JP5569964B2 - Atomic diffusion bonding method - Google Patents

Atomic diffusion bonding method Download PDF

Info

Publication number
JP5569964B2
JP5569964B2 JP2010107392A JP2010107392A JP5569964B2 JP 5569964 B2 JP5569964 B2 JP 5569964B2 JP 2010107392 A JP2010107392 A JP 2010107392A JP 2010107392 A JP2010107392 A JP 2010107392A JP 5569964 B2 JP5569964 B2 JP 5569964B2
Authority
JP
Japan
Prior art keywords
thin film
bonding
substrate
microcrystalline
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010107392A
Other languages
Japanese (ja)
Other versions
JP2011235300A (en
Inventor
武仁 島津
幸 魚本
和夫 宮本
Original Assignee
株式会社ムサシノエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ムサシノエンジニアリング filed Critical 株式会社ムサシノエンジニアリング
Priority to JP2010107392A priority Critical patent/JP5569964B2/en
Publication of JP2011235300A publication Critical patent/JP2011235300A/en
Application granted granted Critical
Publication of JP5569964B2 publication Critical patent/JP5569964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は原子拡散接合方法に関し,より詳細には,例えばIC基板の積層化やパッケージの封止,各種デバイスの複合化等,被接合材である2つの基体間を強固に接合する際に使用される接合方法において,少なくとも一方の基体の接合面に形成された微結晶薄膜を介して2つの基体を接合することにより,接合界面および結晶粒界において原子拡散を生じさせることにより基体間を接合する新規な接合方法に関する。   The present invention relates to an atomic diffusion bonding method, and more specifically, for use when firmly bonding two substrates as materials to be bonded, such as stacking IC substrates, sealing packages, and combining various devices. In the bonding method, two substrates are bonded via a microcrystalline thin film formed on the bonding surface of at least one substrate, thereby bonding atoms between the substrates by causing atomic diffusion at the bonding interface and grain boundaries. The present invention relates to a new joining method.

なお,本発明における「微結晶」には「多結晶」の他,「アモルファス」を含む。   In the present invention, “microcrystal” includes “polycrystal” and “amorphous”.

また,本発明における「薄膜」には,連続した膜の他,核成長の過程において形成される島状構造のように断続部分を有するものも含む。   In addition, the “thin film” in the present invention includes not only a continuous film but also a film having an intermittent portion such as an island structure formed in the process of nucleus growth.

更に本発明における「結晶粒界」とは原子配列の規則性の断続部分を言い,多結晶における結晶粒の境界(一般的な意味での「結晶粒界」)の他,長距離秩序(数10原子程度以上の原子集団における配列の規則性)を有しないが,短距離秩序(数10原子以下の原子集団における配列の規則性)を有する前述のアモルファスにあっては,この「短距離秩序」の断続部分が本発明における「結晶粒界」であると共に,アモルファス金属膜中に空隙があり,体積率(充填率)が100%よりも低い場合,その空隙とアモルファス金属の界面も,高い原子拡散係数を有すると考えられることから,上述の短距離秩序の断続部分と同様に本発明における「結晶粒界」に相当する。   Further, the “crystal grain boundary” in the present invention refers to an intermittent part of the regularity of atomic arrangement, and in addition to the crystal grain boundary in a polycrystal (“crystal grain boundary” in a general sense), long-range order (number The above-mentioned amorphous structure having the short-range order (regularity of arrangement in an atomic group of several tens atoms or less) that has no short-range order (regularity of arrangement in an atomic group of about 10 atoms or more). ”Is the“ crystal grain boundary ”in the present invention, and when there is a void in the amorphous metal film and the volume ratio (filling rate) is lower than 100%, the interface between the void and the amorphous metal is also high. Since it is considered to have an atomic diffusion coefficient, it corresponds to the “crystal grain boundary” in the present invention as in the above-mentioned intermittent portion of the short-range order.

2つ以上の被接合材を貼り合わせる接合技術が各種の分野において利用されており,例えば電子部品の分野において,ウエハのボンディング,パッケージの封止等においてこのような接合技術が利用されている。   Joining techniques for bonding two or more materials to be joined are used in various fields. For example, in the field of electronic components, such joining techniques are used for wafer bonding, package sealing, and the like.

一例として,前述のウエハボンディング技術を例にとり説明すれば,従来の一般的なウエハボンディング技術では,重ね合わせたウエハ間に高圧,高熱を加えて接合する方法が一般的である。   As an example, the above-described wafer bonding technique will be described as an example. In the conventional general wafer bonding technique, a method of applying high pressure and high heat between stacked wafers is generally used.

しかし,この方法による接合では,熱や圧力に弱い電子デバイス等が形成された基板の接合や集積化を行うことができず,そのため,このような物理的なダメージを与えることなく被接合材相互を接合する技術が要望されている。   However, in this method, it is not possible to bond or integrate substrates on which electronic devices or the like that are sensitive to heat or pressure are formed. Therefore, the materials to be bonded can be bonded to each other without causing such physical damage. There is a demand for a technique for joining the two.

このように,被接合材間を常温,無加圧で接合する技術としては,被接合材の接合面のそれぞれに対し,いずれも希ガス等のイオンビームを照射して接合面における酸化物や有機物等を除去することで,接合面表面の原子を,化学的結合を形成し易い活性な状態(活性化)とし,この状態において被接合材の接合面相互を重ね合わせることにより,加熱することなく,かつ,接着剤等を使用することなしに常温での接合を可能とする「常温接合法」が,例えばシリコンウエハ等の接合方法として提案されている(特許文献1参照)。   As described above, as a technique for joining the materials to be joined at room temperature and without applying pressure, each of the joining surfaces of the materials to be joined is irradiated with an ion beam such as a rare gas to form oxides or By removing organic matter, etc., the atoms on the surface of the bonding surface are brought into an active state (activation) that is easy to form a chemical bond, and in this state, heating is performed by overlapping the bonding surfaces of the materials to be bonded. There has been proposed a “normal temperature bonding method” that enables bonding at room temperature without using an adhesive or the like, for example, as a bonding method for silicon wafers or the like (see Patent Document 1).

しかし,上記特許文献1に記載の方法では,被接合材の接合面に対して希ガスビームなどを照射して接合面を洗浄して活性な状態とした後,両接合面を接合することにより強固な接合力を得ることができるものの,接合できる材料が一部の金属と金属,一部の金属と化合物間に限定されており,用途が限定される。   However, in the method described in Patent Document 1, the bonding surface of the material to be bonded is irradiated with a rare gas beam or the like to clean the bonding surface to make it active, and then the two bonding surfaces are bonded firmly. Although a sufficient bonding force can be obtained, the materials that can be bonded are limited between some metals and metals, and some metals and compounds, and the application is limited.

また,前記方法により接合を行う場合,接合面は巨視的には接合がされていたとしても,接合面の粗さやうねり等によって微視的には接合されていない部分が存在し,ウエハレベルでの積層化,集積化のための接合に使用することができない。   In addition, when bonding is performed by the above method, even if the bonding surface is macroscopically bonded, there is a portion that is not microscopically bonded due to the roughness or waviness of the bonding surface, and at the wafer level. It cannot be used for bonding for stacking and integration.

このように,部分的に接合されていない部分が発生することを防止するために,接合面を研磨等してその表面粗さを抑制することも考えられるが,研磨によって抑制し得る接合面の粗さやうねりには限度がある。   In this way, in order to prevent the occurrence of a part that is not partially bonded, it is conceivable to suppress the surface roughness by polishing the bonding surface, but the bonding surface that can be suppressed by polishing is also considered. There are limits to roughness and swell.

そのため,上記従来の常温接合方法により,接合されない部分の発生を減少しようとすれば,被接合材相互を重合する際に加圧して圧着する等の処理を行う必要があり,被接合材に物理的なダメージを与えるおそれがある。   For this reason, if the conventional room temperature bonding method is used to reduce the occurrence of unbonded parts, it is necessary to perform processing such as pressurization and pressure bonding when polymerizing the materials to be joined. Damage may occur.

なお,上記方法による接合では,両基体の表面を前述のように活性化させることで,接触界面においてのみ原子間に金属又は化学結合を生じさせるものであり,接合界面や結晶粒界におけるダイナミックな原子拡散を伴うものではない。   In the bonding by the above method, the surfaces of both substrates are activated as described above to generate a metal or chemical bond between atoms only at the contact interface. It does not involve atomic diffusion.

そのため,接着自体は比較的強固に行うことはできるものの,両基体の接合部分には依然として接合界面が存在し,また,接合に際して接合界面に酸化被膜等の変質層が形成されることにより,例えば電子デバイス等として使用する際,このような接合界面や変質層が電子の通過を妨げる障壁等として作用する等,性能の低下をもたらすものとなっている。   For this reason, although the bonding itself can be performed relatively firmly, there is still a bonding interface at the bonding portion of both substrates, and an altered layer such as an oxide film is formed at the bonding interface at the time of bonding. When used as an electronic device or the like, such a bonding interface or an altered layer acts as a barrier or the like that prevents the passage of electrons, resulting in a decrease in performance.

このような特許文献1に記載の常温接合方法における欠点を解消するために,本発明の発明者は,接合対象とするウエハやチップ,基板やパッケージ,その他の各種被接合材のそれぞれの接合面に,到達圧力を10-4Pa以下の高真空度とした真空雰囲気において,例えばスパッタリングやイオンプレーティング等の真空成膜方法により,かつ,好ましくはプラズマの発生下で金属や各種化合物の微結晶構造を有する被膜を接合面に形成し,前記被膜の成膜中,あるいは成膜後に前記真空を維持したまま,前記被接合材の前記接合面に形成された被膜相互を常温で重合することにより,前記接合面間に生じた結合により前記被接合材間を接合する「常温接合方法」を既に提案している(特許文献2参照)。 In order to eliminate the drawbacks of the room temperature bonding method described in Patent Document 1, the inventor of the present invention provides each bonding surface of a wafer, a chip, a substrate, a package, and other various materials to be bonded. In addition, in a vacuum atmosphere with an ultimate pressure of 10 −4 Pa or less and a high vacuum degree, for example, by using a vacuum film-forming method such as sputtering or ion plating, and preferably under the generation of plasma, fine crystals of metals and various compounds A film having a structure is formed on the bonding surface, and the films formed on the bonding surface of the material to be bonded are polymerized at room temperature while maintaining the vacuum during or after the film formation. Have already proposed a “room temperature bonding method” in which the materials to be bonded are bonded by bonding generated between the bonding surfaces (see Patent Document 2).

そして,この常温接合方法によれば,同種又は異種被膜の接合面を,加熱,加圧,電圧の印加等を伴うことなく原子レベルで金属結合あるいは分子間結合により強固に接合させることができると共に,被膜の内部応力を開放して接合歪みを緩和させることができ,ここで得られる接合は,界面で剥離が生じない(無理に剥離しようとすると被膜の界面以外の部分又は被接合材が破壊する)接合状態が得られるものとなっている(特許文献2「0021」欄)。   According to this room temperature bonding method, the bonding surfaces of the same type or different types of coatings can be firmly bonded by metal bonding or intermolecular bonding at the atomic level without heating, pressing, voltage application, etc. , The internal stress of the coating can be relieved and the joint strain can be relaxed. The resulting joint does not peel at the interface (if it tries to peel off forcibly, the part other than the interface of the coating or the material to be joined will be destroyed. Yes) a joined state can be obtained (Patent Document 2, “0021” column).

特許第2791429号公報Japanese Patent No. 2791429 特開2008−207221号公報JP 2008-207221 A

上記従来の常温接合方法のうち,特許文献1に記載の方法は,被接合材の接合面に対して希ガスビームなどを照射して接合面に存在する酸化物や有機物等を除去して活性な状態とした後,両接合面を重ね合わせることにより接合を行おうというものである。   Among the conventional room temperature bonding methods described above, the method described in Patent Document 1 is active by irradiating a bonding surface of a material to be bonded with a rare gas beam or the like to remove oxides or organic substances existing on the bonding surface. After making it into a state, it is intended to perform the joining by superimposing both joint surfaces.

そのため,前掲の特許文献1に記載の発明では,真空チャンバー内に対向して位置する一対のウェハー保持部材を配置し,一方のウェハー保持部材を真空チャンバーに固定すると共に,他方のウェハー保持部材を真空チャンバーの気密を保った状態で直線移動可能なプッシュロッドの下端に取り付け,希ガスビームの照射を行ったと同一の真空容器内で接合面の重ね合わせを行うことにより(特許文献1「0005」欄),希ガスビームの照射などによって活性な状態となった接合面が,再度空気中の酸素や有機物等と結合して活性を失わないようにしつつ,接合を行うことができるようにしている。   Therefore, in the invention described in the above-mentioned Patent Document 1, a pair of wafer holding members positioned opposite to each other in the vacuum chamber are arranged, one wafer holding member is fixed to the vacuum chamber, and the other wafer holding member is fixed. It is attached to the lower end of a push rod that can move linearly while keeping the air tightness of the vacuum chamber, and by superimposing the joint surfaces in the same vacuum vessel where the rare gas beam was irradiated (Patent Document 1, “0005” column) ), The bonding surface that has been activated by irradiation with a rare gas beam or the like is bonded again with oxygen, organic matter, or the like in the air so that the bonding is not lost.

また,特許文献2に記載の常温接合方法においても,被接合材の接合面間の重ね合わせを成膜と共に同一の真空中で行うことを前提としているだけでなく(例えば特許文献2の請求項1),同一の真空中において接合を行う場合であっても「被膜の表面が真空容器内に残留している不純物ガス等との反応によって汚染が進行するに従い,被膜相互の付着強度は低下してゆき,やがて接合自体ができなくなる。」と説明する(特許文献2「0055」欄)。   Further, the room temperature bonding method described in Patent Document 2 not only presupposes that the bonding surfaces of the materials to be bonded are overlapped together with film formation in the same vacuum (for example, claims in Patent Document 2). 1) Even when bonding is performed in the same vacuum, “As the contamination progresses due to the reaction of the surface of the film with the impurity gas remaining in the vacuum vessel, the adhesion strength between the films decreases. In the meantime, the bonding itself can no longer be performed ”(Patent Document 2“ 0055 ”column).

このように従来の常温接合方法では,接合面の処理(希ガスビームによる洗浄,又は微結晶構造の被膜形成)を行った後に,これに続き行う接合面の重ね合わせは,接合面の処理を行ったと同一の真空容器内で,かつ,この真空容器内を高真空の状態に維持したまま行わなければならず,例えば,希ガスビームによる洗浄や微結晶薄膜を形成した後の接合面を大気圧の空気等に暴露してしまえば,接合自体が不可能となるというのが,本発明の発明者を含めた本発明の技術分野における当業者の認識であり,この認識を前提として,接合面の重ね合わせを高真空の空間内において行う構成を採用している。   As described above, in the conventional room temperature bonding method, after the bonding surface is processed (cleaning with a rare gas beam or forming a film having a microcrystalline structure), the subsequent bonding of the bonding surfaces is performed by processing the bonding surfaces. In the same vacuum vessel and with the vacuum vessel maintained in a high vacuum state, for example, the bonding surface after cleaning with a rare gas beam or forming a microcrystalline thin film should be at atmospheric pressure. It is the recognition of those skilled in the art of the present invention, including the inventor of the present invention, that the bonding itself is impossible if exposed to air or the like. A configuration is employed in which superposition is performed in a high vacuum space.

そのため,被接合材の接合面を重ね合わせる作業を高真空に維持された真空容器内という限定された空間,限定された条件下で行う必要があり,被接合材同士を重ね合わせる作業が極めて行い難いだけでなく,前記接合方法を実現するためには真空容器内を高真空に保ったまま,真空容器内に配置された被接合材の接合面を重ね合わせる作業を行うための特殊な構造を備えたロボットアームや治具,その他の貼着装置が必要となり,多大な初期投資を必要とする。   For this reason, it is necessary to perform the work of superimposing the joining surfaces of the materials to be joined in a limited space in a vacuum vessel maintained at a high vacuum in a limited condition. Not only is it difficult, but in order to realize the above-mentioned joining method, a special structure for superimposing the joining surfaces of the materials to be joined placed in the vacuum vessel while keeping the inside of the vacuum vessel at a high vacuum is used. A robot arm, jig, and other attachment devices are required, which requires a large initial investment.

しかし,以上のような当業者の認識に拘わらず,本発明の発明者が鋭意研究した結果,被接合材の接合面に特定の物性を持った金属によって構成された微結晶薄膜を形成して接合を行う場合には,接合面同士の重ね合わせを前掲の特許文献2で記載されている真空(1×10-4Pa)よりも高い圧力(低真空度),例えば大気圧下の雰囲気,更には大気圧の空気に暴露した後であっても,接合面の接合を行えることを見出した。 However, in spite of the above-mentioned recognition by those skilled in the art, the inventors of the present invention have intensively studied, and as a result, a microcrystalline thin film made of a metal having specific physical properties is formed on the joint surface of the material to be joined. When bonding is performed, the overlapping of the bonding surfaces is performed at a pressure (low vacuum) higher than the vacuum (1 × 10 −4 Pa) described in Patent Document 2 described above, for example, an atmosphere under atmospheric pressure, Furthermore, it was found that the bonding surfaces can be bonded even after exposure to atmospheric air.

本発明は,本発明の発明者による研究の結果得られた上記知見に基づき成されたものであり,被接合材の接合面に対する微結晶薄膜の形成を真空下で行った後,前掲の1×10-4Paよりも高い圧力(低真空度),例えば大気圧下において前記接合面間の重ね合わせを行うことによっても,異種材質間の接合を含む広範な材質間の接合に使用することができ,かつ,接合対象とする基体に物理的なダメージを与えることなく接合を行う,原子拡散を伴う接合方法(原子拡散接合方法)を提供することにより,このような原子拡散を伴う接合の作業性を向上させると共に,重ね合わせ作業を行うための特殊な構造を備えた真空装置や貼着装置を不要とすることを目的とする。 The present invention has been made on the basis of the above findings obtained as a result of research by the inventors of the present invention. After the formation of a microcrystalline thin film on the bonding surface of the material to be bonded is performed under vacuum, Also used for bonding between a wide range of materials including bonding between different materials by superimposing the bonding surfaces under a pressure higher than 10-4 Pa (low vacuum), for example, atmospheric pressure. By providing a bonding method with atomic diffusion (atomic diffusion bonding method) that can be performed without physically damaging the substrates to be bonded, it is possible to perform bonding of such bonding with atomic diffusion. The purpose is to improve workability and eliminate the need for a vacuum device or a sticking device having a special structure for performing an overlay operation.

上記目的を達成するために,本発明の原子拡散接合方法は,真空容器内において,一方の基体の平滑面に,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,1×10-4Paを越える圧力の雰囲気下において,少なくとも表面が室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の基体の平滑面に,前記一方の基体に形成された前記薄膜が接触するように前記一方,他方の2つの基体を重ね合わせることにより,前記薄膜と前記他方の基体の前記平滑面との接合界面及び結晶粒界に原子拡散を生じさせることにより前記2つの基体を接合(但し,150℃以上の接合温度で行う接合を除く)することを特徴とする(請求項1)。 In order to achieve the above object, the atomic diffusion bonding method of the present invention has a body diffusion coefficient at room temperature of 1 × 10 −40 (m 2 / s) or more on a smooth surface of one substrate in a vacuum vessel, In addition, a thin film having a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide of −15 (kJ / mol of compounds) or more at room temperature and an atmosphere with a pressure exceeding 1 × 10 −4 Pa are formed. Below, a single metal having a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and an oxide free energy of formation of −15 (kJ / mol of compounds) or more at room temperature Alternatively, the one and the other two substrates are overlapped so that the thin film formed on the one substrate contacts the smooth surface of the other substrate having a smooth surface having a microcrystalline structure made of an alloy. The thin film and the other substrate Bonding the two substrates by causing atomic diffusion at the joint interface and the crystal grain boundary between the smooth surface (excluding the bonding performed at a junction temperature of more than 0.99 ° C.) characterized by (claim 1 ).

なお、ほとんどの金属の室温における酸化物の生成自由エネルギーは負の数値であり,数値が小さい(絶対値が大きい)程,酸化し易いものと考えられていることから,数値が小さい(絶対値が大きい)程,酸化物の生成自由エネルギーが『大きい』と表現される場合もあるが,ここで説明する大きさは数値の大きさ〔符号(負号)を含めた数値の大きさ〕を言う。従って,例えば生成自由エネルギーが「−n(kJ/mol of compounds)以上」(nは数字)とは、−n≦ΔG(ΔGは酸化物の生成自由エネルギー)であること,すなわち酸化物の生成自由エネルギーが負であってその絶対値が「n」以下であるか,あるいは,同エネルギーが「0」または正の値であることを言う(以下,同じ)。 The free energy of formation of oxides at room temperature for most metals is a negative value. The smaller the value (the larger the absolute value), the easier it is to oxidize. In some cases, the free energy of formation of the oxide is expressed as “large”, but the size described here is the numerical value [the numerical value including the sign (negative sign)]. say. Therefore, for example, the generation free energy is “−n (kJ / mol of compounds) or more” (n is a number) means that −n ≦ ΔG (ΔG is the generation free energy of oxide), that is, generation of oxide. The free energy is negative and the absolute value is “n” or less, or the energy is “0” or a positive value (hereinafter the same).

なお,上記体拡散係数及び酸化物の生成自由エネルギーを有する単金属としては,Au,Agがある。   Note that there are Au and Ag as single metals having the body diffusion coefficient and the free energy of formation of oxides.

また,本発明の別の原子拡散接合方法は,真空容器内において,一方の基体の平滑面に,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,1×10-4Paを越える圧力の雰囲気下において,少なくとも表面が室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の基体の平滑面に,前記一方の基体に形成された前記薄膜が接触するように前記一方,他方の2つの基体を重ね合わせ,100℃以上の温度で加熱することにより前記微結晶構造の薄膜の接合界面及び結晶粒界に原子拡散を生じさせて前記2つの基体を接合(但し,150℃以上の接合温度で行う接合を除く)することを特徴とする(請求項2)。 In addition, another atomic diffusion bonding method of the present invention has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature on a smooth surface of one substrate in a vacuum vessel, and at room temperature. A thin film having a microcrystalline structure composed of a single metal or alloy having a free energy of formation of oxide of −150 (kJ / mol of compounds) or more is formed, and at least in an atmosphere having a pressure exceeding 1 × 10 −4 Pa. A single metal or alloy whose surface has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature and an oxide free energy of formation of −150 (kJ / mol of compounds) or more at room temperature. The one and the other two substrates are overlapped with each other so that the thin film formed on the one substrate is in contact with the smooth surface of the other substrate having a smooth surface having a microcrystalline structure. Said microcrystals by heating at a temperature It said cause atomic diffusion at the joint interface and grain boundaries forming a thin film bonding two substrates (except a bonding performed at a junction temperature of more than 0.99 ° C.), characterized in that (claim 2).

なお,上記体拡散係数及び酸化物の生成自由エネルギーの数値範囲に属する単金属としては,前述のAu,Agの他,Cuがある。   The single metal belonging to the numerical ranges of the body diffusion coefficient and the free energy of formation of the oxide includes Cu as well as the aforementioned Au and Ag.

上記いずれの構成においても,前記他方の基体の平滑面は,真空容器内において前記他方の基体の表面に形成された微結晶構造の薄膜により形成することができる(請求項)。 In any of the above construction, the smooth surface of the other substrate may be formed by a thin film of microcrystalline structure formed on a surface of the other substrate in a vacuum container (claim 3).

上記いずれの原子拡散接合方法においても,上記基体の重ね合わせは,大気圧以上の圧力の雰囲気下で行うことができる(請求項)。 In any of the above atomic diffusion bonding method, superposition of the substrate may be carried out under an atmosphere of pressure above atmospheric pressure (claim 4).

また,上記基体の重ね合わせを行う雰囲気は,空気であっても良く(請求項),更には,78%を越える不活性ガスを含むものであっても良い(請求項)。なお,ここでいう「不活性ガス」の用語には,「窒素」を含む。 The atmosphere in which the substrates are superposed may be air (Claim 5 ), or may contain more than 78% inert gas (Claim 6 ). The term “inert gas” here includes “nitrogen”.

更に,上記基体の重ね合わせは,例えばクリーンルームやグローブボックス等のように塵埃の除去された雰囲気下で行うことが好ましい(請求項)。 Moreover, the superposition of the substrate, for example, is preferably performed in an atmosphere that has been removed of dust as such clean rooms and a glove box (claim 7).

また,前記基体を重ね合わせる力の強さは101kPa以下,例えば数kPa程度の比較的弱い力によって行うことができる(請求項)。もっとも,このことは基体等に対してダメージを与えない程度の力で加圧を行うことを禁ずるものではない。 Further, the strength of the overlapping of the substrates can be performed by a relatively weak force of 101 kPa or less, for example, about several kPa (Claim 8 ). However, this does not prohibit pressing with a force that does not damage the substrate or the like.

また,前記微結晶薄膜を形成する前に,前記微結晶薄膜の形成と同一真空中において,前記微結晶薄膜の形成を行う基体の平滑面に生じている変質層を除去することが好ましい(請求項)。 Further, before forming the microcrystalline thin film, it is preferable to remove the altered layer generated on the smooth surface of the substrate on which the microcrystalline thin film is formed in the same vacuum as the formation of the microcrystalline thin film. Item 9 ).

更に,前記微結晶薄膜が形成される前記基体の平滑面に,前記微結晶薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶薄膜を形成するものとしても良い(請求項10)。 Furthermore, one or more underlayers made of a thin film of a material different from the microcrystalline thin film are formed on the smooth surface of the substrate on which the microcrystalline thin film is formed, and the microcrystalline thin film is formed on the underlayer. It is good also as a thing (Claim 10 ).

この場合,前記下地層を,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することができる(請求項11)。 In this case, the underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or selected from the element group. It can be formed of an alloy containing one or more elements (claim 11 ).

更に,前記下地層を形成する前記単金属又は合金として,当該下地層上に形成される微結晶薄膜を形成する単金属又は合金よりも高融点で,且つ,前記微結晶薄膜を形成する単金属又は合金に対して融点の差が大きいものを使用することができる(請求項12)。 Further, the single metal or alloy forming the base layer has a higher melting point than the single metal or alloy forming the microcrystalline thin film formed on the base layer, and the single metal forming the microcrystalline thin film Alternatively, a material having a large difference in melting point with respect to the alloy can be used (claim 12 ).

なお,前記微結晶構造の薄膜の膜厚は,2nm〜1μmの範囲とすることができる(請求項13)。 The thickness of the thin film of the fine crystalline structure can be in the range of 2Nm~1myuemu (claim 13).

以上説明した本発明の構成により,本発明の原子拡散接合方法によれば,以下のような顕著な効果を得ることができた。   With the configuration of the present invention described above, the following remarkable effects can be obtained according to the atomic diffusion bonding method of the present invention.

前述した体拡散係数,及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造の被膜が形成された一方の基体の平坦面を,同様の体拡散係数,及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造を有する平坦面を備えた他方の基体に前述した条件で重ね合わせることで,両者の重ね合わせを,1×10-4Paを越える圧力の雰囲気下という比較的低真空度の空間や大気圧(1気圧)以上の圧力の雰囲気下で行った場合においても,接合界面及び結晶粒界に原子拡散を生じさせて,これにより同種又は異種の微結晶薄膜の接合面間,又は微結晶薄膜と基体の平滑面間を,原子レベルで金属結合あるいは分子間結合により強固に接合させることができると共に,薄膜の内部応力を開放して接合歪みを緩和させることができた。なお,ここで得られる接合は,界面で剥離が生じない(無理に剥離しようとすると薄膜の界面以外の部分又は基体が破壊する)接合状態である。 The above-mentioned body diffusion coefficient and the formation of a similar body diffusion coefficient and oxide on the flat surface of one substrate on which a microcrystalline coating made of a single metal or alloy having the free energy of oxide formation is formed. By superimposing the other substrate with a flat surface having a microcrystalline structure made of a single metal or alloy having free energy under the above-mentioned conditions, the superposition of the two is performed at a pressure exceeding 1 × 10 −4 Pa. Even when performed in a relatively low-vacuum space such as an atmosphere or an atmosphere with a pressure higher than atmospheric pressure (1 atm), atomic diffusion occurs at the bonding interface and grain boundaries, thereby It is possible to firmly bond between the bonding surfaces of the microcrystalline thin film or between the microcrystalline thin film and the smooth surface of the substrate by metal bonding or intermolecular bonding at the atomic level, and release the internal stress of the thin film. We were able to relax the junction distortion. Note that the bonding obtained here is a bonding state in which peeling does not occur at the interface (a part other than the interface of the thin film or the substrate is destroyed if the peeling is forcibly).

その結果,基体同士の接合を,高真空に維持された真空容器内で行う必要がなく,接合条件の自由度が増す結果,原子拡散による接合を行う際の作業性を大幅に改善することができた。   As a result, it is not necessary to perform bonding between substrates in a vacuum vessel maintained at a high vacuum, and as a result, the degree of freedom in bonding conditions increases, and as a result, workability when bonding by atomic diffusion can be greatly improved. did it.

しかも,上記条件における原子拡散接合方法では,基体を200℃程度という比較的低い温度で加熱することで,上記いずれの条件においても接合を行うことができ,加熱により基体に対して与えるダメージを最小限に抑えることができた。   In addition, in the atomic diffusion bonding method under the above conditions, the substrate can be heated at a relatively low temperature of about 200 ° C. so that bonding can be performed under any of the above conditions, and damage to the substrate due to heating is minimized. I was able to keep it to the limit.

特に室温における体拡散係数を1×10-45(m2/s)以上とし,且つ,室温における酸化物の生成自由エネルギーを−150(kJ/mol of compounds)以上とした場合には,基体を100℃に加熱することにより接合を行うことができ,また,更に室温における体拡散係数を1×10-40(m2/s)以上,室温における酸化物の生成自由エネルギーを−15(kJ/mol of compounds)以上とした場合には,基体を加熱することなく,室温において接合した場合でも前述した原子拡散による接合を行うことができ,熱により基体に加わるダメージを更に低減することができた。 In particular, when the body diffusion coefficient at room temperature is 1 × 10 −45 (m 2 / s) or more and the free energy of formation of oxide at room temperature is −150 (kJ / mol of compounds) or more, the substrate is Bonding can be performed by heating to 100 ° C., the body diffusion coefficient at room temperature is 1 × 10 −40 (m 2 / s) or more, and the free energy of formation of oxide at room temperature is −15 (kJ / In the case of more than mol of compounds), the above-mentioned atomic diffusion bonding can be performed even when bonding at room temperature without heating the substrate, and the damage to the substrate due to heat can be further reduced. .

もっとも,基体に対して加熱を行うことなく接合できる場合であっても,基体に対してダメージを与えない程度に基体温度を室温以上に加熱することで前述した体拡散係数を上昇させることができ,これにより原子の拡散速度,拡散長を増大させることで接合界面及び結晶粒界における原子の拡散性を向上させてより均一かつ強固な接合を行うことができ,特に原子の拡散長の増大により表面の比較的粗い基体であっても接合することが可能となった。 However, even if the can be joined without performing heating to the substrate, it is to increase the body diffusion coefficient described above the substrate temperature in extent to prevent damage to the substrate by heating above room temperature This makes it possible to improve the diffusibility of atoms at the bonding interface and grain boundaries by increasing the diffusion rate and diffusion length of atoms, and to achieve more uniform and strong bonding. This makes it possible to bond even a substrate having a relatively rough surface.

ここで,体拡散係数Dは,
D=D0exp(−Q/RT)
0:振動数項(エントロピー項)
Q:活性化エネルギー
R:気体定数
T:絶対温度
によって表すことができ,温度Tを上昇させると,体拡散係数Dは指数関数的に増加する。
Here, the body diffusion coefficient D is
D = D 0 exp (−Q / RT)
D 0 : Frequency term (entropy term)
Q: Activation energy R: Gas constant T: It can be expressed by an absolute temperature, and when the temperature T is raised, the body diffusion coefficient D increases exponentially.

上記原子拡散接合方法は,基体の重ね合わせを大気圧(1気圧)以上の圧力の雰囲気下で行った場合であっても可能であり,更には,上記基体の重ね合わせを行う雰囲気を空気とした場合,即ち,空気中に暴露した状態で重ね合わせを行う場合であっても好適に接合を行うことができた。   The atomic diffusion bonding method can be performed even when the substrates are superposed in an atmosphere having a pressure equal to or higher than atmospheric pressure (1 atm). Further, the atmosphere in which the substrates are superposed is air. In this case, that is, even when the superposition is performed in the state exposed to the air, the joining can be suitably performed.

但し,空気は約78%が窒素,約20%が酸素であるところ,このうちの酸素が前述の微結晶薄膜に化学吸着することによって基体同士の接合が阻害されるものと考えられるところ,上記基体の重ね合わせを,78%を越える不活性ガス(ここで言う「不活性ガス」の用語には「窒素」も含む)を含む雰囲気中,好ましくは不活性ガス100%の雰囲気中において行うことにより,接合を阻害する要因である酸素の量を雰囲気中より減らし,微結晶薄膜と化学吸着しない窒素ガス,アルゴンガス,その他の不活性ガスの濃度が高められた雰囲気下で接合を行うことにより,より好適に接合を行うこと可能となる。   However, about 78% of the air is nitrogen and about 20% is oxygen, and it is considered that the oxygen is chemically adsorbed on the above-mentioned microcrystalline thin film, thereby inhibiting the bonding between the substrates. Superposition of the substrates is performed in an atmosphere containing more than 78% inert gas (the term “inert gas” includes “nitrogen”), preferably in an atmosphere containing 100% inert gas. By reducing the amount of oxygen, which is a factor that hinders bonding, from the atmosphere, bonding is performed in an atmosphere in which the concentration of nitrogen gas, argon gas, and other inert gases that are not chemically adsorbed to the microcrystalline thin film is increased. , It becomes possible to perform bonding more suitably.

特に,このような不活性ガスの濃度を高めた雰囲気下で重ね合わせを行う場合には,微結晶構造を構成する金属として,酸化物の生成自由エネルギーの数値が比較的小さな金属(従って,酸素と反応し易い金属)を使用した場合であっても強固な接合が可能となる。   In particular, when superposition is performed in an atmosphere in which the concentration of the inert gas is increased, a metal having a relatively small value for the free energy of formation of an oxide as the metal constituting the microcrystalline structure (therefore, oxygen Even when a metal that easily reacts with (a) is used, strong bonding is possible.

更に,上記基体の重ね合わせを,「クリーンルーム」や,「グローブボックス」等の塵埃の除去された雰囲気下で行うことにより,接合面に塵埃等の不純物が介在することによる接合不良を防止することができた。一例として,この空間のクリーン度としては,ISOクラス5(1988年米国連邦規格におけるクラス100に相当。1立法フィートの空間中における0.5μm以上の粒子数が100個未満。)以上であることが好ましく,より好適には,雰囲気中の湿度も調整(一例として50%以下)することが好ましい。   In addition, by superimposing the above substrates in a “clean room” or “glove box” atmosphere where dust is removed, it is possible to prevent poor bonding due to the presence of impurities such as dust on the bonding surface. I was able to. As an example, the cleanliness of this space should be ISO Class 5 (equivalent to Class 100 in the 1988 US Federal Standard. Number of particles of 0.5 μm or more in a cubic foot space is less than 100). More preferably, it is preferable to adjust the humidity in the atmosphere (for example, 50% or less).

本発明の原子拡散接合方法によれば,基体の重ね合わせに際し,大きな圧力を加えることを必要とせず,前記基体を重ね合わせる力の強さを101kPa以下,例えば数kPa程度の圧力で重ね合わせた場合であっても好適に接合を行うことができた。その結果,接合の際に加わる圧力によって基体がダメージを受けることが好適に防止された。   According to the atomic diffusion bonding method of the present invention, it is not necessary to apply a large pressure when superposing the substrates, and the strength of the force for superposing the substrates is 101 kPa or less, for example, a pressure of about several kPa. Even if it was a case, it was able to join suitably. As a result, the substrate was preferably prevented from being damaged by the pressure applied during the bonding.

上記微結晶薄膜を形成する前に,微結晶薄膜の形成と同一真空中において上記一方又は双方の基体の平滑面表面に形成されている変質層を逆スパッタリング等のドライプロセスにより除去することで,基体に対する微結晶薄膜の付着強度を向上させることができ,基体表面と微結晶薄膜間で剥離が生じることによる基体同士の付着強度の低下についても好適に防止することができた。   Before forming the microcrystalline thin film, the altered layer formed on the smooth surface of one or both of the substrates in the same vacuum as the formation of the microcrystalline thin film is removed by a dry process such as reverse sputtering, The adhesion strength of the microcrystalline thin film to the substrate can be improved, and a decrease in the adhesion strength between the substrates due to the separation between the substrate surface and the microcrystalline thin film can be suitably prevented.

また,前記微結晶薄膜が形成される前記基体の平滑面に,前記微結晶薄膜とは異なる材料の薄膜,例えば周期律表における4A〜6A属の元素であるTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属の薄膜,又は前記元素群より選択された1つ以上の元素を含む合金の薄膜によって下地層を形成することにより,基体に対する微結晶薄膜の付着強度を上昇させることができ,これにより基体と微結晶薄膜間で剥離が生じることを防止することができた。   Further, a thin film of a material different from that of the microcrystalline thin film, for example, Ti, V, Cr, Zr, Nb which is an element belonging to Group 4A to 6A in the periodic table is formed on the smooth surface of the substrate on which the microcrystalline thin film is formed. Forming an underlayer from a thin film of any one single metal selected from the group of elements Mo, Hf, Ta, and W, or a thin film of an alloy containing one or more elements selected from the group of elements Therefore, the adhesion strength of the microcrystalline thin film to the substrate can be increased, thereby preventing the separation between the substrate and the microcrystalline thin film.

特に,このような下地層の形成材料として,微結晶薄膜の形成材料に対して高融点であり,且つ,その融点の差が大きいものを使用することで,下地層上に形成される微結晶薄膜の2次元性(薄膜成長時の原子の濡れ性)が良くなり,微結晶薄膜が島状に成長することを防止でき,0.2nmといった1原子層分の厚みに相当する極めて薄い微結晶薄膜の形成が容易となる。   In particular, as a material for forming such an underlayer, a microcrystal formed on the underlayer by using a material having a high melting point and a large difference in melting point relative to the material for forming a microcrystalline thin film. The two-dimensionality of the thin film (atomic wettability during thin film growth) is improved, and it is possible to prevent the microcrystalline thin film from growing in the shape of islands. Formation of a thin film becomes easy.

なお,本発明の原子拡散接合方法では,形成する微結晶薄膜の膜厚がそれぞれ2nm〜1μmの範囲で好適に原子拡散接合が可能であり,特に,電子やスピン電流の平均自由工程よりも十分に薄い数Å程度の膜厚の微結晶薄膜の形成によっても接合を行うことができることから,シリコンウエハ等の接合に用いた場合であっても,接合面によって電子の移動等が妨げられない接合方法を提供することができた。   In the atomic diffusion bonding method of the present invention, atomic diffusion bonding can be suitably performed when the film thickness of the microcrystalline thin film to be formed is in the range of 2 nm to 1 μm, respectively. In particular, it is more sufficient than the mean free process of electrons and spin currents. In addition, bonding can be performed even by forming a microcrystalline thin film with a thickness of about several tens of millimeters. Therefore, even when used for bonding silicon wafers, etc., bonding is not hindered by movement of electrons by the bonding surface. Could provide a way.

本発明の原子拡散接合方法による基体の接合工程の一例を示した概略説明図。Schematic explanatory drawing which showed an example of the joining process of the base | substrate by the atomic diffusion bonding method of this invention. Auの微結晶薄膜形成後,大気圧の空気中に5分間暴露した後,接合を行ったSi基板の断面顕微鏡写真。A cross-sectional micrograph of a Si substrate bonded after exposure to atmospheric pressure air for 5 minutes after forming a microcrystalline thin film of Au. Auの微結晶薄膜形成後,大気圧の空気中に1時間暴露した後,接合を行ったSi基板の断面顕微鏡写真。A cross-sectional micrograph of a Si substrate bonded after exposure to atmospheric pressure air for 1 hour after formation of a microcrystalline thin film of Au. Auの微結晶薄膜形成後直ちに,微結晶薄膜の形成を行った真空容器中で接合を行ったSi基板の断面顕微鏡写真(比較例1)。Immediately after the formation of the Au microcrystalline thin film, a cross-sectional micrograph of a Si substrate bonded in a vacuum vessel in which the microcrystalline thin film was formed (Comparative Example 1). Ptの微結晶薄膜形成後,大気圧の空気中に暴露した後,速やかに200℃の温度で接合を行ったSi基板の断面顕微鏡写真。A cross-sectional micrograph of a Si substrate that was immediately bonded at a temperature of 200 ° C. after being exposed to air at atmospheric pressure after forming a microcrystalline thin film of Pt. Pdの微結晶薄膜形成後,大気圧の空気中に暴露した後,速やかに160℃の温度で接合を行ったSi基板の断面顕微鏡写真。A cross-sectional micrograph of a Si substrate that was immediately exposed to 160 ° C. after being exposed to air at atmospheric pressure after forming a microcrystalline thin film of Pd.

接合方法概略
本発明の原子拡散接合方法は,真空容器内においてスパッタリングやイオンプレーティング等の真空成膜により真空中で成膜した所定の体拡散係数及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造の薄膜同士を重ね合わせることにより,又は,前記微結晶構造の薄膜と,少なくとも表面が前記所定の体拡散係数及び酸化物の生成自由エネルギーを有する単金属,あるいは合金から成る微結晶構造を有する平坦面に重ね合わせることにより,この重ね合わせを1×10-4Paを越える圧力の雰囲気下,例えば大気圧以上の圧力の雰囲気下で行った場合であっても,接合界面及び結晶粒界において原子拡散が生じて両者間で強固な接合が行われることを見出し,これを基体間の接合に適応したものであり,下記の条件等において基体同士の接合を行うものである。
Outline of Bonding Method The atomic diffusion bonding method of the present invention comprises a single metal having a predetermined body diffusion coefficient and free energy of formation of an oxide formed in vacuum by vacuum film formation such as sputtering or ion plating in a vacuum vessel, Alternatively, by superimposing microcrystalline thin films made of an alloy, or from a single metal or alloy having at least the surface having the predetermined body diffusion coefficient and oxide free energy, with the microcrystalline thin film. Even if the superposition is performed in an atmosphere having a pressure exceeding 1 × 10 −4 Pa, for example, an atmosphere having a pressure higher than atmospheric pressure, by superimposing on a flat surface having a microcrystalline structure, It was found that atomic diffusion occurred at the interface and grain boundaries, and that strong bonding was performed between them, and this was applied to bonding between substrates. Ri, and performs the joining of the base body to each other in the conditions described below.

基体(被接合材)
材質
本発明の原子拡散接合方法による接合の対象である基体としては,スパッタリングやイオンプレーティング等,一例として到達真空度が1×10-3〜1×10-8Pa,好ましくは1×10-4〜1×10-8Paの高真空度である真空容器を用いた高真空度雰囲気における真空成膜により前述した微結晶構造の薄膜を形成可能な材質であれば如何なるものをも対象とすることができ,各種の純金属,合金の他,Si基板,SiO2基板等の半導体,ガラス,セラミックス,樹脂,酸化物等であって前記方法による微結晶構造の薄膜が形成可能であれば本発明における基体(被接合材)とすることができる。
Substrate (material to be joined)
Material As a substrate to be bonded by the atomic diffusion bonding method of the present invention, the ultimate vacuum is 1 × 10 −3 to 1 × 10 −8 Pa, preferably 1 × 10 , for example, sputtering or ion plating. Any material can be used as long as it can form a thin film having the above-described microcrystalline structure by vacuum film formation in a high vacuum atmosphere using a vacuum vessel having a high vacuum of 4 to 1 × 10 −8 Pa. It is possible to form a thin film having a microcrystalline structure by the above method, such as various kinds of pure metals and alloys, semiconductors such as Si substrate and SiO 2 substrate, glass, ceramics, resin, oxide, etc. It can be set as the base | substrate (to-be-joined material) in invention.

なお,基体は,例えば金属同士の接合のように同一材質間の接合のみならず,金属とセラミックス等のように,異種材質間での接合を行うことも可能である。   The substrate can be bonded not only between the same materials, for example, between metals, but also between different materials, such as metal and ceramics.

接合面の状態等
基体の形状は特に限定されず,例えば平板状のものから各種の複雑な立体形状のもの迄,その用途,目的に応じて各種の形状のものを対象とすることができるが,他方の基体との接合が行われる部分(接合面)については所定の精度で平滑に形成された平滑面を備えていることが必要である。
The state of the joining surface, etc. The shape of the substrate is not particularly limited, and for example, from flat to various complex three-dimensional shapes, various shapes can be targeted depending on the application and purpose. The portion (joint surface) to be joined with the other substrate needs to have a smooth surface formed smoothly with a predetermined accuracy.

なお,他の基体との接合が行われるこの平滑面は,1つの基体に複数設けることにより,1つの基体に対して複数の基体を接合するものとしても良い。   In addition, it is good also as what joins a several base | substrate with respect to one base | substrate by providing two or more this smooth surfaces with which another base | substrate is joined to one base | substrate.

この接合面の表面粗さは,パッケージの封止等,単に接合が得られるのみで目的が達成される場合には,例えば最大高さ(Rmax)で5nmを越える表面粗さ(例えば50nm以下)であっても接合を行うことができるが,好ましくはRmaxで5nm以下である。   The surface roughness of the bonding surface is, for example, a surface roughness exceeding the maximum height (Rmax) of 5 nm (for example, 50 nm or less) when the purpose is achieved simply by bonding, such as sealing of a package. However, bonding can be performed, but Rmax is preferably 5 nm or less.

基体の平滑面は,微結晶構造の薄膜を形成する前に表面のガス吸着層や自然酸化層等の変質層が除去されていることが好ましく,例えば薬液による洗浄等による既知のウェットプロセスによって前述の変質層を除去し,また,前記変質層の除去後,再度のガス吸着等を防止するために水素終端化等が行われた基体を好適に使用することができる。   As for the smooth surface of the substrate, it is preferable that a gas-adsorbed layer or a modified layer such as a natural oxide layer on the surface is removed before forming a thin film having a microcrystalline structure. It is possible to suitably use a substrate that has been subjected to hydrogen termination or the like in order to remove the altered layer and to prevent gas adsorption again after the altered layer is removed.

また,変質層の除去は前述のウェットプロセスに限定されず,ドライプロセスによって行うこともでき,真空容器中における希ガスイオンのボンバード等によりガス吸着層や自然酸化層などの変質層を逆スパッタリング等によって除去することもできる。   In addition, the removal of the altered layer is not limited to the wet process described above, and can be performed by a dry process. The altered layer such as a gas adsorption layer or a natural oxide layer is reverse-sputtered by bombardment of rare gas ions in a vacuum vessel. Can also be removed.

特に,前述のようなドライプロセスによって変質層を除去する場合,変質層を除去した後,後述の微結晶構造を有する薄膜を形成する迄の間に,基体表面にガス吸着や酸化が生じることを防止できるために,このような変質層の除去を,後述する微結晶構造の薄膜を形成すると同一の真空中において行うと共に,変質層の除去に続けて微結晶構造の薄膜を形成することが好ましく,より好ましくは,変質層の除去を超高純度の不活性ガスを使用して行い,変質層の除去後に酸化層等が再形成されることを防止する。   In particular, when the altered layer is removed by the dry process as described above, gas adsorption and oxidation occur on the substrate surface after the altered layer is removed and before a thin film having a microcrystalline structure described later is formed. In order to prevent this, it is preferable to remove such a deteriorated layer in the same vacuum when a thin film having a microcrystalline structure described later is formed, and to form a thin film having a microcrystalline structure following the removal of the deteriorated layer. More preferably, the altered layer is removed using an ultra-high purity inert gas to prevent the oxide layer or the like from being re-formed after the altered layer is removed.

なお,基体は,単結晶,多結晶,アモルファス,ガラス状態等,その構造は特に限定されず各種構造のものを接合対象とすることが可能であるが,2つの基体の一方に対してのみ後述する微結晶構造の薄膜を形成し,他方の基体に対して微結晶構造の薄膜の形成を行うことなく両者の接合を行う場合には,この薄膜の形成を行わない他方の基体の接合面は,接合界面や結晶粒界における原子拡散を得ることができるよう,少なくともその表面が後述する微結晶構造の薄膜と同様に,所定の体拡散係数,所定の酸化物の生成自由エネルギーの範囲内の金属によって構成された微結晶構造(アモルファスを含む)を有する必要がある。   The structure of the substrate is not particularly limited, such as single crystal, polycrystal, amorphous, glass state, etc., and various structures can be targeted for bonding, but only one of the two substrates will be described later. When a thin film having a microcrystalline structure is formed and bonding is performed without forming a thin film having a microcrystalline structure on the other substrate, the bonding surface of the other substrate on which the thin film is not formed is In order to obtain atomic diffusion at the junction interface and grain boundaries, at least the surface thereof is within the range of a predetermined body diffusion coefficient and a predetermined free energy of formation of an oxide, as in a thin film having a microcrystalline structure described later. It is necessary to have a microcrystalline structure (including amorphous) made of metal.

微結晶構造の薄膜
材質
前述した微結晶構造の薄膜の形成材質としては,基体と同種材質の薄膜を形成しても良く,また,目的に応じて基体とは異種材質の微結晶構造の薄膜を形成しても良く,さらに,基体の一方に形成する微結晶構造の薄膜の材質と,基体の他方に形成する微結晶構造の薄膜の材質とを,それぞれ異なる材質としても良い。
Thin film material of microcrystalline structure As a material for forming the thin film of microcrystalline structure described above, a thin film of the same kind as the base material may be formed. Further, the material of the microcrystalline thin film formed on one of the substrates may be different from the material of the microcrystalline thin film formed on the other of the substrates.

形成する微結晶構造の薄膜の材料は,接合の際の加熱条件に応じて,以下の3種類に分類することができる。   The material of the thin film having a microcrystalline structure to be formed can be classified into the following three types according to the heating conditions at the time of bonding.

第1の材料は,非加熱での接合が可能な材料であり,この材料は,室温における体拡散係数が1×10-40(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−15以上の単金属,又は合金である。なお,このような数値範囲に属する単金属としては,Au,Agがある。 The first material is a material that can be bonded without heating, and this material has a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and the formation of oxide at room temperature. A single metal or alloy having a free energy (kJ / mol of compounds) of -15 or more. Note that single metals belonging to such a numerical range include Au and Ag.

第2の材料は,前記第1の材料に加え,更に接合の際に基体を100℃以上に加熱することで接合が可能となる材料(例えばCu)を含む群であり,この材料は,室温における体拡散係数が1×10-45(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−150以上の単金属,又は合金である。なお,このような数値範囲に属する単金属としては,前述のAu,Agの他,Cuがある。 The second material is a group including, in addition to the first material, a material (for example, Cu) that can be bonded by heating the base body to 100 ° C. or higher at the time of bonding. Is a single metal or alloy having a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more and an oxide free energy (kJ / mol of compounds) of −150 or more at room temperature. In addition, as a single metal which belongs to such a numerical range, there are Cu in addition to the above-mentioned Au and Ag.

第3の材料は,前記第1,2の材料に加え,更に接合の際に基体を200℃以上に加熱することで接合が可能となる材料を含む群であり,この材料は,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が,−330以上の単金属,又は合金である。このような数値範囲に属する単金属としては,前述のAu,Ag,Cuの他,Pd,Pt,Ni,Znがある。 In addition to the first and second materials, the third material is a group including a material that can be bonded by heating the substrate to 200 ° C. or higher at the time of bonding. It is a single metal or alloy having a diffusion coefficient of 1 × 10 −55 (m 2 / s) or more and an oxide free energy of formation (kJ / mol of compounds) at room temperature of −330 or more. As single metals belonging to such a numerical range, there are Pd, Pt, Ni and Zn in addition to the aforementioned Au, Ag and Cu.

なお,合金については,合金成分,配合比等によって体拡散係数や酸化物の生成自由エネルギーが変化することから,種々の組合せが存在し得るが,前記それぞれの数値範囲内に含まれる単金属の群内で組合せて成る合金は上記の各数値範囲に含まれ,また,上記の各群に属する各金属の化学的な特性を失わない程度に,他の合金成分を添加して得た合金は,主成分の単金属と同様に使用することが可能である。   As for alloys, the body diffusion coefficient and the free energy of formation of oxides vary depending on the alloy composition, mixing ratio, etc., so various combinations may exist, but the single metal contained within each of the above numerical ranges. Alloys combined within the group are included in the above numerical ranges, and alloys obtained by adding other alloy components to such an extent that the chemical characteristics of each metal belonging to each group are not lost are , Can be used in the same manner as the main metal single metal.

以上のように体拡散係数の数値範囲と,酸化物の自由エネルギー毎に温度条件を規定しているのは,本発明の原子拡散接合を行うためには,前述の体拡散係数は大きい程原子の拡散性が向上し,一方,酸化物の生成自由エネルギーの数値が大きくなる程,酸素との反応が起こり難く,酸化膜等の接合を阻害する物質を形成し難くなるためである。   As described above, the temperature range is defined for the numerical range of the body diffusion coefficient and for each free energy of the oxide. In order to perform the atomic diffusion bonding of the present invention, the larger the body diffusion coefficient, the more the atoms. On the other hand, as the value of the free energy of formation of the oxide increases, the reaction with oxygen hardly occurs and it becomes difficult to form a substance that inhibits bonding such as an oxide film.

従って,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−330(kJ/mol of compounds)以上の単金属,又は合金によって微結晶構造の薄膜を形成した場合には,この数値範囲に属する全ての金属薄膜で接合を可能とするためには,基体を200℃以上で加熱する必要があるが,これに対し,体拡散係数が高く,酸化物の生成自由エネルギーが大きい金属に限定する場合には,接合のための基体の加熱温度を低くすることができ,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上では基体を100℃以上に,更に,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上では基体を加熱することなく,室温で接合した場合においても,原子拡散を伴う接合を行うことができる。 Therefore, the body diffusion coefficient at room temperature is 1 × 10 −55 (m 2 / s) or more, and the free energy of formation of oxides at room temperature (kJ / mol of compounds) is −330 (kJ / mol of compounds) or more. When a thin film having a microcrystalline structure is formed of a single metal or an alloy, it is necessary to heat the substrate at 200 ° C. or higher in order to enable bonding with all metal thin films belonging to this numerical range. On the other hand, when the metal diffusion coefficient is limited to a metal having a high free energy for forming an oxide, the heating temperature of the substrate for bonding can be lowered, and the body diffusion coefficient at room temperature is 1 ×. If the free energy of formation of oxide at room temperature is 10-45 (m 2 / s) or more and -150 (kJ / mol of compounds) or more, the substrate is 100 ° C. or more, and the body diffusion coefficient is 1 at room temperature. × 10 -40 (m 2 / s) or more and at room temperature When the free energy of formation of the oxide is -15 (kJ / mol of compounds) or more, bonding with atomic diffusion can be performed even when bonding at room temperature without heating the substrate.

そして,これらの金属によって微結晶構造の薄膜を形成した基体を,前述の各温度条件で接合した場合には,いずれも少なくとも部分的に接合界面の消失が生ずると共に,接合界面の消失部分において接合された微結晶薄膜間において再結晶が生じて2つの基体間の間隔の略全域に亘る粒径を備えた結晶粒が生成される等,金属結合による2つの微結晶薄膜の一体化を得ることができる。   When a substrate in which a thin film having a microcrystalline structure is formed by using these metals is bonded at each of the above-described temperature conditions, the bonding interface disappears at least partially, and the bonding is performed at the disappearance portion of the bonding interface. Recrystallization occurs between the formed microcrystalline thin films, and crystal grains having a grain size covering almost the entire area between the two substrates are obtained, so that the two microcrystalline thin films are integrated by metal bonding. Can do.

膜厚等
形成する膜厚は特に限定されないが,それぞれの微結晶薄膜を,構成元素1層分の厚みで形成した場合であっても接合を行うことが可能であり,一例としてAuの微結晶薄膜を形成する場合,膜厚2nm(2層で4nm)とした場合であっても接合可能であり,接合される基体間に介在する微結晶薄膜の厚さを,電子やスピン電流の平均自由工程以下の厚みで形成することが可能である。
Although the film thickness to be formed is not particularly limited, bonding can be performed even when each microcrystalline thin film is formed with a thickness of one constituent element. For example, Au microcrystal When forming a thin film, bonding is possible even when the film thickness is 2 nm (4 nm for two layers), and the thickness of the microcrystalline thin film interposed between the substrates to be bonded can be set to an average free of electrons and spin current. It is possible to form with the thickness below the process.

その結果,基体間に介在する微結晶薄膜の層が電子の移動等に対して障壁となることがなく,任意のシリコンウエハを接合する等して新たな機能性デバイスの創成等に本発明の原子拡散接合方法を使用することが可能である。   As a result, the layer of the microcrystalline thin film interposed between the substrates does not become a barrier against the movement of electrons, etc., and it is possible to create a new functional device by bonding an arbitrary silicon wafer. It is possible to use an atomic diffusion bonding method.

なお,形成する微結晶構造の薄膜は,接合面の全体を連続して覆うものである必要はなく,これを部分的に覆うものであっても良い。従って,ここでいう「微結晶構造の薄膜」には,例えば核成長の過程において形成される島状構造の状態も含み,例えば島状構造の薄膜同士を重ね合わせて接合する場合には,一方の薄膜を構成する島と,他方の薄膜を構成する島との重なり部分において後述する原子拡散による接合が生じ,これにより接合が得られることとなる。   Note that the thin film having a microcrystalline structure to be formed does not need to continuously cover the entire bonding surface, and may partially cover this. Therefore, the term “microcrystalline thin film” as used herein includes, for example, the state of an island structure formed in the process of nuclear growth. Bonding by atomic diffusion, which will be described later, occurs at an overlapping portion between the island forming the thin film and the island forming the other thin film, and thereby the bonding is obtained.

一方,膜厚が厚くなるに従って得られた微結晶薄膜の表面粗さが増大して接合が困難となると共に,厚みのある微結晶薄膜の形成には長時間を要し,生産性が低下することから,その上限は1μm程度であり,2nm〜1μm程度が本発明における原子拡散接合方法における各微結晶薄膜の好ましい膜厚の範囲である。   On the other hand, as the film thickness increases, the surface roughness of the obtained microcrystalline thin film increases and bonding becomes difficult, and it takes a long time to form a thick microcrystalline thin film, resulting in decreased productivity. Therefore, the upper limit is about 1 μm, and about 2 nm to 1 μm is a preferable film thickness range of each microcrystalline thin film in the atomic diffusion bonding method in the present invention.

粒径及び密度
形成する微結晶薄膜は,同微結晶金属の固体内に比べて原子の拡散速度が大きく,特に,拡散速度が極めて大きくなる粒界の占める割合が大きい微結晶構造であることが好ましく,結晶粒の薄膜面内方向の平均粒径は50nm以下であれば良く,より好ましくは20nm以下である。
Grain size and density The microcrystalline thin film to be formed has a higher atomic diffusion rate than that of the solid of the same microcrystalline metal, and in particular, it has a microcrystalline structure with a large proportion of grain boundaries where the diffusion rate is extremely high. Preferably, the average grain size in the in-plane direction of the crystal grains may be 50 nm or less, and more preferably 20 nm or less.

また,微結晶薄膜は,微結晶薄膜が占める空間の体積100%に対し,空隙等の形成部分を除く,微結晶薄膜を構成する金属が占める体積の割合が80%以上,好ましくは80〜98%となるよう形成することが好ましい。   Further, in the microcrystalline thin film, the proportion of the volume occupied by the metal constituting the microcrystalline thin film, excluding the formation of voids, is 80% or more, preferably 80 to 98, with respect to the volume of space occupied by the microcrystalline thin film is 100%. It is preferable to form so that it may become%.

微結晶薄膜の形成面
さらに,上記微結晶構造の薄膜の形成は,接合対象とする2つの基体のそれぞれに形成しても良いが,一方の基体に対してのみ前記微結晶構造の薄膜を形成し,他方の基体に対しては微結晶構造の薄膜を形成することなく,接合を得ることが可能である。
Forming surface of microcrystalline thin film Furthermore, the above-mentioned thin film having a microcrystalline structure may be formed on each of two substrates to be joined, but the thin film having the microcrystalline structure is formed only on one of the substrates. However, it is possible to obtain a bond to the other substrate without forming a thin film having a microcrystalline structure.

この場合,微結晶構造の薄膜の形成を行わない上記他方の基体の接合面は,前述したように接合面の少なくとも表面付近が所定の体拡散係数,酸化物の生成自由エネルギーの数値範囲内にある単金属,あるいは合金から成る微結晶構造となっている必要がある。但し,微結晶構造の薄膜の形成を行わない基体の接合面と微結晶構造の薄膜の材質が共通である必要はない。   In this case, the bonding surface of the other substrate on which the thin film having the microcrystalline structure is not formed is, as described above, at least near the surface of the bonding surface within the predetermined range of the body diffusion coefficient and the free energy of formation of the oxide. It must have a microcrystalline structure made of a single metal or alloy. However, it is not necessary that the bonding surface of the substrate on which the microcrystalline thin film is not formed and the material of the microcrystalline thin film be the same.

なお,微結晶構造の薄膜を形成する基体の平滑面には,微結晶構造の薄膜の形成前に,微結晶構造の薄膜とは異なる材質の薄膜より成る1層以上の下地層を形成することができ,特に,形成する微結晶構造の薄膜が,基体に対する付着強度が比較的弱い場合には,付着強度を向上する上で下地層の形成は有効である。   In addition, on the smooth surface of the substrate on which the microcrystalline thin film is formed, one or more underlayers made of a thin film made of a material different from the microcrystalline thin film should be formed before the microcrystalline thin film is formed. In particular, when the thin film having a microcrystalline structure to be formed has a relatively low adhesion strength to the substrate, the formation of the underlayer is effective in improving the adhesion strength.

このような下地層は,微結晶薄膜の後述する成膜方法と同様の真空成膜技術によって形成することができ,その材質としては,周期律表の4A〜6A属の元素であるTi,Zr,Hf,V,Nb,Ta,Cr,Mo,Wによって形成することができ,その厚さは,一例として0.2〜20nm,後述の実施例では5nmである。   Such an underlayer can be formed by a vacuum film formation technique similar to the film formation method to be described later of the microcrystalline thin film, and the material thereof is Ti, Zr which is an element belonging to Group 4A-6A of the periodic table. , Hf, V, Nb, Ta, Cr, Mo, W, the thickness of which is 0.2 to 20 nm as an example, and 5 nm in the examples described later.

この下地層の材質としては,その上に形成する微結晶薄膜の形成材料に対して融点の差が大きいものを使用することが好ましく,かつ,微結晶構造の薄膜の形成材料に対して高融点のものを使用することが好ましい。このような融点差が大きく,微結晶構造の薄膜に対して高融点となる材質の組み合わせの一例として,例えばTaの下地層上にAgの微結晶薄膜を形成する場合,形成された微結晶薄膜が基体より剥離することを好適に防止できるだけでなく,下地層上に形成される微結晶構造の薄膜の2次元性(微結晶薄膜形成時の原子の濡れ性)が良くなり成膜時に微結晶構造の薄膜であるAgが島状に成長することを防止でき,2nmといった極めて薄い微結晶薄膜の形成が容易となる。   As the material of the underlayer, it is preferable to use a material having a large difference in melting point with respect to the material for forming the microcrystalline thin film formed thereon, and a high melting point for the material for forming the thin film having a microcrystalline structure. Are preferably used. As an example of a combination of materials having a large melting point difference and a high melting point with respect to a thin film having a microcrystalline structure, for example, when forming an Ag microcrystalline thin film on a Ta underlayer, the formed microcrystalline thin film Not only can be suitably prevented from peeling off from the substrate, but the two-dimensionality of the microcrystalline thin film formed on the underlayer (atomic wettability during microcrystalline thin film formation) is improved, and microcrystals are formed during film formation. Ag, which is a thin film having a structure, can be prevented from growing in an island shape, and an extremely thin microcrystalline thin film of 2 nm can be easily formed.

成膜方法
成膜技術
本発明の原子拡散接合方法において,被接合材である基体の接合面に形成する微結晶薄膜の形成方法としては,スパッタリングやイオンプレーティング等のPVDの他,CVD,各種蒸着等,到達真空度が1×10-4〜1×10-8Paの高真空度である真空容器において真空雰囲気における真空成膜を行う各種の成膜法を挙げることができ,拡散速度が比較的遅い材質及びその合金や化合物等については,好ましくは形成された薄膜の内部応力を高めることのできるプラズマの発生下で成膜を行う真空成膜方法,例えばスパッタリングによる成膜が好ましい。
Film Forming Method Film Forming Technology In the atomic diffusion bonding method of the present invention, as a method for forming a microcrystalline thin film formed on a bonding surface of a substrate which is a material to be bonded, PVD such as sputtering and ion plating, CVD, Various film-forming methods for vacuum film formation in a vacuum atmosphere in a vacuum vessel having a high vacuum degree of 1 × 10 −4 to 1 × 10 −8 Pa, such as vapor deposition, can be cited, and the diffusion rate is For relatively slow materials and alloys and compounds thereof, a vacuum film formation method in which film formation is preferably performed under the generation of plasma capable of increasing the internal stress of the formed thin film, for example, film formation by sputtering is preferable.

真空度
薄膜形成の際の真空容器内の圧力は,到達真空度が1×10-3〜1×10-8Paの真空雰囲気であれば良く,より低い圧力(高真空度)である程好ましい。
Degree of vacuum The pressure in the vacuum vessel during the formation of the thin film may be a vacuum atmosphere with an ultimate degree of vacuum of 1 × 10 −3 to 1 × 10 −8 Pa, and a lower pressure (high degree of vacuum) is preferable. .

不活性ガス(Arガス)圧
成膜方法がスパッタリングである場合,成膜時における不活性ガス(一般的にはArガス)の圧力は,放電可能な領域,例えば0.01Pa以上であることが好ましく,また30Pa(300μbar)を越えると接合を行うことができない場合が生じるため,上限は30Pa(300μbar)程度とすることが好ましい。これは,Arガス圧が上昇すると,形成された薄膜の表面粗さが増加すると共に,膜密度が著しく低下し,膜中の酸素等の不純物濃度が著しく増加する場合が生じるためである。
Inert gas (Ar gas) pressure When the film formation method is sputtering, the pressure of the inert gas (generally Ar gas) during film formation should be a dischargeable region, for example, 0.01 Pa or more. In addition, if it exceeds 30 Pa (300 μbar), bonding may not be possible, so the upper limit is preferably about 30 Pa (300 μbar). This is because when the Ar gas pressure is increased, the surface roughness of the formed thin film is increased, the film density is significantly decreased, and the concentration of impurities such as oxygen in the film is significantly increased.

重ね合わせの条件
雰囲気の圧力
以上のようにして,表面に微結晶構造の薄膜が形成された基体相互,又は微結晶構造の薄膜が形成された基体と微結晶構造の基体表面とが,1×10-4Paを越える圧力の雰囲気下,例えば,大気圧以上の圧力雰囲気下において重ね合わされることにより,接合界面及び結晶粒界に原子拡散を生じさせて前記2つの基体の接合が行われる。
Conditions for superposition Atmospheric pressure As described above, a substrate having a microcrystalline thin film formed on the surface, or a substrate having a microcrystalline thin film and a substrate surface having a microcrystalline structure are 1 × The two substrates are bonded to each other by causing atomic diffusion at the bonding interface and the crystal grain boundary by superimposing in an atmosphere having a pressure exceeding 10 −4 Pa, for example, a pressure atmosphere at or above atmospheric pressure.

このように,本発明の方法では,2つの基体の重ね合わせを,微結晶薄膜の形成を行った真空中よりも高圧の雰囲気下において行う場合であっても接合を行うことができるものとなっている。   Thus, according to the method of the present invention, bonding can be performed even when the two substrates are superposed in a higher pressure atmosphere than in the vacuum in which the microcrystalline thin film is formed. ing.

なお,基体同士の重ね合わせを行う雰囲気の圧力が大気圧を越える場合としては,例えば給気処理型のクリーンルームやグローブボックス内で基体の重ね合わせを行う場合等がある。   The case where the pressure of the atmosphere in which the substrates are superposed exceeds the atmospheric pressure includes, for example, the case where the substrates are superposed in an air supply type clean room or a glove box.

雰囲気の成分
また,基体同士の重ね合わせを行う際の雰囲気の成分は,空気(窒素約78%,酸素約20%)であっても良く,又は,窒素ガス,アルゴンガス,その他の不活性ガスが,単独又は混合状態で78%を越えて存在した状態,好ましくは不活性ガス100%の雰囲気であっても良い。
Ingredients of the atmosphere The atmosphere components when the substrates are overlapped may be air (about 78% nitrogen, about 20% oxygen), or nitrogen gas, argon gas, or other inert gas. However, it may be in a state of exceeding 78% alone or in a mixed state, preferably an atmosphere of 100% inert gas.

微結晶薄膜形成後の経過時間
ここで,微結晶薄膜としてAu膜を形成した例では,Au膜の形成後,Au膜を大気圧(1気圧)の空気に1〜6時間暴露した後に基体の重ね合わせを行った場合においても十分な接合力が得られることが確認されており,1〜6時間に対して十分に長い時間,大気圧の空気中に暴露した後においても接合を行うことが可能である。
Elapsed time after formation of microcrystalline thin film Here, in the example in which an Au film is formed as a microcrystalline thin film, after the Au film is formed, the Au film is exposed to air at atmospheric pressure (1 atm) for 1 to 6 hours, and then the substrate It has been confirmed that sufficient bonding force can be obtained even when superposition is performed, and bonding can be performed even after exposure to air at atmospheric pressure for a sufficiently long time compared to 1 to 6 hours. Is possible.

更に,雰囲気中の酸素や水の量を減らすことは,微結晶構造の薄膜の形成後,更に長時間経過した後にも接合を強固に行い得るものとなることから,基体同士の重ね合わせを,前述したように78%を越える不活性ガスを含む雰囲気,好ましくは100%不活性ガスの雰囲気中において行う場合,及び/又は1×10-4Paを越える圧力の範囲内で重ね合わせを行う雰囲気の圧力を低く設定する場合には,微結晶構造の薄膜の形成からより長時間経過した後であっても,強固な接合を行うことが可能となる。 Furthermore, since the amount of oxygen and water in the atmosphere can be reduced after a long time has elapsed after the formation of a thin film having a microcrystalline structure, the substrates can be overlapped. As described above, in an atmosphere containing an inert gas exceeding 78%, preferably in an atmosphere containing 100% inert gas, and / or an atmosphere in which superposition is performed within a pressure range exceeding 1 × 10 −4 Pa When the pressure is set low, it is possible to perform strong bonding even after a longer time has elapsed since the formation of the microcrystalline thin film.

また,例えば,微結晶構造の薄膜を形成する金属の体拡散係数が低くなるに従い,また,酸化物の生成自由エネルギーの数値が小さくなるに従い,接合を行う雰囲気中における不活性ガスの含有量を高める等,形成する微結晶薄膜の材質に応じて基体の重ね合わせを行う雰囲気の成分や圧力を変化させるものとしても良い。   In addition, for example, as the body diffusion coefficient of the metal forming the thin film having a microcrystalline structure decreases, and as the value of free energy of formation of the oxide decreases, the content of inert gas in the bonding atmosphere is reduced. It is also possible to change the components and pressure of the atmosphere in which the substrates are superposed according to the material of the microcrystalline thin film to be formed.

雰囲気の清浄度
なお,このような基体の重ね合わせを行う雰囲気は,接合面に塵埃等が介在することによる接合不良を防止するために,塵埃の除去された空間内において行うことが好ましく,前述したように,塵埃の除去されたクリーンルームやグローブボックス内において行うことができる。
The cleanliness of the atmosphere It is preferable that the atmosphere in which the substrates are superposed is performed in a space from which dust is removed in order to prevent poor bonding due to the presence of dust or the like on the bonding surface. As described above, it can be performed in a clean room or a glove box from which dust is removed.

このような雰囲気の清浄度は,一例として,ISOクラス5(1988年米国連邦規格におけるクラス100に相当。1立法フィートの空間中における0.5μm以上粒子数が100個未満。)以上であることが好ましい。   The cleanliness of such an atmosphere is, for example, ISO class 5 (corresponding to class 100 in the 1988 US federal standard. 0.5 μm or more and less than 100 particles in a space of 1 cubic foot). Is preferred.

また前述したように,雰囲気中の水分についても微結晶薄膜の表面に化学吸着して化合物を形成する原因となることから,このような接合面の重ね合わせを行う雰囲気は湿度が50%以下に調整されていることが好ましい。   Further, as described above, moisture in the atmosphere also causes chemical adsorption on the surface of the microcrystalline thin film to form a compound, so that the atmosphere for superimposing such bonding surfaces has a humidity of 50% or less. It is preferably adjusted.

接合時の温度条件
前述したように,接合面に形成する微結晶構造の薄膜を構成する金属材料の体拡散係数,及び酸化物の生成自由エネルギーに応じて,基体を下記の条件毎に下記の温度に加熱して接合を行う。
As described above, depending on the body diffusion coefficient of the metal material constituting the microcrystalline thin film formed on the bonding surface and the free energy of formation of the oxide, the substrate is subjected to the following conditions according to the following conditions. Joining by heating to temperature.

室温における体拡散係数が1×10-40(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−15以上の単金属,又は合金により微結晶構造の薄膜による接合を行う場合には,接合を得るために基体の加熱は不要である。 It is microcrystalline by a single metal or alloy having a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more at room temperature and an oxide free energy (kJ / mol of compounds) of −15 or more at room temperature. When bonding with a thin film having a structure, heating of the substrate is not necessary to obtain bonding.

但し,この場合においても先に記載したように,基体にダメージを与えない範囲で基体を加熱して,体拡散係数を上昇させた接合を行うものとしても良い。   However, even in this case, as described above, the base body may be heated within a range not damaging the base body to perform bonding with an increased body diffusion coefficient.

薄膜を形成する金属を,室温における体拡散係数が1×10-45(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−150以上の単金属,又は合金にまで拡張した場合には,この条件に含まれる全ての金属薄膜において接合を得るためには基体を100℃以上に加熱する。 A metal forming a thin film has a body diffusion coefficient of 1 × 10 −45 (m 2 / s) or more at room temperature and a single oxide having a free energy of formation of oxide (kJ / mol of compounds) of −150 or more at room temperature. When expanded to a metal or alloy, the substrate is heated to 100 ° C. or higher in order to obtain bonding in all metal thin films included in this condition.

更に,薄膜を形成する金属の範囲を,室温における体拡散係数が1×10-55(m2/s)以上であると共に,室温における酸化物の生成自由エネルギー(kJ/mol of compounds)が−330以上の単金属,又は合金の範囲に迄拡大した場合には,この条件に含まれる全ての金属薄膜において接合を得るためには基体を200℃以上の温度に加熱する。 Furthermore, the range of metals that form thin films has a body diffusion coefficient of 1 × 10 −55 (m 2 / s) or more at room temperature, and the free energy of formation of oxides at room temperature (kJ / mol of compounds) − In the case of expanding to the range of single metal or alloy of 330 or higher, the substrate is heated to a temperature of 200 ° C. or higher in order to obtain bonding in all metal thin films included in this condition.

なお,一方の基体に形成した微結晶構造の薄膜を構成する金属の体拡散係数及び酸化物の生成自由エネルギーと,他方の基体の表面に微結晶構造を形成する金属の体拡散係数及び酸化物の生成自由エネルギーとが相違する場合には,体拡散係数が小さく,酸化物の自由生成エネルギーの数値が小さい金属に対して適用される温度に基体を加熱して接合を行う。   It should be noted that the metal body diffusion coefficient and oxide free energy forming the microcrystalline thin film formed on one substrate, and the metal body diffusion coefficient and oxide forming the microcrystalline structure on the surface of the other substrate. In the case where the free energy of formation is different, the substrate is heated to a temperature applied to a metal having a small body diffusion coefficient and a small value of the free free energy of oxide for bonding.

接合方法例
本発明による原子拡散接合方法による接合工程の一例を,図1を参照して説明する。図1において,薄膜形成を行う真空容器内の上部に,スパッタを行うためのマグネトロンカソードを配置すると共に,このマグネトロンカソードの下部に,相互に貼り合わされる基体を載置する治具を配置し,この治具に取り付けた基体の接合面に対して微結晶薄膜を形成する。
Example of Bonding Method An example of a bonding process by the atomic diffusion bonding method according to the present invention will be described with reference to FIG. In FIG. 1, a magnetron cathode for performing sputtering is disposed at the upper part in a vacuum vessel for forming a thin film, and a jig for placing substrates to be bonded to each other is disposed at the lower part of the magnetron cathode. A microcrystalline thin film is formed on the bonding surface of the substrate attached to the jig.

図示の実施形態において,前述の治具に設けられたテーブルは,図1中の紙面右側の図に破線で示す薄膜形成位置と,実線で示す貼り合わせ位置間を回動可能に構成されており,基体の一方を載置したテーブルの一端と,基体の他方を載置したテーブルの一端とが突き合わされた状態に配置されていると共に,この突き合わせ部分を中心として前記2つのテーブルが回動して,両テーブルの他端を上方に持ち上げることにより,前記テーブル上の載置された2つの基体の接合面が重合されるよう構成されている。   In the illustrated embodiment, the table provided in the above-described jig is configured to be rotatable between a thin film formation position indicated by a broken line and a bonding position indicated by a solid line in the drawing on the right side of FIG. The one end of the table on which one of the bases is placed and the one end of the table on which the other base is placed are placed in abutment with each other, and the two tables rotate around the abutting part. Thus, the other surfaces of both tables are lifted upward so that the joint surfaces of the two substrates placed on the tables are superposed.

接合に際し,基体の加熱が必要となる体拡散係数,及び酸化物の生成自由エネルギーの数値範囲にある金属で微結晶構造の薄膜を形成して接合を行う場合には,前述のテーブル内に電熱ヒータ等を埋め込んでおき,これにより2つの基体の接合面を重合した後で所定の温度に加熱することができるようにしても良い。   When bonding by forming a thin film with a microcrystalline structure with a metal within the numerical range of the body diffusion coefficient and the free energy of formation of the oxide, which require heating of the substrates during bonding, electric heating is included in the aforementioned table. A heater or the like may be embedded so that the bonding surfaces of the two substrates can be polymerized and heated to a predetermined temperature.

なお,このように基体の貼り合わせを行う治具は,図示の構成のものに限定されず,貼り合わせを行う基体の形状等にあわせて各種形状,構造のものを使用することができ,また,例えばロボットアーム等によって基体の一方若しくは双方を操作して接合を行うものとしても良く,更には,人の手によって基体同士を重ね合わせるものとしても良い。   Note that the jig for bonding substrates is not limited to the one shown in the figure, and various shapes and structures can be used according to the shape of the substrate to be bonded. For example, one or both of the bases may be operated by a robot arm or the like, and the bases may be overlapped by a human hand.

このような治具が収容された真空容器は,図1に示すようにこれを前述したクラス1000以上の清浄度を実現可能なクリーンルーム内に配置し,又は,真空容器の出入口に連通して前述したクラス1000以上の清浄度を実現可能なグローブボックスを設けておく。   As shown in FIG. 1, the vacuum container in which such a jig is accommodated is disposed in a clean room capable of achieving the above-mentioned class 1000 or higher cleanliness, or communicated with the entrance / exit of the vacuum container. A glove box capable of realizing a cleanness of class 1000 or higher is provided.

以上のように構成された治具が配置された真空容器において,前記治具を前述した成膜位置とした状態で,前述した条件で基体の接合面に対して微結晶薄膜を形成する。   In the vacuum container in which the jig configured as described above is arranged, a microcrystalline thin film is formed on the bonding surface of the substrate under the above-described conditions in a state where the jig is in the above-described film forming position.

そして,基体の接合面に対して所定厚みの微結晶薄膜が形成されると,微結晶薄膜の形成を終了し,真空容器内を前述したように1×10-4Paを越える圧力,例えば大気圧やクリーンルーム内の圧力に戻す。このように真空容器内の圧力の上昇は,例えば真空容器内に窒素ガスやアルゴンガス等の不活性ガスを導入することにより行っても良く,又は,空気を導入することにより行っても良い。 When a microcrystalline thin film having a predetermined thickness is formed on the bonding surface of the substrate, the formation of the microcrystalline thin film is finished, and the pressure in the vacuum vessel exceeds 1 × 10 −4 Pa as described above, for example, high Return to atmospheric pressure or clean room pressure. As described above, the pressure in the vacuum vessel may be increased by introducing an inert gas such as nitrogen gas or argon gas into the vacuum vessel, or by introducing air.

このようにして,真空容器内の圧力を1×10-4Paを越える圧力,例えば大気圧やクリーンルーム内の圧力に迄上昇させた後,真空容器の出入口を開き,真空容器内より前述した治具と共に基体を取り出し,前記治具に設けられたテーブルを,前述した,貼り合わせ位置に回動させて,基体を101kPa以下,例えば数kPa程度の比較的弱い力で貼り合わせる。 In this manner, the pressure in the vacuum vessel is increased to a pressure exceeding 1 × 10 −4 Pa, for example, atmospheric pressure or the pressure in the clean room, and then the inlet / outlet of the vacuum vessel is opened and the above-described treatment is performed from the inside of the vacuum vessel. The substrate is taken out together with the tool, and the table provided on the jig is rotated to the above-described bonding position to bond the substrate with a relatively weak force of 101 kPa or less, for example, about several kPa.

これにより,両微結晶薄膜の接合界面及び結晶粒界において原子拡散を生じさせ,かつ,接合歪みを緩和させた接合を行うことができる。   As a result, it is possible to perform bonding in which atomic diffusion is caused at the bonding interface and crystal grain boundary between the two microcrystalline thin films and the bonding strain is reduced.

なお,上記の説明では同一材質の微結晶薄膜が形成された基体相互を貼り合わせる場合について説明したが,異なる材質の微結晶薄膜が形成された基体相互を貼り合わせる場合には,例えば共通のクリーンルーム内に設置された2つの真空容器内のそれぞれに,前述のマグネトロンカソードを配置して各真空容器内で異なる材質の微結晶薄膜を成膜可能と成すと共に,それぞれの基体の接合面に対してそれぞれ異なる材質の微結晶薄膜を形成した後に,各真空容器より取り出した基体を前述のクリーンルーム内で重ね合わせることにより接合する等しても良い。   In the above description, the case where the substrates on which the microcrystalline thin film made of the same material is bonded is described. However, when the substrates on which the microcrystalline thin film made of different materials are bonded together, for example, a common clean room is used. The magnetron cathode described above is arranged in each of the two vacuum vessels installed in the inside so that a microcrystalline thin film of a different material can be formed in each vacuum vessel, and the bonding surface of each substrate is After forming microcrystalline thin films of different materials, the substrates taken out from the respective vacuum vessels may be joined by being superposed in the aforementioned clean room.

また,両基体に対する微結晶薄膜の形成は,必ずしも同時に行う必要はなく,時間差を以て行っても良い。   Further, the formation of the microcrystalline thin film on both the substrates is not necessarily performed at the same time, and may be performed with a time difference.

また,他方の基体の少なくとも表面部分が,前述した体拡散係数,及び酸化物の生成自由エネルギーの数値範囲にある単金属や合金による微結晶構造を有する場合には,接合対象とする2つの基体の一方に対してのみ前述の微結晶薄膜を形成し,他方の基体に対しては微結晶薄膜を形成することなく直接,両基体を接合することも可能である。   In addition, if at least the surface portion of the other substrate has a microcrystalline structure of a single metal or alloy in the numerical ranges of the above-described body diffusion coefficient and oxide formation free energy, two substrates to be joined It is also possible to form the above-mentioned microcrystalline thin film only on one of the substrates, and directly bond both substrates without forming the microcrystalline thin film on the other substrate.

接合のメカニズム
原子拡散と体拡散係数
ここで本発明を成すにあたり,接合の対象とする基体に各種材質の微結晶被膜を形成し,この基体同士の貼り合わせを『微結晶薄膜を形成したと同一の真空中』において行う予備実験を行った。
Bonding mechanism Atomic diffusion and body diffusion coefficient In forming the present invention, a microcrystalline film made of various materials is formed on the substrate to be bonded, and the bonding between the substrates is the same as forming a microcrystalline thin film. Preliminary experiment conducted in “in vacuum”.

この予備実験の結果から,微結晶薄膜の接合は薄膜の材料に強く依存することが確認されており,形成した微結晶薄膜の材料が持つ体拡散係数が接合において重要な役割を果たしているものと推測される。   From the results of this preliminary experiment, it was confirmed that the bonding of the microcrystalline thin film strongly depends on the material of the thin film, and the body diffusion coefficient of the formed microcrystalline thin film plays an important role in the bonding. Guessed.

ここで,固体物質の体拡散係数Dは,アレニウスの式を使用して以下のように表すことができる。
D=D0exp(−Q/RT)
Here, the body diffusion coefficient D of the solid substance can be expressed as follows using the Arrhenius equation.
D = D 0 exp (−Q / RT)

上記の式において,D0は振動数項(エントロピー項),Qは活性化エネルギー,Rは気体定数,及びTは絶対温度である。 In the above equation, D 0 is the frequency term (entropy term), Q is the activation energy, R is the gas constant, and T is the absolute temperature.

表1に,前述の予備実験において微結晶薄膜の形成に使用した材料のD0 ,Q及び算出した300K(27℃)時のD値の各値をそれぞれ示す。表1において各材料は,Dの大きさ順に挙げている。 Table 1 shows respective values of D 0 and Q of the material used for forming the microcrystalline thin film in the above-described preliminary experiment and the calculated D value at 300 K (27 ° C.). In Table 1, each material is listed in order of the size of D.

なお,RuのD0及びQの値は,入手可能な文献において報告がされておらず,RuのD値については,Dが他の材料の場合と同様に融点と略比例するものと仮定して概算したものである。この概算したD値を参考のため表中にカッコを付して示した。 The values of Ru D 0 and Q have not been reported in the available literature, and it is assumed that the D value of Ru is approximately proportional to the melting point as in the case of other materials. It is a rough estimate. The approximate D value is shown in parentheses in the table for reference.


表1に示すように,Tiはhcp構造を有し,表1中に示した材料中で最も大きなD値を有する。更に,Al,Au,Ag,及びCuのfcc材料のD値は,他の材料のD値よりも大きい。これらの材質の薄膜を真空中で接合した予備実験では,元の薄膜の表面に対応する界面が残っていない。また,結晶粒が各薄膜間の元の界面を横切って形成されており,このことから界面において再結晶が促進していることが判る。更に,幾つかの結晶粒は膜の厚さの略全域に亘り形成されており,この現象は,とりわけ極めて大きなD値を有するTi/Ti及びAl/Al薄膜の接合において顕著であった。各薄膜間の元の界面より始まった再結晶は,接合したAl(50nm)/Al(50nm)薄膜の少なくとも50nmの距離に達している。   As shown in Table 1, Ti has an hcp structure and has the largest D value among the materials shown in Table 1. Furthermore, the D values of Al, Au, Ag, and Cu fcc materials are larger than those of other materials. In a preliminary experiment in which thin films of these materials are joined in a vacuum, no corresponding interface remains on the surface of the original thin film. In addition, the crystal grains are formed across the original interface between the thin films, which indicates that recrystallization is promoted at the interface. Further, some crystal grains are formed over almost the entire thickness of the film, and this phenomenon is particularly remarkable in the bonding of Ti / Ti and Al / Al thin films having extremely large D values. The recrystallization that began at the original interface between each thin film has reached a distance of at least 50 nm of the bonded Al (50 nm) / Al (50 nm) thin film.

一方,小さなD値を持つPt/Pt,Cr/Cr,Ru/Ru,及びTa/Ta薄膜の接合では,元の薄膜表面に略対応した明確な境界が残った。特に,Ta/Ta及びRu/Ru薄膜の接合において,界面における内部拡散は他に比べて顕著ではなく,前述したように,このことは,これらの材料が大変小さなD値を有していることとも良く一致している。   On the other hand, in the bonding of Pt / Pt, Cr / Cr, Ru / Ru, and Ta / Ta thin films having a small D value, a clear boundary substantially corresponding to the original thin film surface remained. In particular, in the bonding of Ta / Ta and Ru / Ru thin films, the internal diffusion at the interface is not significant compared to the others, and as described above, this means that these materials have a very small D value. Both agree well.

注目すべき点は,bcc結晶構造を有するCr/Cr及びTa/Ta薄膜間の接合では,薄いアモルファス類似の層が界面に形成された。一方,fcc結晶構造を有するPt/Pt薄膜の接合では,元の薄膜の表面を横切ってfcc-(111)格子が形成された点である。Co/Co,Ni/Ni,Fe/Fe及びMo/Mo薄膜の接合については,前述の予備試験において微細構造を観察していないが,これらの微結晶構造はPt/Pt(Co/Co及びNi/Niについて),Cr/Cr(Fe/Feについて),及びTa/Ta(Mo/Moについて)に似ているものと推測される。   It should be noted that a thin amorphous-like layer was formed at the interface between the Cr / Cr and Ta / Ta thin films having the bcc crystal structure. On the other hand, in the Pt / Pt thin film junction having the fcc crystal structure, the fcc- (111) lattice is formed across the surface of the original thin film. Regarding the bonding of Co / Co, Ni / Ni, Fe / Fe, and Mo / Mo thin films, the microstructure was not observed in the preliminary test described above, but these microcrystalline structures are Pt / Pt (Co / Co and Ni / Ni), Cr / Cr (for Fe / Fe), and Ta / Ta (for Mo / Mo).

更に,W/Wの接合試験においても接合ができており,接合部の断面TEMによる観察において,接合した後の構造はTaと似た構造であることが確認されている。   Furthermore, it was also able to join in the W / W joining test, and it was confirmed that the structure after joining was a structure similar to Ta in the observation by the cross-sectional TEM of the joining part.

ここで,Wは,単金属の中で最も低いD値を有する材料である。このことから,微結晶薄膜による原子拡散接合は,基体の重ね合わせを微結晶薄膜の形成と同一の真空中で行う場合,W及びReを含め全ての金属薄膜(これらの合金を含む)において生じるものと考えられる。   Here, W is a material having the lowest D value among single metals. Therefore, atomic diffusion bonding with microcrystalline thin films occurs in all metal thin films (including these alloys) including W and Re when the substrates are superposed in the same vacuum as the formation of the microcrystalline thin films. It is considered a thing.

大気圧下における接合と酸化物の生成自由エネルギー
以上のように,微結晶構造の薄膜の接合時に発生する原子拡散は,体拡散係数が大きくなればなる程顕著となり,特に,Cuよりも体拡散係数の大きな材料,例えば体拡散係数が1×10-40(m2/s)以上の材料においては,接合界面の消失と再結晶化を伴う原子拡散が生じ得るものとなっている。
As described above, the atomic diffusion that occurs during the bonding of thin films with a microcrystalline structure becomes more pronounced as the body diffusion coefficient increases. In a material having a large coefficient, for example, a material having a body diffusion coefficient of 1 × 10 −40 (m 2 / s) or more, atomic diffusion accompanied by disappearance of the bonding interface and recrystallization can occur.

一方,このような原子拡散を伴う接合は,微結晶構造の薄膜の表面に雰囲気中の水分や酸素,有機物等が化学吸着して,微結晶薄膜の表面に酸化物等の化合物が形成されると行えなくなることから,従来,微結晶構造の薄膜を形成した基体を,例えば真空容器から取り出し,大気圧の雰囲気に暴露した場合等には,微結晶薄膜の表面に直ちに酸化物等の化合物が形成されて接合を行うことができなくなると考えられていた。   On the other hand, in such junctions involving atomic diffusion, moisture, oxygen, organic substances, etc. in the atmosphere are chemically adsorbed on the surface of the microcrystalline thin film, and compounds such as oxides are formed on the surface of the microcrystalline thin film. Conventionally, when a substrate on which a microcrystalline thin film is formed is taken out of a vacuum vessel and exposed to an atmospheric pressure atmosphere, a compound such as an oxide is immediately formed on the surface of the microcrystalline thin film. It was thought that it would be impossible to join.

そのため,あくまでも微結晶構造の薄膜の形成による原子拡散を伴う接合は,微結晶構造の薄膜の形成を行ったと同一の真空中において接合面の重ね合わせを行う場合においてのみ生じる現象と考えられていた。   Therefore, bonding with atomic diffusion due to the formation of a microcrystalline thin film was considered to be a phenomenon that occurs only when the bonding surfaces are superimposed in the same vacuum as the microcrystalline thin film was formed. .

しかし,後に説明するように,Auの微結晶構造の薄膜を形成した2枚の基体を大気圧(1気圧)の空気に5分間暴露した後に接合を行ったところ,この場合においても接合界面において原子拡散が室温で生じ、十分な接合力が得られることが確認された。   However, as will be described later, when two substrates on which a thin film having a microcrystalline structure of Au is formed are exposed to air at atmospheric pressure (1 atm) for 5 minutes, bonding is performed in this case as well. It was confirmed that atomic diffusion occurred at room temperature and sufficient bonding strength was obtained.

また,同様にAuの微結晶構造の薄膜を形成した2枚の基体を大気圧(1気圧)の空気に1時間暴露した後に接合を行った場合にも,更には6時間暴露した後に接合を行った場合にも,5分間暴露した後に接合を行ったと同程度の接合が得られることが確認された。   Similarly, when two substrates on which a thin film having a microcrystalline structure of Au is exposed after being exposed to air at atmospheric pressure (1 atm) for 1 hour, bonding is performed after further exposure for 6 hours. In this case, it was confirmed that the same degree of bonding as that obtained after the exposure for 5 minutes was obtained.

以上の結果から,大気圧(1気圧)の空気に5分間暴露した後,及び1時間暴露した後,更には6時間暴露した後のいずれの状態においても,Auの微結晶薄膜の持つ構造には大きな変化が生じていないことが推測できる。   From the above results, it can be seen that the structure of the Au microcrystalline thin film remains in any state after exposure to air at atmospheric pressure (1 atm) for 5 minutes, exposure for 1 hour, and further exposure for 6 hours. It can be inferred that no significant change has occurred.

ここで,大気圧(1気圧)の空気に6時間暴露した後においても接合が可能であったAuの微結晶薄膜にあっても,大気圧の空気に暴露した状態をさらに継続すれば,雰囲気中の水分や酸素,有機物等がAuの微結晶薄膜表面に物理吸着あるいは化学吸着するため、吸着層等の形成量の増加にともない界面における原子拡散の度合いが低下し、接合力が弱くなるものと推察される。   Here, even if the microcrystalline thin film of Au, which can be bonded after being exposed to atmospheric pressure (1 atm) air for 6 hours, is further exposed to atmospheric pressure air, Moisture, oxygen, organic matter, etc. in the material are physically or chemically adsorbed on the surface of the Au microcrystalline thin film, so that the degree of atomic diffusion at the interface decreases as the amount of adsorbed layer etc. increases, resulting in weak bonding It is guessed.

このような接合界面における原子拡散の度合いの変化は,表面におけるガス吸着等の化学反応に関係することから、緩和時間τを用いて確立統計的に表される経時変化であり,接合の度合いはexp(−t/τ)に比例すると考えられる。   Since such a change in the degree of atomic diffusion at the bonding interface is related to chemical reactions such as gas adsorption on the surface, it is a time-dependent change expressed statistically using the relaxation time τ. It is considered to be proportional to exp (−t / τ).

上記の例では,大気圧の空気に対する暴露時間が5分,1時間,6時間のいずれにおいてもAuの微結晶薄膜が持つ構造に大きな変化が無いと推測されることから,上記緩和時間τは1時間,更には6時間よりも十分に長い時間であることを意味しており,6時間よりもさらに長時間にわたってAuの微結晶薄膜を空気に暴露した後に基体を接合しても,原子拡散により接合を行うことができるものと考えられる。   In the above example, it is estimated that there is no significant change in the structure of the Au microcrystalline thin film regardless of whether the exposure time to atmospheric air is 5 minutes, 1 hour, or 6 hours. It means that the time is sufficiently longer than 1 hour and even 6 hours. Even if the substrate is bonded after exposing the microcrystalline thin film of Au to air for a longer time than 6 hours, atomic diffusion It is considered that the bonding can be performed.

このように長時間に亘って大気圧の空気と暴露した場合であっても,微結晶薄膜の微細構造に変化が生じていないのは,微結晶薄膜の表面には物理吸着あるいは化学吸着による吸着層等の形成が原子拡散を阻害する程には生じていないこと,すなわち,上記の例で微結晶薄膜の材料として使用したAuが化学的に極めて安定した材質であることに起因するものと考えることができる。   Even when exposed to air at atmospheric pressure for a long period of time, the fine structure of the microcrystalline thin film does not change because the surface of the microcrystalline thin film is adsorbed by physical adsorption or chemical adsorption. It is considered that the formation of layers does not occur to the extent that atomic diffusion is inhibited, that is, the Au used as the material for the microcrystalline thin film in the above example is a chemically very stable material. be able to.

このことから,Auと同様に,化学的に安定した材質の微結晶構造の薄膜を形成して接合を行う場合には,このような薄膜の形成を行った真空に対して高い圧力の雰囲気下で接合を行った場合においても,原子拡散による接合が可能であるとの予測の下,Ag,Cu,Pd,Ptによる微結晶構造の被膜を形成して接合を行ったところ,これらの材質で微結晶構造の被膜を形成した基体についても同様に,大気圧下の空気中に暴露した後においても接合を行うことができることを確認した。   Therefore, as in the case of Au, when a thin film having a microcrystalline structure made of a chemically stable material is formed and bonded, the atmosphere under a high pressure with respect to the vacuum in which such a thin film is formed is used. Even when bonding is performed with the use of these materials, a film having a microcrystalline structure made of Ag, Cu, Pd, and Pt is formed under the prediction that bonding by atomic diffusion is possible. Similarly, it was confirmed that the substrate on which the film having the microcrystalline structure was formed could be bonded even after being exposed to air under atmospheric pressure.

ここで,前述のように大気圧下においても接合を行うことができた前述のAu,Ag,Cu,Pd,Ptと,これらの金属と周期律表において比較的近い位置にある金属の物性を示せば,下記の表2に示す通りである。   Here, the physical properties of the above-mentioned Au, Ag, Cu, Pd, and Pt that were able to be bonded even under atmospheric pressure as described above, and the metal at a relatively close position in the periodic table. If shown, it is as shown in Table 2 below.

*複数の酸化物がある場合,生成自由エネルギーの数値が小さな方(酸化し易いと考えられる方)の酸化物を記載。
表中,ΔG:室温における酸化物の生成自由エネルギー(kJ/mol of compounds)
ΔH:室温における酸化物の生成熱(kJ/mol of compounds)
D:室温における体拡散係数(m2/s)
Tm:融点(℃)
R:電気抵抗(10-8Ωm,室温)
物性値の引用文献:Smithells Metals Reference Book, 7th Edition, Edited by E.A.Brandes & G.B.Brook, Butterworth-Heinemann.
* If there are multiple oxides, the oxide with the smaller value of free energy of formation (the one considered to be easy to oxidize) is listed.
In the table, ΔG: free energy of formation of oxide at room temperature (kJ / mol of compounds)
ΔH: Heat of oxide formation at room temperature (kJ / mol of compounds)
D: Body diffusion coefficient at room temperature (m 2 / s)
Tm: Melting point (° C)
R: Electric resistance (10 -8 Ωm, room temperature)
Citations for physical properties: Smiths Metals Reference Book, 7th Edition, Edited by EABrandes & GBBrook, Butterworth-Heinemann.

以上の物性より,実験的に原子拡散による接合が確認された金属では,AuやPtのようにΔG(酸化物の生成自由エネルギー)が室温で正(即ち,酸化物を形成しない)でありΔGの報告値がない金属の他,Ag,Cu,Pd,Ptのように,ΔGが負でありその絶対値が比較的小さな数値を示す金属(ΔGの数値が比較的大きな金属)においても大気圧下における接合が可能であることが確認されている。   Due to the above physical properties, in metals that have been experimentally confirmed to be bonded by atomic diffusion, ΔG (oxide free energy of formation) is positive (that is, no oxide is formed) at room temperature, such as Au and Pt. In addition to metals with no reported value, atmospheric pressure is also applied to metals such as Ag, Cu, Pd, and Pt that have a negative ΔG value and a relatively small absolute value (a metal with a relatively large ΔG value). It has been confirmed that lower bonding is possible.

その一方で,Au,Agに対して体拡散係数が小さくなるに従い,また,ΔG(酸化物の生成自由エネルギー)が小さくなるに従い,常温では接合し難くなり,後述の実験例に示すようにCuで微結晶構造の薄膜を形成した例では,接合に際し基体を100℃に加熱することが必要であり,また,Ptの薄膜では150〜200℃,Pdの薄膜では150〜160℃の加熱が必要となっている。   On the other hand, as the body diffusion coefficient decreases with respect to Au and Ag, and as ΔG (oxide free energy of formation) decreases, it becomes difficult to bond at room temperature. In the example in which a thin film having a microcrystalline structure is formed, it is necessary to heat the substrate to 100 ° C. at the time of bonding, and 150 to 200 ° C. is required for the Pt thin film and 150 to 160 ° C. for the Pd thin film. It has become.

このような関係に従えば,実験を行ったAu,Ag,Cu,Pd,Ptのいずれの金属よりも体拡散係数の大きいZnについては,ΔG(酸化物の生成自由エネルギー)の数値が,接合が確認された物質中,最小のCuの-144.9よりも小さなものとなっているものの,Ptの場合のSi基板における加熱温度と同程度の200℃程度に基体を加熱することで接合が行えるものと予想され,また,同様に接合が確認されたPtよりも体拡散係数が大きいNiについても,ΔG(酸化物の生成自由エネルギー)が-213.1と他の金属に比較して若干小さくなっているものの,Ptと同様に200℃程度の加熱によって接合できるものと予想される。   According to such a relationship, the numerical value of ΔG (oxide free energy of formation) for the Zn having a larger body diffusion coefficient than any of the metals Au, Ag, Cu, Pd, and Pt subjected to the experiment is Among the materials that have been confirmed to be smaller than the minimum Cu of -144.9, but can be bonded by heating the substrate to about 200 ° C, which is the same as the heating temperature of the Si substrate in the case of Pt In addition, Ni, which has a larger body diffusion coefficient than Pt, which was also confirmed to be bonded, has a slightly smaller ΔG (oxide free energy of formation) of -213.1 compared to other metals. However, it is expected that bonding can be performed by heating at about 200 ° C. as in the case of Pt.

更に,これらの金属と同様の体拡散係数,及びΔG(酸化物の生成自由エネルギー)を有する合金を微結晶構造の薄膜の材質として使用する場合には,同様に大気圧下における接合が可能であると予想される。   Furthermore, when an alloy having a body diffusion coefficient similar to these metals and ΔG (oxide free energy of formation) is used as the material of the thin film having a microcrystalline structure, bonding under atmospheric pressure is possible as well. Expected to be.

以下,前述したAu,Ag,Cu,Pt,Pdにより基体の表面に微結晶構造の薄膜を形成して接合を行った場合に必要となる接合条件の確認試験を行った結果を以下に示す。   Hereinafter, the result of conducting a confirmation test of bonding conditions required when bonding is performed by forming a thin film having a microcrystalline structure on the surface of the substrate with the above-described Au, Ag, Cu, Pt, and Pd will be shown.

〔Au薄膜による接合試験例〕
接合方法
物理実験用の超高真空(UHV:Ultra High Vacume)5極カソード−マグネトロンスパッタ装置(到達真空度2×10-6Pa)により,直径約1インチ(2.7cm),あるいは,直径2インチ(約5.08cm)の2枚の基板上にそれぞれAuの微結晶薄膜を形成して接合試験を行った。なお,スパッタリングには,真空室へのガス導入部(ユースポイント)における不純物濃度が2〜3ppb(2〜3×10-9)以下である超高純度アルゴンガスを使用した。
[Example of bonding test using Au thin film]
Bonding method Ultra high vacuum (UHV) 5 pole cathode-magnetron sputtering equipment (final vacuum 2 × 10 -6 Pa) for physical experiments, diameter of about 1 inch (2.7 cm) or diameter 2 An Au microcrystalline thin film was formed on each of two inches (about 5.08 cm) substrates, and a bonding test was performed. For sputtering, an ultra-high purity argon gas having an impurity concentration of 2 to 3 ppb (2 to 3 × 10 −9 ) or less at the gas introduction part (use point) into the vacuum chamber was used.

前記基体として,Si基板と,SiO2基板の2種類を用意し,接合は,Au薄膜の形成された同種基板同士において行った。 Two types of substrates, Si substrate and SiO 2 substrate, were prepared as the substrate, and the bonding was performed between the same type substrates on which the Au thin film was formed.

接合の対象である基体とした基板の表面粗さは,Si基板の場合でRaで0.16nm,Rmaxで1.6nmであり,SiO2基板の場合でRaで0.37nmであった.Si基板にあっては表面にはSiの自然酸化膜が形成されていたが,これを除去することなく使用した。 The surface roughness of the substrate as the substrate to be bonded was 0.16 nm for Ra and 1.6 nm for Rmax for the Si substrate, and 0.37 nm for Ra for the SiO 2 substrate. In the case of the Si substrate, a natural oxide film of Si was formed on the surface, but this was used without removing it.

前記基板に対し,直接,Auの微結晶薄膜を形成したものと,Auの微結晶薄膜の形成前に基板のそれぞれの片面にスパッタリングにより約5nmのCr薄膜を下地層として形成したものとをそれぞれ用意した。Cr下地膜は,Au薄膜と前記基体との付着力を高めるために挿入したものである。   An Au microcrystalline thin film formed directly on the substrate, and a Cr thin film of about 5 nm formed by sputtering on each side of the substrate before the formation of the Au microcrystalline thin film, respectively. Prepared. The Cr underlayer is inserted in order to increase the adhesion between the Au thin film and the substrate.

このようにしてAuの微結晶薄膜を形成した後,スパッタ装置の真空室内へ空気を導入してクリーンルーム内の圧力にまで戻した後,スパッタ装置の真空室内より基板を取り出し,湿度50%,前述したISOクラス5のクリーンルーム中で所定時間大気に暴露した後,2枚の基板を両基板上に形成された微結晶薄膜が重なり合うように両基板を加熱することなしに数kPa程度の弱い力で重ね合わせて接合させた。   After the microcrystalline thin film of Au is formed in this way, air is introduced into the vacuum chamber of the sputtering apparatus and returned to the pressure in the clean room, and then the substrate is taken out from the vacuum chamber of the sputtering apparatus, and the humidity is 50%. After being exposed to the atmosphere for a predetermined time in an ISO class 5 clean room, the two substrates are heated with a weak force of several kPa without heating both substrates so that the microcrystalline thin films formed on both substrates overlap. They were superposed and joined.

各接合条件と接合結果を下記の表3に示す。
Each joining condition and joining result are shown in Table 3 below.

比較例1
下地層として厚さ約5nmのTa層を形成した点,微結晶薄膜の形成直後,微結晶薄膜の形成を行ったと同一真空中で重ね合わせを行った点を除き,上記実験例と同様である。
Comparative Example 1
Similar to the above experimental example, except that a Ta layer with a thickness of about 5 nm was formed as the underlayer, and immediately after the formation of the microcrystalline thin film, superposition was performed in the same vacuum as the microcrystalline thin film was formed. .

試験結果
上記接合試験の結果,いずれの条件で接合を行った場合においても強固な接合が得られており,重ね合わせた基体を剥離しようとすると,基体に直接薄膜を形成した例では薄膜が基体との界面より剥離し,また,Crの下地層を設けた構成にあっては,いずれの界面においても剥離することなく,基体が割れた。
Test results As a result of the above-mentioned bonding test, strong bonding was obtained regardless of the conditions under which the bonding was performed. In the example in which a thin film was formed directly on the substrate, the thin film was formed on the substrate. In addition, in the structure in which the Cr underlayer was provided, the substrate was cracked without peeling at any interface.

Auの微結晶薄膜を用いた接合では,Auの微結晶薄膜を成膜した基体を大気圧の空気中に暴露した後でも,数kPa程度の弱い力で薄膜を重ね合わせることで基体を加熱することなく原子拡散接合が可能であった。   In bonding using a microcrystalline thin film of Au, the base is heated by superimposing the thin films with a weak force of about several kPa even after the base on which the microcrystalline thin film of Au is formed is exposed to air at atmospheric pressure. Atom diffusion bonding was possible without any problems.

この接合は,それぞれのSi基板に膜厚20nmのAuの微結晶薄膜を形成後,Si基板をスパッタ装置の真空室より取り出して大気に5分,及び1時間暴露した後のいずれの状態においても行うことができ,更に6時間暴露した後においても接合することが可能であった。   This bonding is performed in any state after a 20 nm-thick Au microcrystalline thin film is formed on each Si substrate and the Si substrate is taken out from the vacuum chamber of the sputtering apparatus and exposed to the atmosphere for 5 minutes and 1 hour. It was possible to do this, and it was possible to bond even after 6 hours of exposure.

また,Auの微結晶薄膜を形成後,Si基板をスパッタ装置の真空室より取り出した直後に接合した場合には,Si基板それぞれに形成する微結晶薄膜の膜厚を2nmまで薄くした場合であっても接合が可能であった.   In addition, when the microcrystalline thin film of Au is formed and bonded immediately after the Si substrate is taken out from the vacuum chamber of the sputtering apparatus, the thickness of the microcrystalline thin film formed on each Si substrate is reduced to 2 nm. However, bonding was possible.

なお,図2〜4に,大気暴露後5分後に接合した基体の断面(図2),1時間経過後に接合した基体の断面(図3)及び,大気暴露せずに真空容器中で接合を行った比較例1の基体の断面(図4)をそれぞれ示す。   2 to 4 show the cross section of the substrate bonded 5 minutes after exposure to the atmosphere (Fig. 2), the cross section of the substrate bonded after 1 hour (Fig. 3), and bonding in a vacuum vessel without exposure to the atmosphere. The cross section (FIG. 4) of the base | substrate of the comparative example 1 performed is shown, respectively.

図4に示すように,微結晶薄膜を形成したと同一の真空中においてSi基板の重ね合わせを行った比較例1の接合面にあっては,元の微結晶薄膜の表面部分に形成される筈の接合界面が完全に消失するものとなっているのに対し,大気圧の空気中に5分間暴露した後に接合を行った例(図2),1時間の大気暴露後に接合を行った例(図3)では,接合界面が所々残存していることが確認されたが,このような接合界面の残存は,実質上,接合に影響のないものであった。   As shown in FIG. 4, in the joint surface of Comparative Example 1 in which the Si substrate was superposed in the same vacuum as the microcrystalline thin film was formed, it was formed on the surface portion of the original microcrystalline thin film. Example of welding after exposure to atmospheric pressure air for 5 minutes (Fig. 2), welding after 1 hour of atmospheric exposure In FIG. 3, it was confirmed that some bonding interfaces remained, but such bonding interface remained substantially unaffected by bonding.

〔Ag薄膜による接合実験例〕
前述したAu薄膜と同様の条件でAg薄膜を形成した基体同士の接合試験例及びその結果を,表4に示す。一部の実験では,Agの微結晶薄膜の形成前に基板のそれぞれの片面にスパッタリングにより約5nmのTa薄膜を下地層として形成したものを用意した。Ta下地膜は,Ag薄膜と前記基体との付着力を高めるために挿入したものである。
[Joint experiment example using Ag thin film]
Table 4 shows an example of the bonding test between the substrates on which the Ag thin film was formed under the same conditions as those of the Au thin film and the results thereof. In some experiments, before the formation of the Ag microcrystalline thin film, a Ta thin film of about 5 nm was formed as an underlayer on each side of the substrate by sputtering. The Ta base film is inserted in order to increase the adhesion between the Ag thin film and the substrate.

上記の結果より,2つの基体の接合面のいずれに対しても微結晶構造のAg薄膜を形成して接合を行った例においても,基体を加熱することなく強固な接合が得られており,重ね合わせた基体を剥離しようとすると,基体に直接薄膜を形成した例では薄膜が基体との界面より剥離し,また,Taの下地層を設けた構成にあっては,いずれの界面においても剥離することなく,基体が割れた。   From the above results, even in an example where bonding was performed by forming an Ag thin film having a microcrystalline structure on any of the bonding surfaces of two substrates, strong bonding was obtained without heating the substrate, When an attempt is made to peel off the superposed substrate, the thin film is peeled off from the interface with the substrate in the case where the thin film is formed directly on the substrate. The substrate broke without.

なお,サンプル名「Ag2」ならびに「Ag4」の例では,SiO基板が透明であるため,接合直後,夾雑物の存在により接合面の一部に未接合の部分が存在することが確認されたが,この未接合部分の基体を指で外部より押圧することで接合領域を拡大することができることが確認され,多小の塵埃が存在する空間内で接合を行った場合であっても,基体を僅かに加圧することで夾雑物の介在による未接合部分の発生を回避できることが確認できた。 In the examples of sample names “Ag2” and “Ag4”, since the SiO 2 substrate is transparent, it was confirmed that an unbonded portion exists in a part of the bonded surface immediately after bonding due to the presence of impurities. However, it is confirmed that the bonding area can be expanded by pressing the unbonded portion of the substrate with a finger from the outside, and even if the bonding is performed in a space where there is a lot of dust, It was confirmed that the occurrence of unbonded portions due to the presence of impurities can be avoided by slightly pressurizing.

〔Cu薄膜による接合実験例〕
前述したAu薄膜と同様の条件でCu薄膜を形成した基体同士の接合試験例及びその結果を,表5に示す。一部の実験では、Ag膜の実験同様に、Cuの微結晶薄膜の形成前に基板のそれぞれの片面にスパッタリングにより約5nmのTa薄膜を下地層として形成したものを用意した。
[Joint experiment using Cu thin film]
Table 5 shows an example of a bonding test between substrates on which a Cu thin film is formed under the same conditions as those of the Au thin film and the results thereof. In some experiments, as in the case of the Ag film experiment, a Ta thin film of about 5 nm was formed as an underlayer on each side of the substrate by sputtering before the Cu microcrystalline thin film was formed.

上記接合試験の結果,いずれの条件で接合を行った場合においても強固な接合が得られており,重ね合わせた基体を剥離しようとすると,基体に直接薄膜を形成した例では薄膜が基体との界面より剥離し,また,Taの下地層を設けた構成にあっては,いずれの界面においても剥離することなく,基体が割れた。   As a result of the above-mentioned joining test, strong joining was obtained under any conditions, and when attempting to peel off the superposed substrate, in the example in which the thin film was formed directly on the substrate, the thin film was in contact with the substrate. In the configuration in which the layer was peeled off from the interface and provided with a Ta underlayer, the substrate was cracked without peeling off at any of the interfaces.

以上の結果から,基体を100℃程度に加熱することで,いずれの場合にも接合を行うことができることができ,また,大気暴露後,1時間経過後にも接合を行うことができることが確認できた。   From the above results, it can be confirmed that by heating the substrate to about 100 ° C., bonding can be performed in any case, and bonding can be performed even after one hour has passed after exposure to the atmosphere. It was.

特に,Si基体の接合では,基体を40℃程度に加熱することで,少なくともCu薄膜の基体への付着強度を超える接合強度で,加圧を行うことなく接合面全体に亘る接合を行うことができた。   In particular, in the bonding of Si substrates, it is possible to perform bonding over the entire bonding surface without applying pressure with a bonding strength exceeding the adhesion strength of the Cu thin film to the substrate by heating the substrate to about 40 ° C. did it.

また,Si基体の接合では,基体の加熱を行わない場合であっても加圧を行うことで部分的な接合が可能となっていることから,加圧等の他の条件との組合せにより,緩和された加熱条件で接合を行うことが可能である。   In addition, in the bonding of the Si substrate, even if the heating of the substrate is not performed, partial bonding is possible by applying pressure, so in combination with other conditions such as pressing, Bonding can be performed under relaxed heating conditions.

〔Pt薄膜による接合実験例〕
前述したAu薄膜と同様の条件でPt薄膜を形成した基体同士の接合試験例及びその結果を,表6に示す。
[Example of bonding experiment using Pt thin film]
Table 6 shows an example of a bonding test between the substrates on which the Pt thin film is formed under the same conditions as those of the Au thin film and the results thereof.

上記の結果,Ptの微結晶薄膜を形成した基体同士の接合では,Si基体及びSiO2基体のいずれの場合においても基体を加熱することなく接合を行うことはできなかった。 As a result of the above, in the bonding between the substrates on which the Pt microcrystalline thin film was formed, the bonding could not be performed without heating the substrates in both cases of the Si substrate and the SiO 2 substrate.

一方,SiO2基体の接合では基体を150℃に加熱することで,Si基体については,基体を200℃に加熱することで接合面全体の接合が得られた。「Pt1」の接合した基体の断面を図5に示す。加熱により,Si基板表面に存在するSiの自然酸化膜の下にPtとSiの化合物が形成されているが,Pt/Ptの接合界面に空隙は無く,200℃の加熱により接合できていることがわかる。このことから,Ptの微結晶薄膜の形成によって接合を行う場合,基体を200℃以上に加熱することで,いずれの条件においても接合が可能であることが確認された。 On the other hand, when bonding the SiO 2 substrate, the substrate was heated to 150 ° C., and for the Si substrate, the entire bonding surface was bonded by heating the substrate to 200 ° C. FIG. 5 shows a cross section of the base material bonded with “Pt1”. Pt and Si compounds are formed under the Si natural oxide film on the Si substrate surface by heating, but there is no void at the Pt / Pt bonding interface, and the bonding can be achieved by heating at 200 ° C. I understand. From this, it was confirmed that, when bonding is performed by forming a microcrystalline thin film of Pt, bonding is possible under any conditions by heating the substrate to 200 ° C. or higher.

〔Pd薄膜による接合実験例〕
前述したAu薄膜と同様の条件でPd薄膜を形成した基体同士の接合試験例及びその結果を,表7に示す。
[Example of bonding experiment using Pd thin film]
Table 7 shows a bonding test example between the substrates on which the Pd thin film was formed under the same conditions as those of the Au thin film and the results thereof.

Pdの薄膜を形成した基体同士を接合する場合にも,Si基体及びSiO2基体のいずれの場合においても基体を加熱することなしに接合を行うことができなかった。 Even when the substrates on which the Pd thin film is formed are bonded to each other, the bonding cannot be performed without heating the substrates in both cases of the Si substrate and the SiO 2 substrate.

なお,基体がSi,SiO2のいずれの場合,又,下地層としてTa薄膜を形成した場合のいずれにおいても,基体の加熱温度150〜160℃で接合が得られた。「Pd2」の接合した基体の断面を図6に示す。加熱により,Si基板表面に存在するSiの自然酸化膜の下にPdとSiの化合物が形成され界面が大きく揺らいでいるが,Pd/Pdの接合界面は完全に消失し,接合できていることがわかる。 In both cases where the substrate was Si or SiO 2 and when a Ta thin film was formed as the underlayer, bonding was obtained at a substrate heating temperature of 150 to 160 ° C. FIG. 6 shows a cross section of the substrate to which “Pd2” is bonded. The compound of Pd and Si is formed under the Si natural oxide film existing on the Si substrate surface by heating, and the interface fluctuates greatly, but the bonding interface of Pd / Pd disappears completely and is bonded. I understand.

以上で説明した本発明の接合方法は,無加熱又は比較的低い温度での加熱,無加圧で原子レベルでの接合を行うことができること,接合後の界面応力が小さいこと,しかも微結晶薄膜の形成を行った真空よりも高い圧力の雰囲気,例えば大気圧の空気中に暴露した状態で接合面の重ね合わせを行うことができ作業性が向上されていること等から,各種新機能・高機能デバイスの創製,情報家電の小型化,高集積化等の用途において容易に利用することができ,これらの用途における例を示せば下記の通りである。   The bonding method of the present invention described above is capable of bonding at an atomic level without heating or heating at a relatively low temperature, without applying pressure, with low interface stress after bonding, and with a microcrystalline thin film. Various new functions and high performance can be achieved because the bonding surfaces can be superposed in an atmosphere exposed to a higher pressure than the vacuum in which the material is formed, for example, in an atmosphere of atmospheric pressure. It can be easily used in applications such as creation of functional devices, miniaturization of information appliances, and high integration. Examples of these applications are as follows.

新機能・高性能デバイスの創製
ウエハレベルで積層化,集積化した新機能デバイスの創製への利用
集積回路と短波長光デバイスの集積化(例えば,Siデバイス/GaN,フォトニクス結晶,LED),新機能光−電子変換デバイス創製の際の接合。
スピン−電子ハイブリッドデバイスの製造。本発明の方法によって接合することで,電子やスピン電流の平均自由工程以下でウエハ間を接合することが可能である。
Creation of new and high-performance devices Application to creation of new functional devices stacked and integrated at the wafer level Integration of integrated circuits and short-wavelength optical devices (for example, Si devices / GaN, photonic crystals, LEDs), new Bonding when creating a functional photo-electronic conversion device.
Manufacture of spin-electronic hybrid devices. By bonding by the method of the present invention, it is possible to bond between wafers in an average free process of electrons or spin current.

異種材料ウエハ間の接合
超ハイブリッド基板・部材の形成等を目的として,半導体ウエハを微結晶薄膜を挟んで積層化した電位障壁ハイブリッド・ウエハの製造や,ガラスを微結晶薄膜を挟んで積層した特殊光学ウエハ(光フィルタリング)の製造に際し,本発明の方法を使用することができる。
Bonding between dissimilar material wafers For the purpose of forming ultra-hybrid substrates and components, manufacturing of potential barrier hybrid wafers in which semiconductor wafers are laminated with microcrystalline thin films sandwiched, and special laminated glass with microcrystalline thin films in between In the production of optical wafers (optical filtering), the method of the present invention can be used.

発光ダイオードの高輝度化
本発明の方法により,発光ダイオードに鏡面のレイヤーを接合し,輝度を上げる。
Increasing the brightness of a light emitting diode By the method of the present invention, a mirror layer is bonded to the light emitting diode to increase the brightness.

水晶振動子の積層化
本発明の方法により,水晶に例えば金の薄膜を形成して水晶同士を接着することで,比較的接着が困難な水晶同士の接合を行う。
Lamination of quartz resonators By the method of the present invention, for example, a gold thin film is formed on a quartz crystal and the quartz crystals are bonded to each other, thereby bonding the quartz crystals that are relatively difficult to bond.

情報家電の小型化・高集積化
SiP技術のための三次元スタック化,パッケージ基板高機能化(三次元実装);本接合方法によりSiデバイスとSiデバイスの積層や基板を立体的に貼り合わせることにより高集積化を図る。
Miniaturization and high integration of information appliances Three-dimensional stacking for SiP technology, high-functionality of package substrate (three-dimensional mounting); 3D bonding of Si device and Si device stack and substrate by this bonding method To achieve higher integration.

MEMS製造技術
三次元配線を兼ねた微細素子の真空封止,Siデバイスとの積層に本接合方法を利用する。この用途での利用の場合,接合面に界面があっても良く,内部の真空や接合状態を保持できれば良い。
MEMS manufacturing technology This bonding method is used for vacuum sealing of fine elements that also serve as three-dimensional wiring and for stacking with Si devices. For use in this application, there may be an interface on the joint surface, as long as the internal vacuum and joined state can be maintained.

高性能化,超低消費電力のための効率的な熱伝導(冷却)の実現
熱放散係数の大きな材料,例えば銅,ダイヤモンド,DLC等で作製したヒートシンク,ヒートスプレッダを本発明の方法により半導体デバイス等に直接ボンディングして,放熱性能,熱拡散性能等を向上させる。
Realization of efficient heat conduction (cooling) for higher performance and ultra-low power consumption Heat sinks and heat spreaders made of materials with a large heat dissipation coefficient such as copper, diamond, DLC, etc., semiconductor devices, etc. by the method of the present invention Bonding directly to, improve heat dissipation performance, heat diffusion performance, etc.

その他
なお,以上で説明した用途では,いずれも本発明の接合方法を電気,電子部品等の分野において使用する例を説明したが,本発明の方法は,上記で例示した利用分野に限定されず,接合を必要とする各種分野,各種用途において利用可能である。
Others In each of the applications described above, examples of using the joining method of the present invention in the field of electric and electronic parts have been described. However, the method of the present invention is not limited to the field of use exemplified above. It can be used in various fields and applications that require joining.

Claims (13)

真空容器内において,一方の基体の平滑面に,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,1×10-4Paを越える圧力の雰囲気下において,少なくとも表面が,室温における体拡散係数が1×10-40(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−15(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の基体の平滑面に,前記一方の基体に形成された前記薄膜が接触するように前記一方,他方の2つの基体を重ね合わせることにより,前記薄膜と前記他方の基体の前記平滑面との接合界面及び結晶粒界に原子拡散を生じさせることにより前記2つの基体を接合する(但し,150℃以上の接合温度で行う接合を除く)ことを特徴とする原子拡散接合方法。 In a vacuum vessel, the body diffusion coefficient at room temperature is 1 × 10 −40 (m 2 / s) or more and the free energy of formation of oxide at room temperature is −15 (kJ / mol) on the smooth surface of one substrate. of Compounds,) or more single metal, or to form a thin film of microcrystalline structure made of an alloy, in an atmosphere of a pressure exceeding 1 × 10 -4 Pa, at least the surface of the body diffusion coefficient of 1 × 10 at room temperature - On the other hand, it has a smooth surface with a microcrystalline structure consisting of a single metal or alloy of 40 (m 2 / s) or more and an oxide free energy of formation at room temperature of −15 (kJ / mol of compounds) or more. The thin film and the smooth surface of the other substrate are joined by superimposing the one and the other two substrates so that the thin film formed on the one substrate is in contact with the smooth surface of the other substrate. Atomic diffusion occurs at interfaces and grain boundaries The joining two substrates (except a bonding performed at a junction temperature of more than 0.99 ° C.) atomic diffusion bonding wherein the By. 真空容器内において,一方の基体の平滑面に,室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造の薄膜を形成すると共に,1×10-4Paを越える圧力の雰囲気下において,少なくとも表面が室温における体拡散係数が1×10-45(m2/s)以上で,且つ,室温における酸化物の生成自由エネルギーが−150(kJ/mol of compounds)以上の単金属,あるいは合金から成る微結晶構造を有する平滑面を備えた他方の基体の平滑面に,前記一方の基体に形成された前記薄膜が接触するように前記一方,他方の2つの基体を重ね合わせ,100℃以上の温度で加熱することにより前記微結晶構造の薄膜の接合界面及び結晶粒界に原子拡散を生じさせて前記2つの基体を接合する(但し,150℃以上の接合温度で行う接合を除く)ことを特徴とする原子拡散接合方法。 In a vacuum vessel, the body diffusion coefficient at room temperature is 1 × 10 −45 (m 2 / s) or more and the free energy of formation of oxide at room temperature is −150 (kJ / mol) on the smooth surface of one substrate. a thin film having a microcrystalline structure composed of the above single metal or alloy and having a body diffusion coefficient of at least 1 × 10 −45 at room temperature in an atmosphere at a pressure exceeding 1 × 10 −4 Pa. (m 2 / s) or more, and the other provided with a smooth surface having a microcrystalline structure made of a single metal or alloy having a free energy of formation of oxide of −150 (kJ / mol of compounds) or more at room temperature. The one and the other two substrates are overlapped so that the thin film formed on the one substrate is in contact with the smooth surface of the substrate, and heated at a temperature of 100 ° C. or higher to form the thin film of the microcrystalline structure. Atoms at junction interface and grain boundaries And causing diffusing bonding the two substrates (except a bonding performed at a junction temperature of more than 0.99 ° C.) atomic diffusion bonding method, characterized in that. 前記他方の基体の平滑面が,真空容器内において前記他方の基体の表面に形成された微結晶構造の薄膜により形成されていることを特徴とする請求項1又は2記載の原子拡散接合方法。 3. The atomic diffusion bonding method according to claim 1, wherein the smooth surface of the other substrate is formed of a thin film having a microcrystalline structure formed on the surface of the other substrate in a vacuum vessel. 前記基体の重ね合わせを,大気圧以上の圧力の雰囲気下で行うことを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 The atomic diffusion bonding method according to any one of claims 1 to 3 , wherein the overlapping of the substrates is performed in an atmosphere having a pressure equal to or higher than atmospheric pressure. 前記基体の重ね合わせを行う雰囲気が空気であることを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 Claim 1-4 any one atom diffusion bonding method, wherein the atmosphere in which the superposition of the substrate is air. 前記基体の重ね合わせを行う雰囲気が78%を越える不活性ガスを含むことを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 The atomic diffusion bonding method according to any one of claims 1 to 4, wherein an atmosphere in which the substrates are superposed includes an inert gas exceeding 78%. 前記基体の重ね合わせを,塵埃の除去された雰囲気下で行うことを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 The superposition of the base body, according to claim 1-6 any one atom diffusion bonding method, wherein a performed under an atmosphere that is removed of dust. 前記基体を重ね合わせる力の強さが101kPa以下であることを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 Claim 1-7 atomic diffusion bonding method according to any one of the preceding, wherein the strength of the force superposing said substrate is less than 101 kPa. 前記微結晶薄膜を形成する前に,前記微結晶薄膜の形成と同一真空中において,前記微結晶薄膜の形成を行う基体の平滑面に生じている変質層を除去することを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 The modified layer generated on the smooth surface of the substrate on which the microcrystalline thin film is formed is removed in the same vacuum as the formation of the microcrystalline thin film before forming the microcrystalline thin film. The atomic diffusion bonding method according to any one of 1 to 8 . 前記微結晶構造の薄膜が形成される前記基体の平滑面に,前記微結晶構造の薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶構造の薄膜を形成することを特徴とする請求項1〜いずれか1項記載の原子拡散接合方法。 On the smooth surface of the substrate on which the thin film having the microcrystalline structure is formed, one or more base layers made of a thin film of a material different from the thin film having the microcrystalline structure are formed, and the microcrystalline structure is formed on the base layer. claim 1-9 any one atom diffusion bonding method, wherein the forming the thin film. 前記下地層を,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成したことを特徴とする請求項10記載の原子拡散接合方法。 The underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or one or more selected from the element group The atomic diffusion bonding method according to claim 10 , wherein the atomic diffusion bonding method is formed of an alloy containing any of the elements. 前記下地層を形成する前記単金属又は合金として,当該下地層上に形成される微結晶構造の薄膜を形成する単金属又は合金よりも高融点で,且つ,前記微結晶構造の薄膜を形成する単金属又は合金に対して融点の差が大きいものを使用することを特徴とする請求項10記載の原子拡散接合方法。 As the single metal or alloy for forming the base layer, a thin film having a higher melting point than the single metal or alloy for forming a thin film having a microcrystalline structure formed on the base layer and having the microcrystalline structure is formed. 11. The atomic diffusion bonding method according to claim 10 , wherein a material having a large difference in melting point with respect to a single metal or an alloy is used. 前記微結晶構造の薄膜の膜厚を2nm〜1μmとしたことを特徴とする請求項1〜12いずれか1項記載の原子拡散接合方法。 Claim 1-12 any one atomic diffusion bonding method according to characterized in that the thickness of the thin film of the microcrystalline structure and 2Nm~1myuemu.
JP2010107392A 2010-05-07 2010-05-07 Atomic diffusion bonding method Active JP5569964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107392A JP5569964B2 (en) 2010-05-07 2010-05-07 Atomic diffusion bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107392A JP5569964B2 (en) 2010-05-07 2010-05-07 Atomic diffusion bonding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014126656A Division JP5948533B2 (en) 2014-06-19 2014-06-19 Atomic diffusion bonding method

Publications (2)

Publication Number Publication Date
JP2011235300A JP2011235300A (en) 2011-11-24
JP5569964B2 true JP5569964B2 (en) 2014-08-13

Family

ID=45323856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107392A Active JP5569964B2 (en) 2010-05-07 2010-05-07 Atomic diffusion bonding method

Country Status (1)

Country Link
JP (1) JP5569964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045163A1 (en) 2019-09-05 2021-03-11 国立大学法人東北大学 Chemical bonding method and joined structure
WO2022172902A1 (en) 2021-02-10 2022-08-18 キヤノンアネルバ株式会社 Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985849B2 (en) 2012-03-23 2016-09-06 株式会社豊田中央研究所 JOINT BODY, MANUFACTURING METHOD THEREOF, AND MEMBER
CN104060221B (en) 2013-03-23 2018-01-23 京瓷株式会社 Optics manufacture method
JP6299478B2 (en) 2013-06-26 2018-03-28 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6318441B2 (en) * 2013-09-09 2018-05-09 株式会社ムサシノエンジニアリング Joining method
FR3027250B1 (en) * 2014-10-17 2019-05-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR DIRECT COLLAGE VIA LOW ROUGH METAL LAYERS
JP6504555B2 (en) * 2014-11-06 2019-04-24 株式会社ムサシノエンジニアリング Method of atomic diffusion bonding and structure bonded by the above method
JP6908859B2 (en) * 2014-12-25 2021-07-28 日亜化学工業株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
JP6492645B2 (en) * 2014-12-25 2019-04-03 日亜化学工業株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6315014B2 (en) 2016-03-23 2018-04-25 日亜化学工業株式会社 Manufacturing method of semiconductor device
US10451508B2 (en) 2016-06-03 2019-10-22 Schlumberger Technology Corporation Pressure transducer and method for fabricating the same
JP7400179B2 (en) 2019-07-31 2023-12-19 日本特殊陶業株式会社 Ceramic structure for semiconductor manufacturing equipment and its manufacturing method
CN113210926B (en) * 2021-05-28 2023-04-11 华东交通大学 Preparation method of multi-principal-element welding wire and high-entropy welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041354A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Method of solid-phase welding members
JP2004055924A (en) * 2002-07-22 2004-02-19 Sanken Electric Co Ltd Method for manufacturing semiconductor wafer laminate
JP5070557B2 (en) * 2007-02-27 2012-11-14 武仁 島津 Room temperature bonding method
JP5401661B2 (en) * 2008-08-22 2014-01-29 株式会社ムサシノエンジニアリング Atomic diffusion bonding method and structure bonded by the above method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045163A1 (en) 2019-09-05 2021-03-11 国立大学法人東北大学 Chemical bonding method and joined structure
KR20220056172A (en) 2019-09-05 2022-05-04 도호쿠 다이가쿠 Chemical bonding and bonding structures
US11450643B2 (en) 2019-09-05 2022-09-20 Tohoku University Chemical bonding method and joined structure
WO2022172902A1 (en) 2021-02-10 2022-08-18 キヤノンアネルバ株式会社 Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device
US11916038B2 (en) 2021-02-10 2024-02-27 Canon Anelva Corporation Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device

Also Published As

Publication number Publication date
JP2011235300A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5569964B2 (en) Atomic diffusion bonding method
JP5401661B2 (en) Atomic diffusion bonding method and structure bonded by the above method
JP5070557B2 (en) Room temperature bonding method
JP6089162B2 (en) Atomic diffusion bonding method and manufacturing method of packaged electronic component sealed by the method
JP6504555B2 (en) Method of atomic diffusion bonding and structure bonded by the above method
JP5517196B2 (en) Superconducting compound substrate and manufacturing method thereof
TW469510B (en) Method for joining wafers at a low temperature and low stress
JP2016119489A (en) Method for manufacturing composite substrate
JP2016516304A (en) Method of manufacturing a semiconductor on insulator wafer for reducing write point defects and surface roughness
US8748890B2 (en) Method of manufacturing semiconductor wafer, and composite base and composite substrate for use in that method
TW201029059A (en) Tin/silver bonding structure and its method
JPWO2010055612A1 (en) Manufacturing method of metal laminated substrate for forming semiconductor element and metal laminated substrate for forming semiconductor element
JP2017523603A (en) Method and apparatus for surface treating a substrate
JP6369566B2 (en) Composite substrate for producing nanocarbon film and method for producing nanocarbon film
JP5948533B2 (en) Atomic diffusion bonding method
WO2012137959A1 (en) Manufacturing method for silicon carbide semiconductor device
WO2021246245A1 (en) Method for atomic diffusion bonding and bonded structure
JP5606920B2 (en) Polymer laminated substrate for epitaxial growth film formation and method for producing the same
JP6318441B2 (en) Joining method
Takagi et al. Surface Activated Wafer Bonding; Principle and Current Status
JP7476156B2 (en) Method and apparatus for surface treating a substrate - Patents.com
TW201009950A (en) Method for producing bonded wafer
JP2022020710A (en) Method for performing surface treatment of substrate, and device
JP5918920B2 (en) Superconducting compound substrate and manufacturing method thereof
JP2005314164A (en) Method for forming single crystal thin film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5569964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250