JP2015051452A - Joining method and structural body having joint part joined by the same - Google Patents

Joining method and structural body having joint part joined by the same Download PDF

Info

Publication number
JP2015051452A
JP2015051452A JP2013186618A JP2013186618A JP2015051452A JP 2015051452 A JP2015051452 A JP 2015051452A JP 2013186618 A JP2013186618 A JP 2013186618A JP 2013186618 A JP2013186618 A JP 2013186618A JP 2015051452 A JP2015051452 A JP 2015051452A
Authority
JP
Japan
Prior art keywords
joined
thin film
bonding
microcrystalline
smooth surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186618A
Other languages
Japanese (ja)
Other versions
JP6318441B2 (en
Inventor
島津 武仁
Takehito Shimazu
武仁 島津
幸 魚本
Sachi Uomoto
幸 魚本
宮本 和夫
Kazuo Miyamoto
和夫 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Musashino Engineering Co Ltd
Original Assignee
Tohoku University NUC
Musashino Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Musashino Engineering Co Ltd filed Critical Tohoku University NUC
Priority to JP2013186618A priority Critical patent/JP6318441B2/en
Publication of JP2015051452A publication Critical patent/JP2015051452A/en
Application granted granted Critical
Publication of JP6318441B2 publication Critical patent/JP6318441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a joining method capable of performing the joining accompanying atomic diffusion of thick materials to be joined with one side or both sides having thickness of 1.0 mm or more.SOLUTION: A microcrystalline thin film made of single metal or alloy of Au, Cu, etc. is formed on a flat surface of each of two materials to be joined having flat surfaces in a vacuum container. Thereafter, the two materials to be joined are overlapped onto each other such that the microcrystalline thin films formed on the two materials to be joined in an environment of atmospheric pressure are brought into contact with each other, at the same time, are pressed with a pressing force corresponding to a PV value as a difference of elevation between the highest point and the lowest point on the flat surface of the thick material to be joined, thereby, causes atomic diffusion on a joint interface and crystal grain boundary of the microcrystalline thin film and are joined with a joint strength of 4.0 MPa or more.

Description

本発明は接合方法及び前記方法によって接合された接合部を有する構造体に関し,例えば電子デバイスに放熱体を接合する場合等,複数部材間を接合する際に用いる接合方法,及び前記方法で放熱体が接合された電子デバイス等のように,前記方法により接合された接合部を備えた構造体に関する。   The present invention relates to a joining method and a structure having a joined portion joined by the above-described method, for example, a joining method used when joining a plurality of members, such as when joining a radiator to an electronic device, and the radiator in the method. It is related with the structure provided with the junction part joined by the said method like the electronic device etc. which joined.

所望の機能を備えた構造体を得るために,異なる二以上の部材を接合して所定の構造を備えた構造体を組み立てることは,各種分野において広く行われている。   In order to obtain a structure having a desired function, assembling a structure having a predetermined structure by joining two or more different members is widely performed.

一例として,電子デバイスの分野では,デバイスの実装,集積化,パッケージング等を行う際に,このような接合技術は不可欠なものとなっている。   As an example, in the field of electronic devices, such a joining technique is indispensable when mounting, integrating, packaging, and the like.

例えば,LSI等の電子部品のパッケージには,パッケージングされた電子デバイスを冷却するための放熱体を取り付けることが一般的に行われており,特に絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)に代表されるパワーデバイス,LED等の光デバイス等にあっては,その性能の向上を図るべく高出力化,高集積化が行われた結果,発熱量の増大に伴い,より効果的な冷却を行うことができるような熱伝導率の高い接合方法が要望されている。   For example, a package of electronic components such as LSI is generally provided with a heat sink for cooling a packaged electronic device, and particularly an insulated gate bipolar transistor (IGBT). In power devices such as LED, optical devices such as LEDs, etc., as a result of higher output and higher integration in order to improve their performance, more effective cooling as the amount of heat generation increases. Therefore, there is a demand for a bonding method with high thermal conductivity that can be performed.

このような放熱体の取り付けは,従来,熱伝導率の良い材質でできた,ヒートスプレッダ等と呼ばれる放熱板を接着剤による接着やはんだ付け,ロウ付け等の方法で接着することにより行われており,また,必要に応じて,このヒートスプレッダに,更に放熱フィン等を備えたヒートシンクを前記ヒートスプレッダと同様の方法で接着することで,電子デバイスで発生した熱を,ヒートスプレッダとヒートシンクに伝導すると共に,空気との熱交換によって放熱することで冷却を行っている。   This type of heat radiator is conventionally attached by bonding a heat spreader called a heat spreader made of a material with good thermal conductivity by means of adhesive bonding, soldering, brazing, or the like. In addition, if necessary, a heat sink provided with heat radiating fins and the like is bonded to the heat spreader in the same manner as the heat spreader, so that heat generated in the electronic device is conducted to the heat spreader and the heat sink, and air Cooling is performed by dissipating heat through heat exchange.

しかし,このような放熱体の接着に使用されている前述の接着剤,はんだ,ロウ材等の接合材は,必ずしも熱伝導率が高いものではなく,しかも,電子デバイスと放熱部品,放熱部品と放熱部品間には,数μm〜数mmの厚みで接合材が介在することで,このような接合材の厚みが電子デバイスの小型化,高集積化に伴い相対的に無視できない厚みとなっているだけでなく,熱抵抗を増大させて電子デバイスの冷却を阻害している。   However, the above-mentioned adhesives, solders, brazing materials, etc. used for bonding such heat radiators do not necessarily have high thermal conductivity, and electronic devices and heat dissipating parts, heat dissipating parts and Since the bonding material is interposed between the heat dissipation parts with a thickness of several μm to several mm, the thickness of such a bonding material becomes a relatively non-negligible thickness as electronic devices become smaller and highly integrated. In addition, it increases the thermal resistance and hinders cooling of electronic devices.

しかも,前述した接着方法のうち,はんだ付け,ロウ付けでは,部材間の接着を行うために被接合材を高温に加熱する必要があり,熱に弱い電子デバイスの性能低下や,熱歪による欠陥や劣化等の問題が発生する。   In addition, among the bonding methods described above, in soldering and brazing, it is necessary to heat the material to be bonded to a high temperature in order to bond the members together, which reduces the performance of electronic devices that are vulnerable to heat and defects due to thermal strain. And problems such as deterioration occur.

なお,被接合材を非加熱,あるいは比較的低温での加熱によって接合する方法として,本発明の発明者らは,ウエハやチップ等の被接合材のそれぞれの平滑面に,到達圧力を10-4Pa以下の高真空度とした真空雰囲気において,例えばスパッタリングやイオンプレーティング等の真空成膜方法により,かつ,好ましくはプラズマの発生下で金属や各種化合物の微結晶構造を有する被膜を平滑面に形成し,前記被膜の成膜中,あるいは成膜後に前記真空を維持したまま,前記被接合材の前記平滑面に形成された被膜相互を常温で重合することにより,前記被膜間に生じた結合により二つの被接合材を接合する「常温接合方法」を既に提案している(特許文献1参照)。 As a method of joining the materials to be joined by non-heating or heating at a relatively low temperature, the inventors of the present invention apply an ultimate pressure of 10 − on each smooth surface of the materials to be joined such as wafers and chips. In a vacuum atmosphere with a high degree of vacuum of 4 Pa or less, a film having a microcrystalline structure of metal or various compounds is preferably formed by a vacuum film-forming method such as sputtering or ion plating, and preferably under the generation of plasma. The film formed between the films was formed by polymerizing the films formed on the smooth surface of the material to be bonded at normal temperature while maintaining the vacuum during the film formation or after the film formation. A “room temperature bonding method” in which two materials to be bonded are bonded by bonding has already been proposed (see Patent Document 1).

また,本発明の発明者らは,このような被膜の材質として,所定の体拡散係数と酸化物の自由生成エネルギーを有する金属を選択することで,前述した特許文献1に記載の方法と同様にして被接合材の表面に微結晶薄膜を形成した後,10-4Paよりも高い圧力,例えば被接合材を真空容器から取り出して大気圧下において重ね合わせた場合であっても,特許文献1に記載の方法と同様にして被接合材の接合が可能であることを見出すと共に,これを接合方法の発明として提案している(特許文献2参照)。 In addition, the inventors of the present invention select a metal having a predetermined body diffusion coefficient and free oxide generation energy as the material of such a coating, and thus the same method as that described in Patent Document 1 described above. Even when a microcrystalline thin film is formed on the surface of the material to be joined and then the pressure is higher than 10 −4 Pa, for example, when the material to be joined is taken out from the vacuum vessel and superposed under atmospheric pressure, In addition to finding out that the materials to be joined can be joined in the same manner as described in No. 1, this is proposed as an invention of the joining method (see Patent Document 2).

特開2008−207221号公報JP 2008-207221 A 特開2011−235300号公報JP 2011-235300 A

上記従来の常温接合方法は,いずれも平滑面に形成する微結晶膜の膜厚を数十nm〜数百nm程度の厚みとして形成することができるため,前述した接着剤,はんだ付け,ロウ付け等の方法で接着を行う場合に比較して接合界面に存在する接合材の厚さを大幅に減じることができ,その結果,接合界面に比較的厚い接合材の層が形成されることにより生じる熱抵抗の増大を可及的に減少させることができることが予想される。   In any of the above-mentioned conventional room temperature bonding methods, since the film thickness of the microcrystalline film formed on the smooth surface can be formed to a thickness of about several tens to several hundreds of nanometers, the above-mentioned adhesive, soldering, and brazing The thickness of the bonding material existing at the bonding interface can be greatly reduced compared to the case of bonding by the above method, and as a result, a relatively thick bonding material layer is formed at the bonding interface. It is expected that the increase in thermal resistance can be reduced as much as possible.

特に,特許文献2で規定する体拡散係数と酸化物の自由生成エネルギーの数値範囲に含まれる単金属は,金(Au),銀(Ag),銅(Cu),パラジウム(Pd),白金(Pt),ニッケル(Ni),亜鉛(Zn)等,いずれも熱伝導率の高い金属であることから,この接合方法を放熱体の接合に適用した場合,前述したように接合材層の厚さが薄いこととも相俟って,接合界面における熱抵抗を大幅に減少させることができるものと予想される。   In particular, single metals included in the numerical ranges of the body diffusion coefficient and free energy of oxide defined in Patent Document 2 are gold (Au), silver (Ag), copper (Cu), palladium (Pd), platinum ( Since Pt), nickel (Ni), zinc (Zn), etc. are all metals with high thermal conductivity, when this joining method is applied to the joining of heat sinks, the thickness of the joining material layer as described above. It is expected that the thermal resistance at the joint interface can be greatly reduced in combination with the thin film.

しかし,特許文献1に記載の方法では,被接合材の平滑面間の重ね合わせを成膜と共に同一の真空中で行うことが前提であるだけでなく(例えば特許文献1の請求項1),同一の真空中において接合を行う場合であっても「被膜の表面が真空容器内に残留している不純物ガス等との反応によって汚染が進行するに従い,被膜相互の付着強度は低下してゆき,やがて接合自体ができなくなる。」と説明するように(特許文献1「0055」欄),従来の常温接合方法では平滑面に対する微結晶構造の被膜形成を行った後に,これに続き行う平滑面の重ね合わせは,平滑面の処理を行ったと同一の真空容器内で,かつ,この真空容器内を高真空の状態に維持したまま行わなければならず,例えば,微結晶薄膜を形成した後の平滑面を大気圧の空気等に暴露してしまえば,接合自体が不可能となるというのが,本発明の発明者らを含めた当業者の認識であり,この認識を前提として,平滑面の重ね合わせを高真空の空間内において行う構成を採用していた。   However, the method described in Patent Document 1 is not only based on the premise that superposition between smooth surfaces of the materials to be bonded is performed in the same vacuum together with film formation (for example, claim 1 of Patent Document 1), Even when bonding is performed in the same vacuum, “As the contamination progresses due to the reaction of the surface of the film with the impurity gas remaining in the vacuum vessel, the adhesion strength between the films decreases. As will be explained later, "(Patent Document 1," 0055 "column), in the conventional room temperature bonding method, after the formation of a film having a microcrystalline structure on the smooth surface, Superposition must be performed in the same vacuum vessel where the smooth surface treatment has been performed and with the vacuum vessel maintained in a high vacuum state, for example, after the formation of the microcrystalline thin film. The surface is exposed to atmospheric pressure air, etc. It is the recognition of those skilled in the art, including the inventors of the present invention, that the bonding itself becomes impossible once exposed, and on the premise of this recognition, the superposition of smooth surfaces is performed in a high vacuum space. The configuration performed in the above was adopted.

そのため,被接合材の平滑面を重ね合わせる作業は高真空に維持された真空容器内という限定された空間,限定された条件下で行われており,被接合材同士を重ね合わせる作業が極めて行い難いだけでなく,前記接合方法を実現するためには真空容器内を高真空に保ったまま,真空容器内に配置された被接合材の平滑面を重ね合わせる作業を行うための特殊な構造を備えたロボットアームや治具,その他の貼着装置が必要となり,多大な初期投資が必要となる。   For this reason, the work to superimpose the smooth surfaces of the materials to be joined is performed in a limited space in a vacuum vessel maintained at a high vacuum, under limited conditions. Not only is it difficult, but in order to realize the above-mentioned joining method, a special structure for superimposing the smooth surfaces of the materials to be joined placed in the vacuum vessel while keeping the vacuum vessel at a high vacuum is used. A robot arm, jig, and other attachment devices are required, which requires a large initial investment.

一方,特許文献2として紹介した常温接合方法にあっては,微結晶膜の材質として所定の体拡散係数と酸化物の自由生成エネルギーを有する金属を選択することで,被接合材を真空容器より取り出して,一例として大気圧下で重ね合わせを行った場合であっても接合を行うことができるために作業性が大幅に改善される。   On the other hand, in the room temperature bonding method introduced as Patent Document 2, the material to be bonded is selected from a vacuum container by selecting a metal having a predetermined body diffusion coefficient and free oxide generation energy as the material of the microcrystalline film. Even if it is taken out and superposed under atmospheric pressure as an example, since the joining can be performed, workability is greatly improved.

しかも,特許文献2における微結晶薄膜,すなわち接合材の材質は,金(Au),銀(Ag),銅(Cu)等の熱伝導率の高い材質であることから,接合界面における熱抵抗の発生を大幅に低減できるものと予想される。   Moreover, since the material of the microcrystalline thin film, that is, the bonding material in Patent Document 2, is a material having high thermal conductivity such as gold (Au), silver (Ag), copper (Cu), etc., the thermal resistance at the bonding interface is low. The occurrence is expected to be greatly reduced.

しかし,特許文献2に記載の方法で実際に放熱体の接合を行ってみたところ,電子デバイスと放熱体,又は放熱体同士の接合を行うこと自体は可能であったが,この接合によって得られた構造体は,接合強度が弱く,接合界面において比較的簡単に剥離してしまうと共に,熱伝導を行った際に接合界面である平滑面の温度が均一ではなく,部分的に温度の高い部分,すなわち熱抵抗の大きな部分が生じており,予想したような高い放熱性能を得ることができなかった。   However, when the heat sink was actually joined by the method described in Patent Document 2, it was possible to join the electronic device and the heat sink or between the heat sinks. The structure has a weak bonding strength and relatively easily peels off at the bonding interface, and when conducting heat conduction, the temperature of the smooth surface, which is the bonding interface, is not uniform, and the temperature is partially high. In other words, a large portion of thermal resistance was generated, and the high heat dissipation performance as expected could not be obtained.

そこで,このような問題の原因を検討したところ,このような低接合強度と,部分的に大きな熱抵抗が残存する原因は,放熱体がアルミや銅等の金属の塊を削り出して製造された,ウエハやチップに比較して大きな厚みを持つ材料の塊(所謂「バルク」)によって構成されていることと,この放熱体の接合面である平滑面に存在する,比較的長周期の凹凸(以下,「うねり」という)が原因で生じるものと考えられる。   Therefore, when the cause of such a problem was examined, the reason why such a low joint strength and a partly large thermal resistance remain is that the heat sink is manufactured by cutting out a lump of metal such as aluminum or copper. In addition, it is composed of a lump of material (so-called “bulk”) that is thicker than a wafer or chip, and a relatively long period of unevenness that exists on the smooth surface that is the joining surface of this radiator. (Hereinafter referred to as “swell”).

すなわち,接着剤やはんだ,ロウ付け等によって行っていた従来の接合方法では,前述したように電子デバイスと放熱体の平滑面間,あるいは放熱体同士の平滑面間には,接着剤,はんだ,ロウ材等の接合材が数μm〜数mmにも及ぶ厚さで充填されているため,ヒートスプレッダやヒートシンク等の放熱体の平滑面は,ある程度の平坦さを備えていれば,多少のうねりを伴うものであったとしても,このようなうねりは接合材の厚みによって吸収することができていたものと考えられる。   That is, in the conventional joining method performed by adhesive, solder, brazing, etc., as described above, between the smooth surface of the electronic device and the radiator, or between the smooth surfaces of the radiator, Since the joining material such as the brazing material is filled with a thickness of several μm to several mm, the smooth surface of the heat spreader such as a heat spreader or heat sink has a certain amount of undulation if it has a certain level of flatness. Even if accompanied, it is considered that such swells could be absorbed by the thickness of the bonding material.

一方,前述した特許文献2に記載の接合方法においても,一般に1.0mm未満の肉厚に形成されるチップやウエハを接合対象とする場合には,チップやウエハの表面粗さが,算術平均粗さRaで前述の放熱体の接合面と同程度の数値を示すものであったとしても貼り合わせ時に加圧を行うことなく接合することが可能で,前述算術平均粗さRaで表れるような比較的短周期の凹凸は,バルク材における接合を妨げる原因とはなっていないことが予想される一方,接合強度が得られなかったバルク材同士の接合界面を見ると,所々にギャップ(空隙)が生じており,算術平均粗さRaでの数値に現れる短周期の凹凸よりも,より長周期の凹凸である表面のうねりが,バルク材同士の接合を阻害しているものと考えられる。   On the other hand, in the joining method described in Patent Document 2 described above, when a chip or wafer formed with a thickness of generally less than 1.0 mm is to be joined, the surface roughness of the chip or wafer is an arithmetic average. Even if the roughness Ra shows the same numerical value as that of the joining surface of the radiator, it is possible to join without applying pressure at the time of bonding, as expressed by the arithmetic average roughness Ra. It is expected that irregularities with a relatively short period are not the cause of hindering the bonding of bulk materials, but looking at the bonding interface between the bulk materials where the bonding strength could not be obtained, It is considered that the undulation of the surface, which is longer-period unevenness than the short-period unevenness appearing in the numerical value with the arithmetic average roughness Ra, inhibits the joining of the bulk materials.

そうすると,チップやウエハ等の接合では,接合対象が薄肉であるゆえに,このようなうねりは,チップやウエハが変形する(反る)ことにより吸収され得るが,被接合材の一方又は双方が,前述した放熱体のようにチップやウエハに比較して十分に大きな肉厚を有するバルクである場合には,うねりを吸収し得る変形が生じ得ないことが,接合強度を低下させている原因であると考えられる。   Then, in the joining of chips and wafers, since the joining object is thin, such swell can be absorbed by the deformation of the chip or wafer (warping), but one or both of the materials to be joined are In the case of a bulk having a sufficiently large thickness compared to a chip or wafer as in the case of the heat sink described above, deformation that can absorb waviness cannot occur because the bonding strength is reduced. It is believed that there is.

しかも,前述のはんだや接着剤による接合では,接合界面にはんだや接着剤等の接合材を厚く充填してその厚みによって前述したうねりを吸収させることも可能であるが,前述した特許文献2に記載の方法で放熱体の接合を行う場合,電子デバイスと放熱体,又は放熱体同士の接合界面に介在する数nm〜数百nm程度の薄膜の接合材では前述のうねりを吸収することもできず,その結果,平滑面が部分的にしか接合されずに接合強度不足が生じると共に,接合しなかった部分に生じたギャップ(空隙)が高い熱抵抗を生じさせているものと考えられる。   In addition, in the above-described joining by solder or adhesive, it is possible to fill the joining interface with a joining material such as solder or adhesive and absorb the above-described swell by the thickness. When the radiator is bonded by the described method, the above-described swell can be absorbed by the thin film bonding material of several nm to several hundred nm interposed between the electronic device and the radiator or the bonding interface between the radiators. As a result, it is considered that the smooth surface is joined only partially, resulting in insufficient joining strength, and a gap (void) generated in the part that is not joined causes high thermal resistance.

前掲の特許文献2に記載の接合方法を,放熱体等の接合に適用する場合に生じ得る,前述した接合強度不足や熱抵抗の問題を解消するには,ヒートシンクやヒートスプレッダ等の放熱体の平滑面を,従来の放熱体に対し要求される以上の高精度な平滑面に研磨することも考えられる。   In order to solve the above-mentioned problems of insufficient bonding strength and thermal resistance that may occur when the joining method described in Patent Document 2 is applied to joining of a radiator, etc., smoothing of a radiator such as a heat sink or a heat spreader is possible. It is also conceivable to polish the surface to a smooth surface with a higher accuracy than required for conventional radiators.

しかし,このような高精度の研磨を行う場合,放熱体の研磨に多大なコストがかかり,このコストが製品の価格に反映されて市場における価格競争力を失う。   However, when performing such high-precision polishing, a great deal of cost is required for polishing the radiator, and this cost is reflected in the price of the product and loses price competitiveness in the market.

また,別の方法としては,接合界面に介在させる接合材(微結晶薄膜)の膜厚を,放熱体の表面に生じているうねりを吸収できる厚さに迄増大させることも考えられる。   As another method, the thickness of the bonding material (microcrystalline thin film) interposed at the bonding interface may be increased to a thickness that can absorb the swell generated on the surface of the radiator.

しかし,このような厚い膜の形成には長時間を必要とし,この方法で接合を行う場合には生産性が低下すると共,前述したように接合界面に介在する膜厚が厚くなれば,その分,熱抵抗の増大も予想される。   However, it takes a long time to form such a thick film. When bonding is performed by this method, productivity decreases, and as described above, if the film thickness intervening at the bonding interface increases, An increase in thermal resistance is also expected.

なお,以上の説明では,被接合材の一例として,ヒートシンクやヒートスプレッダ等の放熱体を例に挙げて説明したが,このような接合時における接合不良は,放熱体以外の他の部品等の接合に際しても問題となり得るものである。  In the above description, a heat sink such as a heat sink or a heat spreader has been described as an example of a material to be bonded. However, such a bonding failure at the time of bonding is the bonding of other parts other than the heat sink. It can also be a problem.

すなわち,接合界面が部分的にしか接触していないことによる接合強度不足は,接合によって得られた構造体の用途に拘わらず広く問題となることであり,また,平滑面が部分的にしか接触しておらず,接合界面にギャップ(空隙)が生じていることは,熱伝導性の低下のみならず,例えば振動子の接合等にあっては振動の伝達特性の低下を生じ,また,電気,電子部品にあっては電気抵抗の増大をもたらすなどの物理的,機械的特性の低下をもたらすものとなる。  In other words, insufficient bonding strength due to the partial contact of the bonding interface is a wide problem regardless of the use of the structure obtained by bonding, and the smooth surface is only partially in contact. In addition, the fact that gaps (voids) are formed at the joint interface not only lowers the thermal conductivity, but also lowers the transmission characteristics of vibrations, for example, when joining vibrators. In the case of electronic parts, physical and mechanical properties such as increased electrical resistance are reduced.

そこで,本発明の発明者らは,前述した特許文献1,2に記載の接合方法を基調としつつ,この接合方法を放熱体のような比較的肉厚の被接合材の接合に対し適用した場合に生じ得る前述した問題を,構造材の平滑面の平坦化精度の向上や,微結晶薄膜の膜厚の増大等を行うことなく解消できる方法を見出すことにより,既存の部品等を特殊な加工等を行うことなく使用できると共に,生産性を低下させることなく,伝熱性能,振動伝搬性能,電気・磁気特性等の物理的,機械的な特性の向上と,必要な接合強度を得ることができる接合方法,及び,前記方法で接合された接合面を備える,高い放熱性能を持った構造体を提供することを目的とする。   Therefore, the inventors of the present invention applied this bonding method to bonding of a relatively thick material to be bonded such as a heat radiator, based on the bonding method described in Patent Documents 1 and 2 described above. In order to solve the above-mentioned problems that may occur in some cases without improving the flattening accuracy of the smooth surface of the structural material or increasing the film thickness of the microcrystalline thin film, the existing parts are made special. It can be used without processing, etc., and it can improve physical and mechanical properties such as heat transfer performance, vibration propagation performance, electrical and magnetic properties, and obtain the required joint strength without reducing productivity. It is an object of the present invention to provide a bonding method that can perform the above and a structure having a high heat dissipation performance, including a bonding surface bonded by the above method.

上記目的を達成するために,本発明の接合方法は,
一方の被接合材に設けた平滑面と,他方の被接合材に設けた平滑面とを重合した状態で接合する方法であって,
前記一方又は他方の被接合材の少なくともいずれかが,1.0mm以上の肉厚を有する材料塊(バルク)によって構成された厚肉の被接合材であり,
真空容器内において,一方の前記被接合材の平滑面に,単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,少なくとも表面が単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の被接合材の平滑面に,前記一方の被接合材に形成された前記薄膜が接触するように前記一方,他方の2つの被接合材を重ね合わせると共に,前記厚肉の被接合材の平滑面における所定の測定範囲内の最高点と最低点の高低差であるPV値に基づいて,前記PV値が小さいときには小さく,大きいときには大きい加圧力を加えることにより,前記薄膜と前記他方の基体の前記平滑面との接合界面及び結晶粒界に原子拡散を生じさせることにより前記2つの基体を4.0MPa以上の接合強度で接合することを特徴とする(請求項1)。
In order to achieve the above object, the joining method of the present invention comprises:
A method of joining a smooth surface provided on one material to be joined and a smooth surface provided on the other material to be joined in a polymerized state,
At least one of the one or the other material to be joined is a thick material to be joined constituted by a material lump (bulk) having a thickness of 1.0 mm or more,
A smooth surface having a microcrystalline structure made of a single metal or an alloy and having a microcrystalline structure made of a single metal or an alloy on the smooth surface of one of the materials to be joined in a vacuum vessel. The one and the other two materials to be joined are overlapped so that the thin film formed on the one material to be joined is in contact with the smooth surface of the other material to be joined. Based on the PV value which is the difference in height between the highest point and the lowest point within a predetermined measurement range on the smooth surface of the bonding material, a small pressing force is applied when the PV value is small, and a large pressing force is applied when the PV value is large. The two substrates are bonded at a bonding strength of 4.0 MPa or more by causing atomic diffusion at the bonding interface with the smooth surface of the other substrate and at the crystal grain boundary (Claim 1).

前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において行うものとしても良い(請求項2)。
A thin film having a microcrystalline structure formed on the smooth surface of the one bonded material has a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and free energy of formation of oxide at room temperature. Is made of a single metal or alloy of -15 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient of 1 × 10 −40 (m 2 at room temperature). / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −15 (kJ / mol of compounds) or more,
The two materials to be joined may be superposed in an atmosphere having a pressure exceeding 1 × 10 −4 Pa (Claim 2).

なお,ほとんどの金属の室温における酸化物の生成自由エネルギーは負の数値であり,数値が小さい(絶対値が大きい)程,酸化し易いものと考えられていることから,数値が小さい(絶対値が大きい)程,酸化物の生成自由エネルギーが『大きい』と表現される場合もあるが,ここで説明する大きさは数値の大きさ〔符号(負号)を含めた数値の大きさ〕を言う。従って,例えば生成自由エネルギーが「−n(kJ/mol of compounds)以上」(nは数字)とは,−n≦ΔG(ΔGは酸化物の生成自由エネルギー)であること,すなわち酸化物の生成自由エネルギーが負であってその絶対値が「n」以下であるか,あるいは,同エネルギーが「0」または正の値であることを言う(以下,同じ)。   The free energy of formation of oxides at room temperature for most metals is a negative value. The smaller the value (the larger the absolute value), the easier it is to oxidize. In some cases, the free energy of formation of the oxide is expressed as “large”, but the size described here is the numerical value [the numerical value including the sign (negative sign)]. say. Therefore, for example, the generation free energy of “−n (kJ / mol of compounds) or more” (n is a number) means that −n ≦ ΔG (ΔG is an oxide generation free energy), that is, oxide generation. The free energy is negative and the absolute value is “n” or less, or the energy is “0” or a positive value (hereinafter the same).

なお,上記体拡散係数及び酸化物の生成自由エネルギーを有する単金属としては,Au,Agがある。   Note that there are Au and Ag as single metals having the body diffusion coefficient and the free energy of formation of oxides.

また,前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において100℃以上の温度で加熱しながら行うものとしても良い(請求項3)。
In addition, a thin film having a microcrystalline structure formed on the smooth surface of the one material to be bonded has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature and generates oxide at room temperature. It is formed of a single metal or alloy having a free energy of −150 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient at room temperature of 1 × 10 −45 ( m 2 / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −150 (kJ / mol of compounds) or more,
The two bonded materials may be superposed while being heated at a temperature of 100 ° C. or higher in an atmosphere having a pressure exceeding 1 × 10 −4 Pa.

なお,上記体拡散係数及び酸化物の生成自由エネルギーの数値範囲に属する単金属としては,前述のAu,Agの他,Cuがある。   The single metal belonging to the numerical ranges of the body diffusion coefficient and the free energy of formation of the oxide includes Cu as well as the aforementioned Au and Ag.

本発明の更に別の接合方法は,
前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-55(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−330(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-55(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−330(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において200℃以上の温度で加熱しながら行うものとしても良い(請求項4)。
Still another joining method of the present invention includes:
A thin film having a microcrystalline structure formed on the smooth surface of the one material to be bonded has a body diffusion coefficient of 1 × 10 −55 (m 2 / s) or more at room temperature and free energy of formation of oxide at room temperature. Is made of a single metal or alloy of −330 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient of 1 × 10 −55 (m 2 at room temperature). / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −330 (kJ / mol of compounds) or more,
The two bonded materials may be superposed while being heated at a temperature of 200 ° C. or higher in an atmosphere having a pressure exceeding 1 × 10 −4 Pa.

なお,上記体拡散係数及び酸化物の生成自由エネルギーの数値範囲に属する金属としては,前掲のAu,Ag,Cuの他,Pd,Pt,Ni,Znがある。   In addition, as metals belonging to the numerical ranges of the body diffusion coefficient and the free energy of formation of oxide, there are Pd, Pt, Ni and Zn in addition to Au, Ag and Cu described above.

前記一方及び他方の被接合材は,いずれともに前記厚肉の被接合材とすることができる(請求項5)。   Both the one and the other materials to be joined can be the thick material to be joined (Claim 5).

また,前記一方又は他方の被接合材のいずれかを,ウエハ等のように厚さ1.0mm未満の薄肉の被接合材としても良い(請求項6)。   Further, either the one or the other material to be joined may be a thin material to be joined having a thickness of less than 1.0 mm, such as a wafer.

なお,上記PV値(PV,PV)は,実際の製造現場等においては,例えば厚肉の被接合材群の中から無作為抽出した複数のサンプルのPV値(PV,PV)の平均値,あるいは最大値を使用するものとしても良い。 The above PV value (PV 1, PV 2), the actual in the manufacturing site or the like, for example, the thickness PV value of a plurality of samples were randomly extracted from the material to be joined groups meat (PV 1, PV 2) The average value or the maximum value may be used.

上記いずれの構成においても,前記他方の被接合材の平滑面は,真空容器内において前記他方の被接合材の表面に形成された微結晶構造の薄膜により形成することができる(請求項7)。   In any of the above configurations, the smooth surface of the other material to be bonded can be formed by a thin film having a microcrystalline structure formed on the surface of the other material to be bonded in a vacuum vessel. .

なお,前述の厚肉の被接合材を,Al,Cu,Ag,又はAuの単金属,又は,Al,Cu,Ag,又はAuを主成分とする合金により製造された放熱体とすることができる(請求項8)。   In addition, the above-mentioned thick-walled material to be joined may be a radiator made of a single metal of Al, Cu, Ag, or Au, or an alloy mainly composed of Al, Cu, Ag, or Au. (Claim 8).

また,上記いずれの接合方法においても,上記被接合材の重ね合わせは,大気圧以上の圧力の雰囲気下で行うことができる(請求項9)。   In any of the above bonding methods, the materials to be bonded can be superposed in an atmosphere having a pressure equal to or higher than atmospheric pressure.

また,上記被接合材の重ね合わせを行う雰囲気は,空気であっても良く(請求項10),更には,78%を超える不活性ガスを含むものであっても良い(請求項11)。なお,ここでいう「不活性ガス」の用語には,「窒素」を含む。   In addition, the atmosphere for superimposing the materials to be joined may be air (Claim 10), and may further include an inert gas exceeding 78% (Claim 11). The term “inert gas” here includes “nitrogen”.

更に,上記被接合材の重ね合わせは,例えばクリーンルームやグローブボックス等のように塵埃の除去された雰囲気下で行うことが好ましい(請求項12)。   Furthermore, it is preferable that the joining of the materials to be joined is performed in an atmosphere from which dust is removed, such as in a clean room or a glove box.

また,前記微結晶薄膜を形成する前に,前記微結晶薄膜の形成と同一真空中において,前記微結晶薄膜の形成を行う被接合材の平滑面に生じている変質層を除去することが好ましい(請求項13)。   Further, before forming the microcrystalline thin film, it is preferable to remove the altered layer generated on the smooth surface of the material to be joined on which the microcrystalline thin film is formed in the same vacuum as the formation of the microcrystalline thin film. (Claim 13).

更に,前記微結晶薄膜が形成される前記被接合材の平滑面に,前記微結晶薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶薄膜を形成するものとしても良い(請求項14)。   Further, one or more underlayers made of a thin film of a material different from the microcrystalline thin film are formed on the smooth surface of the material to be joined on which the microcrystalline thin film is formed, and the microcrystalline thin film is formed on the underlayer. It may be formed (claim 14).

この場合,前記下地層を,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することができる(請求項15)。   In this case, the underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or selected from the element group. It can be formed of an alloy containing one or more elements (claim 15).

更に,前記下地層を形成する前記単金属又は合金として,当該下地層上に形成される微結晶薄膜を形成する単金属又は合金よりも高融点で,且つ,前記微結晶薄膜を形成する単金属又は合金に対して融点の差が大きいものを使用することができる(請求項16)。   Further, the single metal or alloy forming the base layer has a higher melting point than the single metal or alloy forming the microcrystalline thin film formed on the base layer, and the single metal forming the microcrystalline thin film Alternatively, a material having a large difference in melting point with respect to the alloy can be used (claim 16).

前記被接合材がCu又はCu合金製である場合,前記下地層を形成する前に,前記下地層の形成を行う被接合材の平滑面に生じている変質層を除去することが好ましい(請求項17)。   When the material to be bonded is made of Cu or Cu alloy, it is preferable to remove the deteriorated layer generated on the smooth surface of the material to be bonded for forming the base layer before forming the base layer. Item 17).

なお,前記微結晶構造の薄膜の膜厚は,2nm〜1μmの範囲とすることができる(請求項18)。   The film thickness of the thin film having a microcrystalline structure can be in the range of 2 nm to 1 μm.

更に,本発明の構造体は,前述したいずれかの方法によって接合した接合部を備えることを特徴とする(請求項19)。   Furthermore, the structure of the present invention is characterized by including a joint portion joined by any of the methods described above (claim 19).

以上説明した本発明の構成により,本発明の接合方法によれば,接合界面に介在する接合材の被膜が極めて薄く形成されていると共に,接合界面の全面に亘って,原子レベルで金属結合あるいは分子間結合により接合が行われる結果,必要な接合強度が得られると共に,熱伝導率の向上,電気抵抗の低下等の接合界面における物理的,機械的特性を向上させつつ,1×10-4Paを超える圧力の雰囲気下,例えば大気圧中において比較的容易に接合を行うことができた。 With the structure of the present invention described above, according to the bonding method of the present invention, the coating film of the bonding material interposed at the bonding interface is formed extremely thin, and the metal bonding or bonding at the atomic level is performed over the entire bonding interface. As a result of bonding by intermolecular bonding, the necessary bonding strength is obtained, and the physical and mechanical properties at the bonding interface such as improvement of thermal conductivity and reduction of electric resistance are improved, and 1 × 10 −4. Bonding was relatively easy in an atmosphere exceeding Pa, for example, at atmospheric pressure.

しかも,厚肉の被接合材の平滑面におけるPV値に応じて接合時に加える加圧力を調整することで,加圧力を必要最小限に止めることができ電子デバイス等にダメージを与えない程度の比較的小さなものとすることができると共に,接合界面に発生する残量応力についても可及的に低い状態に抑えることができ,残留応力の影響によって発生する,経時に伴う平滑面の剥離や,亀裂の進展等を生じ難いものとすることができた。   In addition, by adjusting the pressure applied at the time of joining according to the PV value on the smooth surface of the thick material to be joined, the applied pressure can be kept to the minimum necessary, and the comparison does not damage electronic devices. In addition, the residual stress generated at the joint interface can be kept as low as possible, and the smooth surface peeling and cracking with time caused by the residual stress can be suppressed. It was difficult to make any progress.

前記被接合材同士の重ね合わせを,前掲の関係式を満足する加圧力(F)で行うことで,接合界面の全面を確実に接触させることができるものでありながら,必要以上に高い加圧力を付加することが防止できた。   By superimposing the materials to be joined at a pressure (F) that satisfies the above-mentioned relational expression, the entire surface of the bonding interface can be reliably contacted, but the pressure is higher than necessary. Was able to be prevented.

しかも,本発明の接合方法では,被接合材を200℃程度の比較的低い温度で加熱することで,いずれの条件においても接合を行うことができ,加熱により被接合材に対して与えるダメージを最小限に抑えることができた。   In addition, in the bonding method of the present invention, the material to be bonded can be heated at a relatively low temperature of about 200 ° C., so that the bonding can be performed under any conditions, and damage to the material to be bonded is caused by heating. We were able to minimize it.

特に室温における体拡散係数を1×10-45(m2/s)以上とし,且つ,室温における酸化物の生成自由エネルギーを−150(kJ/mol of compounds)以上とした場合には,被接合材を100℃に加熱することにより接合を行うことができ,また,更に室温における体拡散係数を1×10-40(m2/s)以上,室温における酸化物の生成自由エネルギーを−15(kJ/mol of compounds)以上とした場合には,被接合材を加熱することなく,室温において接合した場合でも前述した原子拡散による接合を行うことができ,熱により被接合材に加わるダメージを更に低減することができた。 Especially when the body diffusion coefficient at room temperature is 1 × 10 −45 (m 2 / s) or more and the free energy of formation of oxide at room temperature is −150 (kJ / mol of compounds) or more, Bonding can be performed by heating the material to 100 ° C., the body diffusion coefficient at room temperature is 1 × 10 −40 (m 2 / s) or more, and the free energy of formation of oxide at room temperature is −15 ( kJ / mol of compounds) or higher, the above-described atomic diffusion bonding can be performed even when bonded at room temperature without heating the bonded material, which further damages the bonded material due to heat. It was possible to reduce.

もっとも,被接合材に対して加熱を行うことなく接合できる場合であっても,被接合材に対してダメージを与えない程度,例えば400℃以下,好ましくは300℃以下に被接合材温度を室温以上に加熱することで前述した体拡散係数を上昇させることができ,これにより原子の拡散速度,拡散長を増大させることで接合界面及び結晶粒界における原子の拡散性を向上させてより均一かつ強固な接合を行うことができ,特に原子の拡散長の増大により表面の比較的粗い被接合材であっても接合することが可能となった。   However, even if the bonding can be performed without heating the bonded material, the bonded material temperature is set to room temperature so that the bonded material is not damaged, for example, 400 ° C. or lower, preferably 300 ° C. or lower. By heating above, the above-mentioned body diffusion coefficient can be increased, thereby increasing the diffusion rate and diffusion length of atoms, thereby improving the diffusibility of atoms at the bonding interface and the grain boundary, and more uniformly and It was possible to perform strong bonding, and in particular, due to the increase in the diffusion length of atoms, it was possible to bond even a material with a relatively rough surface.

ここで,体拡散係数Dは,
D=D0exp(−Q/RT)
D0:振動数項(エントロピー項)
Q:活性化エネルギー
R:気体定数
T:絶対温度
によって表すことができ,温度Tを上昇させると,体拡散係数Dは指数関数的に増加する。
Here, the body diffusion coefficient D is
D = D0exp (-Q / RT)
D0: Frequency term (entropy term)
Q: Activation energy R: Gas constant T: It can be expressed by an absolute temperature, and when the temperature T is raised, the body diffusion coefficient D increases exponentially.

なお,前述の厚肉の被接合材が放熱体である場合,これを熱伝導率の高いAl,Cu,C,Ag,又はAuの単金属,又は,Al,Cu,C,Ag,又はAuを主成分とする合金により製造することで,高い放熱性能を発揮させることができた。   In addition, when the above-mentioned thick member to be joined is a radiator, this is a single metal of Al, Cu, C, Ag, or Au having a high thermal conductivity, or Al, Cu, C, Ag, or Au. High heat radiation performance was able to be demonstrated by manufacturing with the alloy which has as a main component.

上記接合方法は,被接合材の重ね合わせを大気圧(1気圧)以上の圧力の雰囲気下で行った場合であっても可能であり,更には,上記被接合材の重ね合わせを行う雰囲気を空気とした場合,即ち,空気中に暴露した状態で重ね合わせを行う場合であっても好適に接合を行うことができた。   The above bonding method is possible even when the materials to be joined are overlapped in an atmosphere having a pressure equal to or higher than the atmospheric pressure (1 atm). Even in the case of using air, that is, in the case of performing the superposition while exposed to the air, it was possible to perform the bonding appropriately.

但し,空気は約78%が窒素,約20%が酸素であるところ,このうちの酸素が前述の微結晶薄膜に化学吸着することによって被接合材同士の接合が阻害されるものと考えられるところ,上記被接合材の重ね合わせを,78%を超える不活性ガス(ここで言う「不活性ガス」の用語には「窒素」も含む)を含む雰囲気中,好ましくは不活性ガス100%の雰囲気中において行うことにより,接合を阻害する要因である酸素の量を雰囲気中より減らし,微結晶薄膜と化学吸着しない窒素ガス,アルゴンガス,その他の不活性ガスの濃度が高められた雰囲気下で接合を行うことにより,より好適に接合を行うこと可能となる。   However, about 78% of nitrogen is nitrogen and about 20% is oxygen, and it is considered that the oxygen is chemically adsorbed on the above-mentioned microcrystalline thin film and the bonding between the materials to be bonded is hindered. , In an atmosphere containing more than 78% inert gas (the term “inert gas” includes “nitrogen”), preferably an atmosphere containing 100% inert gas. This is done in an atmosphere where the amount of oxygen, which is a factor that hinders bonding, is reduced from that in the atmosphere, and the concentration of nitrogen gas, argon gas, and other inert gases that are not chemically adsorbed to the microcrystalline thin film is increased. It becomes possible to perform joining more suitably by performing.

特に,このような不活性ガスの濃度を高めた雰囲気下で重ね合わせを行う場合には,微結晶構造を構成する金属として,酸化物の生成自由エネルギーの数値が比較的小さな金属(従って,酸素と反応し易い金属)を使用した場合であっても強固な接合が可能となる。   In particular, when superposition is performed in an atmosphere in which the concentration of the inert gas is increased, a metal having a relatively small value for the free energy of formation of an oxide as the metal constituting the microcrystalline structure (therefore, oxygen Even when a metal that easily reacts with (a) is used, strong bonding is possible.

更に,上記被接合材の重ね合わせを,「クリーンルーム」や,「グローブボックス」等の塵埃の除去された雰囲気下で行うことにより,平滑面に塵埃等の不純物が介在することによる接合不良を防止することができた。一例として,この空間のクリーン度としては,ISOクラス5(1988年米国連邦規格におけるクラス100に相当。1立法フィートの空間中における0.5μm以上の粒子数が100個未満。)以上であることが好ましく,より好適には,雰囲気中の湿度も調整(一例として50%以下)することが好ましい。   Furthermore, by superimposing the materials to be joined in an atmosphere from which dust is removed, such as in a “clean room” or “glove box”, it is possible to prevent poor bonding due to the presence of impurities such as dust on the smooth surface. We were able to. As an example, the cleanliness of this space should be ISO Class 5 (equivalent to Class 100 in the 1988 US Federal Standard. Number of particles of 0.5 μm or more in a cubic foot space is less than 100). More preferably, it is preferable to adjust the humidity in the atmosphere (for example, 50% or less).

上記微結晶薄膜を形成する前に,微結晶薄膜の形成と同一真空中において上記一方又は双方の被接合材の平滑面表面に形成されている変質層を逆スパッタリング等のドライプロセスにより除去することで,被接合材に対する微結晶薄膜の付着強度を向上させることができ,被接合材表面と微結晶薄膜間で剥離が生じることによる被接合材同士の付着強度の低下についても好適に防止することができた。   Before forming the microcrystalline thin film, the altered layer formed on the smooth surface of one or both of the bonded materials in the same vacuum as the formation of the microcrystalline thin film is removed by a dry process such as reverse sputtering. Thus, the adhesion strength of the microcrystalline thin film to the material to be joined can be improved, and the decrease in the adhesion strength between the materials to be joined due to delamination between the surface of the material to be joined and the microcrystalline thin film can be suitably prevented. I was able to.

また,前記微結晶薄膜が形成される前記被接合材の平滑面に,前記微結晶薄膜とは異なる材料の薄膜,例えば周期律表における4A〜6A属の元素であるTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属の薄膜,又は前記元素群より選択された1つ以上の元素を含む合金の薄膜によって下地層を形成することにより,被接合材に対する微結晶薄膜の付着強度を上昇させることができ,これにより被接合材と微結晶薄膜間で剥離が生じることを防止することができた。   Further, a thin film of a material different from the microcrystalline thin film, for example, Ti, V, Cr, Zr which is an element belonging to Group 4A to 6A in the periodic table is formed on the smooth surface of the material to be joined on which the microcrystalline thin film is formed. The underlayer is formed from a thin film of any one single metal selected from the group of elements Nb, Mo, Hf, Ta, and W, or a thin film of an alloy containing one or more elements selected from the group of elements. As a result, it was possible to increase the adhesion strength of the microcrystalline thin film to the material to be joined, and to prevent separation between the material to be joined and the microcrystalline thin film.

特に,このような下地層の形成材料として,微結晶薄膜の形成材料に対して高融点であり,且つ,その融点の差が大きいものを使用することで,下地層上に形成される微結晶薄膜の2次元性(薄膜成長時の原子の濡れ性)が良くなり,微結晶薄膜が島状に成長することを防止でき,0.2nmといった1原子層分の厚みに相当する極めて薄い微結晶薄膜の形成が容易となる。   In particular, as a material for forming such an underlayer, a microcrystal formed on the underlayer by using a material having a high melting point and a large difference in melting point relative to the material for forming a microcrystalline thin film. The two-dimensionality of the thin film (atomic wettability during thin film growth) is improved, and it is possible to prevent the microcrystalline thin film from growing in the shape of islands. Formation of a thin film becomes easy.

前記被接合材がCu又はCu合金製である場合,前述の下地層は被接合材の表面より剥離し易いものとなるが,前記下地層を形成する前に,前記下地層の形成を行う被接合材の平滑面に生じている変質層を除去することで,Cu製の被接合材と下地層間における剥離の発生を防止することができた。   When the material to be bonded is made of Cu or Cu alloy, the above-described underlayer is easily peeled off from the surface of the material to be bonded. However, before forming the underlayer, the underlayer to be formed is formed. By removing the altered layer generated on the smooth surface of the bonding material, it was possible to prevent the occurrence of peeling between the Cu-bonded material and the underlying layer.

なお,本発明の原子拡散接合方法では,形成する微結晶薄膜の膜厚がそれぞれ2nm〜1μmの範囲で好適に原子拡散接合が可能であり,平滑面によって熱伝導を行う電子の移動等が妨げられない接合方法を提供することができた。   In the atomic diffusion bonding method of the present invention, the atomic diffusion bonding can be suitably performed when the thickness of the microcrystalline thin film to be formed is in the range of 2 nm to 1 μm, respectively, and the movement of electrons that conduct heat conduction by a smooth surface is hindered. It was possible to provide a bonding method that was not possible.

本発明の方法による接合工程の一例を示した概略説明図。Schematic explanatory drawing which showed an example of the joining process by the method of this invention. 各種材質の基板(厚肉の被接合材)に対する加圧力と変位量の相関図。The correlation diagram of the applied pressure and displacement amount with respect to the board | substrate (thick to-be-joined material) of various materials. 明細書中に登場する用語の説明図であり,(A)は加圧力(F),変位量(X),元の高さ(H)の,(B)はPV値の説明図。It is explanatory drawing of the term which appears in a specification, (A) is applied pressure (F), displacement amount (X), original height (H), (B) is explanatory drawing of PV value. Al基板同士の接合試験例の説明図であり,(A)は加圧条件の確認試験,(B),(C)は加熱条件の確認試験の説明図。It is explanatory drawing of the example of a joining test between Al substrates, (A) is a pressurization condition confirmation test, (B), (C) is an explanatory view of a heating condition confirmation test. Cu基板同士の接合試験例の説明図であり,(A)は加圧条件の確認試験,(B)は加熱条件の確認試験の説明図。It is explanatory drawing of the example of a joining test of Cu board | substrates, (A) is a confirmation test of pressurization conditions, (B) is explanatory drawing of the confirmation test of heating conditions. PV値の説明図。Explanatory drawing of PV value. Al基板と石英ウエハの接合試験の説明図。Explanatory drawing of the joining test of an Al substrate and a quartz wafer. Al基板と石英ウエハの接合における加圧力の変化に対する剥離位置の変化の状態を示したグラフ。The graph which showed the state of the change of the peeling position with respect to the change of the applied pressure in joining of an Al substrate and a quartz wafer.

接合方法概略
本発明の接合方法は,真空容器内においてスパッタリングやイオンプレーティング等の真空成膜により真空中で成膜した所定の体拡散係数及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造の薄膜同士を重ね合わせることにより,又は,前記微結晶構造の薄膜と,少なくとも表面が前記所定の体拡散係数及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造を有する平滑面に重ね合わせると共に加圧することにより,この重ね合わせと加圧を1×10-4Paを超える圧力の雰囲気下,例えば大気圧以上の圧力の雰囲気下で行った場合であっても,接合界面及び結晶粒界において原子拡散が生じて両者間で強固な接合が行われることを見出し,これを厚肉の被加工物の接合に適応したものであり,下記の条件等において接合を行うものである。
Outline of Bonding Method The bonding method of the present invention is a single metal or alloy having a predetermined body diffusion coefficient and free energy of formation of an oxide formed in vacuum by vacuum film formation such as sputtering or ion plating in a vacuum vessel. By superimposing thin film of microcrystalline structure made of or consisting of a thin film of microcrystalline structure and a single metal or alloy of which at least the surface has the predetermined body diffusion coefficient and oxide free energy of formation. This is a case where the superposition and pressurization are performed in an atmosphere having a pressure exceeding 1 × 10 −4 Pa, for example, an atmosphere having a pressure higher than atmospheric pressure, by superimposing and pressing on a smooth surface having a crystal structure. However, it has been found that atomic diffusion occurs at the bonding interface and the grain boundary, and that strong bonding is performed between the two. It is those adapted for engagement, and performs joining in conditions below.

被接合材
本発明は,少なくとも一方が1.0mm以上の肉厚を有する材料塊(バルク材)によって構成された厚肉の被接合材を接合対象とし,接合対象とする被接合材の双方が共に1.0mm以上の肉厚を有する厚肉の被接合材であっても良く,あるいは,接合対象とする被接合材一方を厚肉の被接合材とし,他方を,ウエハのような厚さが1mm未満の薄肉の被接合材を対象として接合を行うものとしても良い。
The present invention relates to a material to be joined, which is a thick material to be joined (bulk material) at least one of which has a thickness of 1.0 mm or more. Both of them may be thick materials to be joined having a thickness of 1.0 mm or more, or one of the materials to be joined is a thick material to be joined and the other is as thick as a wafer. It is good also as what joins for the thin to-be-joined material of less than 1 mm.

これらの被接合材の材質は特に限定されず,スパッタリングやイオンプレーティング等,一例として到達真空度が1×10-3〜1×10-8Pa,好ましくは1×10-4〜1×10-8Paの高真空度である真空容器を用いた高真空度雰囲気における真空成膜により微結晶構造の薄膜を形成可能な材質であれば如何なるものをも対象とすることができる。 The material of these materials to be joined is not particularly limited. For example, the ultimate vacuum is 1 × 10 −3 to 1 × 10 −8 Pa, preferably 1 × 10 −4 to 1 × 10, such as sputtering or ion plating. Any material can be used as long as it can form a thin film having a microcrystalline structure by vacuum film formation in a high vacuum atmosphere using a vacuum vessel having a high vacuum of -8 Pa.

一例として,被接合材の一方である厚肉の被接合材が放熱体としてのヒートスプレッダである場合,その材質はAu,Ag,Cu,Al等の熱伝導性の良好な材質により構成されることとなり,被接合材の他方は,冷却対象である電子デバイス,例えばIGBTモジュール,RFパッケージ,LEDチップ等のパッケージに収容されているコアやチップ等の薄肉の被接合材となり,これらのコアやチップに使用される既知の材質,例えばサファイア基板や,SiC,Si,SiO2,GaN等の半導体基板,ガラス,セラミックス等が他方の被接合材の材質となる。 As an example, when the thick material to be joined, which is one of the materials to be joined, is a heat spreader as a radiator, the material is made of a material having good thermal conductivity such as Au, Ag, Cu, Al, etc. The other material to be joined is a thin material to be joined such as a core or a chip accommodated in a package such as an electronic device to be cooled, for example, an IGBT module, an RF package, or an LED chip. For example, a known material used for the above-mentioned materials, for example, a sapphire substrate, a semiconductor substrate such as SiC, Si, SiO 2 , or GaN, glass, ceramics, or the like is the material of the other material to be joined.

また,放熱フィン等を備えたヒートシンクを被接合材の一方とし,これを,電子デバイス上に接合されたヒートスプレッダ上に接合する場合,双方共に厚肉の被接合材を接合することとなる。   Further, when one of the materials to be joined is a heat sink provided with a radiation fin or the like, and this is joined on a heat spreader joined on an electronic device, both of them are joined with a thick material to be joined.

なお,接合は,例えば金属同士の接合のように同一材質間の接合のみならず,金属とセラミックス等のように,異種材質間での接合を行うことも可能である。   For example, the bonding can be performed not only between the same materials as in the case of bonding between metals but also between different materials such as metal and ceramics.

被接合材の平滑面の状態
前述した被接合材のうち,少なくとも厚肉の被接合材の接合面である平滑面は,所定の精度で鏡面に研磨されており,本発明では,厚肉の被接合材の平滑面を,PV値が0.1〜2.0μmとなるように鏡面に研磨している。
State of the smooth surface of the material to be joined Among the materials to be joined, at least the smooth surface that is the joining surface of the thick material to be joined is polished to a mirror surface with a predetermined accuracy. The smooth surface of the material to be joined is polished into a mirror surface so that the PV value is 0.1 to 2.0 μm.

ここで,PV値とは,図6に示すように,被接合材の平坦面中における所定の測定範囲内を測定して得た断面線における最高点(Peak)と最低点(Valley)の高低差を示したものである。   Here, as shown in FIG. 6, the PV value is the level of the highest point (Peak) and the lowest point (Valley) in the cross-sectional line obtained by measuring within a predetermined measurement range in the flat surface of the material to be joined. It shows the difference.

ここで,PV値は,小さければ小さい程,良好な接合を行うことが可能であるが,一般的な鏡面研磨ではPV値は0.1μm程度が下限で,これを下回る迄高精度に研磨する場合,被接合材の研磨に多大な費用と時間が費やされることとなりコスト高となる。   Here, the smaller the PV value, the better the bonding can be. However, in general mirror polishing, the PV value is about 0.1 μm at the lower limit, and polishing is performed with high precision until the PV value is below this value. In this case, a great amount of time and time are spent on polishing the material to be joined, which increases the cost.

一方,PV値が2.0μmを超える場合でも,接合時の加圧力を高めることで接合自体は可能であるが,大きな加圧力をかけて接合を行う場合,加圧によって接合対象とする構造材,特に接合対象の一方が電子デバイスである場合にはこの電子デバイスである構造材にダメージを与えるおそれがあると共に,接合界面に大きな残留応力が残り剥離し易くなるため,PV値は0.1〜2.0μmの範囲とすることが好ましい。   On the other hand, even when the PV value exceeds 2.0 μm, it is possible to join itself by increasing the pressure applied at the time of joining, but when joining with a large pressure, the structural material to be joined by pressurization In particular, when one of the objects to be bonded is an electronic device, there is a risk of damaging the structural material that is the electronic device, and a large residual stress remains at the bonding interface, and the PV value is 0.1. It is preferable to be in the range of ~ 2.0 μm.

なお,ヒートスプレッダに対しヒートシンクを接合する場合のように,接合対象とする被接合材のいずれもが1.0mm以上の厚さを有する厚肉の被接合材である場合,被接合材の平滑面は,いずれ共にPV値を0.1〜2.0μmの範囲に調整することが好ましい。   In addition, in the case where any of the materials to be joined is a thick material having a thickness of 1.0 mm or more, as in the case of joining a heat sink to the heat spreader, the smooth surface of the material to be joined In any case, it is preferable to adjust the PV value in the range of 0.1 to 2.0 μm.

被接合材の平滑面は,微結晶構造の薄膜を形成する前に,あるいは,微結晶薄膜と被接合材の平滑面との間に下地層を設ける場合には,下地層の形成前に表面のガス吸着層や自然酸化層等の変質層が除去されていることが好ましく,例えば薬液による洗浄等による既知のウェットプロセスによって前述の変質層を除去し,また,前記変質層の除去後,再度のガス吸着等を防止するために水素終端化等が行われた被接合材を好適に使用することができる。   The smooth surface of the material to be joined must be the surface before the formation of the microcrystalline structure thin film, or when the ground layer is provided between the microcrystalline thin film and the smooth surface of the material to be joined. It is preferable that the altered layer such as the gas adsorbed layer and the natural oxide layer is removed. For example, the aforementioned altered layer is removed by a known wet process such as cleaning with a chemical solution. In order to prevent gas adsorption or the like, a material to be joined that has been subjected to hydrogen termination or the like can be suitably used.

また,変質層の除去は前述のウェットプロセスに限定されず,ドライプロセスによって行うこともでき,真空容器中における希ガスイオンのボンバード等によりガス吸着層や自然酸化層などの変質層を逆スパッタリング等によって除去することもできる。   In addition, the removal of the altered layer is not limited to the wet process described above, but can also be performed by a dry process. The altered layer such as a gas adsorption layer or a natural oxide layer is reverse-sputtered by bombardment of rare gas ions in a vacuum vessel. Can also be removed.

特に,前述のようなドライプロセスによって変質層を除去する場合,変質層を除去した後,後述の微結晶構造を有する薄膜,あるいは下地層を形成する迄の間に,被接合材表面にガス吸着や酸化が生じることを防止できるために,このような変質層の除去を,後述する微結晶構造の薄膜を形成すると同一の真空中において行うと共に,変質層の除去に続けて微結晶構造の薄膜,あるいは下地層を形成することが好ましく,より好ましくは,変質層の除去を超高純度の不活性ガスを使用して行い,変質層の除去後に酸化層等が再形成されることを防止する。   In particular, when the altered layer is removed by the dry process as described above, the gas adsorbed on the surface of the material to be joined between the removal of the altered layer and the formation of a thin film having a microcrystalline structure or an underlayer described later. In order to prevent the occurrence of oxidation, the removal of such a deteriorated layer is performed in the same vacuum when a thin film having a microcrystalline structure described later is formed, and the thin film having a microcrystalline structure is removed following the removal of the deteriorated layer. Alternatively, it is preferable to form an underlayer, and more preferably, the deteriorated layer is removed using an ultra-high purity inert gas to prevent the oxide layer from being re-formed after the altered layer is removed. .

なお,接合は,単結晶,多結晶,アモルファス,ガラス状態等,その構造は特に限定されず各種構造のものを接合対象とすることが可能であるが,2つの被接合材の一方に対してのみ後述する微結晶構造の薄膜を形成し,他方の被接合材に対して微結晶構造の薄膜の形成を行うことなく両者の接合を行う場合には,この薄膜の形成を行わない他方の被接合材の平滑面は,接合界面や結晶粒界における原子拡散を得ることができるよう,少なくともその表面が後述する微結晶構造の薄膜と同様に,所定の体拡散係数,所定の酸化物の生成自由エネルギーの範囲内の金属によって構成された微結晶構造(アモルファスを含む)を有する必要がある。   It should be noted that the bonding is not particularly limited, such as single crystal, polycrystal, amorphous, glass state, etc., and various structures can be targeted for bonding. In the case where a thin film having a microcrystalline structure, which will be described later, is formed and bonding is performed without forming a thin film having a microcrystalline structure on the other material to be bonded, the other target without forming the thin film is formed. The smooth surface of the bonding material is formed with a predetermined body diffusion coefficient and a predetermined oxide so that atomic diffusion at the bonding interface and crystal grain boundary can be obtained, at least on the surface as in the case of a thin film having a microcrystalline structure described later. It is necessary to have a microcrystalline structure (including amorphous) constituted by a metal within the range of free energy.

微結晶構造の薄膜
材質
前述した微結晶構造の薄膜の形成材質としては,被接合材と同種材質の薄膜を形成しても良く,また,目的に応じて被接合材とは異種材質の微結晶構造の薄膜を形成しても良く,さらに,被接合材の一方に形成する微結晶構造の薄膜の材質と,被接合材の他方に形成する微結晶構造の薄膜の材質とを,それぞれ異なる材質としても良い。
Thin film material with microcrystalline structure As a material for forming the thin film with the above-mentioned microcrystalline structure, a thin film of the same kind as the material to be joined may be formed. A thin film having a structure may be formed, and the material of the thin film having a microcrystalline structure formed on one of the materials to be bonded is different from the material of the thin film having a microcrystalline structure formed on the other of the materials to be bonded. It is also good.

形成する微結晶構造の薄膜の材料は,接合の際の加熱条件に応じて,以下の3種類に分類することができる。   The material of the thin film having a microcrystalline structure to be formed can be classified into the following three types according to the heating conditions at the time of bonding.

第1の材料は,非加熱での接合が可能な材料であり,この材料は,室温における体拡散係数が1×10-40(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−15以上の単金属,又は合金である。なお,このような数値範囲に属する単金属としては,Au,Agがある。 The first material is a material that can be bonded without heating, and this material has a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and the formation of oxide at room temperature. A single metal or alloy having a free energy (kJ / mol of compounds) of -15 or more. Note that single metals belonging to such a numerical range include Au and Ag.

第2の材料は,前記第1の材料に加え,更に接合の際に被接合材を100℃以上に加熱することで接合が可能となる材料(例えばCu)を含む群であり,この材料は,室温における体拡散係数が1×10-45(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−150以上の単金属,又は合金である。なお,このような数値範囲に属する単金属としては,前述のAu,Agの他,Cuがある。 The second material is a group including, in addition to the first material, a material (for example, Cu) that can be bonded by heating a material to be bonded to 100 ° C. or higher at the time of bonding. A single metal or an alloy having a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature and an oxide free energy of formation (kJ / mol of compounds) at room temperature of −150 or more. is there. In addition, as a single metal which belongs to such a numerical range, there are Cu in addition to the above-mentioned Au and Ag.

第3の材料は,前記第1,2の材料に加え,更に接合の際に被接合材を200℃以上に加熱することで接合が可能となる材料を含む群であり,この材料は,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−330以上の単金属,又は合金である。このような数値範囲に属する単金属としては,前述のAu,Ag,Cuの他,Pd,Pt,Ni,Znがある。 In addition to the first and second materials, the third material is a group including a material that can be bonded by heating the material to be bonded to 200 ° C. or higher at the time of bonding. Is a single metal or alloy having a body diffusion coefficient of 1 × 10 −55 (m 2 / s) or more and an oxide free energy (kJ / mol of compounds) of −330 or more at room temperature. As single metals belonging to such a numerical range, there are Pd, Pt, Ni and Zn in addition to the aforementioned Au, Ag and Cu.

なお,合金については,合金成分,配合比等によって体拡散係数や酸化物の生成自由エネルギーが変化することから,種々の組合せが存在し得るが,前記それぞれの数値範囲内に含まれる単金属の群内で組合せて成る合金は上記の各数値範囲に含まれ,また,上記の各群に属する各金属の化学的な特性を失わない程度に,他の合金成分を添加して得た合金は,主成分の単金属と同様に使用することが可能である。   As for alloys, the body diffusion coefficient and the free energy of formation of oxides vary depending on the alloy composition, mixing ratio, etc., so various combinations may exist, but the single metal contained within each of the above numerical ranges. Alloys combined within the group are included in the above numerical ranges, and alloys obtained by adding other alloy components to such an extent that the chemical characteristics of each metal belonging to each group are not lost are , Can be used in the same manner as the main metal single metal.

以上のように体拡散係数の数値範囲と,酸化物の自由エネルギー毎に温度条件を規定しているのは,本発明の原子拡散接合を行うためには,前述の体拡散係数は大きい程原子の拡散性が向上し,一方,酸化物の生成自由エネルギーの数値が大きくなる程,酸素との反応が起こり難く,酸化膜等の接合を阻害する物質を形成し難くなるためである。   As described above, the temperature range is defined for the numerical range of the body diffusion coefficient and for each free energy of the oxide. In order to perform the atomic diffusion bonding of the present invention, the larger the body diffusion coefficient, the more the atoms. On the other hand, as the value of the free energy of formation of the oxide increases, the reaction with oxygen hardly occurs and it becomes difficult to form a substance that inhibits bonding such as an oxide film.

従って,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−330(kJ/mol of compounds)以上の単金属,又は合金によって微結晶構造の薄膜を形成した場合には,この数値範囲に属する全ての金属薄膜で接合を可能とするためには,被接合材を200℃以上で加熱する必要があるが,これに対し,体拡散係数が高く,酸化物の生成自由エネルギーが大きい金属に限定する場合には,接合のための被接合材の加熱温度を低くすることができ,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上では被接合材を100℃以上に,更に,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上では被接合材を加熱することなく,室温で接合した場合においても,原子拡散を伴う接合を行うことができる。 Therefore, the body diffusion coefficient at room temperature is 1 × 10 −55 (m 2 / s) or more, and the free energy of formation of oxides at room temperature (kJ / mol of compounds) is −330 (kJ / mol of compounds) or more. When a thin film having a microcrystalline structure is formed of a single metal or alloy, it is necessary to heat the material to be joined at 200 ° C. or higher in order to enable bonding with all the metal thin films belonging to this numerical range. On the other hand, if the metal diffusion coefficient is limited to a metal with a high free energy for formation of oxides, the heating temperature of the material to be bonded can be lowered and the body diffusion at room temperature can be reduced. When the coefficient is 1 × 10 −45 (m 2 / s) or more and the free energy of formation of oxide at room temperature is −150 (kJ / mol of compounds) or more, the material to be joined is 100 ° C. or more, and further room temperature. The body diffusion coefficient at 1 × 10 -40 (m 2 / s) or more, and When the free energy of formation of oxide at room temperature is -15 (kJ / mol of compounds) or more, bonding with atomic diffusion can be performed even when bonding at room temperature without heating the material to be bonded.

そして,これらの金属によって微結晶構造の薄膜を形成した被接合材を,前述の各温度条件で接合した場合には,いずれも少なくとも部分的に接合界面の消失が生ずると共に,接合界面の消失部分において接合された微結晶薄膜間において再結晶が生じて2つの被接合材間の間隔の略全域に亘る粒径を備えた結晶粒が生成される等,金属結合による2つの微結晶薄膜の一体化を得ることができる。   When the materials to be joined, in which a thin film having a microcrystalline structure is formed of these metals, are joined at each of the above-mentioned temperature conditions, the disappearance of the joining interface occurs at least partially. Recrystallization occurs between the microcrystalline thin films joined in step 1 to produce crystal grains having a grain size covering almost the entire distance between the two materials to be joined. Can be obtained.

膜厚等
形成する膜厚は特に限定されないが,それぞれの微結晶薄膜を,構成元素1層分の厚みで形成した場合であっても接合を行うことが可能であり,一例としてAuの微結晶薄膜を形成する場合,膜厚2nm(2層で4nm)とした場合であっても接合可能であり,接合される被接合材間に介在する微結晶薄膜の厚さを,電子やスピン電流の平均自由工程以下の厚みで形成することが可能である。
Although the film thickness to be formed is not particularly limited, bonding can be performed even when each microcrystalline thin film is formed with a thickness of one constituent element. For example, Au microcrystal When a thin film is formed, bonding is possible even when the film thickness is 2 nm (4 nm for two layers). The thickness of the microcrystalline thin film interposed between the materials to be bonded is determined by the electron or spin current. It is possible to form with a thickness less than the mean free process.

その結果,被接合材間に介在する微結晶薄膜の層が電子の移動等に対して障壁となることがなく,極めて良好な熱伝導性,電気伝導性を発揮する。   As a result, the layer of the microcrystalline thin film interposed between the materials to be joined does not become a barrier against the movement of electrons and the like, and exhibits extremely good thermal conductivity and electrical conductivity.

一方,膜厚が厚くなるに従って得られた微結晶薄膜の表面粗さが増大して接合が困難となるだけでなく,接合界面を通過する熱や電子等に対する抵抗となると共に,厚みのある微結晶薄膜の形成には長時間を要し,生産性が低下することから,その上限は1μm程度であり,2nm〜1μm程度が本発明における原子拡散接合方法における各微結晶薄膜の好ましい膜厚の範囲である。   On the other hand, as the film thickness increases, the surface roughness of the obtained microcrystalline thin film increases, making bonding difficult, and resistance to heat and electrons that pass through the bonding interface. Since the formation of the crystal thin film takes a long time and the productivity is lowered, the upper limit is about 1 μm, and about 2 nm to 1 μm is the preferred film thickness of each microcrystalline thin film in the atomic diffusion bonding method of the present invention. It is a range.

粒径及び密度
形成する微結晶薄膜は,同微結晶金属の固体内に比べて原子の拡散速度が大きく,特に,拡散速度が極めて大きくなる粒界の占める割合が大きい微結晶構造であることが好ましく,結晶粒の薄膜面内方向の平均粒径は50nm以下であれば良く,より好ましくは20nm以下である。
Grain size and density The microcrystalline thin film to be formed has a higher atomic diffusion rate than that of the solid of the same microcrystalline metal, and in particular, it has a microcrystalline structure with a large proportion of grain boundaries where the diffusion rate is extremely high. Preferably, the average grain size in the in-plane direction of the crystal grains may be 50 nm or less, and more preferably 20 nm or less.

また,微結晶薄膜は,微結晶薄膜が占める空間の体積100%に対し,空隙等の形成部分を除く,微結晶薄膜を構成する金属が占める体積の割合が80%以上,好ましくは80〜98%となるよう形成することが好ましい。   Further, in the microcrystalline thin film, the proportion of the volume occupied by the metal constituting the microcrystalline thin film, excluding the formation of voids, is 80% or more, preferably 80 to 98, with respect to the volume of space occupied by the microcrystalline thin film is 100%. It is preferable to form so that it may become%.

微結晶薄膜の形成面
さらに,上記微結晶構造の薄膜の形成は,接合対象とする2つの被接合材のそれぞれに形成しても良いが,一方の被接合材に対してのみ前記微結晶構造の薄膜を形成し,他方の被接合材に対しては微結晶構造の薄膜を形成することなく,接合を得ることが可能である。
Forming surface of the microcrystalline thin film Further, the thin film having the microcrystalline structure may be formed on each of the two materials to be joined. However, the microcrystalline structure is formed only on one of the materials to be joined. It is possible to obtain a bond without forming a thin film having a microcrystalline structure on the other material to be bonded.

この場合,微結晶構造の薄膜の形成を行わない上記他方の被接合材の平滑面は,前述したように平滑面の少なくとも表面付近が所定の体拡散係数,酸化物の生成自由エネルギーの数値範囲内にある単金属,あるいは合金から成る微結晶構造となっている必要がある。但し,微結晶構造の薄膜の形成を行わない被接合材の平滑面と微結晶構造の薄膜の材質が共通である必要はない。   In this case, the smooth surface of the other material to be bonded without forming a thin film having a microcrystalline structure is, as described above, at least near the surface of the smooth surface has a predetermined body diffusion coefficient and a numerical range of oxide free energy of formation. It is necessary to have a microcrystalline structure made of a single metal or alloy. However, the smooth surface of the material to be joined on which the thin film having the microcrystalline structure is not formed and the material of the thin film having the microcrystalline structure are not necessarily common.

なお,微結晶構造の薄膜を形成する被接合材の平滑面には,微結晶構造の薄膜の形成前に,微結晶構造の薄膜とは異なる材質の薄膜より成る1層以上の下地層を形成することができ,特に,形成する微結晶構造の薄膜が,被接合材に対する付着強度が比較的弱い場合には,付着強度を向上する上で下地層の形成は有効である。   In addition, on the smooth surface of the material to be joined forming the thin film of the microcrystalline structure, one or more underlayers made of a thin film of a material different from the thin film of the microcrystalline structure are formed before forming the thin film of the microcrystalline structure. In particular, when the thin film having a microcrystalline structure to be formed has a relatively low adhesion strength to the material to be bonded, the formation of the underlayer is effective in improving the adhesion strength.

このような下地層は,微結晶薄膜の後述する成膜方法と同様の真空成膜技術によって形成することができ,その材質としては,周期律表の4A〜6A属の元素であるTi,Zr,Hf,V,Nb,Ta,Cr,Mo,Wによって形成することができ,その厚さは,一例として0.2〜20nm,後述の実施例では5nmである。   Such an underlayer can be formed by a vacuum film formation technique similar to the film formation method to be described later of the microcrystalline thin film, and the material thereof is Ti, Zr which is an element belonging to Group 4A-6A of the periodic table. , Hf, V, Nb, Ta, Cr, Mo, W, the thickness of which is 0.2 to 20 nm as an example, and 5 nm in the examples described later.

この下地層の材質としては,その上に形成する微結晶薄膜の形成材料に対して融点の差が大きいものを使用することが好ましく,かつ,微結晶構造の薄膜の形成材料に対して高融点のものを使用することが好ましい。このような融点差が大きく,微結晶構造の薄膜に対して高融点となる材質の組み合わせの一例として,例えばTaの下地層上にAgの微結晶薄膜を形成する場合,形成された微結晶薄膜が被接合材より剥離することを好適に防止できるだけでなく,下地層上に形成される微結晶構造の薄膜の2次元性(微結晶薄膜形成時の原子の濡れ性)が良くなり成膜時に微結晶構造の薄膜であるAgが島状に成長することを防止でき,2nmといった極めて薄い微結晶薄膜の形成が容易となる。   As the material of the underlayer, it is preferable to use a material having a large difference in melting point with respect to the material for forming the microcrystalline thin film formed thereon, and a high melting point for the material for forming the thin film having a microcrystalline structure. Are preferably used. As an example of a combination of materials having a large melting point difference and a high melting point with respect to a thin film having a microcrystalline structure, for example, when forming an Ag microcrystalline thin film on a Ta underlayer, the formed microcrystalline thin film Can be suitably prevented from being peeled off from the material to be bonded, and the two-dimensionality of the microcrystalline thin film formed on the underlayer (atomic wettability when forming the microcrystalline thin film) has been improved. Ag, which is a thin film having a microcrystalline structure, can be prevented from growing in an island shape, and an extremely thin microcrystalline thin film of 2 nm can be easily formed.

なお,被接合材がCu又はCu合金製である場合,平滑面に生じた自然酸化物の存在によって下地層の付着強度が弱くなり,この部分で層間剥離が生じることで接合強度の向上が頭打ちとなることから,下地層を形成する前に,平滑面に生じている変質層を除去することが好ましい。なお,このような変質層の除去は,Cu又はCu合金製の被接合材に限らず,他の材質の被接合材に対し下地層を形成する場合に行うものとしても良い。   When the material to be joined is made of Cu or a Cu alloy, the adhesion strength of the underlayer is weakened due to the presence of the natural oxide formed on the smooth surface, and delamination occurs at this portion, so that the improvement of the joining strength has peaked. Therefore, it is preferable to remove the altered layer generated on the smooth surface before forming the underlayer. Such removal of the deteriorated layer is not limited to the material to be bonded made of Cu or Cu alloy, but may be performed when the base layer is formed on the material to be bonded.

また,Cu又はCu合金製の被接合材の平滑面上に形成されたTa下地層は,加熱を行うと極度に着強度が低下することから,Cu又はCu合金製の被接合材を接合対象とし,且つ,接合時に加熱を必要とするCu,Pd,Pt,Ni,Zn等の比較的拡散係数の低い材質で微結晶薄膜を形成する場合には,Ta下地層の使用を避けることが好ましい。   Further, since the Ta underlayer formed on the smooth surface of the Cu or Cu alloy to-be-joined material is extremely reduced in strength when heated, the Cu or Cu alloy to-be-joined material is to be joined. In the case where the microcrystalline thin film is formed of a material having a relatively low diffusion coefficient such as Cu, Pd, Pt, Ni, and Zn that requires heating at the time of bonding, it is preferable to avoid the use of a Ta underlayer. .

成膜方法
成膜技術
本発明の接合方法において,被接合材の平滑面に形成する微結晶薄膜の形成方法としては,スパッタリングやイオンプレーティング等のPVDの他,CVD,各種蒸着等,到達真空度が1×10-4〜1×10-8Paの高真空度である真空容器において真空雰囲気における真空成膜を行う各種の成膜法を挙げることができ,拡散速度が比較的遅い材質及びその合金や化合物等については,好ましくは形成された薄膜の内部応力を高めることのできるプラズマの発生下で成膜を行う真空成膜方法,例えばスパッタリングによる成膜が好ましい。
Film Forming Method Film Forming Technology In the bonding method of the present invention, as a method for forming a microcrystalline thin film formed on a smooth surface of a material to be bonded, in addition to PVD such as sputtering and ion plating, CVD, various vapor deposition, etc., ultimate vacuum Various film forming methods for performing vacuum film formation in a vacuum atmosphere in a vacuum vessel having a high degree of vacuum of 1 × 10 −4 to 1 × 10 −8 Pa can be cited. For the alloy, compound, etc., a vacuum film forming method in which film formation is preferably performed under generation of plasma capable of increasing the internal stress of the formed thin film, for example, film formation by sputtering is preferable.

真空度
薄膜形成の際の真空容器内の圧力は,到達真空度が1×10-3〜1×10-8Paの真空雰囲気であれば良く,より低い圧力(高真空度)である程好ましい。
Degree of vacuum The pressure in the vacuum vessel during the formation of the thin film may be a vacuum atmosphere with an ultimate degree of vacuum of 1 × 10 −3 to 1 × 10 −8 Pa, and a lower pressure (high degree of vacuum) is preferable. .

不活性ガス(Arガス)圧
成膜方法がスパッタリングである場合,成膜時における不活性ガス(一般的にはArガス)の圧力は,放電可能な領域,例えば0.01Pa以上であることが好ましく,また30Pa(300μbar)を超えると接合を行うことができない場合が生じるため,上限は30Pa(300μbar)程度とすることが好ましい。これは,Arガス圧が上昇すると,形成された薄膜の表面粗さが増加すると共に,膜密度が著しく低下し,膜中の酸素等の不純物濃度が著しく増加する場合が生じるためである。
Inert gas (Ar gas) pressure When the film formation method is sputtering, the pressure of the inert gas (generally Ar gas) during film formation should be a dischargeable region, for example, 0.01 Pa or more. In addition, if it exceeds 30 Pa (300 μbar), bonding may not be performed, so the upper limit is preferably about 30 Pa (300 μbar). This is because when the Ar gas pressure is increased, the surface roughness of the formed thin film is increased, the film density is significantly decreased, and the concentration of impurities such as oxygen in the film is significantly increased.

重ね合わせの条件
雰囲気の圧力
以上のようにして,表面に微結晶構造の薄膜が形成された被接合材相互,又は微結晶構造の薄膜が形成された被接合材と微結晶構造の被接合材表面とが,1×10-4Paを超える圧力の雰囲気下,例えば,大気圧以上の圧力雰囲気下において重ね合わされることにより,接合界面及び結晶粒界に原子拡散を生じさせて前記2つの被接合材の接合が行われる。
Pressure of atmosphere of superposition conditions As described above, to-be-joined materials having a microcrystalline thin film formed on their surfaces, or to-be-joined materials having a microcrystalline thin film and a to-be-joined material having a microcrystalline structure When the surfaces are superposed in an atmosphere of a pressure exceeding 1 × 10 −4 Pa, for example, in a pressure atmosphere of atmospheric pressure or higher, atomic diffusion occurs at the bonding interface and the grain boundary, thereby The joining material is joined.

このように,本発明の方法では,2つの被接合材の重ね合わせを,微結晶薄膜の形成を行った真空中よりも高圧の雰囲気下において行う場合であっても接合を行うことができるものとなっている。   As described above, in the method of the present invention, bonding can be performed even when the two materials to be bonded are superposed in a higher pressure atmosphere than in the vacuum in which the microcrystalline thin film is formed. It has become.

なお,被接合材同士の重ね合わせを行う雰囲気の圧力が大気圧を超える場合としては,例えば給気処理型のクリーンルームやグローブボックス内で被接合材の重ね合わせを行う場合等がある。   In addition, as a case where the pressure of the atmosphere in which the materials to be bonded are superposed exceeds the atmospheric pressure, for example, the materials to be bonded are overlapped in an air supply type clean room or a glove box.

雰囲気の成分
また,被接合材同士の重ね合わせを行う際の雰囲気の成分は,空気(窒素約78%,酸素約20%)であっても良く,又は,窒素ガス,アルゴンガス,その他の不活性ガスが,単独又は混合状態で78%を超えて存在した状態,好ましくは不活性ガス100%の雰囲気であっても良い。
In addition, the atmosphere component when the materials to be joined are overlapped may be air (nitrogen: about 78%, oxygen: about 20%), or nitrogen gas, argon gas, or other undesired components. The active gas may be present alone or in a mixed state in an amount of more than 78%, preferably an atmosphere of 100% inert gas.

微結晶薄膜形成後の経過時間
ここで,微結晶薄膜としてAu膜を形成した例では,Au膜の形成後,Au膜を大気圧(1気圧)の空気に1〜6時間暴露した後に被接合材の重ね合わせを行った場合においても十分な接合力が得られることが確認されており,1〜6時間に対して十分に長い時間,大気圧の空気中に暴露した後においても接合を行うことが可能である。
Elapsed time after formation of microcrystalline thin film Here, in an example in which an Au film is formed as a microcrystalline thin film, the Au film is exposed to air at atmospheric pressure (1 atm) for 1 to 6 hours after the Au film is formed. It has been confirmed that sufficient bonding force can be obtained even when the materials are superposed, and bonding is performed even after exposure to air at atmospheric pressure for a sufficiently long time for 1 to 6 hours. It is possible.

更に,雰囲気中の酸素や水の量を減らすことは,微結晶構造の薄膜の形成後,更に長時間経過した後にも接合を強固に行い得るものとなることから,被接合材同士の重ね合わせを,前述したように78%を超える不活性ガスを含む雰囲気,好ましくは100%不活性ガスの雰囲気中において行う場合,及び/又は1×10-4Paを超える圧力の範囲内で重ね合わせを行う雰囲気の圧力を低く設定する場合には,微結晶構造の薄膜の形成からより長時間経過した後であっても,強固な接合を行うことが可能となる。 In addition, reducing the amount of oxygen and water in the atmosphere makes it possible to firmly bond even after a long time has elapsed after the formation of a thin film having a microcrystalline structure. Is performed in an atmosphere containing an inert gas exceeding 78% as described above, preferably in an atmosphere containing 100% inert gas, and / or in a range of pressure exceeding 1 × 10 −4 Pa. When the pressure of the atmosphere to be set is set low, it is possible to perform strong bonding even after a long time has elapsed since the formation of the thin film having a microcrystalline structure.

また,例えば,微結晶構造の薄膜を形成する金属の体拡散係数が低くなるに従い,また,酸化物の生成自由エネルギーの数値が小さくなるに従い,接合を行う雰囲気中における不活性ガスの含有量を高める等,形成する微結晶薄膜の材質に応じて被接合材の重ね合わせを行う雰囲気の成分や圧力を変化させるものとしても良い。   In addition, for example, as the body diffusion coefficient of the metal forming the thin film having a microcrystalline structure decreases, and as the value of free energy of formation of the oxide decreases, the content of inert gas in the bonding atmosphere is reduced. It is also possible to change the components and pressure of the atmosphere in which the materials to be joined are superposed according to the material of the microcrystalline thin film to be formed.

雰囲気の清浄度
なお,このような被接合材の重ね合わせを行う雰囲気は,平滑面に塵埃等が介在することによる接合不良を防止するために,塵埃の除去された空間内において行うことが好ましく,前述したように,塵埃の除去されたクリーンルームやグローブボックス内において行うことができる。
The cleanliness of the atmosphere It is preferable that the atmosphere in which the materials to be joined are superposed is in a space where dust is removed in order to prevent poor bonding due to the presence of dust on the smooth surface. As described above, it can be performed in a clean room or a glove box from which dust is removed.

このような雰囲気の清浄度は,一例として,ISOクラス5(1988年米国連邦規格におけるクラス100に相当。1立法フィートの空間中における0.5μm以上粒子数が100個未満。)以上であることが好ましい。   The cleanliness of such an atmosphere is, for example, ISO class 5 (corresponding to class 100 in the 1988 US federal standard. 0.5 μm or more and less than 100 particles in a space of 1 cubic foot). Is preferred.

また前述したように,雰囲気中の水分についても微結晶薄膜の表面に化学吸着して化合物を形成する原因となることから,このような平滑面の重ね合わせを行う雰囲気は湿度が50%以下に調整されていることが好ましい。   Further, as described above, moisture in the atmosphere also causes chemical adsorption on the surface of the microcrystalline thin film to form a compound, so the atmosphere in which such a smooth surface is superposed has a humidity of 50% or less. It is preferably adjusted.

接合時の温度条件
前述したように,平滑面に形成する微結晶構造の薄膜を構成する金属材料の体拡散係数,及び酸化物の生成自由エネルギーに応じて,被接合材を下記の条件毎に下記の温度に加熱して接合を行う。
As described above, depending on the body diffusion coefficient of the metal material constituting the microcrystalline thin film formed on the smooth surface and the free energy of formation of the oxide, the materials to be joined are It joins by heating to the following temperature.

室温における体拡散係数が1×10-40(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−15以上の単金属,又は合金により微結晶構造の薄膜による接合を行う場合には,接合を得るために被接合材の加熱は不要である。   A microcrystalline structure of a single metal or alloy whose body diffusion coefficient at room temperature is 1 × 10 −40 (m 2 / s) or more and whose free energy of formation (kJ / mol of compounds) at room temperature is −15 or more. In the case of joining with a thin film, it is not necessary to heat the material to be joined to obtain the joining.

但し,この場合においても先に記載したように,被接合材にダメージを与えない範囲で被接合材を加熱して,体拡散係数を上昇させた接合を行うものとしても良い。   However, even in this case, as described above, the material to be joined may be heated within a range that does not damage the material to be joined, and joining with an increased body diffusion coefficient may be performed.

薄膜を形成する金属を,室温における体拡散係数が1×10-45(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−150以上の単金属,又は合金にまで拡張した場合には,この条件に含まれる全ての金属薄膜において接合を得るためには被接合材を100℃以上に加熱する。 A metal forming a thin film has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature and a single oxide having a free energy of formation of oxide (kJ / mol of compounds) of −150 or more at room temperature. In the case of expanding to a metal or an alloy, the material to be joined is heated to 100 ° C. or higher in order to obtain bonding in all the metal thin films included in this condition.

更に,薄膜を形成する金属の範囲を,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−330以上の単金属,又は合金の範囲に迄拡大した場合には,この条件に含まれる全ての金属薄膜において接合を得るためには被接合材を200℃以上の温度に加熱する。 Furthermore, the range of metals that form thin films has a body diffusion coefficient of 1 × 10 −55 (m 2 / s) or more at room temperature, and the free energy of formation of oxides at room temperature (kJ / mol of compounds) − When expanding to the range of single metal or alloy of 330 or more, in order to obtain bonding in all metal thin films included in this condition, the materials to be bonded are heated to a temperature of 200 ° C. or higher.

なお,一方の被接合材に形成した微結晶構造の薄膜を構成する金属の体拡散係数及び酸化物の生成自由エネルギーと,他方の被接合材の表面に微結晶構造を形成する金属の体拡散係数及び酸化物の生成自由エネルギーとが相違する場合には,体拡散係数が小さく,酸化物の自由生成エネルギーの数値が小さい金属に対して適用される温度に被接合材を加熱して接合を行う。   It should be noted that the body diffusion coefficient of the metal constituting the microcrystalline thin film formed on one bonded material and the free energy of formation of the oxide, and the body diffusion of the metal forming the microcrystalline structure on the surface of the other bonded material. If the coefficient and the free energy of formation of the oxide are different, the material to be joined is heated to a temperature that is applied to a metal with a low body diffusion coefficient and a small value of the free formation energy of the oxide. Do.

接合時の加圧
前述した被接合材の重ね合わせに際しては,前述した室温における体拡散係数に応じた加熱の他,厚肉の被接合材の平滑面におけるPV値に応じて加圧を行うことが必要である。
Pressurization at the time of joining In addition to the above-described heating according to the body diffusion coefficient at room temperature, pressurization is performed according to the PV value on the smooth surface of the thick-walled material. is necessary.

被接合材の一方又は双方を1.0mm以上の肉厚を有する厚肉の被接合材とした場合にその接合を阻害する原因が,算術平均粗さRaに現れるような比較的短周期の凹凸によるものではなく,より長周期の凹凸,すなわち表面のうねりによってもたらされるものであると予測されることは既に説明した。   When one or both of the materials to be joined is a thick material to be joined having a thickness of 1.0 mm or more, the reason for hindering the joining is a relatively short period unevenness that appears in the arithmetic average roughness Ra It has already been explained that it is not caused by this, but is expected to be caused by longer-period irregularities, that is, surface waviness.

ここで,厚肉の被接合材の接合面の所定範囲における表面形状を測定して得られた断面線が図6に示すような波形を示していると仮定すると,この断面線に山頂の包接線,谷底の包接線波を補助線として記入すると,この断面線には,長周期凹凸である「うねり」の成分が含まれていることが判る。   Here, if it is assumed that the cross-sectional line obtained by measuring the surface shape in the predetermined range of the joining surface of the thick-walled workpiece shows a waveform as shown in FIG. If the tangential line and the tangential wave at the bottom of the valley are entered as auxiliary lines, it can be seen that this cross-sectional line contains a “swell” component that is a long-period unevenness.

このようにして,平滑面の表面形状に含まれる「うねり」の成分を顕在化させてみると,所定の測定範囲内における最高点と最低点の高低差を表すPV値は,「うねり」の振幅(測定範囲における最大振幅)におよそ対応したものであると見ることができる。   In this way, when the “swell” component included in the surface shape of the smooth surface is made obvious, the PV value indicating the difference in height between the highest point and the lowest point within the predetermined measurement range is the “swell”. It can be seen that it roughly corresponds to the amplitude (maximum amplitude in the measurement range).

このように,短周期の凹凸成分を捨象した,バルク材表面に生じているうねりの様子を模式図に表すと,図3(B)のように,平滑面の表面に現れる「うねり」の波形は,PV値によって規定される幅内で振幅する波形となる。   In this way, when the state of the undulation occurring on the surface of the bulk material, in which the short-period unevenness component is discarded, is represented in a schematic diagram, as shown in FIG. Is a waveform that oscillates within the width defined by the PV value.

従って,図3(B)に模式的に示すような「うねり」が平滑面の表面に生じている一方の被接合材の平滑面と,他方の被接合材の平滑面の全体を接触させるためには,このうねりに伴う凹凸が打ち消されて,被接合材の平滑面の全体を平坦と成し得る加圧力を加えれば良い。   Accordingly, the “swell” as schematically shown in FIG. 3 (B) is brought into contact with the smooth surface of one of the materials to be joined and the entire smooth surface of the other material to be joined. In this case, it is only necessary to apply a pressing force that can cancel out the unevenness caused by this undulation and make the entire smooth surface of the material to be joined flat.

このような加圧力は,同一材質の被接合材同士での比較であれば,PV値が大きくなる程,接合時の加える加圧力は大きくなり,逆にPV値が小さければ接合時に加える加圧力は小さくすることができる。   If this pressure is a comparison between workpieces of the same material, the larger the PV value, the larger the pressure applied during bonding, and conversely, the smaller the PV value, the pressure applied during bonding. Can be small.

また,同一PV値の被接合材同士の比較であれば,被接合材を構成する材料のヤング率が大きくなる程,接合時に加える加圧力は大きくなり,逆にヤング率が低くなれば,接合時に加える加圧力は小さくすることができる。   In addition, when comparing materials to be joined having the same PV value, the greater the Young's modulus of the material constituting the material to be joined, the greater the applied pressure during joining, and conversely, the lower the Young's modulus, Sometimes the applied pressure can be reduced.

従って,図3(B)に示すように被接合材の平滑面におけるPV値を,平滑面に生じているうねりの振幅と捉え,このPV値と被接合材のヤング率との相対的な関係によって加圧力を変化させることが好ましいことが判る。   Therefore, as shown in FIG. 3B, the PV value on the smooth surface of the material to be joined is regarded as the amplitude of the swell generated on the smooth surface, and the relative relationship between this PV value and the Young's modulus of the material to be joined. It can be seen that it is preferable to change the applied pressure.

ここで,図3(A)に示すように板状物体の上面に下向きの加圧力(F)を加えた場合,物体に生じる変位量(X)は加圧力(F)に比例する(フックの法則;図2参照)。   Here, as shown in FIG. 3A, when a downward pressure (F) is applied to the upper surface of the plate-like object, the displacement (X) generated in the object is proportional to the pressure (F) (the hook Law; see Figure 2).

図3(A)のモデルにおいて,ヤング率(E)は「加圧力(F)/変位率」であり,変位率は「変位量(X)/元の高さ(H)」であるから,図3(A)に示すように,厚さ(H)の板に対し,加圧力(F)を加えた際の変位量(X)は,
X=HF/E
によって求めることがでる。
In the model of FIG. 3A, the Young's modulus (E) is “pressing force (F) / displacement rate”, and the displacement rate is “displacement amount (X) / original height (H)”. As shown in FIG. 3 (A), the displacement amount (X) when a pressing force (F) is applied to a plate of thickness (H) is:
X = HF / E
You can ask for it.

ここで,上記の式によって求められる変位量(X)は,理想平面を持った被接合材に生じる変位量であり,実際の被接合材の平滑面には,図3(B)に示すように,PV値によって表わされる凹凸が生じている。   Here, the amount of displacement (X) obtained by the above equation is the amount of displacement generated in the material to be joined having an ideal plane, and the actual smooth surface of the material to be joined is shown in FIG. In addition, irregularities represented by the PV value are generated.

従って,被接合材に加えられた応力は,平滑面の全体に均一に加わらず,凹凸の山頂部分に集中することとなるために,被接合材の平滑面は,上記の関係式によって求められたPV値に対応する変位量を得るための加圧力(F),すなわち,
F = PV・E/H (PVはPV値)
により求められる加圧力(F)よりも低い加圧力によってその全面を他方の被接合材の平滑面に対し接触することになり,ここで求められる加圧力(F)以上の加圧力を加える場合,両平滑面を確実に全面にて接触させることができることとなる。
Therefore, the stress applied to the material to be joined is not uniformly applied to the entire smooth surface, but is concentrated on the peak portion of the unevenness. Therefore, the smooth surface of the material to be joined is obtained by the above relational expression. Pressure (F) to obtain a displacement corresponding to the PV value, that is,
F = PV · E / H (PV is PV value)
When the pressurizing force lower than the pressurizing force (F) obtained by the above is brought into contact with the smooth surface of the other material to be joined, and the pressurizing force exceeding the pressurizing force (F) obtained here is applied, Both smooth surfaces can be reliably brought into contact with the entire surface.

但し,過度に大きな加圧力を与える場合,電子デバイスが破損するおそれがあると共に,接合界面に大きな残留応力が残り,経時により剥離や亀裂が進展する原因となることから,加える加圧力は,好ましくは100MPa以下となるよう調整することが好ましい。   However, if an excessively large applied pressure is applied, the electronic device may be damaged, and a large residual stress may remain at the joint interface, causing peeling and cracks to develop over time. Is preferably adjusted to 100 MPa or less.

接合方法の例
本発明による原子拡散接合方法による接合工程の一例を,図1を参照して説明する。図1において,薄膜形成を行う真空容器内の上部に,スパッタを行うためのマグネトロンカソードを配置すると共に,このマグネトロンカソードの下部に,相互に貼り合わされる被接合材を載置する治具を配置し,この治具に取り付けた被接合材の平滑面に対して微結晶薄膜を形成する。
Example of Bonding Method An example of a bonding process by the atomic diffusion bonding method according to the present invention will be described with reference to FIG. In FIG. 1, a magnetron cathode for performing sputtering is disposed at the upper part in a vacuum vessel for forming a thin film, and a jig for placing a material to be bonded to each other is disposed at the lower part of the magnetron cathode. Then, a microcrystalline thin film is formed on the smooth surface of the material to be joined attached to the jig.

図示の実施形態において,前述の治具に設けられたテーブルは,図1中の紙面右側の図に破線で示す薄膜形成位置と,実線で示す貼り合わせ位置間を回動可能に構成されており,被接合材の一方を載置したテーブルの一端と,被接合材の他方を載置したテーブルの一端とが突き合わされた状態に配置されていると共に,この突き合わせ部分を中心として前記2つのテーブルが回動して,両テーブルの他端を上方に持ち上げることにより,前記テーブル上の載置された2つの被接合材の平滑面が重合されるよう構成されている。   In the illustrated embodiment, the table provided in the above-described jig is configured to be rotatable between a thin film formation position indicated by a broken line and a bonding position indicated by a solid line in the drawing on the right side of FIG. The two tables are arranged in such a manner that one end of the table on which one of the members to be joined is placed and one end of the table on which the other of the members to be joined are brought into contact with each other. Is rotated, and the other ends of both tables are lifted upward so that the smooth surfaces of the two materials to be joined placed on the tables are superposed.

接合に際し,被接合材の加熱が必要となる体拡散係数,及び酸化物の生成自由エネルギーの数値範囲にある金属で微結晶構造の薄膜を形成して接合を行う場合には,前述のテーブル内に電熱ヒータ等を埋め込んでおき,これにより2つの被接合材の平滑面を重合した後で所定の温度に加熱することができるようにしても良い。   When bonding is performed by forming a thin film having a microcrystalline structure with a metal within the numerical range of the body diffusion coefficient and the oxide free energy of formation that require heating of the materials to be bonded, It is also possible to embed an electric heater or the like in this manner so that the smooth surfaces of the two materials to be joined can be superposed and heated to a predetermined temperature.

なお,このように被接合材の貼り合わせを行う治具は,図示の構成のものに限定されず,貼り合わせを行う被接合材の形状等にあわせて各種形状,構造のものを使用することができ,また,例えばロボットアーム等によって被接合材の一方若しくは双方を操作して接合を行うものとしても良く,更には,人の手によって被接合材同士を重ね合わせるものとしても良い。   Note that the jig for bonding the materials to be bonded is not limited to the one shown in the figure, and various shapes and structures may be used according to the shape of the materials to be bonded. Further, for example, one or both of the materials to be joined may be operated by a robot arm or the like, and the materials to be joined may be overlapped by a human hand.

このような治具が収容された真空容器は,図1に示すようにこれを前述したクラス1000以上の清浄度を実現可能なクリーンルーム内に配置し,又は,真空容器の出入口に連通して前述したクラス1000以上の清浄度を実現可能なグローブボックスを設けておく。   As shown in FIG. 1, the vacuum container in which such a jig is accommodated is disposed in a clean room capable of achieving the above-mentioned class 1000 or higher cleanliness, or communicated with the entrance / exit of the vacuum container. A glove box capable of realizing a cleanness of class 1000 or higher is provided.

以上のように構成された治具が配置された真空容器において,前記治具を前述した成膜位置とした状態で,前述した条件で被接合材の平滑面に対して微結晶薄膜を形成する。   In the vacuum vessel in which the jig configured as described above is arranged, a microcrystalline thin film is formed on the smooth surface of the material to be bonded under the above-described conditions in a state where the jig is in the above-described film formation position. .

そして,被接合材の平滑面に対して所定厚みの微結晶薄膜が形成されると,微結晶薄膜の形成を終了し,真空容器内を前述したように1×10-4Paを超える圧力,例えば大気圧やクリーンルーム内の圧力に戻す。このように真空容器内の圧力の上昇は,例えば真空容器内に窒素ガスやアルゴンガス等の不活性ガスを導入することにより行っても良く,又は,空気を導入することにより行っても良い。 Then, when the microcrystalline thin film having a predetermined thickness is formed on the smooth surface of the material to be joined, the formation of the microcrystalline thin film is finished, and the pressure in the vacuum vessel exceeds 1 × 10 −4 Pa as described above. For example, return to atmospheric pressure or the pressure in the clean room. As described above, the pressure in the vacuum vessel may be increased by introducing an inert gas such as nitrogen gas or argon gas into the vacuum vessel, or by introducing air.

このようにして,真空容器内の圧力を1×10-4Paを超える圧力,例えば大気圧やクリーンルーム内の圧力に迄上昇させた後,真空容器の出入口を開き,真空容器内より前述した治具と共に被接合材を取り出し,前記治具に設けられたテーブルを,前述した,貼り合わせ位置に回動させて貼り合わせると共に,前述した加圧力(F)を加えて接合する。 In this way, after the pressure in the vacuum vessel is increased to a pressure exceeding 1 × 10 −4 Pa, for example, atmospheric pressure or clean room pressure, the inlet / outlet of the vacuum vessel is opened, and the above-described treatment is performed from the inside of the vacuum vessel. The material to be joined is taken out together with the tool, and the table provided on the jig is rotated and bonded to the bonding position as described above, and the pressure (F) described above is applied and bonded.

これにより,両微結晶薄膜の接合界面及び結晶粒界において原子拡散を生じさせ,かつ,接合歪みを緩和させた接合を行うことができる。   As a result, it is possible to perform bonding in which atomic diffusion is caused at the bonding interface and crystal grain boundary between the two microcrystalline thin films and the bonding strain is reduced.

なお,上記の説明では同一材質の微結晶薄膜が形成された被接合材相互を貼り合わせる場合について説明したが,異なる材質の微結晶薄膜が形成された被接合材相互を貼り合わせる場合には,例えば共通のクリーンルーム内に設置された2つの真空容器内のそれぞれに,前述のマグネトロンカソードを配置して各真空容器内で異なる材質の微結晶薄膜を成膜可能と成すと共に,それぞれの被接合材の平滑面に対してそれぞれ異なる材質の微結晶薄膜を形成した後に,各真空容器より取り出した被接合材を前述のクリーンルーム内で重ね合わせると共に加圧することにより接合する等しても良い。   In the above description, the case where the materials to be bonded having the microcrystalline thin film made of the same material are bonded to each other is described. However, when the materials to be bonded having the microcrystalline thin film made of different materials are bonded to each other, For example, the magnetron cathode described above is arranged in each of two vacuum vessels installed in a common clean room, so that a microcrystalline thin film of a different material can be formed in each vacuum vessel. After forming microcrystalline thin films of different materials on the smooth surfaces, the materials to be joined taken out from the respective vacuum vessels may be superposed in the above-mentioned clean room and joined by pressing.

また,両被接合材に対する微結晶薄膜の形成は,必ずしも同時に行う必要はなく,時間差を以て行っても良い。   In addition, the formation of the microcrystalline thin film on both materials to be bonded is not necessarily performed at the same time, and may be performed with a time difference.

また,他方の被接合材の少なくとも平滑面が,前述した体拡散係数,及び酸化物の生成自由エネルギーの数値範囲にある単金属や合金による微結晶構造を有する場合には,接合対象とする2つの被接合材の一方に対してのみ前述の微結晶薄膜を形成し,他方の被接合材に対しては微結晶薄膜を形成することなく直接,両被接合材を接合することも可能である。   Further, if at least the smooth surface of the other material to be joined has a microcrystalline structure of a single metal or alloy within the numerical ranges of the above-mentioned body diffusion coefficient and oxide formation free energy, the material to be joined 2 It is possible to form the above-mentioned microcrystalline thin film only on one of the materials to be joined and to join both materials directly to the other material to be joined without forming a microcrystalline thin film. .

以下に本発明の接合方法によって接合を行った接合試験例を示す。   Below, the example of a joining test which joined by the joining method of this invention is shown.

〔被接合材〕
厚肉の被接合材
厚肉の被接合材として,下記の表1に示すAl基板及びCu基板を使用した。
[Materials to be joined]
Thick materials to be joined As the thick materials to be joined, Al substrates and Cu substrates shown in Table 1 below were used.

Figure 2015051452
Figure 2015051452

薄肉の被接合材
薄肉の被接合材として,接合状態を目視で確認し易くするため,透明な石英ウエハを使用した。
Thin material to be joined As a thin material to be joined, a transparent quartz wafer was used to make it easy to visually confirm the joining state.

使用した石英ウエハは,直径2インチ(5.08cm),厚さ310μmのものと,直径1インチ(2.54cm),厚さ380μmの二種類を用意した。   Two types of quartz wafers were used: one with a diameter of 2 inches (5.08 cm) and a thickness of 310 μm, and one with a diameter of 1 inch (2.54 cm) and a thickness of 380 μm.

AFMを使用して測定した算術平均粗さRaは0.31nmであり,Rmax(JISB0610-’82)は,6.45nmである。   The arithmetic average roughness Ra measured using AFM is 0.31 nm, and Rmax (JISB0610-'82) is 6.45 nm.

〔厚肉の被接合材同士の接合試験例〕
加圧力の確認試験
図4(A)及び図5(A)に示すように,表面に下地層としてTi層(10nm)を形成した後,Auの微結晶薄膜(150nm)を形成した一対のAl基板,及びCu基板を作成し,両基板上に形成されたAu微結晶薄膜同士が重なるように室温において重ね合わせを行った。
[Example of joining test between thick materials to be joined]
4A and 5A, after forming a Ti layer (10 nm) as an underlayer on the surface, a pair of Al having a microcrystalline thin film (150 nm) formed of Au Substrates and a Cu substrate were prepared and superposed at room temperature so that the Au microcrystalline thin films formed on both substrates overlapped.

重ね合わせの際に加える加圧力を変化させ,加圧力の変化に伴う,接合強度の変化を測定した。測定結果を表2に示す。   The pressure applied during superposition was changed, and the change in bonding strength with changes in pressure was measured. The measurement results are shown in Table 2.

Figure 2015051452
Figure 2015051452

以上の結果から,上記の例においてAl基板同士,及びCu基板同士のいずれの接合においても,接合時に20MPa以上の加圧力によって4.0MPaが得られることが確認された。   From the above results, it was confirmed that 4.0 MPa was obtained with a pressure of 20 MPa or more at the time of joining in any of the joining of Al substrates and Cu substrates in the above example.

特に,Al基板同士の接合では,加圧力(F)を50MPa迄上昇させることで,21.9MPa以上の接合強度が得られた。   In particular, in bonding between Al substrates, a bonding strength of 21.9 MPa or more was obtained by increasing the pressure (F) to 50 MPa.

一方,Cu基板同士の接合では,20MPaの加圧力Fによって4.2MPaの接合強度が得られた後,加圧力Fを50MPaに迄増加させても接合強度は4.9MPa迄しか増加せず,Al基板同士の接合の場合に比較して,加圧力の増大に対する接合強度の上昇程度が低いものとなっている。   On the other hand, in bonding between Cu substrates, after a bonding strength of 4.2 MPa is obtained with a pressure F of 20 MPa, the bonding strength increases only to 4.9 MPa even if the pressure F is increased to 50 MPa. Compared with the case of bonding between Al substrates, the degree of increase in bonding strength with respect to an increase in applied pressure is low.

しかし,Cu基板の接合における上記の現象は,引張試験において下地層として形成したTi膜がCu基板より剥離すること,すなわち,下地層の付着強度によって接合強度には頭打ちが生じるためであり,Au膜同士が接合した接合界面における接着強度は,4.9MPaよりも高いものと考えられる。   However, the above phenomenon in the bonding of the Cu substrate is because the Ti film formed as the underlayer in the tensile test peels off from the Cu substrate, that is, the bonding strength reaches a peak due to the adhesion strength of the underlayer. The adhesive strength at the joint interface where the films are joined is considered to be higher than 4.9 MPa.

なお,Cu基板は,Al基板に比較してヤング率が高く,その変形にはAl基板の場合に比較してより大きな加圧力を与えることが必要となるが,上記の例では,Al基板の場合と同様,20MPaの加圧力の付与によって,必要な付着強度(4.0MPa以上)が得られている。   Note that the Cu substrate has a higher Young's modulus than the Al substrate, and its deformation requires a larger applied pressure than the Al substrate. As in the case, the required adhesion strength (4.0 MPa or more) is obtained by applying a pressure of 20 MPa.

これは,表1に示したように,Al基板に比較してCu基板の方がPV値が小さく,長周期の平坦度が高いため,Al基板の場合よりもより小さな変形量で平滑面全体の接触が実現されたためであると考えられる。   This is because, as shown in Table 1, the Cu substrate has a smaller PV value and higher long-period flatness than the Al substrate, so that the entire smooth surface has a smaller amount of deformation than the Al substrate. It is thought that this is because the contact was realized.

因みに,Al基板のPV値の最大値0.79μm,ヤング率(E)は70.6GPa,厚さ(H)3mm,Cu基板のPV値の最大値0.46μm,ヤング率(E)129.8GPa,厚さ(H)3mmに基づいて,前掲の関係式「F=PV・E/H」を用いてPV値に対応する変位量を生じさせるために必要な加圧力(F)を求めると,Alの場合で18.6MPa,Cuの場合で19.9MPaとなり,上記の実験結果と略一致し,厚肉の被接合材同士の接合では,接合時に必要な加圧力を「F≧PV・E/H」で近似的に求められることが確認された。   Incidentally, the maximum PV value of the Al substrate is 0.79 μm, the Young's modulus (E) is 70.6 GPa, the thickness (H) is 3 mm, the maximum PV value of the Cu substrate is 0.46 μm, and the Young's modulus (E) is 129. Based on 8 GPa and thickness (H) 3 mm, the pressure (F) required to generate the displacement corresponding to the PV value is calculated using the relational expression “F = PV · E / H”. In the case of Al, 18.6 MPa in the case of Cu and 19.9 MPa in the case of Cu, which substantially agrees with the above experimental results. In the joining of thick materials to be joined, the pressure applied at the time of joining is “F ≧ PV · It was confirmed that it was approximately obtained by “E / H”.

下地層の影響確認
図4(B)及び図5(B)に示すように,表面に下地層としてTi,Cr,又はTa層(10nm)を形成した後,体拡散係数が1×10-40(m2/s)以上の物質であるAuの微結晶薄膜(150nm)を形成した一対のAl基板,及びCu基板を形成し,両基板上に形成されたAu微結晶薄膜同士が重なるように室温において,50MPaの加圧力を与えて重ね合わせを行った。
Confirmation of influence of underlying layer As shown in FIGS. 4B and 5B, after a Ti, Cr, or Ta layer (10 nm) is formed on the surface as an underlying layer, the body diffusion coefficient is 1 × 10 −40. A pair of Al substrate and Cu substrate on which Au microcrystalline thin film (150 nm) which is a material of (m 2 / s) or more is formed, and Au microcrystalline thin films formed on both substrates are overlapped with each other. At room temperature, a pressure of 50 MPa was applied to perform superposition.

Al基板同士の接合では,Auの微結晶薄膜を形成した例では,下地層の材質に拘わらず,20MPa以上の接合強度が得られていた。   In bonding between Al substrates, in the example in which a microcrystalline thin film of Au was formed, a bonding strength of 20 MPa or more was obtained regardless of the material of the underlayer.

一方,Auの微結晶薄膜を形成してCu基板同士の接合の例では,いずれの下地層を用いた場合においても下地層とCu基体との界面で剥離してしまい,Auの微結晶薄膜同士の接合界面における接合強度を測定することはできなかった。そのため,これらの例では,Cu基板に対する下地層の接合強度がCu基板同士の接合強度を決定するものとなっている。   On the other hand, in the example of bonding between Cu substrates by forming an Au microcrystalline thin film, any of the underlying layers peels off at the interface between the underlying layer and the Cu substrate, and the Au microcrystalline thin films are bonded together. It was not possible to measure the bonding strength at the bonding interface. Therefore, in these examples, the bonding strength of the base layer to the Cu substrate determines the bonding strength between the Cu substrates.

因みに,Tiの下地層,及びTaの下地層を設けた場合の付着強度は平均して5MPa程度,Cr下地層を用いた場合では平均して4MPa程度で,かろうじて必要な接合強度4MPaを得られる程度となっており,接合強度の向上には,下地層の付着強度の向上が必要であることが確認された。   Incidentally, when the Ti underlayer and the Ta underlayer are provided, the adhesion strength is about 5 MPa on average, and when the Cr underlayer is used, the average is about 4 MPa, and the necessary bonding strength of 4 MPa can be barely obtained. It was confirmed that it was necessary to improve the adhesion strength of the underlayer to improve the bonding strength.

体拡散係数と接合温度の確認
図4(C)に示すように,表面に下地層としてTi,Cr,又はTa層(10nm)を形成した後,体拡散係数が1×10-45〜1×10-40(m2/s)の範囲内にある物質であるCuの微結晶薄膜(150nm)を形成した一対のAl基板を形成し,両基板上に形成されたCu微結晶薄膜同士が重なるように,50MPaの加圧力を与えて重ね合わせを行うと共に,接合時の温度を変化させて接合強度の変化を測定した。
Confirmation of body diffusion coefficient and bonding temperature
As shown in FIG. 4C, after forming a Ti, Cr, or Ta layer (10 nm) as a base layer on the surface, the body diffusion coefficient is 1 × 10 −45 to 1 × 10 −40 (m 2 / s ), A pair of Al substrates on which a Cu microcrystalline thin film (150 nm), which is a substance within the range, is formed, and a pressure of 50 MPa is applied so that the Cu microcrystalline thin films formed on both substrates overlap each other. In addition to overlaying, the temperature at the time of bonding was changed to measure the change in bonding strength.

Cuの微結晶薄の形成によりAl基板の接合を行った例では,下地層の材質に拘わらず,室温で接合した場合には接合自体を行うことができず,80℃の加熱により接合が可能となり,その後,加熱温度の上昇と共に接合強度が増加することが確認された。   In the example where the Al substrate is bonded by forming a microcrystalline thin film of Cu, bonding cannot be performed at room temperature regardless of the material of the underlying layer, and bonding is possible by heating at 80 ° C. After that, it was confirmed that the bonding strength increased with increasing heating temperature.

加熱温度が80℃の時に接合強度は3MPa程度で必要な接合強度(4.0MPa以上)が得られず,100℃以上の加熱によって初めて4.0MPa以上の接合強度が得られることが確認できた。   It was confirmed that when the heating temperature was 80 ° C., the required bonding strength (4.0 MPa or higher) could not be obtained at a bonding strength of about 3 MPa, and that a bonding strength of 4.0 MPa or higher could be obtained only by heating at 100 ° C. or higher. .

また,120℃以上に加熱した場合,試料を引張試験機のホルダーに固定するために使用していた接着剤との接合界面で剥離が生じ,Al基板の接合強度を測定することができなくなっているが,少なくとも,接着剤の剥離時に測定された強度(120℃加熱時における8.5Mpa,150℃加熱時における11.8MPa)以上の接合強度を有するものと考えられる。   Also, when heated to 120 ° C or higher, peeling occurs at the bonding interface with the adhesive used to fix the sample to the holder of the tensile tester, making it impossible to measure the bonding strength of the Al substrate. However, it is considered that it has at least a bonding strength measured at the time of peeling of the adhesive (8.5 MPa when heated at 120 ° C., 11.8 MPa when heated at 150 ° C.).

なお,本試験例では,Al基板表面の自然酸化膜を除去することなく,この自然酸化膜上に下地層を形成する構成を採用したが,Al基板に対する下地層の付着強度は,強固であると共に,加熱下において接合した場合であっても,下地層がAl基板より剥離することがなく,付着強度の低下は見られたかった。   In this test example, the base layer was formed on the natural oxide film without removing the natural oxide film on the surface of the Al substrate. However, the adhesion strength of the base layer to the Al substrate is strong. At the same time, even when bonded under heating, the underlying layer did not peel off from the Al substrate, and a decrease in adhesion strength was not desired.

このことから,厚肉の被接合材がAl製である場合,下地層の形成前の平滑面のクリーニング等を行わない場合であっても,必要な接合強度が得られることが確認できた。   From this, it was confirmed that when the thick material to be joined is made of Al, the necessary joining strength can be obtained even when the smooth surface is not cleaned before the formation of the underlayer.

〔厚肉の被接合材と薄肉の被接合材の接合試験例〕
前掲のAl基板を厚肉の被接合材とし,前掲の石英ウエハを薄肉の被接合材として接合試験を行った結果を以下に示す。
[Example of joining test for thick and thin materials]
The results of a bonding test using the above-described Al substrate as a thick-walled material and the above-described quartz wafer as a thin-walled material are shown below.

なお,以下の試験では,図7に示すように,下地層としてTi層(5nm)を形成した後,Auの微結晶薄膜(50nm)をそれぞれ形成したAl基板と石英ウエハを作成し,それぞれの表面に形成されたAu微結晶薄膜同士が重なるように室温においてAl基板と石英ウエハの重ね合わせを行って,その接合状態を観察した。   In the following test, as shown in FIG. 7, after forming a Ti layer (5 nm) as an underlayer, an Al substrate and a quartz wafer each formed with an Au microcrystalline thin film (50 nm) were prepared. The Al substrate and the quartz wafer were superposed at room temperature so that the Au microcrystalline thin films formed on the surface overlapped, and the bonding state was observed.

重ね合わせの際の加圧力として,2.5MPa,5MPa,7.5MPa,10MPa,25MPa,50MPaをそれぞれ適用し,加圧力毎のAl基板と石英ウエハの接合によって形成された構造体を得た。   2.5 MPa, 5 MPa, 7.5 MPa, 10 MPa, 25 MPa, and 50 MPa were applied as pressures at the time of superposition, respectively, and a structure formed by bonding an Al substrate and a quartz wafer for each pressure was obtained.

加圧力と接合状態の変化
以上のようにして得られた各構造体の接合面を目視により観察した。観察は,透明な材料である石英ウエハ側から石英ウエハを透かしてAl基板の鏡面研磨面を目視により観察することにより行った。
Changes in pressure and bonding state The bonding surfaces of the structures obtained as described above were visually observed. The observation was performed by visually observing the mirror-polished surface of the Al substrate through the quartz wafer from the transparent quartz wafer side.

加圧力を2.5MPa及び5MPaとして接合を行った試料では,接合面に光の干渉が生じている部分が確認され,石英ウエハとAl基板間に隙間があることが目視によっても明確に確認することができた。   In the samples bonded with the applied pressure of 2.5MPa and 5MPa, the part where the light interference occurs is confirmed on the bonding surface, and it is clearly confirmed visually that there is a gap between the quartz wafer and the Al substrate. I was able to.

また,光の干渉が肉眼では明確に観察できない部分でも,色合が斑な状態となっていることが観察されており,界面同士が完全に接触していないことが確認できた。   In addition, it was observed that even in areas where the interference of light was not clearly observable with the naked eye, the hue was uneven, and it was confirmed that the interfaces were not completely in contact with each other.

加工圧力を7.5MPa迄上げると,明白な光の干渉の発生は観察することができなくなったが,全体的に色合が斑な状態となっており,接合界面における接着状態が完全では無いことが確認された。   When the processing pressure was increased to 7.5 MPa, no obvious light interference could be observed, but the overall color was uneven and the adhesion at the joint interface was not perfect. Was confirmed.

加圧力を10MPa迄上昇させると,光の干渉が観察されないだけでなく,色合いの斑も観察できなくなり,全体にわたり色合いも均一なものとなっていることが観察でき,その後,加圧力を25MPa,50MPaと上昇させても,目視により観察できる接合状体には変化が生じなかった。   When the applied pressure is increased to 10 MPa, not only interference of light is not observed, but also shades of colors cannot be observed, and it can be observed that the colors are uniform throughout. Thereafter, the applied pressure is 25 MPa, Even when the pressure was increased to 50 MPa, there was no change in the bonded body that could be visually observed.

従って,加圧力10MPaとして行った接合では,Al基板と石英ウエハの接合界面は,略完全な接合状態が実現されたものと考えられる。   Therefore, it is considered that in the bonding performed at a pressure of 10 MPa, a substantially perfect bonding state is realized at the bonding interface between the Al substrate and the quartz wafer.

以上の結果から,被接合材の一方を薄肉の被接合材であるウエハとした接合例では,10MPa以上の加圧力を加えることにより,接合面全体を接合できていることが確認された。   From the above results, it was confirmed that in the bonding example in which one of the members to be bonded is a wafer that is a thin member to be bonded, the entire bonding surface can be bonded by applying a pressure of 10 MPa or more.

このように,被接合材の一方をウエハとした接合では,被接合材の双方を厚肉の被接合材とした際の接合で必要であった加圧力に対し約1/2という小さな接合力で接合界面に隙間の無い接合が得られているが,このような加圧力の低下は,厚肉の被接合材であるAl基板に対し,薄肉の被接合材であるウエハが変形(反り)を生じ易いためであると考えられる。   As described above, in the case where one of the materials to be bonded is a wafer, a bonding force as small as about ½ of the pressure required for bonding when both materials to be bonded are thick materials to be bonded. In this way, the bonding interface with no gap is obtained, but such a decrease in pressure is caused by deformation (warping) of the wafer, which is a thin-walled material, against the Al substrate, which is a thick-walled material. It is thought that this is because it is easy to generate.

すなわち,厚肉の被接合材同士の接合にあっては,一方の被接合材の平滑面に生じている「うねり」と,他方の被接合材の平滑面に生じている「うねり」の双方を打ち消すための加圧力が必要であったが,前述したように被接合材のいずれか一方を薄肉の被接合材である石英ウエハとすることにより,ウエハの平滑面に生じているうねりについては,ウエハ自身が変形する(反る)ことにより吸収されてしまうために,ウエハ側の表面のうねりは無視することができ,被接合材の一方のみを必要量変形させ得る加圧力のみを加えれば良いためであると考えられる。   That is, in joining thick materials to be joined, both “swell” generated on the smooth surface of one material to be joined and “swell” produced on the smooth surface of the other material to be joined. However, as mentioned above, the undulation that occurs on the smooth surface of the wafer by using one of the bonded materials as a quartz wafer, which is a thin-walled bonded material, was necessary. Because the wafer itself is absorbed by deformation (warping), the surface waviness on the wafer side can be ignored, and only a pressing force that can deform only one of the materials to be bonded can be applied. This is probably because it is good.

なお,上記の例では厚肉の被接合材として3mm厚のAl基板を使用した接合試験について説明したが,直径2インチの石英の石英ウエハと,厚さ1mmの14mm×11mmのAl基板とを,Tiの下地層(5nm)とAuの微結晶薄膜(50nm)の形成により約50MPaの加圧力で接合する接合試験においても好適に接合を行うことができた。   In the above example, a bonding test using a 3 mm thick Al substrate as the thick material to be bonded has been described. However, a quartz quartz wafer having a diameter of 2 inches and a 14 mm × 11 mm Al substrate having a thickness of 1 mm are used. In the bonding test in which bonding is performed at a pressure of about 50 MPa by forming a Ti underlayer (5 nm) and an Au microcrystalline thin film (50 nm), bonding can be suitably performed.

接合強度の確認
前記方法でAl基板と石英ウエハを接合することにより得た構造体のうち,好適に接合が行えている,加圧力を10MPa,25MPa,50MPaとして接合した構造体を試料として各試料に対し引張試験機による接合強度の測定を行った。測定結果を下記の表3に示す。
Confirmation of bonding strength Among the structures obtained by bonding the Al substrate and the quartz wafer by the above-described method, each of the samples can be suitably bonded, and the structures bonded at a pressure of 10 MPa, 25 MPa, and 50 MPa are used as samples. The bonding strength was measured with a tensile tester. The measurement results are shown in Table 3 below.

Figure 2015051452
Figure 2015051452

以上の結果から,Al基板と石英ウエハの接合では,加圧力10MPa以上で接合を行うことで,必要な接合強度(4.0MPa以上)が得られることが確認された。   From the above results, it was confirmed that the required bonding strength (4.0 MPa or more) can be obtained by bonding the Al substrate and the quartz wafer at a pressure of 10 MPa or more.

なお,上記の接合強度の測定において測定された上記数値は,いずれも,引張試験機のホルダーに試料を取り付けるために使用していた接着剤と試料との接合界面において剥離が生じ,あるいは,石英ウエハが破断することによりそれ以上の測定ができなくなったもので,このことからAu−Au接合界面における接合力は,少なくとも測定された上記数値よりも高いものであると言える。   In addition, the above values measured in the above-mentioned measurement of the bonding strength are all separated at the bonding interface between the adhesive and the sample used to attach the sample to the holder of the tensile tester, or quartz Since the wafer was broken, no further measurement was possible. From this, it can be said that the bonding force at the Au-Au bonding interface is at least higher than the measured value.

加圧力とAu−Au接合界面の付着強度の変化
前述した接合強度の測定を行うことにより破断した試料の破断面を観察すると,異なる加圧力で接合された試料間には,破断の仕方に明らかな相違があることが確認された。
Changes in pressure and adhesion strength at the Au-Au joint interface Observing the fracture surface of the fractured specimen by measuring the joint strength described above reveals how the fracture occurred between specimens joined at different pressures. It was confirmed that there was a difference.

すなわち,50MPaの加圧力をかけて接合した試料の破断面を観察したところ,石英ウエハの面積の約1/2は,引張試験機のホルダーに石英ウエハを固定するために使用していた接着剤からの剥離部分であり,残りの1/2は石英ウエハの肉厚内において破断が生じており,Au−Au膜の接合界面における剥離を観察することはできなかった。   That is, when observing the fracture surface of the sample joined by applying a pressure of 50 MPa, about 1/2 of the area of the quartz wafer was the adhesive used to fix the quartz wafer to the holder of the tensile tester. The other half was broken within the thickness of the quartz wafer, and the peeling at the bonding interface of the Au—Au film could not be observed.

これに対し,加圧力をこれよりも低い25MPa,10MPaとして接合した例では,Au−Auの接合界面における剥離が生じていると共に,低い加圧力で加圧して接合したもの程,Au−Au接合界面における剥離領域が増大していることが確認された。   On the other hand, in the example in which the pressurizing force is set to 25 MPa and 10 MPa lower than this, peeling at the Au-Au joining interface occurs, and the pressurizing with the lower pressurizing force results in the Au-Au joining. It was confirmed that the peeling area at the interface increased.

観察された加圧力の変化と剥離領域の変化の関係を,図8に示す。   FIG. 8 shows the relationship between the observed change in the applied pressure and the change in the peeled area.

以上結果から,接合時の加圧力を大きくする程,Au−Au界面における接合強度が上昇することが確認された。   From the above results, it was confirmed that the bonding strength at the Au-Au interface increases as the pressure applied during bonding increases.

以上で説明した本発明の接合方法は,半導体露光装置(ステッパ)等の超低熱膨張部品の接合,自動車などの構造材の接合,石油掘削等の高圧下での使用が予定される特殊センサの接合,宝飾品の接合等,各種の接合に使用することができる。   The joining method of the present invention described above is a special sensor that is expected to be used under high pressure, such as joining of ultra-low thermal expansion parts such as semiconductor exposure devices (steppers), joining of structural materials such as automobiles, and oil drilling. It can be used for various types of joining, such as joining and jewelry joining.

特に,本発明の方法による接合では,接合界面が熱伝導に対す抵抗となり難く,良好な熱伝導性を維持しつつ接合を行うことが可能となることから,IGBT等のパーワー反動体や,高輝度LED等の電子デバイスに対する放熱体(ヒートシンク,ヒートスプレッダ)等の接合に好適に使用することができる。   In particular, in the bonding according to the method of the present invention, the bonding interface is unlikely to become a resistance to heat conduction, and it is possible to perform bonding while maintaining good heat conductivity. It can be suitably used for joining a heat radiator (heat sink, heat spreader) or the like to an electronic device such as a luminance LED.

Claims (19)

一方の被接合材に設けた平滑面と,他方の被接合材に設けた平滑面とを重合した状態で接合する方法であって,
前記一方又は他方の被接合材の少なくともいずれかが,1.0mm以上の肉厚を有する材料塊によって構成された厚肉の被接合材であり,
真空容器内において,一方の被接合材の前記平滑面に,単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,少なくとも表面が単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の被接合材の平滑面に,前記一方の被接合材に形成された前記薄膜が接触するように前記一方,他方の2つの被接合材を重ね合わせると共に,前記厚肉の被接合材の平滑面における所定の測定範囲内の最高点と最低点の高低差であるPV値に基づいて,前記PV値が小さいときには小さく,大きいときには大きい加圧力を加えることにより,前記薄膜と前記他方の被接合材の前記平滑面との接合界面及び結晶粒界に原子拡散を生じさせ,前記2つの被接合材を4.0MPa以上の接合強度で接合することを特徴とする接合方法。
A method of joining a smooth surface provided on one material to be joined and a smooth surface provided on the other material to be joined in a polymerized state,
At least one of the one or the other material to be joined is a thick material to be joined constituted by a mass of material having a thickness of 1.0 mm or more,
In a vacuum vessel, a thin film having a microcrystalline structure made of a single metal or an alloy is formed on the smooth surface of one material to be joined, and at least the surface has a microcrystalline structure made of a single metal or an alloy. The one and the other two materials to be joined are overlapped so that the thin film formed on the one material to be joined is in contact with the smooth surface of the other material to be joined. Based on the PV value which is the difference in height between the highest point and the lowest point within a predetermined measurement range on the smooth surface of the bonding material, a small pressing force is applied when the PV value is small, and a large pressing force is applied when the PV value is large. A bonding method characterized by causing atomic diffusion at a bonding interface with the smooth surface of the other bonded material and a crystal grain boundary, and bonding the two bonded materials with a bonding strength of 4.0 MPa or more.
前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において行うことを特徴とする請求項1記載の接合方法。
A thin film having a microcrystalline structure formed on the smooth surface of the one bonded material has a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and free energy of formation of oxide at room temperature. Is made of a single metal or alloy of -15 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient of 1 × 10 −40 (m 2 at room temperature). / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −15 (kJ / mol of compounds) or more,
The joining method according to claim 1, wherein the two materials to be joined are superposed in an atmosphere having a pressure exceeding 1 × 10 −4 Pa.
前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において100℃以上の温度で加熱しながら行うことを特徴とする請求項1記載の接合方法。
A thin film having a microcrystalline structure formed on the smooth surface of the one material to be bonded has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature, and free energy of formation of oxide at room temperature. Is made of a single metal or alloy of −150 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient of 1 × 10 −45 (m 2 at room temperature). / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −150 (kJ / mol of compounds) or more,
The joining method according to claim 1, wherein the two materials to be joined are superposed while heating at a temperature of 100 ° C. or higher in an atmosphere having a pressure exceeding 1 × 10 −4 Pa.
前記一方の被接合材の前記平滑面に形成する微結晶構造の薄膜を,室温における体拡散係数が1×10-55(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−330(kJ/mol of compounds)以上の単金属,あるいは合金により形成すると共に,前記他方の被接合材の平滑面の少なくとも表面を,室温における体拡散係数が1×10-55(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−330(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造とし,
前記2つの被接合材の重ね合わせを,1×10-4Paを超える圧力の雰囲気下において200℃以上の温度で加熱しながら行うことを特徴とする請求項1記載の接合方法。
A thin film having a microcrystalline structure formed on the smooth surface of the one material to be bonded has a body diffusion coefficient of 1 × 10 −55 (m 2 / s) or more at room temperature and free energy of formation of oxide at room temperature. Is made of a single metal or alloy of −330 (kJ / mol of compounds) or more, and at least the smooth surface of the other material to be joined has a body diffusion coefficient of 1 × 10 −55 (m 2 at room temperature). / s) and a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide at room temperature of −330 (kJ / mol of compounds) or more,
The joining method according to claim 1, wherein the two materials to be joined are superposed while heating at a temperature of 200 ° C. or higher in an atmosphere having a pressure exceeding 1 × 10 −4 Pa.
前記一方及び他方の被接合材を,いずれとも前記厚肉の被接合材とすることを特徴とする請求項1〜4いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 4, wherein each of the one and the other members to be joined is the thick member to be joined. 前記一方又は他方の被接合材のいずれかを,1.0mm未満の薄肉の被接合材とすることを特徴とする請求項1〜4いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 4, wherein either the one or the other material to be joined is a thin material to be joined having a thickness of less than 1.0 mm. 前記他方の被接合材の平滑面を,真空容器内において前記他方の被接合材の表面に形成した微結晶構造の薄膜により形成したことを特徴とする請求項1〜6いずれか1項記載の接合方法。   The smooth surface of said other to-be-joined material was formed with the thin film of the microcrystal structure formed in the surface of said other to-be-joined material in a vacuum vessel, The any one of Claims 1-6 characterized by the above-mentioned. Joining method. 前記厚肉の被接合材を,Al,Cu,Ag,又はAuの単金属,又は,Al,Cu,Ag,又はAuを主成分とする合金により製造された放熱体としたことを特徴とする請求項1〜7いずれか1項記載の接合方法。   The thick material to be joined is a radiator made of a single metal of Al, Cu, Ag, or Au, or an alloy mainly composed of Al, Cu, Ag, or Au. The joining method according to claim 1. 前記被接合材の重ね合わせを,大気圧以上の圧力の雰囲気下で行うことを特徴とする請求項1〜8いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 8, wherein the joining of the materials to be joined is performed in an atmosphere having a pressure equal to or higher than atmospheric pressure. 前記被接合材の重ね合わせを行う雰囲気が,空気であることを特徴とする請求項1〜9いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 9, wherein an atmosphere in which the materials to be joined are overlapped is air. 前記被接合材の重ね合わせを行う雰囲気が,78%を超える不活性ガスを含むことを特徴とする請求項1〜9いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 9, wherein an atmosphere in which the materials to be joined are superposed includes an inert gas exceeding 78%. 前記被接合材の重ね合わせを,塵埃の除去された雰囲気下で行うことを特徴とする請求項1〜11いずれか1項記載の接合方法。   The joining method according to any one of claims 1 to 11, wherein the joining of the materials to be joined is performed in an atmosphere from which dust is removed. 前記微結晶薄膜を形成する前に,前記微結晶薄膜の形成と同一真空中において,前記微結晶薄膜の形成を行う被接合材の平滑面に生じている変質層を除去することを特徴とする請求項1〜12いずれか1項記載の接合方法。   Before forming the microcrystalline thin film, an altered layer formed on a smooth surface of a material to be joined that forms the microcrystalline thin film is removed in the same vacuum as the formation of the microcrystalline thin film. The joining method according to claim 1. 前記微結晶薄膜が形成される前記被接合材の平滑面に,前記微結晶薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶薄膜を形成したことを特徴とする請求項1〜13いずれか1項に記載の接合方法。   One or more underlayers made of a thin film of a material different from the microcrystalline thin film are formed on the smooth surface of the material to be joined on which the microcrystalline thin film is formed, and the microcrystalline thin film is formed on the underlayer The joining method according to any one of claims 1 to 13. 前記下地層を,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することを特徴とする請求項14記載の接合方法。   The underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or one or more selected from the element group The bonding method according to claim 14, wherein the bonding method is formed of an alloy containing any of the above elements. 前記下地層を形成する前記単金属又は合金として,当該下地層上に形成される微結晶薄膜を形成する単金属又は合金よりも高融点で,且つ,前記微結晶薄膜を形成する単金属又は合金に対して融点の差が大きいものを使用することを特徴とする請求項14又は15記載の接合方法。   The single metal or alloy forming the underlayer has a higher melting point than the single metal or alloy forming the microcrystalline thin film formed on the underlayer, and the single metal or alloy forming the microcrystalline thin film The bonding method according to claim 14 or 15, wherein a material having a large difference in melting point with respect to the surface is used. 前記被接合材がCu又はCu合金製である場合,前記下地層を形成する前に,前記下地層の形成を行う被接合材の平滑面に生じている変質層を除去することを特徴とする請求項14〜16いずれか1項記載の接合方法。   When the material to be joined is made of Cu or Cu alloy, before the formation of the foundation layer, the altered layer generated on the smooth surface of the material to be joined for forming the foundation layer is removed. The joining method according to any one of claims 14 to 16. 前記微結晶構造の薄膜の膜厚を,2nm〜1μmの範囲としたことを特徴とする請求項1〜17いずれか1項記載の接合方法。   The bonding method according to claim 1, wherein a thickness of the thin film having the microcrystalline structure is in a range of 2 nm to 1 μm. 請求項1〜18いずれか1項記載の方法によって接合した接合部を備える構造体。   A structure provided with the junction part joined by the method of any one of Claims 1-18.
JP2013186618A 2013-09-09 2013-09-09 Joining method Active JP6318441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186618A JP6318441B2 (en) 2013-09-09 2013-09-09 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186618A JP6318441B2 (en) 2013-09-09 2013-09-09 Joining method

Publications (2)

Publication Number Publication Date
JP2015051452A true JP2015051452A (en) 2015-03-19
JP6318441B2 JP6318441B2 (en) 2018-05-09

Family

ID=52700888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186618A Active JP6318441B2 (en) 2013-09-09 2013-09-09 Joining method

Country Status (1)

Country Link
JP (1) JP6318441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024749A (en) * 2019-07-31 2021-02-22 日本特殊陶業株式会社 Ceramic structure for manufacturing apparatus of semiconductor, and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619985A (en) * 1984-06-22 1986-01-17 Kasen Nozuru Seisakusho:Kk Production of composite metallic material
JPH09314358A (en) * 1996-05-23 1997-12-09 Daido Steel Co Ltd Insert member for titanium alloy joining and joining method of titanium alloy
US20040129559A1 (en) * 2002-04-12 2004-07-08 Misner Josh W. Diffusion bonded assemblies and fabrication methods
JP2007189171A (en) * 2006-01-16 2007-07-26 Musashino Eng:Kk Normal temperature bonding method for diamond heat spreader, and heat dissipator of semiconductor device
JP2008207221A (en) * 2007-02-27 2008-09-11 Takehito Shimazu Room temperature joining method
JP2010034098A (en) * 2008-07-24 2010-02-12 Seiko Epson Corp Bonding method and bonded body
JP2010046696A (en) * 2008-08-22 2010-03-04 Musashino Eng:Kk Nuclear diffusion joining method and structure joined thereby
JP2010131674A (en) * 2009-12-24 2010-06-17 Seiko Epson Corp Joined body forming method and joined body
JP2011119716A (en) * 2009-11-04 2011-06-16 Bondtech Inc Bonding method, bonding system, and semiconductor device
JP2011235300A (en) * 2010-05-07 2011-11-24 Musashino Eng:Kk Atomic diffusion bonding method
JP2012223792A (en) * 2011-04-19 2012-11-15 Musashino Eng:Kk Atomic diffusion joining method, and package type electronic parts sealed by the method
US20130019996A1 (en) * 2011-07-19 2013-01-24 Rolls-Royce Plc. Bonding of metal components

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619985A (en) * 1984-06-22 1986-01-17 Kasen Nozuru Seisakusho:Kk Production of composite metallic material
JPH09314358A (en) * 1996-05-23 1997-12-09 Daido Steel Co Ltd Insert member for titanium alloy joining and joining method of titanium alloy
US20040129559A1 (en) * 2002-04-12 2004-07-08 Misner Josh W. Diffusion bonded assemblies and fabrication methods
JP2007189171A (en) * 2006-01-16 2007-07-26 Musashino Eng:Kk Normal temperature bonding method for diamond heat spreader, and heat dissipator of semiconductor device
JP2008207221A (en) * 2007-02-27 2008-09-11 Takehito Shimazu Room temperature joining method
JP2010034098A (en) * 2008-07-24 2010-02-12 Seiko Epson Corp Bonding method and bonded body
JP2010046696A (en) * 2008-08-22 2010-03-04 Musashino Eng:Kk Nuclear diffusion joining method and structure joined thereby
JP2011119716A (en) * 2009-11-04 2011-06-16 Bondtech Inc Bonding method, bonding system, and semiconductor device
JP2010131674A (en) * 2009-12-24 2010-06-17 Seiko Epson Corp Joined body forming method and joined body
JP2011235300A (en) * 2010-05-07 2011-11-24 Musashino Eng:Kk Atomic diffusion bonding method
JP2012223792A (en) * 2011-04-19 2012-11-15 Musashino Eng:Kk Atomic diffusion joining method, and package type electronic parts sealed by the method
US20130019996A1 (en) * 2011-07-19 2013-01-24 Rolls-Royce Plc. Bonding of metal components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024749A (en) * 2019-07-31 2021-02-22 日本特殊陶業株式会社 Ceramic structure for manufacturing apparatus of semiconductor, and manufacturing method thereof
JP7400179B2 (en) 2019-07-31 2023-12-19 日本特殊陶業株式会社 Ceramic structure for semiconductor manufacturing equipment and its manufacturing method

Also Published As

Publication number Publication date
JP6318441B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP5070557B2 (en) Room temperature bonding method
US9070547B2 (en) Composite substrate and method for manufacturing composite substrate
WO2014057748A1 (en) Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
JP5569964B2 (en) Atomic diffusion bonding method
Kunimune et al. Ultra thermal stability of LED die-attach achieved by pressureless Ag stress-migration bonding at low temperature
JP2010046696A (en) Nuclear diffusion joining method and structure joined thereby
JP6772711B2 (en) Semiconductor laminated structures and semiconductor devices
WO2014125688A1 (en) Group iii-nitride composite substrate and method of producing same, layered group iii-nitride composite substrate, as well as group iii-nitride semiconductor device and method of producing same
JP2017075382A (en) Oxygen free copper plate, manufacturing method of oxygen free copper plate and ceramic wiring board
TW201246386A (en) Metallic thermal joint for high power density chips
CN1529343A (en) Gold-tin-eutectic-based silicon/silicon bonding method
JPH08241942A (en) Thin-film laminate
JPWO2016104291A1 (en) Composite substrate, method for producing nanocarbon film, and nanocarbon film
JP2013537711A (en) Semiconductor and solar wafer and processing method thereof
JP6318441B2 (en) Joining method
JP6146042B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, group III nitride semiconductor device and method for manufacturing the same
JP7205233B2 (en) Semiconductor device, method for manufacturing semiconductor device, and method for bonding substrate
US9349704B2 (en) Jointed structure and method of manufacturing same
JP6327519B2 (en) Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig
JP6912716B2 (en) Semiconductor devices and their manufacturing methods
JP2005104810A (en) Dissimilar material complex and its manufacturing method
Yu et al. Optimization of Ag-Ag direct bonding for wafer-level power electronics packaging via design of experiments
JP5948533B2 (en) Atomic diffusion bonding method
WO2007084501A2 (en) Method for manufacturing smooth diamond heat sinks
JP6032667B2 (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6318441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250