JP6327519B2 - Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig - Google Patents

Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig Download PDF

Info

Publication number
JP6327519B2
JP6327519B2 JP2014154798A JP2014154798A JP6327519B2 JP 6327519 B2 JP6327519 B2 JP 6327519B2 JP 2014154798 A JP2014154798 A JP 2014154798A JP 2014154798 A JP2014154798 A JP 2014154798A JP 6327519 B2 JP6327519 B2 JP 6327519B2
Authority
JP
Japan
Prior art keywords
substrate
jig
silicon carbide
single crystal
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154798A
Other languages
Japanese (ja)
Other versions
JP2016032062A (en
Inventor
裕之 奥田
裕之 奥田
近藤 禎彦
禎彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014154798A priority Critical patent/JP6327519B2/en
Publication of JP2016032062A publication Critical patent/JP2016032062A/en
Application granted granted Critical
Publication of JP6327519B2 publication Critical patent/JP6327519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体素子を形成するための炭化珪素単結晶基板の製造に適した加工方法、及び治具付き炭化珪素単結晶基板に関する。   The present invention relates to a processing method suitable for manufacturing a silicon carbide single crystal substrate for forming a semiconductor element, and a silicon carbide single crystal substrate with a jig.

高性能な半導体素子を形成するために、高精度に加工された基板が必要となる。特にバンドギャップの大きい炭化珪素単結晶を用いた素子はパワー半導体用途として注目されている。この炭化珪素はシリコンに比べて硬度が高く、高精度な加工が難しい材料である。   In order to form a high-performance semiconductor element, a substrate processed with high precision is required. In particular, an element using a silicon carbide single crystal having a large band gap has attracted attention as a power semiconductor application. This silicon carbide has a higher hardness than silicon and is difficult to process with high accuracy.

ところで、シリコンウエハに代表される半導体ウエハの表面の平坦化加工技術にあっては、表面研磨時の熱変形を抑えることを目的として、炭化珪素をラッププレートのような研磨時の治具として用いる技術が知られている。
例えば、特許文献1では、半導体ウエハの研磨に用いるラッププレートとして、0.05〜0.015重量%のホウ素を焼結助剤として用いたSiCウエハラッププレートが記載されている。
By the way, in the planarization technique for the surface of a semiconductor wafer represented by a silicon wafer, silicon carbide is used as a jig for polishing such as a lap plate for the purpose of suppressing thermal deformation during surface polishing. Technology is known.
For example, Patent Document 1 describes a SiC wafer wrap plate using 0.05 to 0.015 wt% boron as a sintering aid as a lap plate used for polishing a semiconductor wafer.

また、特許文献2では、特許文献1と同様な目的で熱伝導率が200W/m・K以上で、ヤング率が450GPa以上である炭化珪素系研磨プレートが記載されている。それを達成するための好ましい構成として、嵩密度2.60g/cm〜2.90g/cmの炭化珪素焼結体に溶融Siを含浸処理し、嵩密度が3.05g/cm〜3.15g/cmで、曲げ強さが500MPa以上のSi−SiC複合材料とすることなども記載されている。 Patent Document 2 describes a silicon carbide-based polishing plate having a thermal conductivity of 200 W / m · K or more and a Young's modulus of 450 GPa or more for the same purpose as Patent Document 1. Preferred configurations to achieve them, impregnated with molten Si into the silicon carbide sintered body having a bulk density of 2.60g / cm 3 ~2.90g / cm 3 , a bulk density of 3.05 g / cm 3 to 3 It is also described that a Si-SiC composite material having a flexural strength of 500 MPa or more at .15 g / cm 3 is used.

また、特許文献3では、単結晶ウエハに、コート層を介して加熱加圧接合方法等により、炭化珪素の多結晶体からなる炭化珪素多結晶基板を貼り付ける方法が記載されている。   Patent Document 3 describes a method in which a silicon carbide polycrystalline substrate made of a polycrystalline silicon carbide is bonded to a single crystal wafer by a heat-pressure bonding method through a coat layer.

また、特許文献4では、単結晶炭化珪素基板と多結晶炭化珪素基板を熱処理を行ない貼り合わせて、単結晶炭化珪素基板を薄膜化する方法が記載されている。   Patent Document 4 describes a method of thinning a single crystal silicon carbide substrate by bonding a single crystal silicon carbide substrate and a polycrystalline silicon carbide substrate by heat treatment.

特開平6−320415号公報JP-A-6-320415 特開2007−283435号公報JP 2007-283435 A 特開2010−235392号公報JP 2010-235392 A 特開2009−117533号公報JP 2009-117533 A

上述する特許文献1及び2の炭化珪素焼結体の使用は、炭化珪素のもつ絶対的な低熱膨張特性を利用することで治具の変形を抑えることが主たる目的であった。そのため、研磨対象は限定されておらず、具体例としてはシリコン以外は規定されていない。また特許文献3及び4は、いずれも、単結晶の炭化珪素基板に多結晶の炭化珪素基板を高強度に貼り付けて結合することを目的としており、非破壊で基板同士を剥離することを想定しておらず、剥離したときの汚損は免れない。   The use of the silicon carbide sintered body of Patent Documents 1 and 2 described above was mainly intended to suppress deformation of the jig by utilizing the absolute low thermal expansion characteristics of silicon carbide. Therefore, the object to be polished is not limited, and no specific examples other than silicon are specified. Patent Documents 3 and 4 are all intended to bond a polycrystalline silicon carbide substrate to a single crystal silicon carbide substrate with high strength and bond them, and assume that the substrates are peeled off nondestructively. It is not done, and the damage when it peels is inevitable.

一方、低熱膨張特性を有すると共に、ヤング率がシリコンよりもはるかに高い炭化珪素基板の平坦化加工にあっては、特に加工時の治具の材質については、問題とされておらず、アルミナやガラスなどが使用されてきた。しかし、本発明者の検討によれば、炭化珪素基板と治具を加熱接着した場合に、治具側又は基板側に反りが生じるため、基準とする面が変形し、加工精度が悪いという問題が確認された。また、加工後の基板を耐熱性や耐薬品性に捕らわれることなく治具に貼り付けたまま半導体プロセスに適用可能な治具付きの炭化珪素単結晶基板は提案されていなかった。   On the other hand, in flattening a silicon carbide substrate that has low thermal expansion characteristics and a Young's modulus much higher than that of silicon, the material of the jig at the time of processing is not particularly problematic. Glass and the like have been used. However, according to the study of the present inventor, when the silicon carbide substrate and the jig are heat bonded, the jig side or the substrate side is warped, so that the reference surface is deformed and the processing accuracy is poor. Was confirmed. In addition, a silicon carbide single crystal substrate with a jig that can be applied to a semiconductor process while the substrate after processing is stuck to the jig without being caught by heat resistance and chemical resistance has not been proposed.

本発明の目的は、炭化珪素単結晶基板という従来のシリコンとは異なる材料にあって、高精度な表面の平坦化加工を達成できる炭化珪素単結晶基板の加工方法、及び治具付き炭化珪素単結晶基板を提供することである。   An object of the present invention is to provide a silicon carbide single crystal substrate, a silicon carbide single crystal substrate, which is made of a material different from conventional silicon and capable of achieving a highly accurate surface planarization process, and a silicon carbide single crystal with a jig. It is to provide a crystal substrate.

上述した課題を解決するため、本発明は次のような特徴を有している。
第1の本発明は、炭化珪素単結晶からなる基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200(CTE;Coefficient of Thermal Expansion)の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、前記基板の他方の主面を平坦化加工する工程と、前記基板と治具とを剥離する工程と、を有する炭化珪素単結晶基板の加工方法である。
In order to solve the above-described problems, the present invention has the following features.
In the first aspect of the present invention, the ratio of a coefficient of thermal expansion α 25-200 (CTE; Coefficient of Thermal Expansion) at 25 ° C. to 200 ° C. with respect to the substrate made of a silicon carbide single crystal and 25 to 200 ° C. is 1 or more. And a jig having a thermal conductivity ratio of 0.2 to 1.8 and having a major surface larger than the outer diameter of the substrate and serving as a support surface of the substrate. A step of heat-bonding one main surface of the substrate and the main surface of the jig via a thermoplastic or thermosetting adhesive member, and planarizing the other main surface of the substrate A method for processing a silicon carbide single crystal substrate, comprising: a step of separating the substrate and the jig.

第2の本発明は、炭化珪素単結晶からなる基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、前記基板の他方の主面をRa≦1nmまで平坦化加工する工程と、前記基板を治具から剥離する工程と、前記基板の他方の主面に炭化珪素膜のエピタキシャル成長面を形成する工程と、を有する炭化珪素単結晶基板の加工方法である。 According to a second aspect of the present invention, the ratio of the thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to the substrate made of a silicon carbide single crystal and the substrate is from 0.7 to 1.3; Preparing a jig having a thermal conductivity ratio of 0.2 to 1.8 and having a major surface larger than the outer diameter of the substrate and serving as a support surface of the substrate; A step of heat-bonding the main surface and the main surface of the jig via a thermoplastic or thermosetting adhesive member, a step of flattening the other main surface of the substrate to Ra ≦ 1 nm, A method for processing a silicon carbide single crystal substrate, comprising: a step of peeling the substrate from a jig; and a step of forming an epitaxial growth surface of a silicon carbide film on the other main surface of the substrate.

また、前記平坦化加工により、基板のGBIR(Global Back Ideal Ranges:6SEMI M1−1013)を4μm以下とすることが好ましい。   Moreover, it is preferable that GBIR (Global Back Ideal Ranges: 6SEMI M1-1013) of a board | substrate is 4 micrometers or less by the said planarization process.

前記基板の平坦化加工は、化学機械研磨(CMP;Chemical Mechanical Polishing)加工する工程を含むことが好ましい。   It is preferable that the planarization process of the said board | substrate includes the process of chemical mechanical polishing (CMP; Chemical Mechanical Polishing) process.

また、前記治具は、板状であり厚さは18mm以下であり、主面間の平行度が10μm以下であることが好ましい。   Moreover, it is preferable that the said jig | tool is plate shape, thickness is 18 mm or less, and the parallelism between main surfaces is 10 micrometers or less.

第3の本発明は、炭化珪素単結晶からなり、一方の主面に素子が形成された基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、
前記基板の他方の主面を平坦化加工する工程と、洗浄、又は熱処理、又はスパッタ、又はエッチング、又はめっきのいずれか少なくとも1つ以上行う半導体プロセス工程と、前記基板と治具とを剥離する工程と、を有する炭化珪素単結晶基板の加工方法である。
In the third aspect of the present invention, the ratio of the coefficient of thermal expansion α 25-200 at 25 ° C. to 200 ° C. with respect to a substrate made of silicon carbide single crystal and having an element formed on one main surface is 25.degree . A jig having a main surface which is 7 or more and 1.3 or less and a thermal conductivity ratio is 0.2 or more and 1.8 or less and which is larger than an outer diameter of the substrate and serves as a support surface of the substrate; A step of heat-bonding one main surface of the substrate and the main surface of the jig via a thermoplastic or thermosetting adhesive member,
A step of planarizing the other main surface of the substrate, a semiconductor process step of performing at least one of cleaning, heat treatment, sputtering, etching, or plating, and peeling the substrate from the jig. A process for processing a silicon carbide single crystal substrate.

前記平坦化加工により、基板の平均厚さを500μm以下とすることが好ましい。   It is preferable that the average thickness of the substrate is 500 μm or less by the planarization process.

前記基板の平坦化加工は、研磨加工する工程を含むことが好ましい。   The planarization process of the substrate preferably includes a polishing process.

また、前記治具は、板状で前記基板の外径より0.3mm以上5mm以下大きく、厚さは0.5mm以上3mm以下で、主面のSORI(SEMI M1−1013)が30μm以下であることが好ましい。   The jig is plate-shaped and is 0.3 mm or more and 5 mm or less larger than the outer diameter of the substrate, the thickness is 0.5 mm or more and 3 mm or less, and the main surface SORI (SEMI M1-1013) is 30 μm or less. It is preferable.

また、本発明は、炭化珪素単結晶からなる基板と、熱可塑性又は熱硬化性の接着部材と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、厚さは18mm以下である治具と、からなる治具付き炭化珪素単結晶基板である。 Further, according to the present invention, a ratio of a thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to a substrate made of a silicon carbide single crystal, a thermoplastic or thermosetting adhesive member, and the substrate is 0.7. A silicon carbide single crystal substrate with a jig, comprising: a jig having a thermal conductivity ratio of 0.2 to 1.8 and a thickness of 18 mm or less. is there.

さらに、治具の主面間の平行度が10μm以下であることが好ましい。   Furthermore, the parallelism between the main surfaces of the jig is preferably 10 μm or less.

また、基板の一方の主面に素子が形成され、平均厚さが500μm以下であり、治具は前記基板の外径より0.3mm以上5mm以下大きく、厚さは0.5mm以上3mm以下で、主面のSORIが30μm以下であることが好ましい。   Further, an element is formed on one main surface of the substrate, the average thickness is 500 μm or less, the jig is 0.3 mm or more and 5 mm or less larger than the outer diameter of the substrate, and the thickness is 0.5 mm or more and 3 mm or less. The SORI of the main surface is preferably 30 μm or less.

ここで、前記治具付き炭化珪素単結晶基板は、前記基板の周縁部に前記接着部材からなる面一の環状壁を有することが好ましい。   Here, it is preferable that the silicon carbide single crystal substrate with a jig has a flush annular wall made of the adhesive member at a peripheral portion of the substrate.

本発明の加工方法によれば、治具の反りが抑えられると共に、基板側の反りやうねりを抑えて炭化珪素単結晶基板の一主面を高精度に平坦化することができる。また、平坦化加工後に、汚損なくきれいに治具を剥離することが出来る。これらにより、コストを抑えて効率よく高精度な炭化珪素単結晶基板を得ることができる。
また、本発明の治具付き炭化珪素単結晶基板によれば、基板と治具の接着強度が高く、反りの少ない高精度な加工に適した治具付き炭化珪素単結晶基板を得られる。
According to the processing method of the present invention, the warpage of the jig can be suppressed, and the main surface of the silicon carbide single crystal substrate can be planarized with high accuracy by suppressing the warpage and undulation on the substrate side. In addition, the jig can be peeled cleanly after the flattening process. As a result, it is possible to obtain a silicon carbide single crystal substrate with high efficiency and low cost.
Moreover, according to the silicon carbide single crystal substrate with a jig of the present invention, a silicon carbide single crystal substrate with a jig suitable for high-precision processing with high bonding strength between the substrate and the jig and less warpage can be obtained.

本発明の加工方法に用いる治具付き炭化珪素単結晶基板を示し、(a)は斜視図、(b)はA−A’断面図である。The silicon carbide single-crystal board | substrate with a jig | tool used for the processing method of this invention is shown, (a) is a perspective view, (b) is A-A 'sectional drawing. 本発明の加工方法における実施形態の各工程を説明する図である。It is a figure explaining each process of embodiment in the processing method of the present invention. 本発明の加工方法における別の実施形態の各工程を説明する図である。It is a figure explaining each process of another embodiment in the processing method of the present invention. 本発明の治具付き炭化珪素単結晶基板を示し、(a)は平坦化加工の前、(b)は平坦化加工後を示す概略図である。The silicon carbide single-crystal board | substrate with a jig | tool of this invention is shown, (a) is before a planarization process, (b) is the schematic which shows after a planarization process. 本発明の治具付き炭化珪素単結晶基板の周縁部の概観(チッピング無し)を示す写真である。It is a photograph which shows the external appearance (no chipping) of the peripheral part of the silicon carbide single crystal substrate with a jig | tool of this invention. 同じく比較例の周縁部の概観(チッピングとクラック有り)を示す写真である。It is a photograph which similarly shows the outline (with chipping and a crack) of the peripheral part of a comparative example.

[第1の加工方法]
以下、本発明の概要について説明する。
まず発明者らは、炭化珪素単結晶基板(以下、単に基板ということがある。)の平坦化加工時に反りが発生するという問題は、薄い治具を使用した場合以外に、主として接着時の加熱に伴う炭化珪素単結晶基板と治具との熱膨張特性の差および熱伝導率の差に起因することを見出し本発明に想到した。
すなわち、本発明において、基板は炭化珪素単結晶を用いる。一方の治具は、25℃から200℃における熱膨張係数α25−200について基板との比が0.7以上1.3以下であって、かつ熱伝導率については基板との比が0.2以上1.8以下であるものを用いることが一つの特徴である。尚、炭化珪素単結晶は育成の条件などにより品質が変わり、それに応じて熱膨張係数α25−200、及び熱伝導率も若干変動する。そこで、以下の説明における炭化珪素単結晶は表1に示す通り、熱膨張係数α25−200が4.2×10−6m/K、熱伝導率が490W/m・Kとして扱う。
ここで、熱膨張係数α25−200の比が0.7以上1.3以下とする理由は、ワックスなどの接着部材が60〜200℃の範囲で接着されるので、この温度範囲から室温までの温度差による熱膨張の寸法の差が反りの主因となっているからである。よって、両者の熱膨張係数α25−200の比を0.7以上1.3以下の範囲に収めることが肝要である。好ましくは0.8以上1.2以下、より好ましくは0.9以上1.1以下である。なお、ここでいう熱膨張係数α25−200の比とは、基板の熱膨張係数α25−200に当該比の値を乗じたものが、治具の熱膨張係数α25−200になるということである。すなわち、基板の熱膨張係数α25−200が4.2×10−6m/Kとすると、治具の熱膨張係数α25−200は2.94×10−6m/K以上、5.46×10−6m/K以下とする。
[First processing method]
The outline of the present invention will be described below.
First, the inventors have a problem that warpage occurs during flattening processing of a silicon carbide single crystal substrate (hereinafter, simply referred to as a substrate). The inventors have found that this is due to the difference in thermal expansion characteristics and the difference in thermal conductivity between the silicon carbide single crystal substrate and the jig accompanying this, and the inventors have conceived the present invention.
That is, in the present invention, a silicon carbide single crystal is used for the substrate. One jig has a thermal expansion coefficient α 25-200 from 25 ° C. to 200 ° C. of a ratio of 0.7 to 1.3 with respect to the substrate, and a thermal conductivity of 0. One feature is to use a material that is 2 or more and 1.8 or less. Note that the quality of the silicon carbide single crystal changes depending on the growth conditions and the like, and the thermal expansion coefficient α 25-200 and the thermal conductivity slightly vary accordingly. Therefore, as shown in Table 1, the silicon carbide single crystal in the following description is handled with a thermal expansion coefficient α 25-200 of 4.2 × 10 −6 m / K and a thermal conductivity of 490 W / m · K.
Here, the reason why the ratio of the thermal expansion coefficient α 25-200 is 0.7 or more and 1.3 or less is that an adhesive member such as wax is bonded in the range of 60 to 200 ° C. This is because the difference in thermal expansion due to the temperature difference is the main cause of warpage. Therefore, it is important to keep the ratio of the thermal expansion coefficient α 25-200 between 0.7 and 1.3. Preferably they are 0.8 or more and 1.2 or less, More preferably, they are 0.9 or more and 1.1 or less. Incidentally, as referred to herein a ratio of the thermal expansion coefficient alpha 25-200 A, multiplied by the value of the ratio of thermal expansion coefficient alpha 25-200 of the substrate becomes the thermal expansion coefficient alpha 25-200 jig That is. That is, if the thermal expansion coefficient α 25-200 of the substrate is 4.2 × 10 −6 m / K, the thermal expansion coefficient α 25-200 of the jig is 2.94 × 10 −6 m / K or more. 46 × 10 −6 m / K or less.

次に、熱伝導率の比が0.2以上1.8以下とする理由を以下に説明する。上述したとおり、基板に対して25℃から200℃における熱膨張係数α25−200の比を0.7以上1.3以下を満足する治具を用いることによって、それぞれの温度における両者の寸法を近づけることはできる。しかし、治具と基板のそれぞれにおいて温度差が生じた場合には、両者は異なる寸法となる。例えば、熱膨張係数が3.3×10−6m/K、熱伝導率が1.2W/m・Kとなるホウケイ酸ガラスの治具と、60℃で軟化する熱可塑性の接着部材とを用いた場合、加熱後の冷却過程において、熱伝導率の高い基板だけが先に冷却されて室温付近の温度となり、その後に熱伝導率の低い治具が冷却されていく。すると、治具の温度が接着部材の軟化点を通過して冷却する過程において接着部材が固まって基板と接着され、その温度からさらに冷却されて治具は寸法が小さくなる。これに対し、基板の寸法は変化しないので、この過程において両者の収縮の差が広がる。その結果が基板側の反りになって現れる。このようなことから、基板と治具を加熱接着した後の冷却過程において、両者間の温度差を抑えるために基板と治具の熱伝導率の比は0.2以上1.8以下としている。好ましくは0.3以上1.7以下、より好ましくは0.5以上1.5以下である。なお、ここでいう熱伝導率の比とは、基板の熱伝導率に当該比の値を乗じたものが、治具の熱伝導率になるということである。すなわち、基板の熱伝導率が490W/m・Kとすると、治具の熱伝導率は98W/m・K以上、882W/m・K以下とする。
なお、この問題の別のアプローチとして、温度差を抑えるために恒温槽などを用いて徐々に冷却する方法も考えられるが、冷却に時間がかかり、接着部材の変質などを考慮すると、熱伝導率の比を0.2以上1.8以下とする方が現実的である。但し、この方法を併用することを妨げない。
Next, the reason why the thermal conductivity ratio is 0.2 or more and 1.8 or less will be described below. As described above, by using a jig that satisfies the ratio of thermal expansion coefficient α 25-200 from 25 ° C. to 200 ° C. with respect to the substrate of 0.7 or more and 1.3 or less, both dimensions at each temperature can be set. You can get closer. However, when a temperature difference occurs between the jig and the substrate, the two have different dimensions. For example, a borosilicate glass jig having a thermal expansion coefficient of 3.3 × 10 −6 m / K and a thermal conductivity of 1.2 W / m · K, and a thermoplastic adhesive member softened at 60 ° C. When used, in the cooling process after heating, only the substrate with high thermal conductivity is cooled first to a temperature near room temperature, and then the jig with low thermal conductivity is cooled. Then, in the process in which the temperature of the jig passes through the softening point of the adhesive member and cools, the adhesive member is solidified and bonded to the substrate, and further cooled from that temperature, the jig becomes smaller in size. On the other hand, since the dimensions of the substrate do not change, the difference in contraction between the two increases in this process. The result appears as warpage on the substrate side. For this reason, in the cooling process after heat-bonding the substrate and the jig, the thermal conductivity ratio between the substrate and the jig is set to 0.2 or more and 1.8 or less in order to suppress the temperature difference between the two. . Preferably they are 0.3 or more and 1.7 or less, More preferably, they are 0.5 or more and 1.5 or less. In addition, the ratio of thermal conductivity here means that the thermal conductivity of the jig is obtained by multiplying the thermal conductivity of the substrate by the value of the ratio. That is, assuming that the thermal conductivity of the substrate is 490 W / m · K, the thermal conductivity of the jig is 98 W / m · K or more and 882 W / m · K or less.
As another approach to this problem, a method of gradually cooling using a thermostatic bath or the like is conceivable to suppress the temperature difference. However, it takes time to cool down, and considering the deterioration of the adhesive member, the thermal conductivity is considered. It is more practical to set the ratio of 0.2 to 1.8. However, this method is not prevented from being used together.

以上により治具は、熱膨張係数α25−200と熱伝導率の要件を兼ねているものを用いる。両者の条件を兼ねるためには、材質の選定に大きく依存する。端的に言えば上述した範囲とするためには基板と同一組成系を主成分とする材料から形成した治具とすることが好ましい。例えば、炭化珪素(単結晶、多結晶)、ダイヤ、GaN、あるいは熱伝導の良いフィラーを混合したセラミックスとしてSiやBNなどが挙げられる。特に炭化珪素以外の成分を不可避的な不純物とする組成とすれば、熱膨張係数α25−200と熱伝導率は実質同一のものとすることができるので最も好ましい。また、組織としても基板と同じ単結晶とすれば、熱膨張特性や熱伝導率自体も実質同一となるため、特性的にはさらに好ましいものとなる。但し、単結晶は非常に高価であるので、これらの特性に大きな差異がない焼結して得られた緻密な多結晶体の適用がコスト面からは好ましい。 As described above, a jig having both the thermal expansion coefficient α 25-200 and the thermal conductivity is used. In order to satisfy both conditions, it depends greatly on the selection of the material. In short, it is preferable to use a jig made of a material whose main component is the same composition as that of the substrate in order to make the above-mentioned range. For example, silicon carbide (single crystal, polycrystal), diamond, GaN, or ceramics mixed with a heat conductive filler may be Si 3 N 4 or BN. In particular, a composition having components other than silicon carbide as inevitable impurities is most preferable because the thermal expansion coefficient α 25-200 and the thermal conductivity can be made substantially the same. Further, if the structure is the same single crystal as the substrate, the thermal expansion characteristics and the thermal conductivity itself are substantially the same, which is further preferable in terms of characteristics. However, since a single crystal is very expensive, it is preferable from the viewpoint of cost to apply a dense polycrystal obtained by sintering without significant difference in these characteristics.

また、治具は、板状で、通常は円板状であり、機械的強度や反り、変形の点から0.5〜18mm程度の厚さは必要である。このとき基板1を高精度に加工するためには、治具の主面間の平行度は10μm以下が良く、5μm以下が好ましく、2μm以下がさらに好ましい。また、基板を貼り付ける側の一方の主面の面粗さは、基板を当接させて基準とできる程度であれば良い。例えば、面粗さが小さいほうが基板を当接させて基準としつつ、さらに基板に当接させた際に傷がつきにくいため好ましい。また、面粗さが大きければ、余分な接着部材を逃がしつつ接着強度を確保できるため好ましい。さらに、治具の主面に余分な接着部材を逃がすための孔や溝などを設けても良い。無論、他方の主面も同様の面性状にしても良い。なお、後述するように、CMPによる研磨を行った後に、治具から剥離し、基板にエピタキシャル膜の成長面を形成する場合は、厚みが18mm以下で主面間の平行度が10μm以下であるものが好ましい。これは、CMP加工による精密研磨をする際に治具が変形しない厚さを確保しつつ、厚さが薄いほうが軽量で取り扱いやすく、加工時の作業性が向上することと、平行度が高いほうが基準面の精度が高くなることの理由によるものである。   Further, the jig is plate-shaped, usually disk-shaped, and needs a thickness of about 0.5 to 18 mm from the viewpoint of mechanical strength, warpage, and deformation. At this time, in order to process the substrate 1 with high accuracy, the parallelism between the principal surfaces of the jig is preferably 10 μm or less, preferably 5 μm or less, and more preferably 2 μm or less. Further, the surface roughness of one main surface on the side to which the substrate is attached may be of a level that can be used as a reference by contacting the substrate. For example, it is preferable that the surface roughness is small because the substrate is brought into contact with the reference and the surface is further scratched when further brought into contact with the substrate. Further, it is preferable that the surface roughness is large because the adhesive strength can be ensured while allowing the excess adhesive member to escape. Furthermore, a hole, a groove, or the like for allowing an extra adhesive member to escape may be provided on the main surface of the jig. Of course, the other main surface may have the same surface properties. As will be described later, after polishing by CMP, after peeling from the jig and forming a growth surface of the epitaxial film on the substrate, the thickness is 18 mm or less and the parallelism between the main surfaces is 10 μm or less. Those are preferred. This means that the thickness of the jig that is not deformed when performing precision polishing by CMP processing is secured, while the thinner the thickness is, the easier it is to handle and the lighter handling, the better the workability during processing, and the higher the parallelism. This is because the accuracy of the reference surface is increased.

また、半導体プロセスに流す治具付き基板の治具は、外径は基板の外径よりも0.3〜5mm程度大きく、厚みが0.5〜3mmで、主面のSORIが30μm以下であるものが好ましい。外径は、加工した後の薄くなった炭化珪素単結晶基板のエッジを保護するために、外径よりも0.3mm以上は大きいことが好ましく、半導体プロセスの装置に適用するために、外径より5mm以下で大きいことが好ましい。厚みは、半導体プロセスの装置に適用するために3mm以下が好ましく、ハンドリング性が低下するために0.5mm以上が好ましい。また、主面のSORIについては、治具と基板を接着するときの接着層を均一にして基板の加工精度を高め、さらに半導体プロセスにより成膜される膜厚等の寸法精度や冷却効率を高めるためにも30μm以下であることが好ましい。十分な剛性を有する治具であれば、治具の他方の主面の3点で保持されるような構成としておいても良い。保持された点の高さを調整することで、重りによる荷重のかかる向きを調整できるため、さらに高精度の加工が可能となるため好ましい。   Further, the jig of the substrate with a jig to be flown through the semiconductor process has an outer diameter that is about 0.3 to 5 mm larger than the outer diameter of the substrate, a thickness of 0.5 to 3 mm, and a main surface SORI of 30 μm or less. Those are preferred. In order to protect the edge of the thinned silicon carbide single crystal substrate after processing, the outer diameter is preferably larger than the outer diameter by 0.3 mm or more. It is preferable that it is larger than 5 mm. The thickness is preferably 3 mm or less in order to be applied to a semiconductor process apparatus, and is preferably 0.5 mm or more in order to reduce handling properties. As for SORI on the main surface, the bonding layer for bonding the jig and the substrate is made uniform to increase the processing accuracy of the substrate, and further the dimensional accuracy such as the film thickness formed by the semiconductor process and the cooling efficiency are increased. Therefore, the thickness is preferably 30 μm or less. If it is a jig | tool which has sufficient rigidity, you may set it as the structure hold | maintained at three points of the other main surface of a jig | tool. By adjusting the height of the held points, it is possible to adjust the direction in which the load due to the weight is applied.

そして、本発明では前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着するものである。例えば、図1のように、円形の基板1の一方の主面5と、円形の治具2の一方の主面6とを、接着部材3を用いて貼り合わせる。よって、接着時の加熱に伴う炭化珪素単結晶基板と治具との熱膨張特性と熱伝導特性の夫々の差に起因する課題に着目したものであり、加熱接着を行なわない工程を経るものは除外する。図1では1つの治具に対して1枚の基板を接着しているが、複数枚の基板を1つの治具に接着して、同時に研磨加工しても良い。
使用する熱可塑性又は熱硬化性の接着部材は、何れの接着剤でも良いが、炭化珪素は硬度が高いため、高い強度で接着できて、少なくとも平坦化加工時に十分な接着強度を有するものが良い。但し、加工後には基板から接着部材を容易に除去できることが好ましい。接着強度は、接着部材の接着力に加え、基板と治具の接触面積に依存するため、加工対象の寸法や治具の形状などに応じて適宜選択するのが好ましい。また、加熱時の粘度は低い方が高精度な接着が行えるため好ましい。さらに、平坦化加工等に用いる加工液や、洗浄に用いる洗浄液などの種類に応じて、水、有機溶媒、酸やアルカリなどへの不溶性や可溶性を選択し、加工中に剥離せず、加工後に基板への汚損や破損を生じずにきれいに剥離しやすいものが良い。例えば、中性の加工液を用いて加工する場合において、加工中に十分な接着強度を発揮し、加工後にアルカリなどの洗浄液を用いて除去することができる、熱可塑性のロウ状物質のワックスを含む樹脂などの接着部材であれば、安価に入手することができるため好ましい。具体的には60℃〜140℃程度の温度で軟化するが、200℃程度までは対薬品性が安定しており有機溶媒などで洗浄可能な熱可塑性の接着剤、例えば、PEG、PPG、各種脂肪酸などのロウ状物質と、ロジン、酢酸ビニル、ナイロン、アクリル、各種ポリマーなどの樹脂成分とを混合した合成ワックスなどがある。
And in this invention, one main surface of the said board | substrate and the main surface of the said jig | tool are heat-bonded through a thermoplastic or thermosetting adhesive member. For example, as shown in FIG. 1, one main surface 5 of the circular substrate 1 and one main surface 6 of the circular jig 2 are bonded together using an adhesive member 3. Therefore, the focus is on the problems caused by the difference between the thermal expansion characteristics and the thermal conductivity characteristics between the silicon carbide single crystal substrate and the jig accompanying the heating at the time of bonding. exclude. In FIG. 1, one substrate is bonded to one jig, but a plurality of substrates may be bonded to one jig and simultaneously polished.
The thermoplastic or thermosetting adhesive member used may be any adhesive, but since silicon carbide has high hardness, it can be bonded with high strength, and at least has sufficient adhesive strength during flattening processing. . However, it is preferable that the adhesive member can be easily removed from the substrate after processing. Since the adhesive strength depends on the contact area between the substrate and the jig in addition to the adhesive force of the adhesive member, it is preferable to select the adhesive strength appropriately according to the dimension to be processed and the shape of the jig. A lower viscosity at the time of heating is preferable because highly accurate adhesion can be performed. Furthermore, depending on the type of processing liquid used for flattening processing, etc., and the type of cleaning liquid used for cleaning, insolubility and solubility in water, organic solvents, acids, alkalis, etc. are selected, without peeling during processing, after processing Those that are easy to peel cleanly without causing damage or damage to the substrate are good. For example, when processing using a neutral processing liquid, a wax of a thermoplastic waxy substance that exhibits sufficient adhesive strength during processing and can be removed using a cleaning liquid such as an alkali after processing is used. An adhesive member such as a resin is preferable because it can be obtained at low cost. Specifically, it is softened at a temperature of about 60 ° C. to 140 ° C., but up to about 200 ° C., a chemical adhesive that is stable and can be washed with an organic solvent, such as PEG, PPG, various types There are synthetic waxes in which waxy substances such as fatty acids are mixed with resin components such as rosin, vinyl acetate, nylon, acrylic and various polymers.

次に、平坦化加工は、研削や、砥粒等による機械研磨、化学機械研磨等の加工方法を採用することができるが、特に限定されない。また、これらの手法を組み合わせて用いることもできる。
そして、平坦化加工後は、基板と治具とを剥離してから他の工程を付与したり、平坦化加工後の治具付きの基板に他の工程を付与した後に、基板と治具を剥離することもできる。剥離工程は、基板を引っ張ったり、スクレイパー等で分断するなど機械的に剥離する方法や、加熱による方法や、剥離・洗浄用の薬液を用いたりする方法等、接着方法や状況などに応じて選択し、基板や素子などを傷つけずに適切な方法によって行うことが出来る。
以上の工程により、炭化珪素単結晶基板という従来のシリコン基板とは異なる材料にあって、高精度な表面の平坦化加工を達成できる。
Next, the planarization process can employ a processing method such as grinding, mechanical polishing with abrasive grains, or chemical mechanical polishing, but is not particularly limited. A combination of these techniques can also be used.
After the planarization process, the substrate and the jig are separated from each other and then another process is applied, or after the other process is applied to the substrate with the jig after the planarization process, the substrate and the jig are attached. It can also be peeled off. The peeling process is selected according to the bonding method and situation, such as a method of mechanical peeling such as pulling the substrate or dividing with a scraper, a method using heating, a method using a chemical for peeling and cleaning, etc. However, it can be performed by an appropriate method without damaging the substrate or the element.
Through the above steps, a highly accurate surface planarization process can be achieved with a material different from a conventional silicon substrate called a silicon carbide single crystal substrate.

[第2の加工方法]
第2の本発明による加工方法は、炭化珪素膜のエピタキシャル成長面を形成するための炭化珪素単結晶基板の加工方法として有効である。平坦化加工の前までは上述した第1の加工方法とほぼ同様であるので以下は異なる工程について説明する。
即ち、この加工方法では、基板の他方の主面の面粗さRa(JIS B 0601(1994))をRa≦1nmまで平坦化加工する工程と、
剥離後に前記基板の他方の主面に炭化珪素膜のエピタキシャル成長面を形成する工程と、を有することが特徴である。
ここで、平坦化加工において、Ra≦1nmまで平坦化するのは、原子配列に近い精度で平坦化するためであり、エピタキシャル成長時の表面形状による欠陥を抑制するためである。この平坦化加工は、加工変質層を抑制するためや微小砥粒の加工効率を向上させるために化学機械研磨で行うことが好ましい。
また、基板の他方の主面に炭化珪素膜のエピタキシャル成長面を形成するのは、同じ結晶構造を有し、欠陥の少ない結晶を下地の結晶構造に合わせて育成しやすい理由からであり、必要に応じて半導体特性を引き出すために添加剤をドープしても良い。エピタキシャル成長は様々な方法で行うことができ、例えば、分子線エピタキシー法や有機金属気相成長法、液相エピタキシー法などがある。
[Second processing method]
The processing method according to the second aspect of the present invention is effective as a processing method for a silicon carbide single crystal substrate for forming an epitaxial growth surface of a silicon carbide film. Before the flattening process, it is almost the same as the first processing method described above, and therefore different processes will be described below.
That is, in this processing method, the surface roughness Ra (JIS B 0601 (1994)) of the other main surface of the substrate is planarized to Ra ≦ 1 nm,
And a step of forming an epitaxial growth surface of a silicon carbide film on the other main surface of the substrate after peeling.
Here, in the flattening process, the reason for flattening to Ra ≦ 1 nm is to flatten with an accuracy close to the atomic arrangement, and to suppress defects due to the surface shape during epitaxial growth. This flattening process is preferably performed by chemical mechanical polishing in order to suppress the work-affected layer and to improve the processing efficiency of the fine abrasive grains.
The reason why the epitaxial growth surface of the silicon carbide film is formed on the other main surface of the substrate is that it is easy to grow a crystal having the same crystal structure and few defects in accordance with the underlying crystal structure. Accordingly, an additive may be doped to bring out semiconductor characteristics. Epitaxial growth can be performed by various methods such as molecular beam epitaxy, metal organic vapor phase epitaxy, and liquid phase epitaxy.

また、この加工方法では、平坦化加工により、基板のGBIRを4μm以下とすることが望ましい。好ましくは3μm以下、より好ましくは2μm以下である。GBIRが4μm以下の範囲であると、裏面を吸着したときに高さの差が4μm以下に収まるため、炭化珪素単結晶膜の厚さばらつきを抑えつつエピタキシャル成長させることができ、その後の素子作製の際にも精度が向上するため特に好ましいものとなる。さらに、化学機械研磨加工する工程を採用するとRaをより小さくすることができ、さらに加工変質層も小さくなるため好ましい。   In this processing method, the GBIR of the substrate is desirably 4 μm or less by planarization. Preferably it is 3 micrometers or less, More preferably, it is 2 micrometers or less. If the GBIR is in the range of 4 μm or less, the difference in height will be 4 μm or less when the back surface is adsorbed, so that the epitaxial growth can be performed while suppressing the thickness variation of the silicon carbide single crystal film, and the subsequent device fabrication. In particular, it is particularly preferable because accuracy is improved. Furthermore, it is preferable to employ a chemical mechanical polishing process because Ra can be further reduced and the work-affected layer is also reduced.

また、上述したように前記治具は厚さ18mm以下であり、主面間の平行度が10μm以下であることで、特にエピタキシャル用の研磨加工に適する炭化珪素単結晶基板の加工方法となる。好ましくは5μm以下、さらに好ましくは2μm以下である。ここで、厚さ18mm以下と規定するのは、治具の剛性を確保しつつ作業性向上のためである。   Further, as described above, the jig has a thickness of 18 mm or less, and the parallelism between the main surfaces is 10 μm or less, which makes a silicon carbide single crystal substrate processing method particularly suitable for epitaxial polishing. Preferably it is 5 micrometers or less, More preferably, it is 2 micrometers or less. Here, the thickness is defined as 18 mm or less in order to improve workability while ensuring the rigidity of the jig.

[第3の加工方法]
第3の本発明による加工方法は、基板の一方の主面5に素子13が形成された基板の厚さを薄くすることが特徴である。基板の厚さを薄くするのは、一方の主面の素子13に対して、基板を通じた電気抵抗を下げ、さらに、他方の主面を平坦化加工した後に、電極を設けるためにそのまま半導体プロセス工程に移ることができる加工方法として有効である。尚、ここで用いる基板には基板の一方の主面5に、高電圧で動作する集積回路やダイオード素子、基板と反対のキャリアがドープされた膜、溝、電極、配線などの各種素子が形成されている。これら基板上に予め形成された構成要素を本発明では素子と総称している。
第3の加工方法は、平坦化加工までは上述した第1の加工方法とほぼ同様であるので以下は異なる工程について説明する。
即ち、この加工方法は、平坦化加工した後の治具付の炭化珪素単結晶基板をそのまま用いて、洗浄、又は熱処理、又はスパッタ、又はエッチング、又はめっきのいずれか少なくとも1つ以上行う半導体プロセス工程へ移行する加工方法となる。ここで、熱処理やスパッタなど温度が上がる半導体プロセスについては、接着部材の耐熱温度を超えない範囲であり、炭化珪素の融点以上の温度が必要なエピタキシャル成長などは本発明の半導体プロセスに含まない。また、前記半導体プロセスとして加工や組み立てのプロセスなどを行なっても良い。さらに、剥離する工程との前後は問わない。この構成により、素子13の搭載面の反対側を精密に平坦化加工することができることで、より薄厚の炭化珪素単結晶を用いた半導体素子を得ることができる。一方で治具付炭化珪素単結晶基板自体は、従来のシリコン基板と同等の外形寸法や剛性を備えているので、ハンドリングが容易で既存の半導体製造プロセスの装置にもそのまま適用できる。
[Third processing method]
The processing method according to the third aspect of the present invention is characterized in that the thickness of the substrate on which the element 13 is formed on one main surface 5 of the substrate is reduced. The thickness of the substrate is reduced by reducing the electrical resistance through the substrate with respect to the element 13 on one main surface and further flattening the other main surface, and then providing a semiconductor process as it is to provide an electrode. It is effective as a processing method that can move to a process. The substrate used here has an integrated circuit and a diode element operating at a high voltage on one main surface 5 of the substrate, and various elements such as a film doped with a carrier opposite to the substrate, a groove, an electrode, and a wiring. Has been. The components formed in advance on these substrates are collectively referred to as elements in the present invention.
Since the third processing method is substantially the same as the first processing method described above until the flattening processing, different steps will be described below.
That is, this processing method is a semiconductor process in which at least one of cleaning, heat treatment, sputtering, etching, or plating is performed using a silicon carbide single crystal substrate with a jig after flattening as it is. It becomes a processing method to shift to the process. Here, the semiconductor process in which the temperature is increased, such as heat treatment or sputtering, is in a range that does not exceed the heat resistance temperature of the adhesive member, and epitaxial growth that requires a temperature higher than the melting point of silicon carbide is not included in the semiconductor process of the present invention. Also, processing or assembly processes may be performed as the semiconductor process. Furthermore, before and after the step of peeling is not questioned. With this configuration, the opposite side of the mounting surface of the element 13 can be precisely planarized, so that a semiconductor element using a thinner silicon carbide single crystal can be obtained. On the other hand, the silicon carbide single crystal substrate with a jig itself has the same external dimensions and rigidity as a conventional silicon substrate, so that it can be handled easily and can be applied as it is to an existing semiconductor manufacturing process apparatus.

前記平坦化加工では、加工後の基板の平均厚さを500μm以下とすることが望ましい。加工後の基板の厚さは一方の主面に形成した素子13に応じて、任意に決められるが、一般的に用いられる素子13の膜厚から、基板の平均厚さが500μm以下、好ましくは50〜100μmの範囲であると、半導体素子に対して要求される基板の電気抵抗が特に好ましいものとなる。薄くなった基板1の合格率を高めるため、加工して治具2からはがした後の基板1は厚さばらつきが20μm以下であることが好ましい。そのため、接着部材の厚みばらつきが10μm以下であると好ましい。   In the planarization process, it is desirable that the average thickness of the processed substrate is 500 μm or less. Although the thickness of the substrate after processing is arbitrarily determined according to the element 13 formed on one main surface, the average thickness of the substrate is 500 μm or less, preferably from the film thickness of the element 13 generally used. When the thickness is in the range of 50 to 100 μm, the electrical resistance of the substrate required for the semiconductor element is particularly preferable. In order to increase the pass rate of the thinned substrate 1, it is preferable that the substrate 1 after being processed and peeled off from the jig 2 has a thickness variation of 20 μm or less. Therefore, the thickness variation of the adhesive member is preferably 10 μm or less.

また、前記治具は、前記基板の外径より0.3mm以上5mm以下の範囲で大きく、厚さは0.5mm以上3mm以下であり、主面のSORIが30μm以下、とすることで、素子13が形成された一方の主面を維持しつつ、基板の他方の主面のみを研削加工して基板を薄くすることに適したものとなる。ここで、基板の外径(直径)より0.3mm以上5mm以下だけ大きくしたのは、治具の主面の加工時にダレなどが発生して精度が悪くなりやすい外周部分を避けて、主面の中央寄りに基板を精度良く接着できるためである。さらに、接着剤の塗布および加熱圧着が容易に行うことが出来る。また、厚さを0.5mm以上3mm以下と規定するのは、洗浄、又は熱処理、又はスパッタ、又はエッチング、又はめっきのいずれか少なくとも1つ以上行う半導体プロセスに、治具が貼り付けられた状態のまま炭化珪素単結晶基板を通すためであり、一般的に用いられる半導体基板の厚さから、炭化珪素単結晶基板と接着部材の厚さを差し引いた厚さと同程度にするのが好ましい。さらに、治具の主面のSORIを30μm以下としたのは、治具と基板を接着するときの接着層を均一にして基板の加工精度を高め、さらに半導体プロセスにより成膜される膜厚等の寸法精度や冷却効率を高めるためである。   The jig is larger than the outer diameter of the substrate in the range of 0.3 mm to 5 mm, the thickness is 0.5 mm to 3 mm, and the SORI of the main surface is 30 μm or less. While maintaining one main surface on which 13 is formed, only the other main surface of the substrate is ground to be suitable for thinning the substrate. Here, the reason why the outer diameter (diameter) of the substrate is set to be 0.3 mm or more and 5 mm or less is to avoid the outer peripheral portion where the accuracy may be deteriorated due to sagging when the main surface of the jig is processed. This is because the substrate can be adhered to the center of the substrate with high accuracy. Furthermore, application of adhesive and thermocompression bonding can be easily performed. The thickness is defined as 0.5 mm or more and 3 mm or less when the jig is attached to a semiconductor process in which at least one of cleaning, heat treatment, sputtering, etching, or plating is performed. This is because the silicon carbide single crystal substrate is passed through as it is, and it is preferable that the thickness be equal to the thickness obtained by subtracting the thickness of the silicon carbide single crystal substrate and the adhesive member from the thickness of a generally used semiconductor substrate. Furthermore, the SORI of the main surface of the jig is set to 30 μm or less because the bonding layer for bonding the jig and the substrate is made uniform to increase the processing accuracy of the substrate, and the film thickness formed by the semiconductor process, etc. This is to improve the dimensional accuracy and cooling efficiency.

[治具付き炭化珪素単結晶基板]
また、本発明の治具付き炭化珪素単結晶基板は、上述した本発明の加工方法に用いられるものに限定するものではないが、第3の加工方法に用いるのに好適なものであり、以下に第3の加工方法における治具付き炭化珪素単結晶基板を例示する。即ち、素子13を有する炭化珪素単結晶基板の厚さを薄くし、さらに半導体プロセスを通し、適宜のプロセスを通した後、基板と治具を容易に剥離することができる治具付きの炭化珪素単結晶基板である。基板は炭化珪素単結晶からなり、一方の主面には素子13等が予め形成されている。一方の治具は、基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下となっており、基板を加熱圧着する過程で反りが生じ難いものである。さらに、熱伝導の比を上述の範囲にあわせることにより、半導体プロセスの中でも特に熱が発生するドライ工程などにおいて、発生する熱を効果的に放熱することができる効果も得られる。
[Silicon carbide single crystal substrate with jig]
Further, the silicon carbide single crystal substrate with a jig of the present invention is not limited to that used in the above-described processing method of the present invention, but is suitable for use in the third processing method, 5 illustrates a silicon carbide single crystal substrate with a jig in the third processing method. In other words, the silicon carbide single crystal substrate having the element 13 is thinned, further through a semiconductor process, and after passing through an appropriate process, the silicon carbide with a jig that can be easily separated from the substrate It is a single crystal substrate. The substrate is made of silicon carbide single crystal, and elements 13 and the like are formed in advance on one main surface. One jig has a thermal expansion coefficient α 25-200 ratio of 25 to 200 ° C. relative to the substrate of 0.7 or more and 1.3 or less, and a thermal conductivity ratio of 0.2 or more. It is 1.8 or less, and warpage is unlikely to occur during the process of thermocompression bonding the substrate. Furthermore, by adjusting the heat conduction ratio to the above range, an effect of effectively radiating the generated heat can be obtained in a dry process where heat is generated particularly in the semiconductor process.

また、基板の外径より0.3mm以上5mm以下だけ大きく、厚さは0.5mm以上3mm以下としている。また、主面のSORIを30μm以下としている。これは、ドライプロセスやスパッタなどにおける膜厚の管理がしやすく、さらに冷却板との接触面積を増やすことに繋がり、結果、効果的にドライプロセスが行えるなど、各種半導体プロセスに適用し易い効果が得られる。そして、素子13を設けた基板の一方の主面と治具の一方の主面は熱可塑性又は熱硬化性の接着部材により接着している。これにより、加工後に両者を剥離し易くしており、剥離の際に素子13を破損することなく、また基板の主面を汚損することなく剥離することが出来る。尚、熱可塑性又は熱硬化性の接着部材の厚みは2μm以上200μm以下であることが好ましく、特に好ましくは10μm以上100μm以下にすることが好ましい。接着部材の厚みが2μm以上200μm以下であれば、一方の主面に形成された素子13による凹凸を接着部材で吸収しつつ、基板の平均厚さを500μm以下にまで研削することができるので治具付き基板の全体厚さを0.5mm以上3mm以下に調整しやすい。   Further, it is larger than the outer diameter of the substrate by not less than 0.3 mm and not more than 5 mm, and the thickness is not less than 0.5 mm and not more than 3 mm. Further, the SORI of the main surface is set to 30 μm or less. This makes it easy to manage the film thickness in dry processes and sputtering, and further increases the contact area with the cooling plate. can get. One main surface of the substrate provided with the element 13 and one main surface of the jig are bonded by a thermoplastic or thermosetting adhesive member. Thereby, both are easily peeled after processing, and can be peeled without damaging the element 13 at the time of peeling and without polluting the main surface of the substrate. The thickness of the thermoplastic or thermosetting adhesive member is preferably 2 μm or more and 200 μm or less, and particularly preferably 10 μm or more and 100 μm or less. If the thickness of the adhesive member is 2 μm or more and 200 μm or less, the unevenness due to the elements 13 formed on one main surface can be absorbed by the adhesive member, and the average thickness of the substrate can be ground to 500 μm or less. It is easy to adjust the entire thickness of the substrate with tools to 0.5 mm or more and 3 mm or less.

さらに、基板の周縁部に前記接着部材からなる面一の環状壁を形成することは有効である。これは基板と治具とを接着する際に接着部材で、前記基板に環状壁を形成しておき、基板とあわせて接着部材を加工することで面一の環状壁を設けることができる。この環状壁により平坦化加工の過程で削られ、薄くなった基板の周縁部を保護し、チッピングやさらにそのチッピングを起点としたクラックを抑制する効果を得られる。さらに、その後に化学機械研磨する場合にも周縁部を保護しエッジチップ等の欠陥を抑制することができる。また、治具の外周部分を使用して半導体プロセスの保持ハンドリングや搬送などを行うため、極薄い炭化珪素単結晶基板の外周部分の破損を防止することができる。尚、面一とは段差が無くめくれたりしない程度であればよく、上記の効果が得られるものであれば良い。また、環状壁を形成する手段は、例えば、図9に示すように、接着部材としてシート状の接着部材を用いて、これを加工前の基板の周縁部に巻きつけるように貼り付け、研磨加工等により基板とあわせて面一に加工することにより環状壁を形成してもよい。あるいは、液状の接着部材を基板の周縁部にも塗布し、同様に研磨加工等により基板とあわせて面一に加工しても良い。   Further, it is effective to form a flush annular wall made of the adhesive member on the peripheral edge of the substrate. This is an adhesive member when bonding the substrate and the jig, and an annular wall is formed on the substrate, and the bonding member is processed together with the substrate to provide a flush annular wall. With this annular wall, it is possible to obtain an effect of protecting the peripheral portion of the substrate that has been cut and thinned during the flattening process, and suppressing chipping and further cracks originating from the chipping. Furthermore, when chemical mechanical polishing is performed thereafter, the peripheral portion can be protected and defects such as edge chips can be suppressed. In addition, since the outer peripheral portion of the jig is used for holding and transporting the semiconductor process, damage to the outer peripheral portion of the extremely thin silicon carbide single crystal substrate can be prevented. It should be noted that it is sufficient that the surface is flush and does not turn up, and it is sufficient if the above-described effects can be obtained. Further, as shown in FIG. 9, for example, as shown in FIG. 9, a sheet-shaped adhesive member is used as the adhesive member, and the means for forming the annular wall is bonded and polished so as to be wound around the peripheral edge of the substrate before processing. The annular wall may be formed by processing the surface together with the substrate by, for example. Alternatively, a liquid adhesive member may be applied to the peripheral edge of the substrate and similarly processed to be flush with the substrate by polishing or the like.

以上の通り、第1や第2の加工方法においても、それぞれの加工方法に適した条件で治具付き炭化珪素単結晶基板を用いることができる。   As described above, also in the first and second processing methods, the silicon carbide single crystal substrate with a jig can be used under conditions suitable for each processing method.

本発明の実施形態を図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではない。各実施形態の説明は、特に断りがなければ他の実施形態にも適用される。   Embodiments of the present invention will be described below in detail with reference to the drawings, but the present invention is not limited thereto. The description of each embodiment is applicable to other embodiments unless otherwise specified.

[1]実施例1
本発明の加工方法を用いて、エピタキシャル成長させるための面を形成するための炭化珪素単結晶基板を加工した。適用した条件などについて図2を用いて以下に説明する。
(a)基板1と治具2を準備する工程
図2において、基板1は炭化珪素の単結晶からなる。この例では、単結晶のインゴットを外筒研削装置を用いて円筒状に加工した後に、ワイヤーソーを用いてスライスし、他方の主面4及び一方の主面5を有する外径100mm(φ4インチ)、厚さ約0.5mmの基板1を得た。尚、スライスする際に炭化珪素単結晶の方位を変えたり、スライス後の基板の他方の主面4と一方の主面5の平行度を高めるために、両面研磨装置などを用いて加工してもよい。
一方、治具2は、上記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下の材料からなる。この例では多結晶の炭化珪素焼結体とした。この焼結体は例えば収縮率を考慮した寸法で粉末を成型した後にホットプレス焼結し、さらに両面研磨装置で平行度を整えて、一方の主面6と他方の主面7を有する外径約150mm、厚さ8mmの治具2を得た。ここで、治具2の一方の主面6は、後に基板1の一方の主面5を当接させて、基板1の他方の主面4を平坦加工する際の基準となるため、治具2の主面6は基板1の一方の主面5より外径を大きくし、平行度も両面研磨装置を用いて両面間の平行度が10μm以下に加工した。
[1] Example 1
A silicon carbide single crystal substrate for forming a surface for epitaxial growth was processed using the processing method of the present invention. The applied conditions will be described below with reference to FIG.
(A) Step of Preparing Substrate 1 and Jig 2 In FIG. 2, the substrate 1 is made of a single crystal of silicon carbide. In this example, a single crystal ingot is processed into a cylindrical shape using an outer cylinder grinding device, and then sliced using a wire saw, and has an outer diameter of 100 mm (φ4 inches) having the other main surface 4 and one main surface 5. ) To obtain a substrate 1 having a thickness of about 0.5 mm. In addition, in order to change the orientation of the silicon carbide single crystal when slicing, or to increase the parallelism of the other main surface 4 and one main surface 5 of the substrate after slicing, it is processed using a double-side polishing apparatus or the like. Also good.
On the other hand, the jig 2 has a thermal expansion coefficient α 25-200 ratio of 0.7 to 1.3 with respect to the substrate of 25 ° C. to 200 ° C. and a thermal conductivity ratio of 0.1 . It consists of 2 or more and 1.8 or less material. In this example, a polycrystalline silicon carbide sintered body was used. For example, the sintered body is formed by molding a powder with a dimension taking into account the shrinkage rate, followed by hot press sintering, further adjusting the parallelism by a double-side polishing apparatus, and having an outer diameter having one main surface 6 and the other main surface 7. A jig 2 having a thickness of about 150 mm and a thickness of 8 mm was obtained. Here, the one main surface 6 of the jig 2 serves as a reference when the other main surface 4 of the substrate 1 is flattened by bringing the main surface 5 of the substrate 1 into contact with the jig 1 later. The main surface 6 of No. 2 was made larger in outer diameter than one main surface 5 of the substrate 1, and the parallelism was processed so that the parallelism between both surfaces was 10 μm or less using a double-side polishing apparatus.

(b)基板と治具を接着部材を介して加圧接着する工程
次に準備した基板1と治具2を接着部材3を介し、熱と圧力を与えながら接着した。
まず、接着面である、基板1の一方の主面5、及び治具2の主面6を水や有機溶剤等で洗浄し、付着物などを取り除く。次に、ホットプレートを用いて、基板1及び治具2を作業温度まで加熱する。作業温度は、接着部材が十分に軟化し、かつ、熱膨張による基板1や治具2の寸法変化が小さい範囲が好ましく、接着部材の軟化点よりおよそ20〜50℃高い温度が良い、ここでは100℃とした。基板1及び治具2を十分に加熱し、全体が100℃で均一になった後に、治具2の主面6に接着部材3、この例では80℃で軟化するワックスを治具の主面6側に塗布した。ここで、基板1と治具2との主面間に気泡を巻き込まず、かつ、主面間の接触箇所にワックスが残らない程度で、かつ加工中に剥離しない程度の接着強度を確保できる程度に塗布量を加減することに注意する。
次に、基板1の一方の主面5を接着部材3を介して治具2の主面6に当接させた。このとき、基板1と治具2を接触させた後に加圧しながら相互にスライドさせ、空気やゴミと共に余分なワックスを治具と基板の間から除去し、さらに十分に荷重をかけた。続けて、基板1及び治具2を冷却することによって接着部材が固まり、固定される。このとき、接着剤の軟化点を過ぎてさらに冷却されるが、基板1と治具2の熱膨張係数α25−200の比が0.7以上、1.3以下で、かつ熱伝導率の比が0.2以上1.8以下に設定してあるため、熱膨張差や温度差による反り量が抑制される。砥粒などの付着を防ぐために、完全に接着してから余分な接着部材などを除去した。
(B) Step of pressure bonding the substrate and the jig through the adhesive member Next, the prepared substrate 1 and the jig 2 were bonded through the adhesive member 3 while applying heat and pressure.
First, one main surface 5 of the substrate 1 and the main surface 6 of the jig 2, which are adhesion surfaces, are washed with water, an organic solvent, or the like to remove deposits and the like. Next, the substrate 1 and the jig 2 are heated to the working temperature using a hot plate. The working temperature is preferably in the range where the adhesive member is sufficiently softened and the dimensional change of the substrate 1 and the jig 2 due to thermal expansion is small, and is preferably about 20 to 50 ° C. higher than the softening point of the adhesive member. The temperature was 100 ° C. The substrate 1 and the jig 2 are sufficiently heated, and after the entire surface becomes uniform at 100 ° C., the adhesive member 3 is applied to the main surface 6 of the jig 2. In this example, the softening wax at 80 ° C. is applied to the main surface of the jig. It applied to the 6th side. Here, bubbles are not caught between the main surfaces of the substrate 1 and the jig 2, and the wax does not remain at the contact portion between the main surfaces, and the bonding strength that does not peel off during processing can be ensured. Note that the coating amount is moderated.
Next, one main surface 5 of the substrate 1 was brought into contact with the main surface 6 of the jig 2 via the adhesive member 3. At this time, the substrate 1 and the jig 2 were brought into contact with each other while being pressed and slid to each other to remove excess wax along with air and dust from between the jig and the substrate, and a sufficient load was applied. Subsequently, the adhesive member is solidified and fixed by cooling the substrate 1 and the jig 2. At this time, it is further cooled after the softening point of the adhesive, but the ratio of the thermal expansion coefficient α 25-200 between the substrate 1 and the jig 2 is 0.7 or more and 1.3 or less, and the thermal conductivity is Since the ratio is set to 0.2 or more and 1.8 or less, the amount of warpage due to thermal expansion difference or temperature difference is suppressed. In order to prevent adhesion of abrasive grains and the like, extra adhesive members were removed after complete adhesion.

(c)基板の他方の主面を平坦化加工する工程
基板1の他方の主面4を研磨加工した。まず粗いダイヤモンド砥粒を用いて粗研磨加工により、全面があたるまで加工する。その後粒径1μmのダイヤモンド砥粒による研磨とCMPを行い、面粗さを小さくした。
(C) Step of flattening the other main surface of the substrate The other main surface 4 of the substrate 1 was polished. First, a rough polishing process is performed using rough diamond abrasive grains until the entire surface is touched. Thereafter, polishing with a diamond abrasive having a particle diameter of 1 μm and CMP were performed to reduce the surface roughness.

品質の良いエピタキシャル成長させるためには、他方の主面4を原子レベルで平坦化、すなわち面粗さRa≦1nmであることが必要となる。その際、基板のGBIRを4μm以下程度まで整えることで、エピタキシャル成長させた膜を用いて素子を形成する際の高精度化に寄与するため好ましい。そのために、治具2は、主面間の平行度が10μm以下であり、主面6の面粗さRaが0.1mm以下であり、主面6に接着部材逃し部を形成した治具を用いた。   In order to perform epitaxial growth with good quality, the other main surface 4 needs to be flattened at the atomic level, that is, surface roughness Ra ≦ 1 nm. At this time, it is preferable to adjust the GBIR of the substrate to about 4 μm or less because it contributes to high accuracy in forming an element using an epitaxially grown film. Therefore, the jig 2 is a jig in which the parallelism between the main surfaces is 10 μm or less, the surface roughness Ra of the main surface 6 is 0.1 mm or less, and an adhesive member relief portion is formed on the main surface 6. Using.

接着した後に基板の他方の主面を加工する際、機械研磨による平坦化の後に、酸化剤及びコロイダルシリカを含むスラリーなどを用いてCMPにて仕上げ、治具から基板を剥離することで、加工変質層や傷の少ないエピタキシャル成長用により適した面を得られる。尚、炭化珪素膜のエピタキシャル成長面を形成しない場合は、通常はCMPによる平坦化加工を省略しても良いが、加工変質層による応力等を緩和するために行っても良い。   When processing the other main surface of the substrate after bonding, it is processed by CMP using a slurry containing an oxidant and colloidal silica after planarization by mechanical polishing and peeling the substrate from the jig. A more suitable surface can be obtained for epitaxial growth with a deteriorated layer and less scratches. When the epitaxial growth surface of the silicon carbide film is not formed, the planarization process by CMP may be usually omitted, but it may be performed to relieve stress or the like due to the work-affected layer.

次に、基板の他方の主面に炭化珪素膜のエピタキシャル成長面を形成する工程があるが、この工程は従来既存の装置と方法を用いて行われ得るので、ここでの説明は省略する。 Next, there is a step of forming an epitaxial growth surface of a silicon carbide film on the other main surface of the substrate. Since this step can be performed by using an existing apparatus and method, description thereof is omitted here.

(d)基板と治具とを剥離する工程
その後、接着工程と逆の手順で剥離する。即ち、まず付着した砥粒を完全に除去した治具付き炭化珪素単結晶基板を100℃まで加熱し、接着部材を軟化させる。過熱して接着部材を軟化することにより剥離しやすくなるので、基板をスライドさせて治具から剥離する。剥離した後に基板1に付着した接着部材3を、溶剤などを用いて洗浄してもよい。
(D) The process of peeling a board | substrate and a jig | tool Then, it peels in the procedure reverse to an adhesion | attachment process. That is, first, the silicon carbide single crystal substrate with a jig from which the attached abrasive grains are completely removed is heated to 100 ° C. to soften the adhesive member. Since it becomes easy to peel by overheating and softening the adhesive member, the substrate is slid to peel from the jig. The adhesive member 3 attached to the substrate 1 after being peeled may be cleaned using a solvent or the like.

上述した条件で、多結晶の炭化珪素の治具を用いてエピタキシャル成長させるための基板を得た。それに対して、比較例1として、材質はアルミナを用いた以外は実施例1と同じ条件を用いて加工した。加工後の基板1の他方の主面のGBIR(SEMI M1−1013により測定)を表2に示す。比較例1に対して精度良く加工できており、炭化珪素膜をエピタキシャル成長させるのに適した基板を得られた。   Under the conditions described above, a substrate for epitaxial growth was obtained using a polycrystalline silicon carbide jig. On the other hand, as Comparative Example 1, the material was processed under the same conditions as in Example 1 except that alumina was used. Table 2 shows GBIR (measured by SEMI M1-1013) of the other main surface of the substrate 1 after processing. The substrate which was processed accurately with respect to Comparative Example 1 and was suitable for epitaxial growth of the silicon carbide film was obtained.

[2]実施例2
本発明の方法を用いて、基板1の一方の主面5に形成した各種素子13を保護しつつ、他方の主面4を研磨して基板1の厚さを薄くするバックグラインディングを行った。具体的に用いた条件などについて図3を用いて以下に説明する。
[2] Example 2
Using the method of the present invention, back grinding was performed to reduce the thickness of the substrate 1 by polishing the other main surface 4 while protecting the various elements 13 formed on the one main surface 5 of the substrate 1. . Specific conditions used will be described below with reference to FIG.

(a)基板と治具を準備する工程
基板1は、上記実施例1と同様に炭化珪素の単結晶からなる。
治具2は、剛性を確保しつつ、半導体プロセスに通せる十分な薄さとして1mmのものを用いた。加工して薄くなった基板1は破損しやすいため、半導体プロセスに通す際に、治具2が保護部材の働きをする。そのため、治具2の外径は前記基板1の外径(直径)より約1mm大きい治具を用いた。他の製造方法、条件については上記実施例1と同様であるので説明は省略し、異なる部分について説明する。
(A) Step of Preparing Substrate and Jig Substrate 1 is made of a single crystal of silicon carbide as in Example 1 above.
A jig 2 having a thickness of 1 mm was used as a sufficiently thin film that can be passed through a semiconductor process while ensuring rigidity. Since the thinned substrate 1 is easily damaged, the jig 2 serves as a protective member when passing through a semiconductor process. Therefore, a jig whose outer diameter is approximately 1 mm larger than the outer diameter (diameter) of the substrate 1 was used. Since other manufacturing methods and conditions are the same as those in the first embodiment, description thereof will be omitted, and different parts will be described.

(b)基板と治具を接着部材を介して加圧接着する工程
次に、準備した基板1及び治具2を接着部材を介して、熱を与えて加圧接着する。このとき、基板の外周を覆うように接着部材を接着する。バックグラインディング加工を行う場合は、研削加工により基板厚さを100μm程度まで極薄とするので、特に脆くなる周縁部の欠陥対策が必要である。また、基板1の一方の主面5には素子13が形成されているため、ここでは接着部材3は下記するような熱硬化性の接着剤がシート状に成形された貼付けシートを用いた。前記接着部材は、基板1と治具2を接着した状態で半導体プロセスを通すため、熱処理、又はスパッタ、又は気相エッチングなどを通せる程度に耐熱性が高く、洗浄、又は液相エッチング、又はめっきなどに通せる程度に酸やアルカリなどの薬液に対して耐性がある材質等を用いることができ、ここでは耐酸、耐アルカリで、耐熱温度が200℃の貼付けシートを用いた。
(B) Step of pressure bonding the substrate and the jig through the adhesive member Next, the prepared substrate 1 and jig 2 are pressure bonded by applying heat through the adhesive member. At this time, the adhesive member is bonded so as to cover the outer periphery of the substrate. When backgrinding is performed, the substrate thickness is made extremely thin by grinding to about 100 μm, so it is necessary to take measures against defects at the peripheral edge that become particularly brittle. In addition, since the element 13 is formed on one main surface 5 of the substrate 1, an adhesive sheet in which a thermosetting adhesive as described below is formed into a sheet shape is used as the adhesive member 3 here. The adhesive member passes through the semiconductor process with the substrate 1 and the jig 2 bonded, and thus has high heat resistance to the extent that heat treatment, sputtering, vapor phase etching, or the like can be passed through, or cleaning, liquid phase etching, or A material that is resistant to chemicals such as acid and alkali can be used to such an extent that it can be passed through plating. Here, an adhesive sheet having acid resistance and alkali resistance and a heat resistant temperature of 200 ° C. was used.

(c−1)基板の他方の主面を平坦化加工する工程
基板1の他方の主面4を研磨加工した。まず粗いダイヤモンド砥粒を用いて粗研磨加工を行った。基板1の周縁部がチッピングして、クラックが入りやすくなる。そこで、周縁部におけるチッピングの発生を抑制するために、研磨砥粒を用いて研磨加工した。ここでは、基板1の厚さ100μmとなるまで加工した。
(C-1) Step of flattening the other main surface of the substrate The other main surface 4 of the substrate 1 was polished. First, rough polishing was performed using coarse diamond abrasive grains. The peripheral edge of the substrate 1 is chipped, and cracks are easily generated. Therefore, in order to suppress the occurrence of chipping at the peripheral portion, polishing was performed using polishing abrasive grains. Here, the substrate 1 was processed until the thickness became 100 μm.

(c−2)半導体プロセスを通す工程
研磨加工した後、一般的な金属膜スパッタ装置を用いて、金属膜をスパッタした。装置に治具の周縁部をセットしたため、基板の周縁部は接触によるチッピングなどが少なかった。
(C-2) Step through a semiconductor process After polishing, a metal film was sputtered using a general metal film sputtering apparatus. Since the peripheral portion of the jig was set in the apparatus, the peripheral portion of the substrate was less likely to be chipped by contact.

上述したとおり、実施例2は多結晶の炭化珪素の治具を用いて、一方の主面に素子13を形成した基板の、他方の主面を研磨加工した。それに対し、比較例2として、治具の材質はホウケイ酸ガラスを用いた以外は実施例2と同じ方法を用いて加工した。それぞれの加工前後の治具付き炭化珪素単結晶基板のGBIRの減少率と加工後のSORI(SEMI M1−1013により測定)を表3に示す。加工後のGBIRは実施例2のほうが小さく、高精度に治具付き炭化珪素単結晶基板を薄くできた。また、加工後のSORIも比較例2に対し、小さいものであった。   As described above, in Example 2, the other main surface of the substrate on which the element 13 was formed on one main surface was polished using a polycrystalline silicon carbide jig. On the other hand, as Comparative Example 2, the jig was processed using the same method as Example 2 except that borosilicate glass was used. Table 3 shows the reduction rate of GBIR of the silicon carbide single crystal substrate with the jig before and after each processing and the SORI after processing (measured by SEMI M1-1013). GBIR after processing was smaller in Example 2, and a silicon carbide single crystal substrate with a jig could be thinned with high accuracy. Also, the processed SORI was smaller than that of Comparative Example 2.

[3]実施例3
接着部材として貼付けシート9を用い、一部を図4に示すように基板の外周部に巻きつけるようにして基板を加工した。また、比較のために外周部にシートを巻きつけないで基板を加工した。周縁部の巻きつけた箇所の写真を図5に、巻きつけなかった場合の写真を図6に示す。巻きつけた場合は、基板の周縁部に環状壁10が形成されており、図6に示すようなエッジチップ11やクラック12などの発生は無かった。特に結晶欠陥部があるにもかかわらずエッジチップ11の発生がないことが確認された。一方、巻きつけなかった場合は、エッジチップ11と共にクラック12が発生しており、結晶欠陥部でもエッジチップ11が発生していた。
[3] Example 3
The pasting sheet 9 was used as an adhesive member, and the substrate was processed so that a part was wound around the outer periphery of the substrate as shown in FIG. For comparison, the substrate was processed without winding a sheet around the outer periphery. FIG. 5 shows a photograph of a portion where the peripheral edge is wound, and FIG. 6 shows a photograph when the periphery is not wound. In the case of winding, the annular wall 10 was formed on the peripheral edge of the substrate, and the edge chip 11 and the crack 12 as shown in FIG. 6 were not generated. In particular, it was confirmed that the edge chip 11 was not generated despite the presence of crystal defects. On the other hand, when not wound, the crack 12 was generated together with the edge chip 11, and the edge chip 11 was also generated at the crystal defect portion.

高精度な炭化珪素単結晶基板の加工方法として好適である。また、エピタキシャル成長面を形成できる高精度な治具付き炭化珪素単結晶基板、エッジチップなどの欠陥がなく半導体製造プロセスに容易に適応できる治具付き炭化珪素単結晶基板にも利用可能である。   It is suitable as a highly accurate method for processing a silicon carbide single crystal substrate. Further, the present invention can be applied to a silicon carbide single crystal substrate with a high-precision jig that can form an epitaxial growth surface, and a silicon carbide single crystal substrate with a jig that can be easily adapted to a semiconductor manufacturing process without defects such as edge chips.

1・・・基板
2・・・治具
3・・・接着部材
4・・・基板の第1の主面
5・・・基板の第2の主面
6・・・治具の第1の主面
7・・・治具の第2の主面
8・・・半導体プロセス(洗浄+スパッタ)後の主面
9・・・貼付けシート(接着部材)
10・・・環状壁
11・・・エッジチップ
12・・・クラック
13・・・素子
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Jig 3 ... Adhesive member 4 ... First main surface 5 of substrate ... Second main surface 6 of substrate ... First main surface of jig Surface 7 ... Second main surface 8 of the jig 8 ... Main surface 9 after the semiconductor process (cleaning + sputtering) ... Paste sheet (adhesive member)
10 ... annular wall 11 ... edge chip 12 ... crack 13 ... element

Claims (13)

炭化珪素単結晶からなる基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、
前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、
前記基板の他方の主面を平坦化加工する工程と、
前記基板と治具とを剥離する工程と、
を有する、炭化珪素単結晶基板の加工方法。
The ratio of thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to the substrate made of silicon carbide single crystal and the substrate is 0.7 to 1.3, and the ratio of thermal conductivity is Preparing a jig having a main surface which is 0.2 to 1.8 and larger than the outer diameter of the substrate and serves as a support surface of the substrate;
Heat bonding the one main surface of the substrate and the main surface of the jig through a thermoplastic or thermosetting adhesive member;
Flattening the other main surface of the substrate;
Peeling the substrate and the jig;
A method for processing a silicon carbide single crystal substrate, comprising:
炭化珪素単結晶からなる基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、
前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、
前記基板の他方の主面をRa≦1nmまで平坦化加工する工程と、
前記基板を治具から剥離する工程と、
前記基板の他方の主面に炭化珪素膜のエピタキシャル成長面を形成する工程と、
を有する、炭化珪素単結晶基板の加工方法。
The ratio of thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to the substrate made of silicon carbide single crystal and the substrate is 0.7 to 1.3, and the ratio of thermal conductivity is Preparing a jig having a main surface which is 0.2 to 1.8 and larger than the outer diameter of the substrate and serves as a support surface of the substrate;
Heat bonding the one main surface of the substrate and the main surface of the jig through a thermoplastic or thermosetting adhesive member;
Flattening the other main surface of the substrate to Ra ≦ 1 nm;
Peeling the substrate from the jig;
Forming an epitaxial growth surface of a silicon carbide film on the other main surface of the substrate;
A method for processing a silicon carbide single crystal substrate, comprising:
前記平坦化加工により、基板のGBIRを4μm以下とする、
請求項1又は2に記載の炭化珪素単結晶基板の加工方法。
By the planarization process, the GBIR of the substrate is set to 4 μm or less.
A method for processing a silicon carbide single crystal substrate according to claim 1.
前記基板の平坦化加工は、化学機械研磨加工する工程を含む、
請求項1から3の何れか1項に記載の炭化珪素単結晶基板の加工方法。
The planarization of the substrate includes a chemical mechanical polishing process,
The method for processing a silicon carbide single crystal substrate according to any one of claims 1 to 3.
前記治具は、板状で厚さは18mm以下であり、主面間の平行度が10μm以下である、
請求項1から4の何れか1項に記載の炭化珪素単結晶基板の加工方法。
The jig is plate-shaped and has a thickness of 18 mm or less, and the parallelism between main surfaces is 10 μm or less.
The method for processing a silicon carbide single crystal substrate according to claim 1.
炭化珪素単結晶からなり、一方の主面に素子が形成された基板と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、前記基板の外径より大きく前記基板の支持面となる主面を有する治具とを準備する工程と、
前記基板の一方の主面と、前記治具の主面とを、熱可塑性又は熱硬化性の接着部材を介して加熱接着する工程と、
前記基板の他方の主面を平坦化加工する工程と、
洗浄、又は熱処理、又はスパッタ、又はエッチング、又はめっきのいずれか少なくとも1つ以上行う半導体プロセス工程と、
前記基板と治具とを剥離する工程と、
を有する、炭化珪素単結晶基板の加工方法。
The ratio of the thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to the substrate made of silicon carbide single crystal and having an element formed on one main surface is from 0.7 to 1.3 And providing a jig having a thermal conductivity ratio of 0.2 to 1.8 and having a main surface larger than the outer diameter of the substrate and serving as a support surface of the substrate;
Heat bonding the one main surface of the substrate and the main surface of the jig through a thermoplastic or thermosetting adhesive member;
Flattening the other main surface of the substrate;
A semiconductor process step for performing at least one of cleaning, heat treatment, sputtering, etching, or plating; and
Peeling the substrate and the jig;
A method for processing a silicon carbide single crystal substrate, comprising:
前記平坦化加工により、基板の平均厚さを500μm以下とする、
請求項6に記載の炭化珪素単結晶基板の加工方法。
By the planarization process, the average thickness of the substrate is set to 500 μm or less.
A method for processing a silicon carbide single crystal substrate according to claim 6.
前記基板の平坦化加工は、研磨加工する工程を含む、
請求項6又は7に記載の炭化珪素単結晶基板の加工方法。
The planarization process of the substrate includes a polishing process,
A method for processing a silicon carbide single crystal substrate according to claim 6 or 7.
前記治具は、板状で基板の外径より0.3mm以上5mm以下大きく、厚さは0.5mm以上3mm以下で、主面のSORIが30μm以下である、
請求項6から8の何れか1項に記載の炭化珪素単結晶基板の加工方法。
The jig is plate-shaped and is 0.3 mm or more and 5 mm or less larger than the outer diameter of the substrate, the thickness is 0.5 mm or more and 3 mm or less, and the SORI of the main surface is 30 μm or less.
The method for processing a silicon carbide single crystal substrate according to any one of claims 6 to 8.
炭化珪素単結晶からなる基板と、熱可塑性又は熱硬化性の接着部材と、前記基板に対して25℃から200℃における熱膨張係数α25−200の比が0.7以上1.3以下であって、かつ、熱伝導率の比が0.2以上1.8以下であり、板状で厚さ18mm以下である治具と、からなる治具付き炭化珪素単結晶基板。 The ratio of thermal expansion coefficient α 25-200 at 25 ° C. to 200 ° C. with respect to the substrate made of silicon carbide single crystal, the thermoplastic or thermosetting adhesive member, and the substrate is from 0.7 to 1.3 And a silicon carbide single crystal substrate with a jig, comprising: a jig having a thermal conductivity ratio of 0.2 to 1.8, a plate shape and a thickness of 18 mm or less. 前記治具は、主面間の平行度が10μm以下である、請求項10に記載の治具付き炭化珪素単結晶基板。   The silicon carbide single crystal substrate with a jig according to claim 10, wherein the jig has a parallelism between main surfaces of 10 μm or less. 前記基板は、一方の主面に素子が形成され、平均厚さが500μm以下であり、前記治具は、前記基板の外径より0.3mm以上5mm以下大きく、厚さは0.5mm以上3mm以下で、主面のSORIが30μm以下である、請求項10又は11に記載の治具付き炭化珪素単結晶基板。   The substrate has an element formed on one main surface and an average thickness of 500 μm or less. The jig is 0.3 mm or more and 5 mm or less larger than the outer diameter of the substrate, and the thickness is 0.5 mm or more and 3 mm. The silicon carbide single crystal substrate with a jig according to claim 10 or 11, wherein SORI of the main surface is 30 µm or less. 前記基板の周縁部に前記接着部材からなる面一の環状壁を有する請求項10から12のいずれか1項に記載の治具付き炭化珪素単結晶基板。   The silicon carbide single crystal substrate with a jig according to any one of claims 10 to 12, wherein a peripheral wall portion of the substrate has a flush annular wall made of the adhesive member.
JP2014154798A 2014-07-30 2014-07-30 Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig Active JP6327519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154798A JP6327519B2 (en) 2014-07-30 2014-07-30 Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154798A JP6327519B2 (en) 2014-07-30 2014-07-30 Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig

Publications (2)

Publication Number Publication Date
JP2016032062A JP2016032062A (en) 2016-03-07
JP6327519B2 true JP6327519B2 (en) 2018-05-23

Family

ID=55442268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154798A Active JP6327519B2 (en) 2014-07-30 2014-07-30 Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig

Country Status (1)

Country Link
JP (1) JP6327519B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024501B2 (en) * 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913468B2 (en) * 2006-04-17 2012-04-11 コバレントマテリアル株式会社 Silicon carbide polishing plate and method for polishing semiconductor wafer
JP5495981B2 (en) * 2010-06-29 2014-05-21 京セラ株式会社 Manufacturing method of semiconductor substrate
JP2012064710A (en) * 2010-09-15 2012-03-29 Asahi Glass Co Ltd Manufacturing method of semiconductor element

Also Published As

Publication number Publication date
JP2016032062A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP4388741B2 (en) Method for transferring semiconductor thin layer and method for manufacturing donor wafer used therefor
JP6572694B2 (en) Method for manufacturing SiC composite substrate and method for manufacturing semiconductor substrate
JP6582779B2 (en) Manufacturing method of SiC composite substrate
KR20120052160A (en) Composite substrate and composite substrate manufacturing method
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
JP6515757B2 (en) Method of manufacturing SiC composite substrate
WO2014157734A1 (en) Handle substrate for compound substrate for use with semiconductor
JP6327519B2 (en) Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig
JP2009182126A (en) Method of machining compound semiconductor substrate and compound semiconductor substrate
JP6167984B2 (en) Wafer processing method
JP2006303180A (en) Method for fixing substrate
CN109585615B (en) Method for stripping gallium nitride epitaxial layer from substrate
JP6879223B2 (en) Manufacturing method of bonded wafer
JP2003245847A (en) Working method of sapphire wafer and manufacturing method for electronic equipment
JP5622454B2 (en) Wafer thinning processing method and semiconductor device manufacturing method
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
KR101807166B1 (en) METHOD FOR PRODUCING SiC SUBSTRATE
US20150170928A1 (en) Silicon carbide substrate and fabrication method thereof
US20230120994A1 (en) Polishing method, and semiconductor substrate manufacturing method
JP6362484B2 (en) Semiconductor wafer dicing method
JP5869280B2 (en) Manufacturing method of semiconductor device
JP2023114215A (en) SiC EPITAXIAL SUBSTRATE AND MANUFACTURING METHOD OF THE SAME
JP2022184075A (en) Joined body of mosaic diamond wafer and heterogeneous semiconductor and method for manufacturing the same, and mosaic diamond wafer for joined body with heterogeneous semiconductor
KR101261238B1 (en) Lapping device for semiconductor substrate and lapping method using it
JP2013120795A (en) Nitride semiconductor substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6327519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350