mass-produced. It has been carried out in recent years.
- Patent Document 1 atomic diffusion bonding, as shown in FIG. 2, titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum are formed on the bonding surface of a smooth substrate which is a bonding material, as shown in FIG.
- Underlayers such as (Mo), hafnium (Hf), tantalum (Ta), tungsten (W) and gold (Au) or a single metal or alloy having a diffusion coefficient of 1 ⁇ 10 -45 (m 2 / s) or more
- the resulting bonding layer is formed under vacuum and brought into contact. Then, atomic diffusion occurs at the bonding interface and grain boundaries, and a strong bonding can be achieved even at room temperature.
- the thickness of the bonding film is limited to about 50 nm or less for bonding without defects.
- Patent No. 5569964 gazette Unexamined-Japanese-Patent No. 2016-171393 specification
- the above-described base layer and bonding layer contain molecules such as hydrogen taken in from the atmosphere at the time of film formation, and gas molecules are also attached to the surface of the element in the manufacturing process. These molecules are released into the inside of the recess (cavity) sealed as a gas as a result of temperature rise of the element or electric action after sealing, and cause deterioration of the operation accuracy and product life of the element. Therefore, in a general substrate sealing process, it is essential to perform annealing (baking out) before sealing in order to degas the molecules contained and attached.
- annealing baking out
- Patent Document 2 discloses that, in a process of manufacturing a MEMS vibrator, high-temperature bake-out is performed after manufacturing an element in a recess of an element wafer, and then the sealed wafer is bonded in a vacuum.
- the step of forming the bonding layer (connection electrode) formed on the surface of the sealing wafer is performed after the baking step, and the baking is not performed thereafter, degassing from this layer, and the like.
- the sealing environment is degraded due to the degassing of the surface material attached in the process.
- 390 degreeC or more is required for joining.
- a getter material such as Ti may be arranged in advance in the recess to control the atmosphere inside the sealed cavity.
- the getter material may be used.
- degassing treatment by annealing before bonding is essential, and a strong bonding can be achieved even after this annealing treatment.
- a bonding method is required.
- Ru, Ta, Mo, W, etc. are used as a base layer between Au and a Au alloy such as Au-Ag or Au-Cu having a thickness of 50 nm or less which is a bonding layer.
- a Au alloy such as Au-Ag or Au-Cu having a thickness of 50 nm or less which is a bonding layer.
- the metal whose diffusion coefficient at room temperature is 1 ⁇ 10 ⁇ 60 (m 2 / s) or less is used.
- commonly used materials such as Ti and Cr are used as the underlayer, and platinum (Pt), cobalt (Co), ruthenium (Ru), tantalum (Ta), etc.
- a layer of diffusion barrier material such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), indium oxide (In 2 O 3 ), nickel (Ni), etc. is disposed.
- the baking when the baking is not performed, degassing after sealing occurs, and the atmosphere in the cavity is degraded.
- annealing and degassing in vacuum or in an inert gas are performed, and thereafter bonding is performed, so that the inside due to gas release is obtained even after sealing. Bonding with less deterioration of the atmosphere can be realized.
- the annealing temperature needs to be at least 100 ° C., which is the boiling point of water, at least 200 ° C., more preferably.
- the annealing temperature is preferably 300 ° C. or less.
- the bonding is cooled to a suitable temperature to perform low temperature bonding in order to reduce the influence of thermal residual stress after sealing.
- silicon Si
- glass quartz, sapphire, or the like
- the element formation substrate is a semiconductor material such as Si which is easily microfabricated.
- sapphire or the like which is transparent and transmits light.
- a low temperature bonding is particularly preferable because a defect such as deformation of a bonded body occurs due to the difference in thermal expansion coefficient between the two.
- the method of bonding two substrates of the present invention to form a sealed structure includes the following steps. Providing a first substrate having at least one recess and a flat surface around it, and a second substrate having a flat surface, Forming an underlayer on the planar surface of the first substrate and the planar surface of the second substrate; Forming a metal bonding layer on the underlayers of the first and second substrates; Degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing; The metal bonding layer of each of the first and second substrates after the degassing process by the annealing is atomic diffusion bonded to seal the recess of the first substrate with the second substrate. Step.
- the base layer according to the bonding method of the present invention may use a metal material having a diffusion coefficient of 1 ⁇ 10 ⁇ 60 (m 2 / s) or less at normal temperature, and in particular, Ta, Ru, Mo, Hf, and W. At least one of the above.
- the bonding method of the present invention may further include the step of forming a diffusion barrier layer between the base layer of the first and second substrates and the metal bonding layer, and in particular, the base layer is made of Ti.
- the diffusion barrier layer may be at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni.
- the metal bonding layer according to the bonding method of the present invention may contain Au.
- At least one of the first and second substrates according to the bonding method of the present invention may be a Si substrate.
- the degassing treatment by the annealing according to the bonding method of the present invention heats the first and second substrates at a temperature of 100 ° C. or more, preferably 200 ° C. or more in dry air, a reduced pressure atmosphere or an inert atmosphere. You may
- the step of atomic diffusion bonding the first and second substrates according to the bonding method of the present invention may be performed at a temperature lower than the temperature of the degassing treatment.
- the sealing structure according to the bonding method of the present invention may include a gas cell of an atomic clock.
- the first and second substrates are translucent, and two or more recesses are formed in the first substrate, and a Cs atom source (cesium dispenser is provided in one recess)
- the getter material are arranged in advance, and the insides of the plurality of recesses are made in an atmosphere containing neon (Ne) which is an atmosphere at the time of sealing and Cs atoms generated from the Cs atom source, and formed by sealing.
- the Cs atom source and the getter material are not arranged in advance, and light is transmitted through the cells to measure the resonance frequency, whereby the atomic clock is used.
- the dispenser is not limited to the cesium dispenser, and may be a rubidium (Rb) dispenser or the like.
- the atmosphere gas at the time of sealing is not limited to Ne gas, and may be another inert gas such as Ar or a mixed gas including Ne.
- Cs dispersed in Ne sealed in the cell is likely to react with the degassing component, so a Cs supply source and a gas getter material are disposed in the recess before sealing.
- Cs can be stably sealed in the cell by sealing after degassing treatment by annealing.
- FIG. 1 is a schematic explanatory view showing a process of manufacturing an element by bonding of a wafer size substrate.
- FIG. 2 is a schematic explanatory view showing a bonding process according to a conventional method.
- FIG. 3 is a schematic explanatory view showing the effect of “baking out”.
- FIG. 4 is a schematic explanatory view showing a bonding process according to the present invention.
- FIG. 5 is an explanatory view showing the principle of the method of measuring the bonding strength (crack opening method).
- FIG. 6 is a table comparing the bonding strength according to the example of the present invention and the comparative example.
- FIG. 7 is a schematic view showing the gas cell manufacturing process.
- FIG. 8 is a schematic view showing a cross section of the gas cell.
- FIG. 1 is a schematic explanatory view showing a process of manufacturing an element by bonding of a wafer size substrate.
- FIG. 2 is a schematic explanatory view showing a bonding process according to a conventional
- FIG. 9A is a photograph obtained by observing the cell portion of the gas cell subjected to baking out from above with a microscope.
- B is a spectrum of a transition frequency specific to Cs in Ne gas measured using the cell of (A).
- C is the photograph which observed the cell part of the gas cell which does not bake out with the microscope from the top.
- FIG. 10 is a view showing an atomic distribution in the depth direction by XPS after annealing treatment of the Au / Ti / Si laminated structure.
- FIG. 11 is a diagram showing an atomic distribution in the depth direction by XPS after annealing treatment of the Au / Cr / Si laminated structure.
- FIG. 10 is a view showing an atomic distribution in the depth direction by XPS after annealing treatment of the Au / Pt / Ti / Si laminated structure.
- FIG. 13 is a diagram showing atomic distribution in the depth direction by XPS after annealing treatment of the Au / Ta / Si laminated structure.
- FIG. 14 is a view showing the surface roughness after sputtering, after plasma processing, and annealing after measuring each laminated structure by AFM.
- Substrate Bonding An overview of the method of substrate bonding according to the present invention is shown in FIG.
- a metal having a diffusion coefficient of 1 ⁇ 10 ⁇ 60 (m 2 / s) or less is used as the underlayer.
- Table 1 shows self-diffusion coefficients at normal temperature of main metals used in the semiconductor process.
- metals having a diffusion coefficient of 1 ⁇ 10 ⁇ 60 (m 2 / s) or less include Hf, Mo, Nb, Ta, and W.
- 10 nm of Ta as a base layer and 12 nm of Au as a bonding layer were formed on a 400 ⁇ m thick Si substrate by sputtering.
- annealing was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 ⁇ 10 ⁇ 3 (Pa). Thereafter, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to bond the two substrates. Bonding strength was measured by Maszara blade test. As shown in the outline of the principle of the Maszara blade test in FIG. 5, the blade (here, the teeth of the safety razor) is inserted between the bonded substrates, and the energy ⁇ necessary for peeling the substrates is measured. is there. As a result, in this example, a large value of 5.0 (J / m 2 ) was obtained.
- the second method of substrate bonding according to the present invention is a method of sandwiching a diffusion barrier layer made of a material having a diffusion barrier effect between an underlayer and a bonding layer.
- a Ti film of 5 nm as a base layer and a Pt film of 10 nm as a diffusion barrier layer were formed on a 400 ⁇ m thick Si substrate, and a Au film of 12 nm was formed thereon as a bonding layer.
- annealing was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 ⁇ 10 ⁇ 3 (Pa). Thereafter, the sample was cooled to 40 ° C. and a load of 123 kPa was applied to the sample for bonding.
- the bonding strength measured by the Maszara blade test was 3.2 (J / m 2 ).
- a Ti film of 5 nm as a base layer and a Pt film of 10 nm as a diffusion barrier layer were formed on a 400 ⁇ m thick Si substrate, and a Au film of 12 nm was formed thereon as a bonding layer.
- Annealing treatment was performed at 250 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 ⁇ 10 ⁇ 3 (Pa) before joining the samples produced in this manner. Thereafter, the sample was cooled to around 40 ° C., and a load of 123 kPa was applied to the sample to perform bonding. When the Maszara blade test was conducted, it broke from the Si substrate rather than from the bonding interface.
- FIG. 7 shows an outline of the process of manufacturing a gas cell using the present invention.
- a transparent sapphire is used as a substrate 21 for forming an element, and two cylindrical recesses 23 each having a diameter and depth 26 of 2 mm are formed at a distance of 4 mm from one surface of the substrate. It is connected by a groove 25 with a line width of 0.5 mm and a depth of 0.1 mm provided on the side. This is not necessarily limited to two, and three or more may be formed and connected by a groove.
- a flat sapphire substrate was used as the upper sealing substrate 22.
- the cesium dispenser 41 and the getter material 42 are formed in one concave portion 23 of the element formation substrate. Placed. Thereafter, the inside of the bonding apparatus was vacuumed to about 10 -4 Pa using a hermetic sealing bonding apparatus, and both substrates were heated to 200 ° C. and baked out for 10 minutes. Next, Ne gas was introduced to the inside of the apparatus to a pressure of 10 4 Pa, and the inside of the recess was made into a Ne gas atmosphere to perform airtight bonding, and these recesses were made gas cells.
- FIG. 9 shows a photograph of the cell thus produced and released from cesium and observed from above with a microscope. The gloss due to the deposition of Cs metal was observed on the side of the cylindrical recess.
- Cs atoms are also diffused to the recesses where the cesium dispenser and the getter material were not disposed, and for the measurement of time, the recesses without the cesium dispenser and the getter material Use. That is, as shown in FIG. 8, the light from the light source 44 is allowed to pass through this cell and detected by the detector 46, whereby the transition frequency specific to Cs in Ne gas is obtained as shown in FIG. It measured.
- Example 3 The same multi-layered metal structure (Au / Pt / Ti) as in Example 3 was used, and sealing and bonding were performed at room temperature in Ne gas without performing the baking step. The other steps are the same as in Example 3. Cs release was attempted by irradiating a cesium dispenser with a laser under the same conditions as in Example 3, but as shown in (C) of FIG. 9, the metallic gloss due to cesium in the metallic state could not be confirmed on the side surface of the recess. The This is because water and other gases were generated inside the gas cell and cesium reacted with water to form cesium hydroxide because baking was not performed before bonding. 3.
- FIGS. 10 ultrasonically cleans a sample of the layer structure of Au (12 nm) / Ti (5 nm) / Si (400 ⁇ m) prepared by sputtering, and cleans the surface with Ar plasma and then 200 ° C. at 1 ⁇ 10 ⁇ 3 (Pa) 14 shows the depthwise distribution of component elements after annealing for 10 minutes.
- Ti and O are detected on the surface, and it can be seen that TiOx is formed. Therefore, it can be inferred that the presence of this oxide film reduces the bonding strength.
- FIG. 11 shows the distribution in the depth direction of the component elements of the sample of the layer structure of Au (12 nm) / Cr (5 nm) / Si (400 ⁇ m) prepared in the same manner as the above sample. Similar to FIG. 10, Cr and O are detected on the surface, and it can be seen that CrOx is formed. Therefore, it can be inferred that the presence of this oxide film similarly reduces the bonding strength.
- FIG. 12 shows the depths of component elements of the sample of the layer structure of Au (12 nm) / Pt (10 nm) / Ti (5 nm) / Si (400 ⁇ m) prepared in the same manner as the above sample. Indicates the direction distribution. Unlike FIG. 10, no Ti element is observed on the surface at all, and it can be seen that TiOx is not formed on the surface. For this reason, it can be inferred that the bonding strength does not decrease. It is considered that this is because Pt acts as a thermal diffusion barrier.
- FIG. 13 shows the distribution in the depth direction of the component elements of the sample of the layer structure of Au (12 nm) / Ta (10 nm) / Si (400 ⁇ m) prepared in the same manner after being subjected to the same treatment as the above sample. It can be seen that no Ta element is seen at all on the surface. Therefore, it can be inferred that the bonding strength does not decrease because no oxide is formed on the surface. This is considered to be due to the fact that the annealing treatment at this temperature and time does not diffuse to the surface because the body diffusion coefficient of Ta is very small.
- a factor other than the surface oxide that affects the bonding strength is a change in the surface smoothness due to the annealing treatment. Therefore, in order to examine the smoothness after each treatment of each sample, the result of measuring the root mean square (RMS) of the surface profile of an AFM (Atomic Force Microscope) is shown in FIG. .
- RMS root mean square
- Au / Ti / Si and Au / Cr / Si in which an oxide film is formed on the surface, an oxide film is formed on the surface, while the RMS (roughness) of the surface is greatly increased after annealing.
- the element formation substrate may be formed by a method using a metal having a diffusion coefficient of 1 ⁇ 10 ⁇ 60 (m 2 / s) or less
- the sealing substrate may be formed by a method using a diffusion barrier layer, or vice versa Good.
- the base layer and the bonding layer of the present invention are formed on both surfaces of the third substrate, and this is disposed between the element forming substrate and the sealing substrate, and arranged to bond three substrates. You may produce.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Micromachines (AREA)
Abstract
Provided is a sealing structure formed by joining two substrates, wherein a metal having a diffusion coefficient of 1 × 10-60 (m2/s) or less at normal temperature, such as Ru, Ta, Mo, Hf, or W, is used as an underlayer between the substrates and either Au or an Au alloy serving as a joining layer. Alternatively, a typically used material such as Ti or Cr is used as the underlayer, and a layer of a diffusion barrier material such as Pt, Co, Ru, Ta, TiN, TaN, WN, In2O3, or Ni is disposed between the underlayer and the joining layer.
Description
本発明は、2枚以上のウェハサイズの基板の封止により作製した、基板の内部に半導体素子、光学素子、MEMS、ガスセル等の素子を封じ込めたチップの製造工程で必要な、基板同士の気密封止のための接合方法に関する。
The present invention is a method for manufacturing a chip, which is produced by sealing two or more wafer-sized substrates, in the process of manufacturing chips in which elements such as semiconductor elements, optical elements, MEMS and gas cells are enclosed inside the substrates. The present invention relates to a bonding method for tight sealing.
集積化デバイスのパッケージング法の一つとして、図1にその工程概要を模式的に示すように、2枚のウェハサイズの基板同士を貼り合わせて、素子形成基板11の凹部13内部に作製した素子を封止基板12で封止して、貼り合わせ基板内に素子を封止した後、切り出し(ダイシング)により個片化してチップ14を作製するプロセスが、簡便に量産化が可能なプロセスとして近年多く行われている。
As one of the packaging methods for integrated devices, as shown schematically in FIG. 1, substrates of two wafer sizes were bonded to each other, and they were fabricated in the recess 13 of the element forming substrate 11. After the element is sealed with the sealing substrate 12 and the element is sealed in the bonded substrate, the process of fabricating the chip 14 into pieces by dicing (dicing) is a process that can be easily mass-produced. It has been carried out in recent years.
具体的な接合技術としては、2枚の基板を重ね合わせ、高熱・高加圧を加えて接合させる技術が一般的に利用されている。しかしながら、このような接合手法では、高熱・高加圧により素子、基板等がダメージを受けるため、低温かつ低加圧で接合する手法として原子拡散接合が提案されている(特許文献1)。原子拡散接合では、図2に示すように、被接合材である平滑基板の接合面に、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)といった下地層と、金(Au)あるいは拡散係数が1×10-45(m2/s)以上である単金属・合金から成る接合層を真空下で形成しこれらを接触させる。すると接合界面、結晶粒界において原子拡散が起こり、室温でも強固な接合が達成される。
As a specific bonding technique, a technique in which two substrates are stacked and bonded by applying high heat and pressure is generally used. However, in such a bonding method, an element, a substrate and the like are damaged by high heat and high pressure, so atomic diffusion bonding is proposed as a method of bonding at low temperature and low pressure (Patent Document 1). In atomic diffusion bonding, as shown in FIG. 2, titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum are formed on the bonding surface of a smooth substrate which is a bonding material, as shown in FIG. Underlayers such as (Mo), hafnium (Hf), tantalum (Ta), tungsten (W) and gold (Au) or a single metal or alloy having a diffusion coefficient of 1 × 10 -45 (m 2 / s) or more The resulting bonding layer is formed under vacuum and brought into contact. Then, atomic diffusion occurs at the bonding interface and grain boundaries, and a strong bonding can be achieved even at room temperature.
しかしこの手法においては、上記の接合膜の厚さが増大すると、非特許文献1にあるように、気密封止に望ましい欠陥のない接合界面を達成することが困難となる。欠陥のない接合のためには、非特許文献2にあるように接合膜の厚さは50nm程度以下に制限される。
However, in this method, as the thickness of the above-mentioned bonding film increases, it becomes difficult to achieve a defect-free bonding interface desirable for hermetic sealing as described in Non-Patent Document 1. As described in Non-Patent Document 2, the thickness of the bonding film is limited to about 50 nm or less for bonding without defects.
上記の下地層及び接合層は、成膜時に雰囲気から取り込まれた水素等の分子を内包しており、また素子の表面にも製造プロセス中でガス分子が付着する。これらの分子は、封止後に素子の温度上昇あるいは電気的作用によってガスとして封止された凹部(キャビティ)内部に放出され、素子の動作精度や製品寿命を劣化させる原因となる。そのため、一般的な基板の封止工程においては、内包及び付着した分子を脱ガスさせるため、封止前にアニール処理(焼き出し)を行うことが必須となる。
The above-described base layer and bonding layer contain molecules such as hydrogen taken in from the atmosphere at the time of film formation, and gas molecules are also attached to the surface of the element in the manufacturing process. These molecules are released into the inside of the recess (cavity) sealed as a gas as a result of temperature rise of the element or electric action after sealing, and cause deterioration of the operation accuracy and product life of the element. Therefore, in a general substrate sealing process, it is essential to perform annealing (baking out) before sealing in order to degas the molecules contained and attached.
特許文献2には、MEMS振動子の作製工程において、素子ウェハの凹部に素子を作製した後に高温焼き出しを行い、その後封止したウェハを真空中で接合することが開示されている。しかしながら、焼き出し工程の後に封止ウェハ表面に形成される接合層(接続電極)を形成する工程を行っており、その後は焼き出しを行っていないので、この層からの脱ガス、及びこれらの工程で付着した表面物質の脱ガスにより封止環境が劣化するという問題がある。また特許文献2では、接合に390℃以上が必要になるという問題もある。
Patent Document 2 discloses that, in a process of manufacturing a MEMS vibrator, high-temperature bake-out is performed after manufacturing an element in a recess of an element wafer, and then the sealed wafer is bonded in a vacuum. However, since the step of forming the bonding layer (connection electrode) formed on the surface of the sealing wafer is performed after the baking step, and the baking is not performed thereafter, degassing from this layer, and the like There is a problem that the sealing environment is degraded due to the degassing of the surface material attached in the process. Moreover, in patent document 2, there also exists a problem that 390 degreeC or more is required for joining.
また、素子の種類によっては、封止されたキャビティ内部の雰囲気を制御するために、Ti等のゲッター材を凹部内に予め配置しておくことも行われるが、この場合にはゲッター材に対しても、接合前にアニールにより脱ガス処理を行う必要がある。
Further, depending on the type of element, a getter material such as Ti may be arranged in advance in the recess to control the atmosphere inside the sealed cavity. In this case, the getter material may be used. However, it is necessary to perform degassing by annealing before bonding.
しかしながら、アニール処理を行うと、接合層と下地層の間で金属拡散が起こり、酸化しやすい下地層の原子が表面まで拡散して表面に酸化膜を形成する。この現象は非特許文献3にあるように接合層が薄い際により顕著に発現する。このような状態で基板を接合すると、接合界面での原子間結合の形成がこの酸化膜により阻害され、その結果接合強度が小さくなるという問題が発生する。特に原子拡散接合に用いられる非常に薄い接合層では比較的低温・短時間のアニール処理によっても表面に酸化層が形成され接合が阻害される。
However, when the annealing process is performed, metal diffusion occurs between the bonding layer and the base layer, atoms of the base layer which is easily oxidized diffuse to the surface, and an oxide film is formed on the surface. As described in Non-Patent Document 3, this phenomenon is more pronounced when the bonding layer is thin. When the substrates are bonded in such a state, formation of interatomic bonds at the bonding interface is inhibited by the oxide film, resulting in a problem that the bonding strength is reduced. In particular, in the case of a very thin bonding layer used for atomic diffusion bonding, an oxide layer is formed on the surface even by annealing at a relatively low temperature and for a short time, and the bonding is inhibited.
このように、基板や内部構造からの脱ガスは封止内部の雰囲気を劣化させる原因となるため、接合前のアニールによる脱ガス処理は必須であり、このアニール処理後も強固な接合が達成できる接合手法が求められている。
As described above, since degassing from the substrate and the internal structure causes deterioration of the atmosphere inside the seal, degassing treatment by annealing before bonding is essential, and a strong bonding can be achieved even after this annealing treatment. A bonding method is required.
上記課題を解決するため、本発明では基板と接合層である厚さ50nm以下のAuまたはAu-AgあるいはAu-CuのようなAu合金の間の下地層として、Ru、Ta、Mo、W等の常温での拡散係数が1×10-60(m2/s)以下である金属を用いる。あるいは、下地層としてTi、Cr等一般的に使用されている材料を使用し、かつ下地層と接合層の間に白金(Pt)、コバルト(Co)、ルテニウム(Ru)、タンタル(Ta)、窒化チタン(TiN)、 窒化タンタル(TaN)、 窒化タングステン(WN)、酸化インジウム(In2O3)、ニッケル(Ni)等の拡散バリア材料の層を配置する。
In order to solve the above-mentioned problems, in the present invention, Ru, Ta, Mo, W, etc. are used as a base layer between Au and a Au alloy such as Au-Ag or Au-Cu having a thickness of 50 nm or less which is a bonding layer. The metal whose diffusion coefficient at room temperature is 1 × 10 −60 (m 2 / s) or less is used. Alternatively, commonly used materials such as Ti and Cr are used as the underlayer, and platinum (Pt), cobalt (Co), ruthenium (Ru), tantalum (Ta), etc. between the underlayer and the bonding layer A layer of diffusion barrier material such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), indium oxide (In 2 O 3 ), nickel (Ni), etc. is disposed.
そして、図3に模式的に示すように、焼き出しを行わない場合には封止後脱ガスが生じ、キャビティ内の雰囲気が劣化する。これに対して、下地層と接合層を基板上に成膜した後に真空中または不活性ガス中でアニールして脱ガス処理し、その後に接合を行うことにより、封止後もガス放出による内部雰囲気の劣化が少ない接合が実現できる。アニール温度は最低でも水の沸点である100℃以上、さらに好ましくは200℃以上で行う必要がある。一方、300℃を超える高温下では金属の再結晶化による表面粗さの増加や下地膜の拡散により接合が困難なるため、アニール温度は300℃以下が望ましい。
Then, as schematically shown in FIG. 3, when the baking is not performed, degassing after sealing occurs, and the atmosphere in the cavity is degraded. On the other hand, after forming the base layer and the bonding layer on the substrate, annealing and degassing in vacuum or in an inert gas are performed, and thereafter bonding is performed, so that the inside due to gas release is obtained even after sealing. Bonding with less deterioration of the atmosphere can be realized. The annealing temperature needs to be at least 100 ° C., which is the boiling point of water, at least 200 ° C., more preferably. On the other hand, at a high temperature exceeding 300 ° C., bonding becomes difficult due to an increase in surface roughness due to recrystallization of metal and diffusion of an underlayer, so the annealing temperature is preferably 300 ° C. or less.
接合は、封止後の熱残留応力の影響を低減するため、好適な温度まで冷却して低温接合を行う。基板としてはシリコン(Si)、ガラス、水晶、サファイア等が用いられるが、素子形成基板と封止基板に異種材料を用いることにより、素子形成基板には微細加工が容易なSi等の半導体材料を、封止基板には透明で光を透過するサファイアなどを使用することが可能となる。しかしこのような異種基板同士を接合させる場合には、両者の熱膨張率の差により接合体の変形等の不具合が生じるため、特に低温接合が好ましい。
The bonding is cooled to a suitable temperature to perform low temperature bonding in order to reduce the influence of thermal residual stress after sealing. As the substrate, silicon (Si), glass, quartz, sapphire, or the like is used. By using different materials for the element formation substrate and the sealing substrate, the element formation substrate is a semiconductor material such as Si which is easily microfabricated. For the sealing substrate, it is possible to use sapphire or the like which is transparent and transmits light. However, when such dissimilar substrates are bonded to each other, a low temperature bonding is particularly preferable because a defect such as deformation of a bonded body occurs due to the difference in thermal expansion coefficient between the two.
本発明の2枚の基板を接合して封止構造を形成する方法は以下のステップを含む。
少なくとも1つの凹部とその周りの平坦な表面を有する第1の基板と、平坦な表面を有する第2の基板を準備するステップ、
前記第1の基板の前記平坦な表面と、前記第2の基板の前記平坦な表面に下地層を形成するステップ、
前記第1及び前記第2の基板の前記下地層の上に金属接合層を形成するステップと、
前記下地層及び前記金属接合層が形成された前記第1及び前記第2の基板をアニールにより脱ガス処理するステップ、
前記アニールによる脱ガス処理後の前記第1及び前記第2の基板の各々の前記金属接合層同士を原子拡散接合することにより、前記第1基板の前記凹部を前記第2の基板により封止するステップ。 The method of bonding two substrates of the present invention to form a sealed structure includes the following steps.
Providing a first substrate having at least one recess and a flat surface around it, and a second substrate having a flat surface,
Forming an underlayer on the planar surface of the first substrate and the planar surface of the second substrate;
Forming a metal bonding layer on the underlayers of the first and second substrates;
Degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing;
The metal bonding layer of each of the first and second substrates after the degassing process by the annealing is atomic diffusion bonded to seal the recess of the first substrate with the second substrate. Step.
少なくとも1つの凹部とその周りの平坦な表面を有する第1の基板と、平坦な表面を有する第2の基板を準備するステップ、
前記第1の基板の前記平坦な表面と、前記第2の基板の前記平坦な表面に下地層を形成するステップ、
前記第1及び前記第2の基板の前記下地層の上に金属接合層を形成するステップと、
前記下地層及び前記金属接合層が形成された前記第1及び前記第2の基板をアニールにより脱ガス処理するステップ、
前記アニールによる脱ガス処理後の前記第1及び前記第2の基板の各々の前記金属接合層同士を原子拡散接合することにより、前記第1基板の前記凹部を前記第2の基板により封止するステップ。 The method of bonding two substrates of the present invention to form a sealed structure includes the following steps.
Providing a first substrate having at least one recess and a flat surface around it, and a second substrate having a flat surface,
Forming an underlayer on the planar surface of the first substrate and the planar surface of the second substrate;
Forming a metal bonding layer on the underlayers of the first and second substrates;
Degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing;
The metal bonding layer of each of the first and second substrates after the degassing process by the annealing is atomic diffusion bonded to seal the recess of the first substrate with the second substrate. Step.
本発明の接合方法による前記下地層は、常温での拡散係数が1×10-60(m2/s)以下の金属材料を用いてもよく、特に、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含んでいてもよい。
The base layer according to the bonding method of the present invention may use a metal material having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less at normal temperature, and in particular, Ta, Ru, Mo, Hf, and W. At least one of the above.
あるいは、本発明の接合方法では、前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層を形成するステップをさらに含んでもよく、特に、前記下地層がTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In2O3及びNiの内の少なくとも1つであってもよい。
Alternatively, the bonding method of the present invention may further include the step of forming a diffusion barrier layer between the base layer of the first and second substrates and the metal bonding layer, and in particular, the base layer is made of Ti. Or the diffusion barrier layer may be at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni.
また、本発明の接合方法による前記金属接合層はAuを含んでいてもよい。
The metal bonding layer according to the bonding method of the present invention may contain Au.
また、本発明の接合方法による前記第1及び前記第2の基板の少なくとも一方はSi基板であってよい。
Further, at least one of the first and second substrates according to the bonding method of the present invention may be a Si substrate.
本発明の接合方法による前記アニールによる脱ガス処理は、乾燥空気中、減圧雰囲気または不活性雰囲気中において、前記第1及び前記第2の基板を100℃以上、好ましくは200℃以上の温度で加熱してもよい。
The degassing treatment by the annealing according to the bonding method of the present invention heats the first and second substrates at a temperature of 100 ° C. or more, preferably 200 ° C. or more in dry air, a reduced pressure atmosphere or an inert atmosphere. You may
また、本発明の接合方法による前記第1及び前記第2の基板を前記原子拡散接合するステップは、前記脱ガス処理の温度より低い温度で行ってもよい。
The step of atomic diffusion bonding the first and second substrates according to the bonding method of the present invention may be performed at a temperature lower than the temperature of the degassing treatment.
また、本発明の上記接合方法による前記封止構造は原子時計のガスセルを含んでもよい。本発明によるガスセルは、第1及び第2の基板が透光性であり、前記第1の基板に凹部が2つ以上形成されており、1つの前記凹部内にはCs原子供給源(セシウムディスペンサー)とゲッター材が予め配置され、複数の前記凹部内は、封止時の雰囲気であるネオン(Ne)と前記Cs原子供給源から発生したCs原子を含む雰囲気になされており、封止により形成されたセルの内、前記Cs原子供給源とゲッター材が予め配置されていないセルに光を透過させて共鳴周波数を計測することにより、原子時計として用いる。なお 、ディスペンサはセシウムディスペンサに限られることはなく、ルビジウム(Rb)ディスペンサ等でも良い。また封止時の雰囲気ガスは、Neガスに限られることはなく、Ar等の他の不活性ガス、あるいはNeを含めてそれらの混合ガスであっても良い。
Further, the sealing structure according to the bonding method of the present invention may include a gas cell of an atomic clock. In the gas cell according to the present invention, the first and second substrates are translucent, and two or more recesses are formed in the first substrate, and a Cs atom source (cesium dispenser is provided in one recess) And the getter material are arranged in advance, and the insides of the plurality of recesses are made in an atmosphere containing neon (Ne) which is an atmosphere at the time of sealing and Cs atoms generated from the Cs atom source, and formed by sealing. Among the cells, the Cs atom source and the getter material are not arranged in advance, and light is transmitted through the cells to measure the resonance frequency, whereby the atomic clock is used. The dispenser is not limited to the cesium dispenser, and may be a rubidium (Rb) dispenser or the like. Further, the atmosphere gas at the time of sealing is not limited to Ne gas, and may be another inert gas such as Ar or a mixed gas including Ne.
本発明の接合方法によれば、素子形成基板の凹部内に作製した素子を、封止基板で封止接合することにより作製した、半導体素子、光学素子、MEMS、ガスセル等の素子の長期的安定性を実現することができる。
According to the bonding method of the present invention, long-term stability of a device such as a semiconductor device, an optical device, a MEMS, or a gas cell manufactured by sealing and bonding a device manufactured in a recess of a device forming substrate with a sealing substrate. Can be realized.
また、特に原子時計のガスセルの場合には、セル内に封止したNe中に分散したCsが脱ガス成分と反応しやすいため、封止前にCs供給源と気体ゲッター材を凹部に配置しておき、アニールによる脱ガス処理後封止することにより、Csを安定にセル内に封止することができる。
Further, in the case of a gas cell of an atomic clock in particular, Cs dispersed in Ne sealed in the cell is likely to react with the degassing component, so a Cs supply source and a gas getter material are disposed in the recess before sealing. Cs can be stably sealed in the cell by sealing after degassing treatment by annealing.
本発明の実施形態を、図面を参照しながら以下に詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.
1.基板接合
本発明による基板接合の方法の概要を図4に示す。第1の方法としては下地層として拡散係数が1×10-60(m2/s)以下の金属を用いる。表1は半導体プロセスで用いられる主な金属の常温での自己拡散係数を示したものである。1×10-60(m2/s)以下の拡散係数を有する金属には、Hf、Mo、Nb、Ta、Wが挙げられる。ここでは、400μm厚のSi基板に下地層としてTaを10nm、接合層としてAuを12nmスパッタリング法により成膜した。これらの試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して両基板を接合した。接合強度はMaszaraブレード試験で測定した。Maszaraブレード試験は図5に原理の概要を示すように、ブレード(ここでは安全カミソリの歯)を接合した基板間に入れ差し込んで行き、基板を剥離させるのに必要なエネルギーγを測定する方法である。その結果、本実施例では5.0(J/m2)という大きな値が得られた。 1. Substrate Bonding An overview of the method of substrate bonding according to the present invention is shown in FIG. As a first method, a metal having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less is used as the underlayer. Table 1 shows self-diffusion coefficients at normal temperature of main metals used in the semiconductor process. Examples of metals having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less include Hf, Mo, Nb, Ta, and W. Here, 10 nm of Ta as a base layer and 12 nm of Au as a bonding layer were formed on a 400 μm thick Si substrate by sputtering. Before bonding these samples to each other, annealing was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 −3 (Pa). Thereafter, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to bond the two substrates. Bonding strength was measured by Maszara blade test. As shown in the outline of the principle of the Maszara blade test in FIG. 5, the blade (here, the teeth of the safety razor) is inserted between the bonded substrates, and the energy γ necessary for peeling the substrates is measured. is there. As a result, in this example, a large value of 5.0 (J / m 2 ) was obtained.
本発明による基板接合の方法の概要を図4に示す。第1の方法としては下地層として拡散係数が1×10-60(m2/s)以下の金属を用いる。表1は半導体プロセスで用いられる主な金属の常温での自己拡散係数を示したものである。1×10-60(m2/s)以下の拡散係数を有する金属には、Hf、Mo、Nb、Ta、Wが挙げられる。ここでは、400μm厚のSi基板に下地層としてTaを10nm、接合層としてAuを12nmスパッタリング法により成膜した。これらの試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して両基板を接合した。接合強度はMaszaraブレード試験で測定した。Maszaraブレード試験は図5に原理の概要を示すように、ブレード(ここでは安全カミソリの歯)を接合した基板間に入れ差し込んで行き、基板を剥離させるのに必要なエネルギーγを測定する方法である。その結果、本実施例では5.0(J/m2)という大きな値が得られた。 1. Substrate Bonding An overview of the method of substrate bonding according to the present invention is shown in FIG. As a first method, a metal having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less is used as the underlayer. Table 1 shows self-diffusion coefficients at normal temperature of main metals used in the semiconductor process. Examples of metals having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less include Hf, Mo, Nb, Ta, and W. Here, 10 nm of Ta as a base layer and 12 nm of Au as a bonding layer were formed on a 400 μm thick Si substrate by sputtering. Before bonding these samples to each other, annealing was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 −3 (Pa). Thereafter, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to bond the two substrates. Bonding strength was measured by Maszara blade test. As shown in the outline of the principle of the Maszara blade test in FIG. 5, the blade (here, the teeth of the safety razor) is inserted between the bonded substrates, and the energy γ necessary for peeling the substrates is measured. is there. As a result, in this example, a large value of 5.0 (J / m 2 ) was obtained.
本発明による基板接合の第2の方法は、下地層と接合層との間に拡散バリア効果を持つ材料を用いた拡散バリア層を挟む方法である。その実施例を次に説明する。400μm厚のSi基板に下地層としてTiを5nmと、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜した。このように作製した試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合した。Maszaraブレード試験で測定した接合強度は3.2(J/m2)であった。
The second method of substrate bonding according to the present invention is a method of sandwiching a diffusion barrier layer made of a material having a diffusion barrier effect between an underlayer and a bonding layer. The embodiment will be described next. A Ti film of 5 nm as a base layer and a Pt film of 10 nm as a diffusion barrier layer were formed on a 400 μm thick Si substrate, and a Au film of 12 nm was formed thereon as a bonding layer. Before bonding the samples produced in this manner, annealing was performed at 200 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 −3 (Pa). Thereafter, the sample was cooled to 40 ° C. and a load of 123 kPa was applied to the sample for bonding. The bonding strength measured by the Maszara blade test was 3.2 (J / m 2 ).
400μm厚のSi基板に下地層としてTiを5nmと、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜した。このように作製した試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において250℃で10分間アニール処理を行なった。その後試料を40℃付近まで冷却し、123kPaの荷重を試料に印加して接合を行った。Maszaraブレード試験を行うと接合界面からではなくSi基板から破断した。
A Ti film of 5 nm as a base layer and a Pt film of 10 nm as a diffusion barrier layer were formed on a 400 μm thick Si substrate, and a Au film of 12 nm was formed thereon as a bonding layer. Annealing treatment was performed at 250 ° C. for 10 minutes in a reduced pressure atmosphere of about 1 × 10 −3 (Pa) before joining the samples produced in this manner. Thereafter, the sample was cooled to around 40 ° C., and a load of 123 kPa was applied to the sample to perform bonding. When the Maszara blade test was conducted, it broke from the Si substrate rather than from the bonding interface.
次に比較例として、下地層として拡散係数が1×10―60(m2/s)より大きい値を有する金属を用いた場合の結果について述べる。400μm厚のSi基板に下地層としてCrを5nm、その上にAu接合層を12nm成膜した試料をスタッパリングにより作製し、これらの試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合した。この場合、接合Maszaraブレード試験で測定した接合強度は0.04(J/m2)と非常に小さい値であった(図6)。
Next, as a comparative example, the result in the case of using a metal having a diffusion coefficient larger than 1 × 10 −60 (m 2 / s) as the underlayer will be described. Prepare a sample formed by sputtering 5 nm of Cr as a base layer and 12 nm of Au bonding layer on a 400 μm thick Si substrate by sputtering, and before bonding these samples to 1 × 10 -3 (Pa) Annealing was performed at 200 ° C. for 10 minutes in a somewhat reduced pressure atmosphere. Thereafter, the sample was cooled to 40 ° C. and a load of 123 kPa was applied to the sample for bonding. In this case, the bonding strength measured by the bonding Maszara blade test was a very small value of 0.04 (J / m 2 ) (FIG. 6).
400μm厚のSi基板に下地層としてTiを5nm、その上にAu接合層を12nmスタッパリングにより成膜した試料を作製し、これらの試料同士を接合する前に、1×10-3(Pa)程度の減圧雰囲気において200℃で10分間アニール処理を行なった。その後試料を40℃まで冷却し、123kPaの荷重を試料に印加して接合を行ったが、接合しなかった(図6)。
Prepare a sample in which a Ti layer of 5 nm is formed as a base layer on a 400 μm thick Si substrate, and an Au bonding layer is formed by 12 nm sputtering on it, and before bonding these samples to 1 × 10 -3 (Pa) Annealing was performed at 200 ° C. for 10 minutes in a somewhat reduced pressure atmosphere. Thereafter, the sample was cooled to 40 ° C., and a load of 123 kPa was applied to the sample to perform bonding, but it was not bonded (FIG. 6).
このようにして得られた各層構造、接合条件による接合強度(J/m2)を図6にまとめた。なお、「接合(室温)」の欄は従来の研究の結果を比較のために示したものである。「母材破壊」は、接合強度がSi母材の強度(2.5 J/m2)よりもずっと大きかったため母材が破壊したことを表わし、「接合失敗」は接合できなかったことを表わす。図6に示すように、本発明によるAu/Ta/SiまたはAu/Pt/Ti/Siの層構造を用いる方法により、良好な接合強度が得られた。
2.本発明によるガスセルの作製 The structure of each layer thus obtained and the bonding strength (J / m 2 ) according to the bonding conditions are summarized in FIG. Note that the column "Bonding (room temperature)" shows the results of conventional studies for comparison. "Base material failure" represents that the base material was broken because the bonding strength was much larger than the strength (2.5 J / m 2 ) of the Si base material, and "bonding failure" represents that the bonding could not be made . As shown in FIG. 6, good bonding strength was obtained by the method using the layer structure of Au / Ta / Si or Au / Pt / Ti / Si according to the present invention.
2. Fabrication of gas cell according to the present invention
2.本発明によるガスセルの作製 The structure of each layer thus obtained and the bonding strength (J / m 2 ) according to the bonding conditions are summarized in FIG. Note that the column "Bonding (room temperature)" shows the results of conventional studies for comparison. "Base material failure" represents that the base material was broken because the bonding strength was much larger than the strength (2.5 J / m 2 ) of the Si base material, and "bonding failure" represents that the bonding could not be made . As shown in FIG. 6, good bonding strength was obtained by the method using the layer structure of Au / Ta / Si or Au / Pt / Ti / Si according to the present invention.
2. Fabrication of gas cell according to the present invention
図7は、本発明を用いたガスセルの作製工程の概要を示す。素子形成用の基板21には透明なサファイアを用い、基板の片面から直径及び深さ26が2mmの円柱状の凹部23が中心間隔4mmを隔てて2つ形成され、その2つの凹部は、表面側に設けた線幅0.5mm、深さ0.1mmの溝25により連結されている。これは必ずしも2つに限られることはなく、3つ以上形成してそれぞれを溝で連結してもよい。また、上側の封止用基板22にも平坦なサファイア基板を用いた。
FIG. 7 shows an outline of the process of manufacturing a gas cell using the present invention. A transparent sapphire is used as a substrate 21 for forming an element, and two cylindrical recesses 23 each having a diameter and depth 26 of 2 mm are formed at a distance of 4 mm from one surface of the substrate. It is connected by a groove 25 with a line width of 0.5 mm and a depth of 0.1 mm provided on the side. This is not necessarily limited to two, and three or more may be formed and connected by a groove. In addition, a flat sapphire substrate was used as the upper sealing substrate 22.
次に、素子形成基板21の平坦な最表面に下地層としてTiを5nm、それに続いて拡散バリア層としてPtを10nm、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜し、多層金属構造31を作製した。一方封止基板22には、素子形成基板の凹部23、溝25に対応する部分以外の面に、同様に下地層としてTiを5nm、それに続いて拡散バリア層としてPtを10nm成膜し、その上に接合層としてAuを12nmスパッタリングによりそれぞれ成膜し、同様に多層金属構造32を作製した。
Next, 5 nm of Ti as an underlayer, 10 nm of Pt as a diffusion barrier layer, and 12 nm of Au as a bonding layer are formed respectively on the flat outermost surface of the element forming substrate 21 by sputtering to form a multilayer metal structure 31 was produced. On the other hand, on the sealing substrate 22, similarly 5 nm of Ti as an underlayer and 10 nm of Pt as a diffusion barrier layer are formed on the surface of the element forming substrate other than the portions corresponding to the recess 23 and the groove 25. Au was formed into a film respectively by 12 nm sputtering as a joining layer on it, and the multilayer metal structure 32 was similarly produced.
次に、両基板上のそれぞれのAu表面に、Arプラズマを200Wで30秒間照射して接合表面に付着した有機物を除去した後に、素子形成基板の一方の凹部23にセシウムディスペンサ41及びゲッター材42を配置した。その後、気密封止接合装置を用いて、10-4Pa程度まで接合装置内部を真空状態にした後、両基板を200℃まで加熱して10分間焼き出しを行った。次に、Neガスを104Paの気圧まで装置内部に導入し、凹部の内部をNeガス雰囲気として気密接合を行いこれらの凹部をガスセルとした。
Next, after irradiating Ar plasma with 200 W for 30 seconds on each Au surface on both substrates to remove the organic substance adhering to the bonding surface, the cesium dispenser 41 and the getter material 42 are formed in one concave portion 23 of the element formation substrate. Placed. Thereafter, the inside of the bonding apparatus was vacuumed to about 10 -4 Pa using a hermetic sealing bonding apparatus, and both substrates were heated to 200 ° C. and baked out for 10 minutes. Next, Ne gas was introduced to the inside of the apparatus to a pressure of 10 4 Pa, and the inside of the recess was made into a Ne gas atmosphere to perform airtight bonding, and these recesses were made gas cells.
接合後、セシウムディスペンサに5Wのレーザーを1分間照射して加熱し、セシウム原子をガスセル中に放出させた。図9の(A)は、このように作製し、セシウムを放出させた後のセルを上から顕微鏡で観察した写真を示す。円筒状の凹部の側面にCs金属の堆積に起因する光沢が見られた。一方、2つの凹部の間の溝25の存在により、セシウムディスペンサ及びゲッター材を配置しなかった凹部にもCs原子は拡散しており、時刻の測定にはこのセシウムディスペンサ及びゲッター材のない凹部を用いる。即ち図8に示すように、このセルに光源44からの光を通過させて検出器46で検出することで、図9の(B)に示すようにNeガス中のCsに固有の遷移周波数を計測した。
After bonding, the cesium dispenser was irradiated with a 5 W laser for 1 minute and heated to release cesium atoms into the gas cell. (A) of FIG. 9 shows a photograph of the cell thus produced and released from cesium and observed from above with a microscope. The gloss due to the deposition of Cs metal was observed on the side of the cylindrical recess. On the other hand, due to the presence of the groove 25 between the two recesses, Cs atoms are also diffused to the recesses where the cesium dispenser and the getter material were not disposed, and for the measurement of time, the recesses without the cesium dispenser and the getter material Use. That is, as shown in FIG. 8, the light from the light source 44 is allowed to pass through this cell and detected by the detector 46, whereby the transition frequency specific to Cs in Ne gas is obtained as shown in FIG. It measured.
上記実施例の多層金属構造(Au/Pt/Ti)の代わりに、Ptを用いず、Tiを5nm、その上にAu接合層を12nmスパッタリングによりそれぞれ成膜し、それ以外は上記実施例と全く同じ工程により封止接合を試みた。結果として接合は出来なかった。
Instead of using the multilayer metal structure (Au / Pt / Ti) of the above embodiment, Pt is not used, Ti is deposited to 5 nm, and an Au bonding layer is formed thereon by 12 nm sputtering. The sealing joint was tried by the same process. As a result, it was not possible to join.
実施例3と同じ多層金属構造(Au/Pt/Ti)を用い、焼き出し工程を行わずにNeガス中で常温で封止接合を行った。それ以外の工程は実施例3と同じ工程である。実施例3と同条件でセシウムディスペンサにレーザーを照射してCs放出を試みたが、図9の(C)に示すように、凹部の側面に金属状態のセシウムに起因する金属光沢が確認出来なかった。接合前に焼き出し処理を行わなかったため、ガスセル内部に水、その他のガスが発生し、セシウムが水と反応して水酸化セシウムとなったためである。
3.成分拡散分析 The same multi-layered metal structure (Au / Pt / Ti) as in Example 3 was used, and sealing and bonding were performed at room temperature in Ne gas without performing the baking step. The other steps are the same as in Example 3. Cs release was attempted by irradiating a cesium dispenser with a laser under the same conditions as in Example 3, but as shown in (C) of FIG. 9, the metallic gloss due to cesium in the metallic state could not be confirmed on the side surface of the recess. The This is because water and other gases were generated inside the gas cell and cesium reacted with water to form cesium hydroxide because baking was not performed before bonding.
3. Component diffusion analysis
3.成分拡散分析 The same multi-layered metal structure (Au / Pt / Ti) as in Example 3 was used, and sealing and bonding were performed at room temperature in Ne gas without performing the baking step. The other steps are the same as in Example 3. Cs release was attempted by irradiating a cesium dispenser with a laser under the same conditions as in Example 3, but as shown in (C) of FIG. 9, the metallic gloss due to cesium in the metallic state could not be confirmed on the side surface of the recess. The This is because water and other gases were generated inside the gas cell and cesium reacted with water to form cesium hydroxide because baking was not performed before bonding.
3. Component diffusion analysis
上述した層構造の違いによる接合強度の違いの要因を調べるため、アニール処理(焼き出し)を行った後の膜の成分元素の深さ方向分布をXPS(X-ray Photoelectron Spectroscopy)により調べた。その結果を図10~13に示す。図10はスパッタリングで作製したAu(12nm)/Ti(5nm)/Si(400μm)の層構造の試料を超音波洗浄、Arプラズマによる表面洗浄の後、1×10-3(Pa)で200℃、10分間のアニール処理を行った後の成分元素の深さ方向分布を示す。この結果から分かるように、表面にTiとOが検出され、TiOxが形成されていることがわかる。従って、この酸化膜の存在が接合強度を低下させていると推測できる。
In order to investigate the factor of the difference in bonding strength due to the difference in layer structure described above, the depth direction distribution of the component elements of the film after annealing (baking out) was investigated by XPS (X-ray Photoelectron Spectroscopy). The results are shown in FIGS. FIG. 10 ultrasonically cleans a sample of the layer structure of Au (12 nm) / Ti (5 nm) / Si (400 μm) prepared by sputtering, and cleans the surface with Ar plasma and then 200 ° C. at 1 × 10 −3 (Pa) 14 shows the depthwise distribution of component elements after annealing for 10 minutes. As can be seen from this result, Ti and O are detected on the surface, and it can be seen that TiOx is formed. Therefore, it can be inferred that the presence of this oxide film reduces the bonding strength.
図11は、同様に作製したAu(12nm)/Cr(5nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。図10と同様に、表面にCrとOが検出され、CrOxが形成されていることがわかる。従って、同様にこの酸化膜の存在が接合強度を低下させていることが推測できる。
FIG. 11 shows the distribution in the depth direction of the component elements of the sample of the layer structure of Au (12 nm) / Cr (5 nm) / Si (400 μm) prepared in the same manner as the above sample. Similar to FIG. 10, Cr and O are detected on the surface, and it can be seen that CrOx is formed. Therefore, it can be inferred that the presence of this oxide film similarly reduces the bonding strength.
図12は、同様に作製したAu(12nm)/Pt(10nm)/Ti(5nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。図10と異なり表面にTi元素は全く見られず、表面にTiOxが形成されていないことが分かる。このため、接合強度が低下しないと推測できる。これはPtが熱拡散バリアとして働くためと考えられる。
FIG. 12 shows the depths of component elements of the sample of the layer structure of Au (12 nm) / Pt (10 nm) / Ti (5 nm) / Si (400 μm) prepared in the same manner as the above sample. Indicates the direction distribution. Unlike FIG. 10, no Ti element is observed on the surface at all, and it can be seen that TiOx is not formed on the surface. For this reason, it can be inferred that the bonding strength does not decrease. It is considered that this is because Pt acts as a thermal diffusion barrier.
図13は、同様に作製したAu(12nm)/Ta(10nm)/Si(400μm)の層構造の試料について、上記試料と全く同じ処理を行った後の成分元素の深さ方向分布を示す。表面にはTa元素が全く見られないことが分かる。従って、表面に酸化物は形成されていないため接合強度が低下しないと推測できる。これは、Taの体拡散係数が非常に小さいため、この程度の温度、時間のアニール処理では表面まで拡散しないためと考えられる。
FIG. 13 shows the distribution in the depth direction of the component elements of the sample of the layer structure of Au (12 nm) / Ta (10 nm) / Si (400 μm) prepared in the same manner after being subjected to the same treatment as the above sample. It can be seen that no Ta element is seen at all on the surface. Therefore, it can be inferred that the bonding strength does not decrease because no oxide is formed on the surface. This is considered to be due to the fact that the annealing treatment at this temperature and time does not diffuse to the surface because the body diffusion coefficient of Ta is very small.
接合強度に影響を及ぼす表面酸化物以外の要素として、アニール処理による表面の平滑性の変化が挙げられる。そこで、上記各試料の各処理後の平滑性を調べるため、AFM(Atomic Force Microscope;原子間力顕微鏡)の表面プロファイルのRMS(Root Mean Square;二乗平均平方根)を測定した結果を図14に示す。表面に酸化膜が形成されたAu/Ti/SiとAu/Cr/Siの場合は、アニール後、表面のRMS(粗さ)が大きく増加しているのに対して、表面に酸化膜が形成されなかったAu/Pt/Ti/SiとAu/Ta/Siの場合は、アニール後もRMSの増加は小さく0.6nm以下であることがわかる。このアニール処理による表面の平滑性の劣化が少ないことも、接合強度が低下しない要因の1つと考えられる。
A factor other than the surface oxide that affects the bonding strength is a change in the surface smoothness due to the annealing treatment. Therefore, in order to examine the smoothness after each treatment of each sample, the result of measuring the root mean square (RMS) of the surface profile of an AFM (Atomic Force Microscope) is shown in FIG. . In the case of Au / Ti / Si and Au / Cr / Si in which an oxide film is formed on the surface, an oxide film is formed on the surface, while the RMS (roughness) of the surface is greatly increased after annealing. In the case of Au / Pt / Ti / Si and Au / Ta / Si, which were not performed, it is understood that the increase in RMS is small even after annealing, and is 0.6 nm or less. It is considered that one less deterioration of the surface smoothness due to the annealing treatment is one of the factors that the bonding strength does not decrease.
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。例えば、上記実施例では、凹部に素子を形成した素子形成基板の表面と、凹部を封止する封止基板の表面の層構造が同じ場合について説明したが、両方の基板で層構成が異なっていてもよい。例えば素子形成基板は拡散係数が1×10-60(m2/s)以下の金属を用いる方法で形成し、封止基板は拡散バリア層を用いる方法で形成してもよく、またはその逆でもよい。さらに、第3の基板の両面に本発明の下地層と接合層を形成し、これを、素子形成基板と封止基板の中間に挟んで配置して、3枚の基板を接合させて素子を作製してもよい。
Although the above description is made for the examples, it is obvious to those skilled in the art that the present invention is not limited thereto, and various changes and modifications can be made within the spirit of the present invention and the scope of the appended claims. For example, in the above embodiment, the case where the layer structure of the surface of the element forming substrate in which the element is formed in the recess and the surface of the sealing substrate sealing the recess are the same has been described. May be For example, the element formation substrate may be formed by a method using a metal having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less, and the sealing substrate may be formed by a method using a diffusion barrier layer, or vice versa Good. Furthermore, the base layer and the bonding layer of the present invention are formed on both surfaces of the third substrate, and this is disposed between the element forming substrate and the sealing substrate, and arranged to bond three substrates. You may produce.
11、21 素子形成基板
12、22 封止基板
13、23 凹部
14 チップ
25 溝
26 凹部深さ
31、32 多層金属構造
40 ガスセル
41 セシウムディスペンサ
42 ゲッター材
44 光源
46 検出器
11, 21 Element Forming Substrate 12, 22 Sealing Substrate 13, 23 Recess 14 Chip 25 Groove 26 Recess Depth 31, 32 Multilayer Metal Structure 40 Gas Cell 41 Cesium Dispenser 42 Getter Material 44 Light Source 46 Detector
12、22 封止基板
13、23 凹部
14 チップ
25 溝
26 凹部深さ
31、32 多層金属構造
40 ガスセル
41 セシウムディスペンサ
42 ゲッター材
44 光源
46 検出器
11, 21
Claims (20)
- 2枚の基板を接合することにより封止構造を形成する方法であって、
少なくとも1つの凹部とその周りの平坦な表面を有する第1の基板と、平坦な表面を有する第2の基板を準備するステップと、
前記第1の基板の前記平坦な表面と、前記第2の基板の前記平坦な表面に下地層を形成するステップと、
前記第1及び前記第2の基板の前記下地層の上に金属接合層を形成するステップと、
前記下地層及び前記金属接合層が形成された前記第1及び前記第2の基板をアニールにより脱ガス処理するステップと、
前記アニールによる脱ガス処理後の前記第1及び前記第2の基板の各々の前記金属接合層同士を原子拡散接合することにより、前記第1基板の前記凹部を前記第2の基板により封止するステップと
を含む基板の接合方法。 A method of forming a sealing structure by bonding two substrates,
Providing a first substrate having at least one recess and a flat surface therearound, and a second substrate having a flat surface,
Forming an underlayer on the planar surface of the first substrate and the planar surface of the second substrate;
Forming a metal bonding layer on the underlayers of the first and second substrates;
Degassing the first and second substrates on which the base layer and the metal bonding layer are formed by annealing;
The metal bonding layer of each of the first and second substrates after the degassing process by the annealing is atomic diffusion bonded to seal the recess of the first substrate with the second substrate. And bonding the substrate. - 前記下地層は、常温での拡散係数が1×10-60(m2/s)以下の金属材料から成る、請求項1に記載の基板の接合方法。 The method according to claim 1, wherein the base layer is made of a metal material having a diffusion coefficient of 1 × 10 −60 (m 2 / s) or less at normal temperature.
- 前記下地層は、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含む、請求項2に記載の基板の接合方法。 The method of claim 2, wherein the underlayer includes at least one of Ta, Ru, Mo, Hf, and W. 4.
- 前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層を形成するステップをさらに含む、請求項1に記載の基板の接合方法。 The method according to claim 1, further comprising: forming a diffusion barrier layer between the underlayer and the metal bonding layer of the first and second substrates.
- 前記下地層はTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In2O3及びNiの内の少なくとも1つを含む、請求項4に記載の基板の接合方法。 The underlayer according to claim 4, wherein the underlayer comprises Ti or Cr, and the diffusion barrier layer comprises at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni. Board bonding method.
- 前記金属接合層はAuを含む、請求項1~5のいずれか1項に記載の基板の接合方法。 The method of bonding substrates according to any one of claims 1 to 5, wherein the metal bonding layer contains Au.
- 前記金属接合層の膜厚を50nm以下としたことを特徴とする請求項1~6のいずれか1項に記載の基板の接合方法。 7. The method according to claim 1, wherein the thickness of the metal bonding layer is 50 nm or less.
- アニールによる脱ガス処理後の前記金属接合層の表面粗さが、二乗平均粗さで0.6nm以下であることを特徴とする請求項1~7のいずれか1項に記載の基板の接合方法。 The method according to any one of claims 1 to 7, wherein a surface roughness of the metal bonding layer after degassing treatment by annealing is 0.6 nm or less in a root mean square roughness. .
- 前記アニールによる脱ガス処理は、減圧雰囲気中または不活性雰囲気中において前記第1及び前記第2の基板を100℃以上で300℃以下の温度で加熱することを含む、請求項1~8のいずれか1項に記載の基板の接合方法。 The degassing treatment by annealing includes heating the first and second substrates at a temperature of 100 ° C. or more and 300 ° C. or less in a reduced pressure atmosphere or in an inert atmosphere. A method of bonding a substrate according to any one of the preceding claims.
- 前記アニールによる脱ガス処理は、減圧雰囲気中または不活性雰囲気中において前記第1及び前記第2の基板を200℃以上で300℃以下の温度で加熱することを含む、請求項9に記載の基板の接合方法。 10. The substrate according to claim 9, wherein the annealing degassing process comprises heating the first and second substrates at a temperature of 200 ° C. or more and 300 ° C. or less in a reduced pressure atmosphere or in an inert atmosphere. Bonding method.
- 前記第1及び前記第2の基板を前記原子拡散接合するステップは、前記脱ガス処理の温度より低い温度で行うことを含む、請求項9または10に記載の基板の接合方法。 11. The method of bonding a substrate according to claim 9, wherein the step of atomic diffusion bonding the first and second substrates includes performing at a temperature lower than the temperature of the degassing process.
- 2枚の基板を接合することにより形成したガスセルを含む封止構造であって、該封止構造は、
少なくとも1つの凹部とその周りの平坦な表面を有し、前記平坦な表面上に形成された下地層とその上に形成された金属接合層とを含む第1の基板と、平坦な表面を有し、前記平坦な表面上に形成された下地層とその上に形成された金属接合層とを含む第2の基板とを含み、
前記第1及び第2の基板上にそれぞれ形成された前記下地層と前記金属接合層、及び前記凹部が、少なくとも100℃以上で300℃以下の温度でアニールされ脱ガス処理された後、前記第1及び第2の基板の前記金属接合層同士が接合されている
封止構造。 A sealing structure comprising a gas cell formed by joining two substrates, the sealing structure comprising
A first substrate having at least one recess and a flat surface around the first substrate, the first substrate including an underlayer formed on the flat surface and a metal bonding layer formed thereon, and a flat surface A second substrate including an underlayer formed on the flat surface and a metal bonding layer formed thereon;
The underlayer and the metal bonding layer formed on the first and second substrates and the recess are annealed and degassed at a temperature of at least 100 ° C. and at a temperature of 300 ° C. or less, A sealing structure in which the metal bonding layers of the first and second substrates are bonded to each other. - 前記第1及び第2の基板が透光性であり、前記第1の基板に前記凹部が複数形成されており、少なくとも1つの前記凹部内にはCsまたはRbの金属原子供給源が予め配置され、不活性ガスの外部雰囲気中で封止されて前記複数の凹部が複数のセルとして形成され、各セル内は前記金属原子供給源から発生した金属原子を含む前記不活性ガス雰囲気となっており、前記金属原子供給源が予め配置されていないセルに光を透過させて前記金属原子の共鳴周波数を計測し、時間を測定する、請求項12に記載のガスセル。 The first and second substrates are translucent, and a plurality of the recesses are formed in the first substrate, and a metal atom source of Cs or Rb is disposed in advance in at least one of the recesses. And sealed in an external atmosphere of an inert gas to form the plurality of recesses as a plurality of cells, and each cell is in the inert gas atmosphere containing metal atoms generated from the metal atom supply source. The gas cell according to claim 12, wherein the light is transmitted to a cell in which the metal atom source is not disposed in advance, the resonance frequency of the metal atom is measured, and the time is measured.
- 前記不活性ガスがNeまたはそれ以外の希ガス、またはNeと前記Ne以外の希ガスとの混合ガスである、請求項13に記載のガスセル。 The gas cell according to claim 13, wherein the inert gas is Ne or a rare gas other than that, or a mixed gas of Ne and a rare gas other than the Ne.
- 前記下地層は、常温での拡散係数が1×10-60(m2/s)以下の金属材料から成る、請求項12~14のいずれか1項に記載の封止構造。 The sealing structure according to any one of claims 12 to 14, wherein the underlayer is made of a metal material having a diffusion coefficient of 1 × 10 -60 (m 2 / s) or less at normal temperature.
- 前記下地層は、Ta、Ru、Mo、Hf、及びWの内の少なくとも1つを含む、請求項15に記載の封止構造。 The sealing structure according to claim 15, wherein the underlayer includes at least one of Ta, Ru, Mo, Hf, and W.
- 前記第1及び前記第2の基板の前記下地層と前記金属接合層の間に拡散バリア層が形成されている、請求項12~14のいずれか1項に記載の封止構造。 The sealing structure according to any one of claims 12 to 14, wherein a diffusion barrier layer is formed between the underlayer and the metal bonding layer of the first and second substrates.
- 前記下地層はTiまたはCrを含み、前記拡散バリア層は、Pt、Co、Ru、Ta、TiN、TaN、WN、In2O3及びNiの内の少なくとも1つを含む、請求項17に記載の封止構造。 The underlayer according to claim 17, wherein the underlayer comprises Ti or Cr, and the diffusion barrier layer comprises at least one of Pt, Co, Ru, Ta, TiN, TaN, WN, In 2 O 3 and Ni. Sealed structure.
- 前記金属接合層はAuを含む、請求項12~18のいずれか1項に記載の封止構造。 The sealing structure according to any one of claims 12 to 18, wherein the metal bonding layer contains Au.
- 前記金属接合層の膜厚を50nm以下としたことを特徴とする請求項12~19のいずれか1項に記載の封止構造。
The sealing structure according to any one of claims 12 to 19, wherein a film thickness of the metal bonding layer is 50 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019542064A JP7028473B2 (en) | 2017-09-15 | 2018-09-11 | Substrate joining method and sealing structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-177695 | 2017-09-15 | ||
JP2017177695 | 2017-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019054368A1 true WO2019054368A1 (en) | 2019-03-21 |
Family
ID=65723961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/033626 WO2019054368A1 (en) | 2017-09-15 | 2018-09-11 | Method for joining substrates, and sealing structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7028473B2 (en) |
WO (1) | WO2019054368A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113371675A (en) * | 2020-02-25 | 2021-09-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Atomic gas chamber and manufacturing method thereof |
JP7390619B2 (en) | 2020-06-01 | 2023-12-04 | 国立大学法人東北大学 | Atomic diffusion bonding method and bonded structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728689A (en) * | 1980-07-25 | 1982-02-16 | Hitachi Ltd | Method for diffusion joining |
JP2004055924A (en) * | 2002-07-22 | 2004-02-19 | Sanken Electric Co Ltd | Method for manufacturing semiconductor wafer laminate |
US20050184815A1 (en) * | 2004-01-06 | 2005-08-25 | Lipp Steven A. | Anodically bonded cell, method for making same and systems incorporating same |
JP2010056224A (en) * | 2008-08-27 | 2010-03-11 | Seiko Instruments Inc | Electronic component package,and method of manufacturing electronic component package |
JP2011200933A (en) * | 2010-03-26 | 2011-10-13 | Panasonic Electric Works Co Ltd | Joining method |
JP2013038382A (en) * | 2011-07-13 | 2013-02-21 | Ricoh Co Ltd | Atomic oscillator, and method of manufacturing the same |
JP2014120635A (en) * | 2012-12-18 | 2014-06-30 | Seiko Instruments Inc | Optical device and method of manufacturing optical device |
JP2016021455A (en) * | 2014-07-14 | 2016-02-04 | 株式会社リコー | Alkali metal cell and atomic oscillator |
-
2018
- 2018-09-11 JP JP2019542064A patent/JP7028473B2/en active Active
- 2018-09-11 WO PCT/JP2018/033626 patent/WO2019054368A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728689A (en) * | 1980-07-25 | 1982-02-16 | Hitachi Ltd | Method for diffusion joining |
JP2004055924A (en) * | 2002-07-22 | 2004-02-19 | Sanken Electric Co Ltd | Method for manufacturing semiconductor wafer laminate |
US20050184815A1 (en) * | 2004-01-06 | 2005-08-25 | Lipp Steven A. | Anodically bonded cell, method for making same and systems incorporating same |
JP2010056224A (en) * | 2008-08-27 | 2010-03-11 | Seiko Instruments Inc | Electronic component package,and method of manufacturing electronic component package |
JP2011200933A (en) * | 2010-03-26 | 2011-10-13 | Panasonic Electric Works Co Ltd | Joining method |
JP2013038382A (en) * | 2011-07-13 | 2013-02-21 | Ricoh Co Ltd | Atomic oscillator, and method of manufacturing the same |
JP2014120635A (en) * | 2012-12-18 | 2014-06-30 | Seiko Instruments Inc | Optical device and method of manufacturing optical device |
JP2016021455A (en) * | 2014-07-14 | 2016-02-04 | 株式会社リコー | Alkali metal cell and atomic oscillator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113371675A (en) * | 2020-02-25 | 2021-09-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Atomic gas chamber and manufacturing method thereof |
JP7390619B2 (en) | 2020-06-01 | 2023-12-04 | 国立大学法人東北大学 | Atomic diffusion bonding method and bonded structure |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019054368A1 (en) | 2020-12-17 |
JP7028473B2 (en) | 2022-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Plach et al. | Mechanisms for room temperature direct wafer bonding | |
EP0807970B1 (en) | Method of manufacturing a thin semiconductor layer | |
EP2863420B1 (en) | Improved method for assembly by direct bonding between two elements, each element comprising portions of metal and dielectric materials | |
Matsumae et al. | Surface activated bonding of Ti/Au and Ti/Pt/Au films after vacuum annealing for MEMS packaging | |
JP4407127B2 (en) | Manufacturing method of SOI wafer | |
JP5571988B2 (en) | Joining method | |
JP7028473B2 (en) | Substrate joining method and sealing structure | |
EP2405465A1 (en) | Bonding method by molecular bonding with radial misalignment compensation | |
EP2842155B1 (en) | Process for bonding in an atmosphere of a gas having a negative joule-thomson coefficient | |
Lee et al. | Wafer bonding by low-temperature soldering | |
KR20170097056A (en) | Composite substrate, method for forming nanocarbon film, and nanocarbon film | |
Dragoi et al. | Adhesive wafer bonding for MEMS applications | |
WO2019138875A1 (en) | Functional element, method for manufacturing functional element, and electronic device | |
WO2014191337A1 (en) | Method for assembling two substrates of different natures via a ductile intermediate layer | |
Matsumae et al. | Surface activated bonding of Au/Cr, Au/Ta and Au/Pt/Ti films after degas annealing for Si/sapphire gas cell | |
Kurashima et al. | Application of thin Au/Ti double-layered films as both low-temperature bonding layer and residual gas gettering material for MEMS encapsulation | |
Lin et al. | Development and evaluation of AuSi eutectic wafer bonding | |
TW200305232A (en) | Electrical device and method of making | |
JP5547413B2 (en) | Hollow structure element for thermal sensor | |
EP3365929B1 (en) | Method for manufacturing a hybrid structure | |
Crnogorac et al. | Aluminum-Germanium eutectic bonding for 3D integration | |
Latella et al. | Interface fracture surface energy of sol–gel bonded silicon wafers by three-point bending | |
JP3196923B2 (en) | Manufacturing method of semiconductor type dynamic quantity sensor | |
Radu et al. | Fundamentals of wafer bonding for SOI: from physical mechanisms towards advanced modeling | |
Ferguson et al. | Exploring Ru compatibility with Al-Ge eutectic wafer bonding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18855629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019542064 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18855629 Country of ref document: EP Kind code of ref document: A1 |