JP6908859B2 - Semiconductor devices and methods for manufacturing semiconductor devices - Google Patents

Semiconductor devices and methods for manufacturing semiconductor devices Download PDF

Info

Publication number
JP6908859B2
JP6908859B2 JP2019040531A JP2019040531A JP6908859B2 JP 6908859 B2 JP6908859 B2 JP 6908859B2 JP 2019040531 A JP2019040531 A JP 2019040531A JP 2019040531 A JP2019040531 A JP 2019040531A JP 6908859 B2 JP6908859 B2 JP 6908859B2
Authority
JP
Japan
Prior art keywords
metal
light emitting
bonding layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019040531A
Other languages
Japanese (ja)
Other versions
JP2019091943A (en
Inventor
将嗣 市川
将嗣 市川
聡 七條
聡 七條
島津 武仁
武仁 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014263577A external-priority patent/JP6492645B2/en
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2019040531A priority Critical patent/JP6908859B2/en
Publication of JP2019091943A publication Critical patent/JP2019091943A/en
Application granted granted Critical
Publication of JP6908859B2 publication Critical patent/JP6908859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Description

本発明は、半導体装置に関し、特に放熱効率の高い半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device, particularly to a semiconductor device having high heat dissipation efficiency and a method for manufacturing the same.

高出力の半導体素子(例えば、車載用の半導体発光素子)を含む半導体部品では、使用時に半導体素子で発生する熱を効率よく放熱することが重要である。そこで、熱伝導率の高い材料から形成された放熱部材に半導体部品を取り付けて、放熱性を向上させている。
半導体部品において、半導体素子を載置する基板には、熱伝導性に優れたセラミック基板が利用できる(特許文献1〜3)。半導体部品を放熱部材に取り付ける際には、半導体部品のセラミック基板を放熱部材に接合する。その際の接合方法としては、例えば、はんだ(特許文献1、2)や、銀ペースト(特許文献3)を用いることが知られている。
また、複数の部材を接合する別の方法として、常温接合法が知られている(特許文献4)。常温接合法では、真空下で各部材の接合面に金属膜を形成し、その金属膜を互いに接触させることによって複数の部材を接合することができる。この常温接合法を、半導体部品と放熱部材との接合に使用することにより、放熱性能、熱拡散性能等が向上すると考えられる。
In semiconductor components including high-power semiconductor elements (for example, semiconductor light emitting elements for automobiles), it is important to efficiently dissipate heat generated by the semiconductor elements during use. Therefore, a semiconductor component is attached to a heat radiating member formed of a material having high thermal conductivity to improve heat radiating property.
In semiconductor parts, a ceramic substrate having excellent thermal conductivity can be used as a substrate on which a semiconductor element is placed (Patent Documents 1 to 3). When attaching the semiconductor component to the heat radiating member, the ceramic substrate of the semiconductor component is joined to the heat radiating member. As a joining method at that time, for example, it is known to use solder (Patent Documents 1 and 2) and silver paste (Patent Document 3).
Further, as another method for joining a plurality of members, a room temperature joining method is known (Patent Document 4). In the room temperature joining method, a metal film is formed on the joining surface of each member under vacuum, and the plurality of members can be joined by bringing the metal films into contact with each other. By using this normal temperature joining method for joining a semiconductor component and a heat radiating member, it is considered that heat radiating performance, heat diffusion performance and the like are improved.

特開2009−194275号公報Japanese Unexamined Patent Publication No. 2009-194275 特開2013−055218号公報Japanese Unexamined Patent Publication No. 2013-055218 特開2010−166019号公報Japanese Unexamined Patent Publication No. 2010-166019 特開2008−207221号公報Japanese Unexamined Patent Publication No. 2008-207221

特許文献1〜3に開示された接合方法では、はんだや銀ペーストの熱伝導率が十分に高いとはいえず、半導体部品から放熱部材への放熱効率が十分ではなかった。
特許文献4に開示された常温接合法では、半導体部品と放熱部材とを、熱伝導率の高い金属材料によって接合するので、特許文献1〜3に比べると、半導体部品から放熱部材への放熱効率は高い。しかしながら、半導体素子の高出力化に伴う発熱量の増加により、放熱効率のさらなる向上が求められている。
そこで、本発明に係る実施形態は、半導体部品から放熱部材への放熱効率の高い半導体装置およびその製造方法を提供することを目的とする。
In the joining methods disclosed in Patent Documents 1 to 3, the thermal conductivity of the solder or silver paste cannot be said to be sufficiently high, and the heat dissipation efficiency from the semiconductor component to the heat radiating member is not sufficient.
In the room temperature joining method disclosed in Patent Document 4, since the semiconductor component and the heat radiating member are joined by a metal material having high thermal conductivity, the heat radiating efficiency from the semiconductor component to the heat radiating member is compared with Patent Documents 1 to 3. Is expensive. However, further improvement in heat dissipation efficiency is required due to an increase in the amount of heat generated as the output of the semiconductor element increases.
Therefore, an object of the embodiment of the present invention is to provide a semiconductor device having high heat dissipation efficiency from a semiconductor component to a heat radiating member and a method for manufacturing the same.

本発明の実施形態に係る半導体装置は、半導体素子が上面に載置された基板と、放熱部材と、前記基板の下面と前記放熱部材の上面とを接合する金属接合層とを含み、前記放熱部材の上面の面積は、前記基板の下面の面積よりも大きく、前記金属接合層は、前記基板の下面全体と接触するとともに、前記基板の下面よりも大きい面積を有し、前記金属接合層の熱伝導率は前記放熱部材の熱伝導率よりも高いことを特徴とする。 The semiconductor device according to the embodiment of the present invention includes a substrate on which a semiconductor element is placed on an upper surface, a heat radiating member, and a metal bonding layer that joins a lower surface of the substrate and an upper surface of the radiating member, and dissipates heat. The area of the upper surface of the member is larger than the area of the lower surface of the substrate, and the metal bonding layer is in contact with the entire lower surface of the substrate and has an area larger than the lower surface of the substrate. The thermal conductivity is higher than the thermal conductivity of the heat radiating member.

また、本発明の実施形態に係る半導体装置の製造方法は、
1)基板の上面に半導体素子を載置する工程と、
2)前記基板の下面に第1の金属層を形成する工程と、
3)放熱部材の上面に、前記基板の下面より大きい面積を有する第2の金属層を形成する工程と、
4)前記第1の金属層と前記第2の金属層とを接触させてそれらを接合する工程と、を含み、
前記第1の金属層と前記第2の金属層とから成る金属接合層が、前記放熱部材の熱伝導率よりも高いことを特徴とする。
Further, the method for manufacturing a semiconductor device according to the embodiment of the present invention is described.
1) The process of placing the semiconductor element on the upper surface of the substrate and
2) A step of forming a first metal layer on the lower surface of the substrate and
3) A step of forming a second metal layer having an area larger than the lower surface of the substrate on the upper surface of the heat radiating member, and
4) Including a step of bringing the first metal layer into contact with the second metal layer and joining them.
The metal bonding layer composed of the first metal layer and the second metal layer is characterized in that the heat conductivity is higher than that of the heat radiating member.

本発明に係る実施形態の半導体装置によれば、発光素子を載置する基板と放熱部材との接合に、放熱部材よりも熱伝導率の高い金属接合層を使用し、且つその金属接合層の面積を基板の面積より大きくすることにより、発光素子で発生した熱を金属接合層によって広げてから放熱部材に移動させることができるので、放熱効率を高めることができる。 According to the semiconductor device of the embodiment according to the present invention, a metal bonding layer having a higher thermal conductivity than the heat radiating member is used for bonding the substrate on which the light emitting element is placed and the heat radiating member, and the metal bonding layer is formed. By making the area larger than the area of the substrate, the heat generated by the light emitting element can be spread by the metal bonding layer and then transferred to the heat radiating member, so that the heat radiating efficiency can be improved.

図1は、本発明の実施の形態1に係る半導体装置を、外部放熱部材に載置した状態を示す概略斜視図である。FIG. 1 is a schematic perspective view showing a state in which the semiconductor device according to the first embodiment of the present invention is mounted on an external heat radiating member. 図2は、図1に示す半導体装置および外部放熱部材の部分拡大上面図である。FIG. 2 is a partially enlarged top view of the semiconductor device and the external heat radiating member shown in FIG. 図3は、図2のA−A線における半導体装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the semiconductor device in line AA of FIG. 図4は、実施の形態1に係る半導体装置の放熱経路を説明するための部分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view for explaining a heat dissipation path of the semiconductor device according to the first embodiment. 図5は、実施の形態1に係る半導体装置の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of the semiconductor device according to the first embodiment. 図6(a)〜(f)は、半導体装置に含まれる金属接合層の様々な態様を示す部分拡大断面図である。6 (a) to 6 (f) are partially enlarged cross-sectional views showing various aspects of the metal bonding layer included in the semiconductor device. 図7は、本発明の実施の形態に係る半導体装置の別の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing another modification of the semiconductor device according to the embodiment of the present invention. 図8(a)〜(c)は、半導体装置の製造工程を説明するための断面図である。8 (a) to 8 (c) are cross-sectional views for explaining a manufacturing process of a semiconductor device. 図9(a)、(b)は、半導体装置の製造工程を説明するための断面図である。9 (a) and 9 (b) are cross-sectional views for explaining a manufacturing process of a semiconductor device. 図10(a)、(b)は、半導体装置の製造工程を説明するための断面図である。10 (a) and 10 (b) are cross-sectional views for explaining a manufacturing process of a semiconductor device. 図11は、図6(a)〜(f)に図示した金属接合層を形成するための金属膜の積層の態様を示す部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view showing a mode of laminating the metal film for forming the metal bonding layer shown in FIGS. 6 (a) to 6 (f). 図12は、金属接合層の断面TEM像である。FIG. 12 is a cross-sectional TEM image of the metal bonding layer.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」および、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分または部材を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, "top", "bottom", "right", "left", and other terms including those terms) are used as necessary. .. The use of these terms is to facilitate understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the invention. Further, the parts having the same reference numerals appearing in a plurality of drawings indicate the same parts or members.

<実施の形態1>
本実施の形態では、半導体素子が発光素子である半導体装置(即ち、半導体発光装置)を例にとって説明する。
図1〜3には、本実施の形態に係る半導体装置(半導体発光装置)1と、半導体装置1が載置される外部放熱部材(ヒートシンク)50とが図示されている。半導体発光装置1は、半導体部品(発光部品)10と、放熱部材(ヒートスプレッダ)20と、金属接合層30とを含んでいる。
<Embodiment 1>
In the present embodiment, a semiconductor device (that is, a semiconductor light emitting device) in which the semiconductor element is a light emitting element will be described as an example.
FIGS. 1 to 3 show a semiconductor device (semiconductor light emitting device) 1 according to the present embodiment and an external heat radiating member (heat sink) 50 on which the semiconductor device 1 is mounted. The semiconductor light emitting device 1 includes a semiconductor component (light emitting component) 10, a heat radiating member (heat spreader) 20, and a metal bonding layer 30.

図2〜図3に示すように、発光部品10は、基板11と、その上面11aに載置された半導体素子(発光素子)12とを含んでいる。基板11としては、放熱性の良好な絶縁材料の本体に、発光素子12に通電するための金属配線を設けたものが使用できる。本実施の形態では、本体にセラミック材料を使用したセラミック基板が使用されている。 As shown in FIGS. 2 to 3, the light emitting component 10 includes a substrate 11 and a semiconductor element (light emitting element) 12 mounted on the upper surface 11a thereof. As the substrate 11, a main body of an insulating material having good heat dissipation and provided with metal wiring for energizing the light emitting element 12 can be used. In this embodiment, a ceramic substrate using a ceramic material for the main body is used.

ヒートスプレッダ20は、発光素子12で発生する熱を放熱するための板状部材であり、ヒートスプレッダ20単独で、またはヒートシンクと組み合わせて、放熱効率を向上させることができる。ヒートスプレッダ20の上面20aの面積は、基板11の下面11b全体の面積よりも大きくされている(図1、図2参照)。なお、本実施の形態では、発光部品10を取り付ける放熱部材としてヒートスプレッダ20を例示しているが、ヒートシンク50を放熱部材として使用してもよい。その場合には、発光部品10は、ヒートスプレッダ20なしで、ヒートシンク50に直接取り付けられる。 The heat spreader 20 is a plate-shaped member for radiating heat generated by the light emitting element 12, and the heat spread efficiency can be improved by the heat spreader 20 alone or in combination with a heat sink. The area of the upper surface 20a of the heat spreader 20 is larger than the area of the entire lower surface 11b of the substrate 11 (see FIGS. 1 and 2). In the present embodiment, the heat spreader 20 is illustrated as a heat radiating member to which the light emitting component 10 is attached, but the heat sink 50 may be used as the heat radiating member. In that case, the light emitting component 10 is attached directly to the heat sink 50 without the heat spreader 20.

ヒートスプレッダ20の上面20aには、その上面20aの少なくとも一部を被覆する金属接合層30が設けられている。この金属接合層30により、発光部品10はヒートスプレッダ20に接合される。より詳細には、金属接合層30は、発光部品10の基板11の下面11bを、ヒートスプレッダ20の上面20aに接合する。金属接合層30の面積は、発光部品10の基板11の下面11bの面積より大きい。そして、発光部品10を金属接合層30上に配置する際には、金属接合層30の形成されている領域内に、基板11の下面11bが全て入るように配置される。これにより、基板11の下面11b全体が、金属接合層30に接触する。金属接合層30の熱伝導率は、ヒートスプレッダ20の熱伝導率よりも高い。
金属接合層30が上述の特徴を有することにより、半導体発光装置1の放熱効率を向上させることができる。
The upper surface 20a of the heat spreader 20 is provided with a metal bonding layer 30 that covers at least a part of the upper surface 20a. The light emitting component 10 is bonded to the heat spreader 20 by the metal bonding layer 30. More specifically, the metal bonding layer 30 joins the lower surface 11b of the substrate 11 of the light emitting component 10 to the upper surface 20a of the heat spreader 20. The area of the metal bonding layer 30 is larger than the area of the lower surface 11b of the substrate 11 of the light emitting component 10. When the light emitting component 10 is arranged on the metal bonding layer 30, the light emitting component 10 is arranged so that the entire lower surface 11b of the substrate 11 is contained in the region where the metal bonding layer 30 is formed. As a result, the entire lower surface 11b of the substrate 11 comes into contact with the metal bonding layer 30. The thermal conductivity of the metal bonding layer 30 is higher than the thermal conductivity of the heat spreader 20.
Since the metal bonding layer 30 has the above-mentioned characteristics, the heat dissipation efficiency of the semiconductor light emitting device 1 can be improved.

放熱効率が向上する理由は定かではないが、以下のようなメカニズムによるものであると考えられる。
図4に示すように、発光素子12で発生した熱は、基板11の中を広がって金属接合層30に伝わり、さらにヒートスプレッダ20へと移動する。熱は、ヒートスプレッダ20のうち、基板11の直下領域20uに集中しやすい。放熱効率を高めるためには、直下領域20uよりも外側の領域(外縁領域20x)への熱伝導を促進することが有効である。
The reason for the improvement in heat dissipation efficiency is not clear, but it is thought that it is due to the following mechanism.
As shown in FIG. 4, the heat generated by the light emitting element 12 spreads in the substrate 11 and is transmitted to the metal bonding layer 30, and further transferred to the heat spreader 20. The heat tends to concentrate in the region 20u directly below the substrate 11 of the heat spreader 20. In order to increase the heat dissipation efficiency, it is effective to promote heat conduction to a region (outer edge region 20x) outside the region 20u directly below.

本実施の形態に係る半導体発光装置1では、金属接合層30の面積が基板11の下面11b全体の面積より大きいので、金属接合層30の上に発光部品10を配置すると、金属接合層30の外周の少なくとも一部分は、基板11の外側に延在する(この延在する部分を「外延部分30x」と称する)。
基板11(例えば点P)から、ヒートスプレッダ20の外縁領域20x(例えば点P)までの放熱経路には、金属接合層30の外延部分30xを通らない第1の放熱経路Tと、外延部分30xを通る第1の放熱経路Tとがある。
第1の放熱経路Tでは、まず、点Pから、金属接合層30をその厚さ方向(−z方向)に通り抜けて、ヒートスプレッダ20の直下領域20uに進む(経路t1a)。その後に、ヒートスプレッダ20内を横方向(−x方向)に進んで、点Pに到達する(経路t1b)。
一方、第2の放熱経路Tでは、まず、点Pから金属接合層30に進んだ後、金属接合層30内をその厚さ方向と直交する方向(図4の−x方向)に進んで、外延部分30xまで達する(経路t2a)。その後、金属接合層30の厚さ方向(−z方向)に進んで、点Pに到達する(経路t2b)。
In the semiconductor light emitting device 1 according to the present embodiment, the area of the metal bonding layer 30 is larger than the area of the entire lower surface 11b of the substrate 11, so that when the light emitting component 10 is arranged on the metal bonding layer 30, the metal bonding layer 30 At least a part of the outer periphery extends to the outside of the substrate 11 (this extending portion is referred to as "extended portion 30x").
The heat dissipation path from the substrate 11 (for example, point P 1 ) to the outer edge region 20x (for example, point P 2 ) of the heat spreader 20 includes a first heat dissipation path T 1 that does not pass through the outer extension portion 30x of the metal bonding layer 30 and an outer extension. there is a first heat radiation path T 2 through the portion 30x.
In the first heat dissipation path T 1 , first, from the point P 1 , the metal bonding layer 30 passes through the metal bonding layer 30 in the thickness direction (−z direction) and proceeds to the region 20u directly below the heat spreader 20 (path t 1a ). Thereafter, it proceeds to the heat spreader 20 in the lateral direction (-x direction), and reaches the point P 2 (path t 1b).
On the other hand, in the second heat dissipation path T 2, first, after traveling from point P 1 to the metal bonding layer 30, moving towards (-x direction in FIG. 4) perpendicular to the metal bonding layer 30 and the thickness direction Then, it reaches the extension portion 30x (path t 2a ). Thereafter, it proceeds to the thickness direction of the metal bonding layer 30 (-z direction), and reaches the point P 2 (path t 2b).

この2つの放熱経路を比較すると、第1の放熱経路T1の経路t1aと第2の放熱経路Tの経路t2bは、いずれもヒートスプレッダ20内を、ほぼ同じ距離だけ、垂直下向き(−z方向)に進むので、熱伝導しやすさ(熱伝導性)に違いはない。
一方、第1の放熱経路T1の経路t1bと第2の放熱経路Tの経路t2aは、ほぼ同じ距離だけ、横方向(−x方向)に進むが、経路t1bは金属接合層30内を通り、経路t2aはヒートスプレッダ20を通るため、熱伝導性が異なってくる。上述したように、金属接合層30の熱伝導率がヒートスプレッダ20の熱伝導率よりも高いので、金属接合層30内を通る経路t2aのほうが、ヒートスプレッダ20内を通る経路t1bよりも、熱伝導性に優れている。
即ち、第2の放熱経路Tのほうが、第1の放熱経路Tよりも、放熱効率が高い。本実施の形態に係る半導体発光装置1は、金属接合層30が外延部分30xを備えており、且つ金属接合層30の熱伝導率がヒートスプレッダ20の熱伝導率よりも高いので、基板11からヒートスプレッダ20の外縁領域20xまでの間に、放熱効率の高い第2の放熱経路Tが形成される。これにより、外縁領域20xへの熱伝導が促進され、半導体発光装置1の放熱効率を向上することができる。
Comparing these two heat dissipation paths, the path t 1a of the first heat dissipation path T1 and the path t 2b of the second heat dissipation path T 2 both point vertically downward (-z) in the heat spreader 20 by approximately the same distance. Since it goes in the direction), there is no difference in the ease of heat conduction (heat conductivity).
On the other hand, the path t 1b of the first heat dissipation path T1 and the path t 2a of the second heat dissipation path T 2 travel in the lateral direction (−x direction) by approximately the same distance, but the path t 1b is the metal bonding layer 30. Since the path t 2a passes through the inside and passes through the heat spreader 20, the thermal conductivity is different. As described above, since the thermal conductivity of the metal bonding layer 30 is higher than that of the heat spreader 20, the path t 2a passing through the metal bonding layer 30 is more heat than the path t 1b passing through the heat spreader 20. Has excellent conductivity.
That is, the second heat dissipation path T 2 has higher heat dissipation efficiency than the first heat dissipation path T 1. In the semiconductor light emitting device 1 according to the present embodiment, since the metal bonding layer 30 includes the outer extension portion 30x and the thermal conductivity of the metal bonding layer 30 is higher than the thermal conductivity of the heat spreader 20, the heat spreader from the substrate 11 until 20 of the outer edge region 20x, the second heat radiation path T 2 is formed with high heat dissipation efficiency. As a result, heat conduction to the outer edge region 20x is promoted, and the heat dissipation efficiency of the semiconductor light emitting device 1 can be improved.

図1〜図4に示す半導体発光装置1では、金属接合層30は、ヒートスプレッダ20の上面20aのうち、縁部20eを除く範囲に形成されている(つまり、上面20aの縁部20eは金属接合層30で覆われていない)。より好ましくは、図5に示す半導体発光装置2のように、ヒートスプレッダ20の上面20aの全面を金属接合層30で被覆する。これにより、金属接合層30の外延部分30xの面積がさらに広くなるので、半導体発光装置2の放熱効率をさらに向上することができる。 In the semiconductor light emitting device 1 shown in FIGS. 1 to 4, the metal bonding layer 30 is formed in a range excluding the edge 20e of the upper surface 20a of the heat spreader 20 (that is, the edge 20e of the upper surface 20a is a metal bonding). Not covered by layer 30). More preferably, as in the semiconductor light emitting device 2 shown in FIG. 5, the entire surface of the upper surface 20a of the heat spreader 20 is covered with the metal bonding layer 30. As a result, the area of the outer extension portion 30x of the metal bonding layer 30 is further increased, so that the heat dissipation efficiency of the semiconductor light emitting device 2 can be further improved.

金属接合層30の厚さは、1nm以上10μm以下であるのが好ましい。膜厚がこの範囲にあると、金属接合層30を通る放熱経路の放熱効率を高めることができ、且つ、基板11とヒートスプレッダ20との間の適切な結合強度を得ることができる。半導体発光装置1の生産性を考慮すると、厚さは20nm〜200nmであるのが好ましい。 The thickness of the metal bonding layer 30 is preferably 1 nm or more and 10 μm or less. When the film thickness is in this range, the heat dissipation efficiency of the heat dissipation path passing through the metal bonding layer 30 can be enhanced, and an appropriate bonding strength between the substrate 11 and the heat spreader 20 can be obtained. Considering the productivity of the semiconductor light emitting device 1, the thickness is preferably 20 nm to 200 nm.

金属接合層30は、単一の金属膜から構成することができる(図6(a)参照)。また、金属接合層30は、複数の金属膜を積層して構成することもできる(図6(b)〜図6(f)参照)。複数の金属膜を含む金属接合層30は、さらに、奇数の金属膜を含む金属接合層30(図6(b)〜図6(c))と、偶数の金属膜を含む金属接合層30とがある(図6(d)〜図6(f))。 The metal bonding layer 30 can be composed of a single metal film (see FIG. 6A). Further, the metal bonding layer 30 may be formed by laminating a plurality of metal films (see FIGS. 6 (b) to 6 (f)). The metal bonding layer 30 including the plurality of metal films further includes a metal bonding layer 30 containing an odd number of metal films (FIGS. 6 (b) to 6 (c)) and a metal bonding layer 30 containing an even number of metal films. (FIGS. 6 (d) to 6 (f)).

図6(b)には、3層の金属膜30a、30b、30cから成る金属接合層30が示されている。この例では、基板11の下面11b側と、ヒートスプレッダ20の上面20a側に、厚さの厚い2層の金属膜30a、30cが設けられ、それらの間に厚さの薄い1層の金属膜30bが設けられている。この形態では、2層の金属膜30a、30cを、熱伝導率の高い金属材料(例えばAgなど)から形成し、1層の金属膜30bを、接合性が良好な高い金属材料(例えばAuなど)から形成することにより、熱伝導率が高く、且つ接合性の良好な金属接合層30を得ることができる。 FIG. 6B shows a metal bonding layer 30 composed of three metal films 30a, 30b, and 30c. In this example, two thick metal films 30a and 30c are provided on the lower surface 11b side of the substrate 11 and the upper surface 20a side of the heat spreader 20, and one thin metal film 30b is provided between them. Is provided. In this form, the two-layer metal films 30a and 30c are formed of a metal material having high thermal conductivity (for example, Ag), and the one-layer metal film 30b is formed of a metal material having good bondability (for example, Au etc.). ), It is possible to obtain a metal bonding layer 30 having high thermal conductivity and good bonding properties.

図6(c)には、同じく3層の金属膜30d、30e、30fから成る金属接合層30が示されている。この例では、基板11の下面11b側と、ヒートスプレッダ20の上面20a側に、厚さの薄い2層の金属膜30d、30fが設けられ、それらの間に厚さの厚い1層の金属膜30eが設けられている。この形態では、2層の金属膜30d、30fを、基板11およびヒートスプレッダ20と接合性の良好な金属材料(例えばCrなど)から形成し、1層の金属膜30eを、熱伝導率の高い金属材料(例えばAgなど)から形成することにより、熱伝導率が高く、且つ接合性の良好な金属接合層30を得ることができる。 FIG. 6C shows a metal bonding layer 30 also composed of three metal films 30d, 30e, and 30f. In this example, two thin metal films 30d and 30f are provided on the lower surface 11b side of the substrate 11 and the upper surface 20a side of the heat spreader 20, and one thick metal film 30e is provided between them. Is provided. In this embodiment, the two-layer metal films 30d and 30f are formed of a metal material having good bondability with the substrate 11 and the heat spreader 20 (for example, Cr), and the one-layer metal film 30e is a metal having high thermal conductivity. By forming from a material (for example, Ag), a metal bonding layer 30 having high thermal conductivity and good bonding properties can be obtained.

図6(d)には、2層の金属膜から成る金属接合層30が示されている。この例では、基板11の下面11b側の金属膜を第1の金属層31、ヒートスプレッダ20の上面20a側の金属膜を第2の金属層32と称する。この形態では、第1の金属層31、第2の金属層32の両方とも、熱伝導率と接合性がいずれも比較的良好な金属材料(例えばAuなど)から形成することにより、熱伝導率と接合性が比較的良好な金属接合層30を得ることができる。 FIG. 6D shows a metal bonding layer 30 composed of two metal films. In this example, the metal film on the lower surface 11b side of the substrate 11 is referred to as the first metal layer 31, and the metal film on the upper surface 20a side of the heat spreader 20 is referred to as the second metal layer 32. In this form, both the first metal layer 31 and the second metal layer 32 are formed from a metal material (for example, Au) having relatively good thermal conductivity and bondability, thereby having thermal conductivity. A metal bonding layer 30 having relatively good bondability can be obtained.

図6(e)には、4層の金属膜31a、31b、32c、32dから成る金属接合層30が示されている。この例では、基板11の下面11b側と、ヒートスプレッダ20の上面20a側に、厚さの厚い2層の金属膜(第1の金属膜31a、第4の金属膜32d)が設けられ、それらの間に厚さの薄い2層の金属膜(第2の金属膜31b、第3の金属膜32c)が設けられている。この形態では、第1の金属膜31a、第4の金属膜32dを、熱伝導率の高い金属材料(例えばAgなど)から形成し、それらの間の第2の金属膜31b、第3の金属膜32cを、接合性が良好で耐酸化性の高い金属材料(例えばAuなど)から形成することにより、熱伝導率が高く、且つ接合性の良好な金属接合層30を得ることができる。
図6(e)の金属接合層30は、基板11の下面11b側に設けた第1の金属層31を、2層の金属膜(第1の金属膜31a、第2の金属膜31b)から形成し、ヒートスプレッダ20の上面20a側に設けた第2の金属層32を、2層の金属膜(第3の金属膜32c、第4の金属膜32d)から形成し、その後に第2の金属膜31bと第3の金属膜32cとを接合することより形成することができる。
FIG. 6E shows a metal bonding layer 30 composed of four metal films 31a, 31b, 32c, and 32d. In this example, two thick metal films (first metal film 31a, fourth metal film 32d) are provided on the lower surface 11b side of the substrate 11 and the upper surface 20a side of the heat spreader 20, and these are provided. Two thin metal films (second metal film 31b, third metal film 32c) are provided between them. In this embodiment, the first metal film 31a and the fourth metal film 32d are formed from a metal material having high thermal conductivity (for example, Ag), and the second metal film 31b and the third metal between them are formed. By forming the film 32c from a metal material having good bondability and high oxidation resistance (for example, Au), a metal bond layer 30 having high thermal conductivity and good bondability can be obtained.
In the metal bonding layer 30 of FIG. 6E, the first metal layer 31 provided on the lower surface 11b side of the substrate 11 is formed from two metal films (first metal film 31a, second metal film 31b). The second metal layer 32 formed and provided on the upper surface 20a side of the heat spreader 20 is formed from the two metal films (third metal film 32c, fourth metal film 32d), and then the second metal. It can be formed by joining the film 31b and the third metal film 32c.

図6(f)には、同じく4層の金属膜31e、31f、32g、32hから成る金属接合層30が示されている。この例では、基板11の下面11b側と、ヒートスプレッダ20の上面20a側に、厚さの薄い2層の金属膜31e、32hが設けられ、それらの間に厚さの厚い2層の金属膜31f、31gが設けられている。この形態では、2層の金属膜31e、32hを、基板11およびヒートスプレッダ20と接合性の良好な金属材料(例えばCrなど)から形成し、それらの間の2層の金属膜31f、31gを、熱伝導率の高い金属材料(例えばAgなど)から形成することにより、熱伝導率が高く、且つ接合性の良好な金属接合層30を得ることができる。
図6(f)の金属接合層30は、基板11の下面11b側に設けた第1の金属層31を、2層の金属膜31e、31fから形成し、ヒートスプレッダ20の上面20a側に設けた第2の金属層32を、2層の金属膜32g、32hから形成し、その後に金属膜31f、32gを接合することより形成することができる。
FIG. 6 (f) shows a metal bonding layer 30 also composed of four metal films 31e, 31f, 32g, and 32h. In this example, two thin metal films 31e and 32h are provided on the lower surface 11b side of the substrate 11 and the upper surface 20a side of the heat spreader 20, and two thick metal films 31f are provided between them. , 31 g is provided. In this embodiment, the two-layer metal films 31e and 32h are formed of a metal material having good bondability with the substrate 11 and the heat spreader 20 (for example, Cr), and the two-layer metal films 31f and 31g between them are formed. By forming from a metal material having a high thermal conductivity (for example, Ag), a metal bonding layer 30 having a high thermal conductivity and good bonding properties can be obtained.
In the metal bonding layer 30 of FIG. 6 (f), the first metal layer 31 provided on the lower surface 11b side of the substrate 11 is formed from the two metal films 31e and 31f, and is provided on the upper surface 20a side of the heat spreader 20. The second metal layer 32 can be formed by forming the two metal films 32g and 32h and then joining the metal films 31f and 32g.

なお、図6(a)〜図6(c)のような金属接合層30の形態と、図6(d)〜図6(f)のような金属接合層30の形態との相違は、主に、製造方法の相違に起因する。詳細は後述するが、図6(a)〜図6(c)のような金属接合層30は、基板11の下面11bに形成した金属膜と、ヒートスプレッダ20の上面20a側に形成した金属膜とを、真空下で接触させて接合することによって形成できる。一方、図6(d)〜図6(f)のような金属接合層30は、基板11の下面11bに形成した第1の金属層31と、ヒートスプレッダ20の上面20a側に形成した第2の金属層32とを、大気中(つまり、酸素含有雰囲気下)で接触させて接合することによって形成できる。 The main difference between the form of the metal bonding layer 30 as shown in FIGS. 6 (a) to 6 (c) and the form of the metal bonding layer 30 as shown in FIGS. 6 (d) to 6 (f) is mainly. In addition, it is due to the difference in manufacturing method. Although details will be described later, the metal bonding layer 30 as shown in FIGS. 6A to 6C includes a metal film formed on the lower surface 11b of the substrate 11 and a metal film formed on the upper surface 20a side of the heat spreader 20. Can be formed by contacting and joining under vacuum. On the other hand, the metal bonding layer 30 as shown in FIGS. 6D to 6F has a first metal layer 31 formed on the lower surface 11b of the substrate 11 and a second metal bonding layer 30 formed on the upper surface 20a side of the heat spreader 20. It can be formed by contacting and joining the metal layer 32 in the atmosphere (that is, in an oxygen-containing atmosphere).

なお、「金属接合層30の熱伝導率」とは、図6(a)のように金属接合層30が単一の金属膜から形成されている場合には、その金属膜を形成する金属材料の熱伝導率のことを意味する。金属接合層30が、複数の金属膜の積層体から形成される場合には、金属接合層30の熱伝導率は、金属接合層30全体の熱伝導率のことを意味する。よって、複数の金属膜のうちの1つが、熱伝導率の低い金属材料から形成されていたとしても、その他の金属膜が熱伝導率の高い金属材料から形成されていれば、金属接合層30全体としての熱伝導率を高くすることができる。 The "thermal conductivity of the metal bonding layer 30" refers to the metal material forming the metal film when the metal bonding layer 30 is formed of a single metal film as shown in FIG. 6A. It means the thermal conductivity of. When the metal bonding layer 30 is formed from a laminate of a plurality of metal films, the thermal conductivity of the metal bonding layer 30 means the thermal conductivity of the entire metal bonding layer 30. Therefore, even if one of the plurality of metal films is formed of a metal material having a low thermal conductivity, if the other metal film is formed of a metal material having a high thermal conductivity, the metal bonding layer 30 The overall thermal conductivity can be increased.

また、本実施の形態では、「金属接合層30の熱伝導率はヒートスプレッダ20の熱伝導率よりも高い」と規定されている。この規定は、金属接合層30が複数の金属膜から形成されている場合には、金属接合層30全体としての熱伝導率が、ヒートスプレッダ20の熱伝導率よりも高いことを意図している。つまり、当該規定は、金属接合層30に含まれる全ての金属材料が、ヒートスプレッダ20の熱伝導率よりも高い熱伝導率を有していることを意図するものではない。よって、複数の金属膜のうちの一部が、ヒートスプレッダ20よりも小さい熱伝導率を有する金属材料から形成されていたとしても、他の金属膜が、ヒートスプレッダ20よりも大きい熱伝導率を有する金属材料から形成されることにより、金属接合層30全体としてヒートスプレッダ20よりも高い熱伝導率を有する場合には、「金属接合層30の熱伝導率はヒートスプレッダ20の熱伝導率よりも高い」との規定を満たし、本実施の形態において金属接合層30として使用するのに何ら問題ない。 Further, in the present embodiment, it is defined that "the thermal conductivity of the metal bonding layer 30 is higher than the thermal conductivity of the heat spreader 20". This regulation intends that when the metal bonding layer 30 is formed of a plurality of metal films, the thermal conductivity of the metal bonding layer 30 as a whole is higher than the thermal conductivity of the heat spreader 20. That is, the provision is not intended that all the metal materials contained in the metal bonding layer 30 have a thermal conductivity higher than that of the heat spreader 20. Therefore, even if a part of the plurality of metal films is formed of a metal material having a thermal conductivity lower than that of the heat spreader 20, the other metal film has a thermal conductivity higher than that of the heat spreader 20. When the metal bonding layer 30 as a whole has a higher thermal conductivity than the heat spreader 20 due to being formed from the material, "the thermal conductivity of the metal bonding layer 30 is higher than the thermal conductivity of the heat spreader 20". There is no problem in satisfying the regulations and using it as the metal bonding layer 30 in the present embodiment.

複数の金属膜から成る金属接合層30全体の熱伝導率は、金属接合層30の熱抵抗の測定値から求めることができる。例えば、図3のような半導体装置1において、(1)基板11の上面11aから、ヒートスプレッダ20の上面20aまでの熱抵抗R1を測定し、(2)基板11の熱抵抗R2(規定値)を用いることにより、金属接合層30の熱抵抗Rm=R1−R2を求めることができる。また、本明細書においては、金属接合層30の厚さt30(m)を、金属接合層30の熱抵抗Rm(k/W)と、金属接合層30の総面積A(m2)で除すること(計算式:t30/(Rm×A))により金属接合層30全体の熱伝導率(W・m-1・K-1)を求めることができる。 The thermal conductivity of the entire metal bonding layer 30 composed of a plurality of metal films can be obtained from the measured value of the thermal resistance of the metal bonding layer 30. For example, in the semiconductor device 1 as shown in FIG. 3, (1) the thermal resistance R1 from the upper surface 11a of the substrate 11 to the upper surface 20a of the heat spreader 20 is measured, and (2) the thermal resistance R2 (specified value) of the substrate 11 is determined. By using it, the thermal resistance Rm = R1-R2 of the metal bonding layer 30 can be obtained. Further, in the present specification, the thickness t 30 (m) of the metal bonding layer 30 is defined by the thermal resistance Rm (k / W) of the metal bonding layer 30 and the total area A (m 2 ) of the metal bonding layer 30. By dividing (calculation formula: t 30 / (Rm × A)), the thermal conductivity (W · m -1 · K -1 ) of the entire metal bonding layer 30 can be obtained.

また、本明細書においては、複数の金属膜から成る金属多層膜の熱伝導率Tの計算式は、以下のように規定する。
熱伝導率Tαの金属αから成る金属層と、熱伝導率Tβの金属βから成る金属層とを、膜厚比a:bで積層した金属多層膜の熱伝導率Tは、以下の式(1)で求めることができる。
T=Tα×Tβ×(a+b)/(a×Tβ+b×Tα)・・・(1)
Further, in the present specification, the calculation formula of the thermal conductivity T of the metal multilayer film composed of a plurality of metal films is defined as follows.
The thermal conductivity T of a metal multilayer film obtained by laminating a metal layer made of a metal α having a thermal conductivity T α and a metal layer made of a metal β having a thermal conductivity T β at a film thickness ratio a: b is as follows. It can be obtained by the equation (1).
T = T α × T β × (a + b) / (a × T β + b × T α ) ・ ・ ・ (1)

なお、上述の式(1)は、以下の手順により求めた。
熱伝導率Tαの金属αから成る金属層と、熱伝導率Tβの金属βから成る金属層とを、膜厚比a:bで積層した金属多層膜の熱伝導率Tの計算式を検討する。
金属多層膜全体の熱抵抗Rmは、金属αの熱抵抗Rαと金属βの熱抵抗Rβを用いてRm=Rα+Rβとなる。これは、Rm=tα/(Tα×A)+tβ/(Tβ×A)・・・(1−1)と記載される。
(tα:金属αの厚み、tβ:金属βの厚み、A:金属多層膜の面積)
また、金属多層膜全体の熱伝導率Tは、T=t30/(Rm×A)・・・(1−2)の関係がある。
よって、上記(1-2)に、(1-1)を代入すると、T=t30/(tα/Tα+tβ/Tβ)となり、まとめると、T=Tα×Tβ×t30/(tα×Tβ+tβ×Tα)となる。
ここで、tαに膜厚a、tβに膜厚b、t30に膜厚a+bを代入すると、
T=Tα×Tβ×(a+b)/(a×Tβ+b×Tα)・・・(1)となる。
The above equation (1) was obtained by the following procedure.
A formula for calculating the thermal conductivity T of a metal multilayer film in which a metal layer composed of a metal α having a thermal conductivity T α and a metal layer composed of a metal β having a thermal conductivity T β is laminated at a film thickness ratio a: b. think about.
The thermal resistance Rm of the entire metal multilayer film is Rm = R α + R β using the thermal resistance R α of the metal α and the thermal resistance R β of the metal β. This is described as Rm = t α / (T α × A) + t β / (T β × A) ... (1-1).
(t α : thickness of metal α, t β : thickness of metal β, A: area of metal multilayer film)
Further, the thermal conductivity T of the entire metal multilayer film has a relationship of T = t 30 / (Rm × A) ... (1-2).
Therefore, by substituting (1-1) for (1-2) above, T = t 30 / (t α / T α + t β / T β ), and in summary, T = T α × T β × It becomes t 30 / (t α × T β + t β × T α).
Here, if the film thickness a is substituted for t α , the film thickness b is substituted for t β, and the film thickness a + b is substituted for t 30, then
T = T α × T β × (a + b) / (a × T β + b × T α ) ・ ・ ・ (1).

なお、後述するように、金属接合層30が段差を有する場合(図10参照)、外延部分30xの厚さt32を「金属接合層30の厚さt30」とし、外延部分30xを含む金属接合層30の面積を「総面積A」とする。上述の式(1)で算出される熱伝導率は、図11(b)、(c)における第2の金属層32の熱伝導率に相当する。 As will be described later, when the metal bonding layer 30 has a step (see FIG. 10), the thickness t 32 of the extension portion 30x is defined as “thickness t 30 of the metal bonding layer 30”, and the metal including the extension portion 30x. The area of the bonding layer 30 is defined as "total area A". The thermal conductivity calculated by the above formula (1) corresponds to the thermal conductivity of the second metal layer 32 in FIGS. 11 (b) and 11 (c).

式(1)に具体的な数値を代入して、金属接合層30の熱伝導率を求める。図6(b)のように3層積層されている金属接合層30の熱伝導率を求める。2つの層(金属膜30a、30c)はAg(熱伝導率427W・m-1・K-1)から形成されており、それらの間の1つの層(金属膜30b)はAu(熱伝導率315W・m-1・K-1)から形成されている。金属膜30a、30cの膜厚を合計した膜厚と、金属膜30bの膜厚との比率は5:1とする(つまり、Agの膜厚がAuの5倍厚い)。
金属接合層30の熱伝導率Tの近似値は、
T=315×427×6/(1×427+5×315)=403.1W・m-1・K-1
となる。つまり、この金属接合層30は、Cu(398W・m-1・K-1)よりも熱伝導率が高い。よって、AgとAuから成る金属接合層30を、Cuから成る放熱部材と組み合わせて使用することができる。
Substituting a specific numerical value into the equation (1), the thermal conductivity of the metal bonding layer 30 is obtained. The thermal conductivity of the metal bonding layer 30 laminated in three layers as shown in FIG. 6B is obtained. The two layers (metal films 30a, 30c) are formed from Ag (thermal conductivity 427W ・ m -1 , K -1 ), and one layer (metal film 30b) between them is Au (thermal conductivity 427W ・ m -1 ・ K -1). It is formed from 315W ・ m -1・ K -1). The ratio of the total film thickness of the metal films 30a and 30c to the film thickness of the metal film 30b is 5: 1 (that is, the film thickness of Ag is 5 times thicker than Au).
The approximate value of the thermal conductivity T of the metal bonding layer 30 is
T = 315 x 427 x 6 / (1 x 427 + 5 x 315) = 403.1 W ・ m -1・ K -1
Will be. That is, the metal bonding layer 30 has a higher thermal conductivity than Cu (398W · m -1 · K -1). Therefore, the metal bonding layer 30 made of Ag and Au can be used in combination with the heat radiating member made of Cu.

再び図1および図2を参照すると、半導体発光装置1をヒートシンク50に固定する際には、例えば半導体発光装置1のヒートスプレッダ20とヒートシンク50とにねじ穴を設けて、ねじで固定することもできる。この場合には、ヒートスプレッダ20とヒートシンク50との間の熱伝導性を高めるために、放熱グリース80等を介在させるのが好ましい。また、半導体発光装置1をヒートシンク50に固定する際には、はんだ付けすることもできる。 Referring to FIGS. 1 and 2 again, when fixing the semiconductor light emitting device 1 to the heat sink 50, for example, the heat spreader 20 and the heat sink 50 of the semiconductor light emitting device 1 may be provided with screw holes and fixed with screws. .. In this case, it is preferable to interpose thermal grease 80 or the like in order to increase the thermal conductivity between the heat spreader 20 and the heat sink 50. Further, when fixing the semiconductor light emitting device 1 to the heat sink 50, it can be soldered.

金属接合層30に使用する金属材料としては、融点350℃以上のものが好ましい。半導体発光装置1をヒートシンク50にはんだ付けする場合、はんだリフロー(280〜340℃に加熱する)の際に金属接合層30が溶融するのを回避できるので、発光部品10とヒートスプレッダ20との接合不良等の発生を抑制することができる。 The metal material used for the metal bonding layer 30 is preferably one having a melting point of 350 ° C. or higher. When the semiconductor light emitting device 1 is soldered to the heat sink 50, it is possible to prevent the metal bonding layer 30 from melting during solder reflow (heating to 280 to 340 ° C.), so that the bonding failure between the light emitting component 10 and the heat spreader 20 is defective. Etc. can be suppressed.

再び図3を参照すると、本実施の形態に係る半導体発光装置1では、発光部品10は、発光素子12と、基板11の他に、波長変換部材13と光反射性成形体15とを含んでいてもよい。波長変換部材13は、発光素子12からの光を波長変換するための部材であり、例えば、青色発光を黄色光に変換する蛍光体を含有する板状部材を使用することができる。光反射性成形体15は、光を反射する材料(例えば、酸化チタン粒子などの光反射物質を含む白色の樹脂材料)から形成されている。光反射性成形体15で発光素子12の側面および波長変換部材13の側面を覆うことにより、横方向(x方向)に進む光を反射して、横方向への光の漏れを抑制することができる。 Referring to FIG. 3 again, in the semiconductor light emitting device 1 according to the present embodiment, the light emitting component 10 includes a wavelength conversion member 13 and a light reflective molded body 15 in addition to the light emitting element 12 and the substrate 11. You may. The wavelength conversion member 13 is a member for wavelength-converting the light from the light emitting element 12, and for example, a plate-shaped member containing a phosphor that converts blue light emission into yellow light can be used. The light-reflecting molded body 15 is formed of a material that reflects light (for example, a white resin material containing a light-reflecting substance such as titanium oxide particles). By covering the side surface of the light emitting element 12 and the side surface of the wavelength conversion member 13 with the light-reflecting molded body 15, it is possible to reflect the light traveling in the lateral direction (x direction) and suppress the leakage of the light in the lateral direction. can.

また、図7に示す半導体発光装置3のように、別のタイプの発光部品210を使用することもできる。発光部品210は、基板11の上面11aに載置された発光素子12と、発光素子12の上面および側面を覆う波長変換層213と、発光素子12および波長変換層213を覆う樹脂成形体214と、を含んでいる。波長変換層213は、例えば、青色発光を黄色光に変換する蛍光体等を含有する材料から形成することができる。樹脂成形体214の表面は、凸状レンズのように半球状に成形されており、発光素子12からの光の配向を制御することができる。樹脂成形体214は、透光性樹脂材料から形成されている。 Further, as in the semiconductor light emitting device 3 shown in FIG. 7, another type of light emitting component 210 can be used. The light emitting component 210 includes a light emitting element 12 mounted on the upper surface 11a of the substrate 11, a wavelength conversion layer 213 covering the upper surface and side surfaces of the light emitting element 12, and a resin molded body 214 covering the light emitting element 12 and the wavelength conversion layer 213. , Including. The wavelength conversion layer 213 can be formed from, for example, a material containing a phosphor that converts blue light emission into yellow light. The surface of the resin molded body 214 is formed in a hemispherical shape like a convex lens, and the orientation of light from the light emitting element 12 can be controlled. The resin molded body 214 is formed of a translucent resin material.

次に図8〜図10を参照しながら、本実施の形態に係る半導体発光装置1の製造方法について説明する。 Next, a method of manufacturing the semiconductor light emitting device 1 according to the present embodiment will be described with reference to FIGS. 8 to 10.

<工程1)発光部品10の準備>
配線が設けられた基板11の上面11aに、発光素子12を載置する(図8(a)参照)。なお、発光素子12は、1つまたは複数(図8(a)では3つ)載置することができる。発光部品10が波長変換部材13および光反射性成形体15を含む場合には、それらを順次形成する。まず、発光素子12の上に、波長変換部材13を透明な接着材等で固定する(図8(b)参照)。次いで、発光素子12の側面および波長変換部材13の側面を、光反射性成形体15で覆う(図8(c)参照)。
<Step 1) Preparation of light emitting component 10>
The light emitting element 12 is placed on the upper surface 11a of the substrate 11 provided with the wiring (see FIG. 8A). In addition, one or a plurality of light emitting elements 12 (three in FIG. 8A) can be mounted. When the light emitting component 10 includes the wavelength conversion member 13 and the light-reflecting molded body 15, they are sequentially formed. First, the wavelength conversion member 13 is fixed on the light emitting element 12 with a transparent adhesive or the like (see FIG. 8B). Next, the side surface of the light emitting element 12 and the side surface of the wavelength conversion member 13 are covered with the light-reflecting molded body 15 (see FIG. 8C).

<工程2)第1の金属層31の形成>
スパッタリング法により、発光部品10の基板11の下面11bに、第1の金属層31を形成する(図9(a)参照)。まず、発光部品10をスパッタリング装置70の真空チャンバ71内に配置する。このとき、基板11の下面11bがスパッタリングターゲット72と対向するように、発光部品10の位置および向きを調節する。図9(a)では、スパッタリングターゲット72が真空チャンバ71の上側に配置されているので、発光部品10は、スパッタリングターゲット72の直下において、基板11の下面11bが上向きになるように配置される。なお、発光部品10を所定の位置および方向に保持するための保持部材73を用いてもよい。
<Step 2) Formation of the first metal layer 31>
A first metal layer 31 is formed on the lower surface 11b of the substrate 11 of the light emitting component 10 by a sputtering method (see FIG. 9A). First, the light emitting component 10 is arranged in the vacuum chamber 71 of the sputtering apparatus 70. At this time, the position and orientation of the light emitting component 10 are adjusted so that the lower surface 11b of the substrate 11 faces the sputtering target 72. In FIG. 9A, since the sputtering target 72 is arranged on the upper side of the vacuum chamber 71, the light emitting component 10 is arranged so that the lower surface 11b of the substrate 11 faces upward immediately below the sputtering target 72. A holding member 73 for holding the light emitting component 10 in a predetermined position and direction may be used.

<工程3)第2の金属層32の形成>
スパッタリング法により、ヒートスプレッダ20の上面20aに、第2の金属層32を形成する(図9(b)参照)。このとき、第2の金属層32の面積が、少なくとも基板11の下面11bより大きい面積となるように、第2の金属層32を形成する。
まず、ヒートスプレッダ20をスパッタリング装置70の真空チャンバ71内に配置する。このとき、ヒートスプレッダ20の上面20aがスパッタリングターゲット72と対向するように、ヒートスプレッダ20の位置および向きを調節する。発光部品10への成膜と同様に、ヒートスプレッダ20は、スパッタリングターゲット72の直下において、ヒートスプレッダ20の上面20aが上向きになるように配置される。
なお、ヒートスプレッダ20を所定の位置および方向に保持するための保持部材74を用いてもよい。この図では、保持部材74は、ヒートスプレッダ20の上面20aの一部(例えば縁部20e)を押さえているため、保持部材74で押さえられた上面20aの縁部20eには、第2の金属層32が成膜されない。
<Step 3) Formation of the second metal layer 32>
A second metal layer 32 is formed on the upper surface 20a of the heat spreader 20 by a sputtering method (see FIG. 9B). At this time, the second metal layer 32 is formed so that the area of the second metal layer 32 is at least larger than the area of the lower surface 11b of the substrate 11.
First, the heat spreader 20 is arranged in the vacuum chamber 71 of the sputtering apparatus 70. At this time, the position and orientation of the heat spreader 20 are adjusted so that the upper surface 20a of the heat spreader 20 faces the sputtering target 72. Similar to the film formation on the light emitting component 10, the heat spreader 20 is arranged directly below the sputtering target 72 so that the upper surface 20a of the heat spreader 20 faces upward.
A holding member 74 for holding the heat spreader 20 in a predetermined position and direction may be used. In this figure, since the holding member 74 presses a part of the upper surface 20a of the heat spreader 20 (for example, the edge portion 20e), the edge portion 20e of the upper surface 20a pressed by the holding member 74 has a second metal layer. 32 is not formed.

<工程4)金属層31、32の接合工程>
スパッタリング装置70の真空チャンバ71内において、発光部品10の基板11の下面11bに形成された第1の金属層31と、ヒートスプレッダ20の上面20aに形成された第2の金属層32とを、常温で接触させる(図10(a)参照)。真空チャンバ71内で成膜した後、そのまま真空下に置かれていた第1の金属層31および第2の金属層32は、表面エネルギーが高く、それらを常温で接触させるだけで原子拡散が生じて、互いを接合させることができる。この接合により、第1の金属層31と第2の金属層32との間の境界線がほぼ消失して、例えば図6(a)に示すような1層の金属膜から成る金属接合層30が形成される。
なお、第1の金属層31と第2の金属層32とを接触させる際には、発光部品10の基板11の下面11bが、ヒートスプレッダ20の上面20aに形成された第2の金属層32の所望の位置に配置されるように、発光部品10とヒートスプレッダ20とを位置合わせする。
<Step 4) Joining steps of metal layers 31 and 32>
In the vacuum chamber 71 of the sputtering apparatus 70, the first metal layer 31 formed on the lower surface 11b of the substrate 11 of the light emitting component 10 and the second metal layer 32 formed on the upper surface 20a of the heat spreader 20 are formed at room temperature. (See FIG. 10 (a)). The first metal layer 31 and the second metal layer 32, which have been placed under vacuum as they are after being formed in the vacuum chamber 71, have high surface energies, and atomic diffusion occurs only by bringing them into contact with each other at room temperature. Can be joined to each other. By this bonding, the boundary line between the first metal layer 31 and the second metal layer 32 is almost eliminated, and the metal bonding layer 30 composed of, for example, one metal film as shown in FIG. 6A is formed. Is formed.
When the first metal layer 31 and the second metal layer 32 are brought into contact with each other, the lower surface 11b of the substrate 11 of the light emitting component 10 is the second metal layer 32 formed on the upper surface 20a of the heat spreader 20. The light emitting component 10 and the heat spreader 20 are aligned so as to be arranged at a desired position.

第1の金属層31および第2の金属層32が、耐酸化性に優れ、且つ拡散係数が大きい金属材料(例えばAuやAu合金)から形成されている場合には、それらの金属層31、32を大気中(酸素含有雰囲気下)で接合させることもできる。具体的には、第1の金属層31および第2の金属層32を真空チャンバ71内で成膜し、その後に発光部品10およびヒートスプレッダ20を真空チャンバ71から大気中に取り出す。そして大気中において、常温で、発光部品10の基板11の下面11bに形成された第1の金属層31と、ヒートスプレッダ20の上面20aに形成された第2の金属層32とを接触させる。これにより、第1の金属層31と第2の金属層32とを互いを接合させることができる。但し、大気中に取り出したことにより、第1の金属層31および第2の金属層32の表面エネルギーが低下するため、第1の金属層31と第2の金属層32との間の境界線は消失しない。そのため、例えば図6(d)に示すように、第1の金属層31と第2の金属層32とが識別可能な状態で、金属接合層30が形成される。 When the first metal layer 31 and the second metal layer 32 are made of a metal material having excellent oxidation resistance and a large diffusion coefficient (for example, Au or Au alloy), those metal layers 31, 32 can also be joined in the atmosphere (under an oxygen-containing atmosphere). Specifically, the first metal layer 31 and the second metal layer 32 are formed in the vacuum chamber 71, and then the light emitting component 10 and the heat spreader 20 are taken out from the vacuum chamber 71 into the atmosphere. Then, in the atmosphere, at room temperature, the first metal layer 31 formed on the lower surface 11b of the substrate 11 of the light emitting component 10 and the second metal layer 32 formed on the upper surface 20a of the heat spreader 20 are brought into contact with each other. Thereby, the first metal layer 31 and the second metal layer 32 can be joined to each other. However, since the surface energy of the first metal layer 31 and the second metal layer 32 decreases due to being taken out into the atmosphere, the boundary line between the first metal layer 31 and the second metal layer 32 Does not disappear. Therefore, for example, as shown in FIG. 6D, the metal bonding layer 30 is formed in a state where the first metal layer 31 and the second metal layer 32 can be distinguished from each other.

各雰囲気下での接合の効果をまとめると、真空下で金属層31、32を接合すると、それら金属層31、32の間の接合力を高めることができる。
一方、大気中で金属層31、32を接合すると、接合の際の発光部品10とヒートスプレッダ20との位置合わせの操作がしやすい。よって、ヒートスプレッダ20に対する発光部品10の位置精度を高くすることが容易になり、不良品発生率の抑制、歩留まりの向上が期待できる。
Summarizing the effects of joining under each atmosphere, joining the metal layers 31 and 32 under vacuum can increase the joining force between the metal layers 31 and 32.
On the other hand, when the metal layers 31 and 32 are joined in the atmosphere, it is easy to perform an operation of aligning the light emitting component 10 and the heat spreader 20 at the time of joining. Therefore, it becomes easy to improve the positional accuracy of the light emitting component 10 with respect to the heat spreader 20, and it can be expected that the defective product occurrence rate is suppressed and the yield is improved.

工程1)〜4)により、発光部品10とヒートスプレッダ20とを金属接合層30で接合した半導体発光装置1を得ることができる(図10(b)参照)。なお、上述の方法により形成された金属接合層30は、2つの厚さを有する。一方は、発光部品10の直下領域における、相対的に厚い部分の膜厚t33(第1の金属層31の膜厚t31と第2の金属層32の膜厚t32との合計)である。他方は、外延部分30xにおける、相対的に薄い部分の膜厚t32(第2の金属層32の膜厚t32と一致)である。このように厚さの異なる部分を有する金属接合層30の場合第2の金属層32の膜厚t32を、金属接合層30の厚さt30とする。主に放熱性に寄与するのが、金属接合層30の外延部分30xであることから、外延部分30xの厚さ(つまり、膜厚t32)を、金属接合層30の膜厚t30として取り扱うこととした。 By steps 1) to 4), a semiconductor light emitting device 1 in which the light emitting component 10 and the heat spreader 20 are joined by a metal bonding layer 30 can be obtained (see FIG. 10B). The metal bonding layer 30 formed by the above method has two thicknesses. One is in the region right under the light emitting component 10, a relatively thick portion of the film thickness t 33 (the thickness t 31 of the first metal layer 31 the sum of the thickness t 32 of the second metal layer 32) be. The other, in the extension portion 30x, a relatively thin portion of the thickness t 32 (coincident with the thickness t 32 of the second metal layer 32). Thus, in the case of metal bonding layer 30 having different portions of the thickness of the second metal layer 32 thickness t 32, and the thickness t 30 of the metal bonding layer 30. Since it is the outer extension portion 30x of the metal bonding layer 30 that mainly contributes to heat dissipation, the thickness of the outer extension portion 30x (that is, the film thickness t 32 ) is treated as the film thickness t 30 of the metal bonding layer 30. I decided.

また、上述した図6(a)〜図6(f)に図示する金属接合層30は、工程2)第1の金属層31の形成工程、工程3)第2の金属層32の形成工程、および工程4)金属層31、32の接合工程の条件を以下のように変更することによって形成することができる。 Further, the metal bonding layer 30 shown in FIGS. 6 (a) to 6 (f) described above includes a step 2) a step of forming the first metal layer 31, and a step 3) a step of forming the second metal layer 32. And step 4) It can be formed by changing the conditions of the joining step of the metal layers 31 and 32 as follows.

(図6(a)、図6(d)の金属接合層30について)
まず、発光部品10の基板11の下面11bに第1の金属層31を形成し、ヒートスプレッダ20の上面20aに第2の金属層32を、それぞれ形成する(図11(a)参照)。このとき、第1の金属層31と第2の金属層32とを、同一の金属材料から形成する。次の金属膜の接合工程において、第1の金属層31と第2の金属層32とを真空下で接触させれば、図6(a)に示すように、単一の金属膜から成る金属接合層30が形成される。一方、第1の金属層31と第2の金属層32とを大気中で接触させれば、図6(d)に示すように、2層の金属層31、32から成る金属接合層30が形成される。
(Regarding the metal bonding layer 30 of FIGS. 6 (a) and 6 (d))
First, the first metal layer 31 is formed on the lower surface 11b of the substrate 11 of the light emitting component 10, and the second metal layer 32 is formed on the upper surface 20a of the heat spreader 20 (see FIG. 11A). At this time, the first metal layer 31 and the second metal layer 32 are formed from the same metal material. In the next metal film joining step, if the first metal layer 31 and the second metal layer 32 are brought into contact with each other under vacuum, as shown in FIG. 6A, a metal composed of a single metal film is formed. The bonding layer 30 is formed. On the other hand, when the first metal layer 31 and the second metal layer 32 are brought into contact with each other in the atmosphere, as shown in FIG. 6D, the metal bonding layer 30 composed of the two metal layers 31 and 32 becomes formed. It is formed.

(図6(b)、図6(e)の金属接合層30について)
まず、発光部品10の基板11の下面11bに、第1の金属膜31a、第2の金属膜31bをこの順に積層して、第1の金属層31を形成する(図11(b)参照)。ヒートスプレッダ20の上面20aに、第4の金属膜32d、第3の金属膜32cをこの順に積層して、第2の金属層32を形成する(図11(b)参照)。このとき、第2の金属膜31bと第3の金属膜32cとを、同一の金属材料から形成する。次の金属膜の接合工程において、第1の金属層31と第2の金属層32とを真空下で接触させれば、第2の金属膜31bと第3の金属膜32cが接合して単一の金属膜30bとなり、図6(b)に示すように、3層の金属膜30a、30b、30cから成る金属接合層30が形成される。一方、第1の金属層31と第2の金属層32とを大気中で接触させれば、図6(e)に示すように、4層の金属膜31a、31b、32c、33dから成る金属接合層30が形成される。
(Regarding the metal bonding layer 30 of FIGS. 6 (b) and 6 (e))
First, the first metal film 31a and the second metal film 31b are laminated in this order on the lower surface 11b of the substrate 11 of the light emitting component 10 to form the first metal layer 31 (see FIG. 11B). .. A fourth metal film 32d and a third metal film 32c are laminated in this order on the upper surface 20a of the heat spreader 20 to form a second metal layer 32 (see FIG. 11B). At this time, the second metal film 31b and the third metal film 32c are formed from the same metal material. In the next metal film joining step, if the first metal layer 31 and the second metal layer 32 are brought into contact with each other under vacuum, the second metal film 31b and the third metal film 32c are joined and simply joined. It becomes one metal film 30b, and as shown in FIG. 6B, a metal bonding layer 30 composed of three metal films 30a, 30b, and 30c is formed. On the other hand, when the first metal layer 31 and the second metal layer 32 are brought into contact with each other in the atmosphere, as shown in FIG. 6 (e), a metal composed of four metal films 31a, 31b, 32c and 33d. The bonding layer 30 is formed.

なお、図6(e)のような金属接合層30の場合、第1の金属膜31a、第4の金属膜32dを、熱伝導率の高い金属材料(Ag)から形成し、第2の金属膜31b、第3の金属膜32cを、接合性が良好な高い金属材料(Au)から形成することにより、熱伝導率が高く、且つ接合性の良好な金属接合層30を得ることができる。なお、外延部分30xでは、第2の金属層32の第3の金属膜32cが表面に露出する。第3の金属膜32cを形成するAuは、第4の金属膜32dを形成するAgに比べて反射率が低い。そこで、第3の金属膜32cを極めて薄くする(例えば20nm以下)ことにより、光反射における第3の金属膜32cの影響を極めて低くすることができる。これにより、外延部分30xを光反射部材として利用することができる。 In the case of the metal bonding layer 30 as shown in FIG. 6 (e), the first metal film 31a and the fourth metal film 32d are formed from a metal material (Ag) having high thermal conductivity, and the second metal is formed. By forming the film 31b and the third metal film 32c from a metal material (Au) having good bondability, a metal bonding layer 30 having high thermal conductivity and good bondability can be obtained. In the extension portion 30x, the third metal film 32c of the second metal layer 32 is exposed on the surface. Au forming the third metal film 32c has a lower reflectance than Ag forming the fourth metal film 32d. Therefore, by making the third metal film 32c extremely thin (for example, 20 nm or less), the influence of the third metal film 32c on light reflection can be extremely reduced. As a result, the extension portion 30x can be used as a light reflecting member.

(図6(c)、図6(f)の金属接合層30について)
まず、発光部品10の基板11の下面11bに、第1の金属膜31e、第2の金属膜31fをこの順に積層して、第1の金属層31を形成する(図11(c)参照)。ヒートスプレッダ20の上面20aに、第4の金属膜32h、第3の金属膜32gをこの順に積層して、第2の金属層32を形成する(図11(c)参照)。このとき、第2の金属膜31fと第3の金属膜32gとを、同一の金属材料から形成する。次の金属膜の接合工程において、第1の金属層31と第2の金属層32とを真空下で接触させれば、第2の金属膜31fと第3の金属膜32gが接合して単一の金属膜30eとなり、図6(c)に示すように、3層の金属膜30d、30e、30fから成る金属接合層30が形成される。一方、第1の金属層31と第2の金属層32とを大気中で接触させれば、図6(f)に示すように、4層の金属膜31e、31f、32g、33hから成る金属接合層30が形成される。
(Regarding the metal bonding layer 30 of FIGS. 6 (c) and 6 (f))
First, the first metal film 31e and the second metal film 31f are laminated in this order on the lower surface 11b of the substrate 11 of the light emitting component 10 to form the first metal layer 31 (see FIG. 11C). .. A fourth metal film 32h and a third metal film 32g are laminated in this order on the upper surface 20a of the heat spreader 20 to form a second metal layer 32 (see FIG. 11C). At this time, the second metal film 31f and the third metal film 32g are formed from the same metal material. In the next metal film joining step, if the first metal layer 31 and the second metal layer 32 are brought into contact with each other under vacuum, the second metal film 31f and the third metal film 32g are joined and simply joined. It becomes one metal film 30e, and as shown in FIG. 6C, a metal bonding layer 30 composed of three metal films 30d, 30e, and 30f is formed. On the other hand, when the first metal layer 31 and the second metal layer 32 are brought into contact with each other in the atmosphere, as shown in FIG. 6 (f), a metal composed of four metal films 31e, 31f, 32g and 33h. The bonding layer 30 is formed.

図12は、図11(c)のように第1の金属層31、第2の金属層32を積層し、大気中で接合した場合の金属接合層30(つまり、図6(f)に示す金属接合層30)の断面TEM像である。第1の金属層31中の第1の金属膜31eと、第2の金属層32中の第4の金属膜32hは、Cr膜(膜厚0.5nm)である。第1の金属層31中の第2の金属膜31fと、第2の金属層32中の第3の金属膜32gは、Au膜(膜厚5nm)である。第2の金属膜31fと第3の金属膜32gとの間の界面は消失しておらず、2つの層として認識することができる。 FIG. 12 shows the metal bonding layer 30 (that is, FIG. 6 (f)) when the first metal layer 31 and the second metal layer 32 are laminated and bonded in the atmosphere as shown in FIG. 11 (c). It is a cross-sectional TEM image of the metal bonding layer 30). The first metal film 31e in the first metal layer 31 and the fourth metal film 32h in the second metal layer 32 are Cr films (thickness 0.5 nm). The second metal film 31f in the first metal layer 31 and the third metal film 32g in the second metal layer 32 are Au films (thickness 5 nm). The interface between the second metal film 31f and the third metal film 32g has not disappeared and can be recognized as two layers.

第1の金属層31と、第2の金属層32とを形成する順は変更することができる。例えば、先にヒートスプレッダ20の上面20aに、第2の金属層32を形成し、後で発光部品10の基板11の下面11bに、第1の金属層31を形成してもよい。
さらに、第1の金属層31と第2の金属層32とが同じ金属材料から成る場合には、それらの成膜を同一工程として行ってもよい。つまり、ヒートスプレッダ20と発光部品10を真空チャンバ71内に並べて配置した状態で、スパッタリングターゲット72をスパッタすることにより、第1の金属層31の成膜と第2の金属層32の成膜とを同一工程で行うことができる。第1の金属層31および第2の金属層32が複数の金属膜から形成されている場合(例えば、図11(b)、図11(c)など)も、複数の金属膜の層構成、各金属膜の膜厚等が同一であれば、それらの成膜を同一工程の中で同時に行うことができる。
The order in which the first metal layer 31 and the second metal layer 32 are formed can be changed. For example, the second metal layer 32 may be formed on the upper surface 20a of the heat spreader 20 first, and the first metal layer 31 may be formed later on the lower surface 11b of the substrate 11 of the light emitting component 10.
Further, when the first metal layer 31 and the second metal layer 32 are made of the same metal material, the film formation thereof may be performed in the same step. That is, the heat spreader 20 and the light emitting component 10 are arranged side by side in the vacuum chamber 71, and the sputtering target 72 is sputtered to form the first metal layer 31 and the second metal layer 32. It can be performed in the same process. When the first metal layer 31 and the second metal layer 32 are formed of a plurality of metal films (for example, FIGS. 11 (b), 11 (c), etc.), the layer structure of the plurality of metal films, If the film thickness of each metal film is the same, the film formation can be performed simultaneously in the same process.

図5に示すように、ヒートスプレッダ20の上面20a全体に金属接合層30を形成する場合には、図9(b)に図示した保持部材74に代えて、ヒートスプレッダ20の上面20aの縁部20eを押さえない(つまり、ヒートスプレッダ20の上面20aを全く覆わない)形態の保持部材74を使用することができる。また、ヒートスプレッダ20が真空チャンバ71内で安定して配置できる場合には、保持部材74を使用せずに、ヒートスプレッダ20に第2の金属層32を形成してもよい。 As shown in FIG. 5, when the metal bonding layer 30 is formed on the entire upper surface 20a of the heat spreader 20, the edge 20e of the upper surface 20a of the heat spreader 20 is used instead of the holding member 74 shown in FIG. 9B. A holding member 74 that does not press (that is, does not cover the upper surface 20a of the heat spreader 20 at all) can be used. Further, when the heat spreader 20 can be stably arranged in the vacuum chamber 71, the second metal layer 32 may be formed on the heat spreader 20 without using the holding member 74.

なお、上述の第1の金属層31および第2の金属層32の形成工程では、スパッタリング法により成膜している。しかしながら、スパッタリング法に限らず、既知の成膜方法(例えば、真空蒸着法、イオンプレーティング法など)を用いることもできる。スパッタリング法、真空チャンバを使用するCD法、真空蒸着法、イオンプレーティング法は、その後の真空下での金属層31、32の接合工程を行うことができる点で有利である。 In the step of forming the first metal layer 31 and the second metal layer 32 described above, a film is formed by a sputtering method. However, the film forming method is not limited to the sputtering method, and a known film forming method (for example, vacuum vapor deposition method, ion plating method, etc.) can also be used. The sputtering method, the CD method using a vacuum chamber, the vacuum deposition method, and the ion plating method are advantageous in that the subsequent joining steps of the metal layers 31 and 32 can be performed under vacuum.

以下に、実施の形態1に係る半導体装置の各構成部材に適した材料を説明する。 Hereinafter, materials suitable for each component of the semiconductor device according to the first embodiment will be described.

(基板11)
基板11は、絶縁性の本体に、金属配線を設けたものが使用される。基板11に適した材料としては、ガラスエポキシ、樹脂、セラミックなどの絶縁材料が挙げられる。特に、放熱性に優れたセラミック材料が好適である。基板11に適したセラミック材料としては、例えば、アルミナ、AlN、SiC、GaN、LTCCなどが挙げられる。特に、加工性が良く、熱伝導率に優れたAlNが特に好適である。
(Board 11)
As the substrate 11, a substrate 11 having an insulating main body provided with metal wiring is used. Examples of materials suitable for the substrate 11 include insulating materials such as glass epoxy, resin, and ceramic. In particular, a ceramic material having excellent heat dissipation is preferable. Examples of the ceramic material suitable for the substrate 11 include alumina, AlN, SiC, GaN, and LTCC. In particular, AlN, which has good workability and excellent thermal conductivity, is particularly preferable.

(半導体素子12)
本実施の形態に係る半導体装置に好適な半導体素子12としては、発光ダイオード、レーザーダイオード、パワー半導体素子等が挙げられる。これらの半導体素子12は、使用時に発熱するため、放熱性に優れた本実施の形態に係る半導体装置に使用することにより、半導体素子の誤作動の低減や、長寿命化等の効果を奏し得る。
(Semiconductor element 12)
Examples of the semiconductor element 12 suitable for the semiconductor device according to the present embodiment include a light emitting diode, a laser diode, a power semiconductor element, and the like. Since these semiconductor elements 12 generate heat during use, by using them in the semiconductor device according to the present embodiment having excellent heat dissipation, it is possible to achieve effects such as reduction of malfunction of the semiconductor elements and extension of life. ..

(放熱部材20)
本明細書において、放熱部材とは、半導体素子が載置される基板よりも高い熱伝導率を有する部材のことを意味する。
放熱部材20には、ヒートスプレッダ、ヒートシンク等が含まれる。放熱部材20は、半導体部品10で発生した熱を外気に放熱するため、熱伝導率の高い材料から形成される。また、放熱効率を高めるために、フィンなどの突起を設けて表面積を増加させる場合もあり、ダイカスト用合金等の鋳造性のよい金属材料も好適である。使用できる具体的な材料としては、ADC12(アルミニウムダイカスト用Al-Si-Cu系合金)、Al、Cuなどの金属材料が挙げられる。
(Heat dissipation member 20)
In the present specification, the heat radiating member means a member having a higher thermal conductivity than the substrate on which the semiconductor element is mounted.
The heat radiating member 20 includes a heat spreader, a heat sink, and the like. The heat radiating member 20 is formed of a material having high thermal conductivity in order to dissipate the heat generated by the semiconductor component 10 to the outside air. Further, in order to improve heat dissipation efficiency, protrusions such as fins may be provided to increase the surface area, and a metal material having good castability such as an alloy for die casting is also suitable. Specific materials that can be used include metal materials such as ADC12 (Al-Si-Cu alloy for aluminum die casting), Al, and Cu.

(金属接合層30)
金属接合層30は、その全体として、ヒートスプレッダ20等の放熱部材よりも熱伝導率の高い部材である。よって、金属接合層30に好適な材料としては、放熱部材に使用される材料よりも熱伝導率の高い金属材料が挙げられる。具体的には、金属接合層30は、Au、Ag、Al、Cu、W、Si、Rh、Ruおよびそれらの合金からなる群から選択される金属を含むことが好ましく、AuまたはAu合金からなる金属を含むことがより好ましい。本明細書において「金属材料」には、金属、半金属、合金が含まれる。
具体的な金属材料の例としては、放熱部材としてADC12(熱伝導率96.3W/mk)を使用する場合には、ADC12より熱伝導率の高い金属材料、例えばAu、Ag、Al、Cu、W、Si、Rh、Ru等が好適である。放熱部材としてAl(熱伝導率237W・m-1・K-1)を使用する場合には、Alより熱伝導率の高い金属材料、例えばAu、Ag、Cu等が好適である。放熱部材としてCu(熱伝導率389W・m-1・K-1)を使用する場合には、Cuより熱伝導率の高い金属材料、例えばAg等が好適である。
(Metal bonding layer 30)
The metal bonding layer 30 as a whole is a member having a higher thermal conductivity than a heat radiating member such as a heat spreader 20. Therefore, examples of the material suitable for the metal bonding layer 30 include a metal material having a higher thermal conductivity than the material used for the heat radiating member. Specifically, the metal bonding layer 30 preferably contains a metal selected from the group consisting of Au, Ag, Al, Cu, W, Si, Rh, Ru and alloys thereof, and is made of Au or Au alloy. More preferably, it contains a metal. As used herein, the term "metal material" includes metals, metalloids, and alloys.
As a specific example of a metal material, when ADC12 (thermal conductivity 96.3 W / mk) is used as a heat dissipation member, a metal material having a higher thermal conductivity than ADC12, for example, Au, Ag, Al, Cu, W , Si, Rh, Ru and the like are suitable. When Al (thermal conductivity 237 W, m -1 , K -1 ) is used as the heat radiating member, a metal material having a higher thermal conductivity than Al, for example, Au, Ag, Cu, or the like is suitable. When Cu (thermal conductivity 389 W, m -1 , K -1 ) is used as the heat radiating member, a metal material having a higher thermal conductivity than Cu, for example, Ag, is suitable.

なお、上述したように、金属接合層30を複数の金属膜から形成する場合いは、そのうちの一部の金属膜については、放熱部材に使用される材料よりも熱伝導率の低い金属材料を使用することもできる。例えば、放熱部材としてCuを使用する場合に、Cuより熱伝導率の高いAg膜の表面に、Cuより熱伝導率の低いAu薄膜を積層して成る金属接合層30とすることもできる。 As described above, when the metal bonding layer 30 is formed from a plurality of metal films, some of the metal films are made of a metal material having a lower thermal conductivity than the material used for the heat radiating member. It can also be used. For example, when Cu is used as the heat radiating member, the metal bonding layer 30 may be formed by laminating an Au thin film having a thermal conductivity lower than that of Cu on the surface of an Ag film having a thermal conductivity higher than that of Cu.

以上、本発明に係るいくつかの実施の形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。
例えば、実施の形態において、半導体装置として半導体発光装置を例にとって説明しているが、本発明の半導体装置には、半導体メモリ、パワー半導体等の様々な半導体装置が含まれるものと理解されるべきである。
本明細書の開示内容は、以下の態様を含み得る。
(態様1)
半導体素子が上面に載置された基板と、
放熱部材と、
前記基板の下面と前記放熱部材の上面とを接合する金属接合層とを含み、
前記放熱部材の上面の面積は、前記基板の下面の面積よりも大きく、
前記金属接合層は、前記基板の下面全体と接触するとともに、前記基板の下面よりも大きい面積を有し、
前記金属接合層の熱伝導率は前記放熱部材の熱伝導率よりも高いことを特徴とする半導体装置。
(態様2)
前記金属接合層が、前記放熱部材の前記上面の全面を被覆していることを特徴とする態様1に記載の半導体装置。
(態様3)
前記金属接合層の厚さが1nm以上10μm以下であることを特徴とする態様1または2に記載の半導体装置。
(態様4)
前記金属接合層は、融点350℃以上の金属材料から成ることを特徴とする態様1〜3のいずれか1つに記載の半導体装置。
(態様5)
前記金属接合層が、少なくとも、Au、Ag、Al、Cu、W、Si、Rh、Ruおよびそれらの合金からなる群から選択される金属を含むことを特徴とする態様1〜4のいずれか1つに記載の半導体装置。
(態様6)
前記金属接合層が、AuまたはAu合金から成ることを特徴とする態様1〜5のいずれか1つに記載の半導体装置。
(態様7)
前記金属接合層が、前記基板の下面側に位置する第1の金属層と、前記放熱部材の上面側に位置する第2の金属層とから成ることを特徴とする態様1〜6のいずれか1つに記載の半導体装置。
(態様8)
1)基板の上面に半導体素子を載置する工程と、
2)前記基板の下面に第1の金属層を形成する工程と、
3)放熱部材の上面に、前記基板の下面より大きい面積を有する第2の金属層を形成する工程と、
4)前記第1の金属層と前記第2の金属層とを接触させてそれらを接合する工程と、を含み、
前記第1の金属層と前記第2の金属層とから成る金属接合層が、前記放熱部材の熱伝導率よりも高いことを特徴とする半導体装置の製造方法。
(態様9)
前記金属接合層は、融点350℃以上の金属材料から成ることを特徴とする態様8に記載の製造方法。
(態様10)
工程2)および工程3)において、前記第1の金属層および前記第2の金属層は、スパッタリング法により成膜されることを特徴とする態様8または9に記載の製造方法。
(態様11)
前記第1の金属層と前記第2の金属層とが同じ金属材料から成り、
工程2)および工程3)は同一工程として行われることを特徴とする態様8〜10のいずれか1つに記載の製造方法。
(態様12)
前記金属接合層が、少なくとも、Au、Ag、Al、Cu、W、Si、Rh、Ruおよびそれらの合金からなる群から選択される金属を含み、
工程2)、工程3)および工程4)は、真空チャンバ内で行われることを特徴とする態様8〜11のいずれか1つに記載の製造方法。
(態様13)
前記第1の金属層の表面および前記第2の金属層の表面が、AuまたはAu合金から成り、
工程4)は大気中で行われることを特徴とする態様8〜11のいずれか1つに記載の製造方法。
Although some embodiments of the present invention have been illustrated above, it goes without saying that the present invention is not limited to the above-described embodiments and can be arbitrary as long as it does not deviate from the gist of the present invention. stomach.
For example, in the embodiment, a semiconductor light emitting device is described as an example of the semiconductor device, but it should be understood that the semiconductor device of the present invention includes various semiconductor devices such as a semiconductor memory and a power semiconductor. Is.
The disclosure of the present specification may include the following aspects.
(Aspect 1)
A substrate on which a semiconductor element is placed on the upper surface,
Heat dissipation member and
A metal bonding layer for joining the lower surface of the substrate and the upper surface of the heat radiating member is included.
The area of the upper surface of the heat radiating member is larger than the area of the lower surface of the substrate.
The metal bonding layer is in contact with the entire lower surface of the substrate and has a larger area than the lower surface of the substrate.
A semiconductor device characterized in that the thermal conductivity of the metal bonding layer is higher than the thermal conductivity of the heat radiating member.
(Aspect 2)
The semiconductor device according to aspect 1, wherein the metal bonding layer covers the entire surface of the upper surface of the heat radiating member.
(Aspect 3)
The semiconductor device according to aspect 1 or 2, wherein the thickness of the metal bonding layer is 1 nm or more and 10 μm or less.
(Aspect 4)
The semiconductor device according to any one of aspects 1 to 3, wherein the metal bonding layer is made of a metal material having a melting point of 350 ° C. or higher.
(Aspect 5)
Any one of aspects 1 to 4, wherein the metal bonding layer contains at least a metal selected from the group consisting of Au, Ag, Al, Cu, W, Si, Rh, Ru and alloys thereof. The semiconductor device described in 1.
(Aspect 6)
The semiconductor device according to any one of aspects 1 to 5, wherein the metal bonding layer is made of Au or an Au alloy.
(Aspect 7)
One of aspects 1 to 6, wherein the metal bonding layer is composed of a first metal layer located on the lower surface side of the substrate and a second metal layer located on the upper surface side of the heat radiating member. The semiconductor device according to one.
(Aspect 8)
1) The process of placing the semiconductor element on the upper surface of the substrate and
2) A step of forming a first metal layer on the lower surface of the substrate and
3) A step of forming a second metal layer having an area larger than the lower surface of the substrate on the upper surface of the heat radiating member, and
4) Including a step of bringing the first metal layer into contact with the second metal layer and joining them.
A method for manufacturing a semiconductor device, characterized in that the metal bonding layer composed of the first metal layer and the second metal layer has a higher thermal conductivity than that of the heat radiating member.
(Aspect 9)
The production method according to aspect 8, wherein the metal bonding layer is made of a metal material having a melting point of 350 ° C. or higher.
(Aspect 10)
The production method according to aspect 8 or 9, wherein in the steps 2) and 3), the first metal layer and the second metal layer are formed into a film by a sputtering method.
(Aspect 11)
The first metal layer and the second metal layer are made of the same metal material.
The manufacturing method according to any one of aspects 8 to 10, wherein the steps 2) and 3) are performed as the same step.
(Aspect 12)
The metal bonding layer contains at least a metal selected from the group consisting of Au, Ag, Al, Cu, W, Si, Rh, Ru and alloys thereof.
The manufacturing method according to any one of aspects 8 to 11, wherein the steps 2), 3) and 4) are performed in a vacuum chamber.
(Aspect 13)
The surface of the first metal layer and the surface of the second metal layer are made of Au or an Au alloy.
The production method according to any one of aspects 8 to 11, wherein the step 4) is performed in the atmosphere.

1、2 半導体装置(半導体発光装置)
10 半導体部品(発光部品)
11 基板
12 半導体素子(発光素子)
20 放熱部材(ヒートスプレッダ)
30 金属接合層
30x 外延部分
50 外部放熱部材
70 スパッタリング装置
1, 2 Semiconductor device (semiconductor light emitting device)
10 Semiconductor parts (light emitting parts)
11 Substrate 12 Semiconductor element (light emitting element)
20 Heat dissipation member (heat spreader)
30 Metal joint layer 30 x Outer part 50 External heat dissipation member 70 Sputtering device

Claims (14)

半導体発光素子が上面に載置された基板と、
前記半導体発光素子の側面を覆う光反射性成形体と、
放熱部材と、
前記基板の下面と前記放熱部材の上面とを接合する金属接合層と
前記半導体発光素子の上に、前記半導体発光素子からの光を変換するための波長変換部材とを含み、
前記放熱部材の上面の面積は、前記基板の下面の面積よりも大きく、
前記金属接合層は、前記基板の下面全体と接触するとともに、前記基板の下面よりも大きい面積を有し、
前記金属接合層の熱伝導率は前記放熱部材の熱伝導率よりも高く、
前記光反射性成形体は、前記波長変換部材の側面をさらに覆うことを特徴とする半導体発光装置。
A substrate on which a semiconductor light emitting element is placed on the upper surface,
A light-reflecting molded body that covers the side surface of the semiconductor light emitting device,
Heat dissipation member and
A metal bonding layer that joins the lower surface of the substrate and the upper surface of the heat radiating member ,
A wavelength conversion member for converting light from the semiconductor light emitting element is included on the semiconductor light emitting element .
The area of the upper surface of the heat radiating member is larger than the area of the lower surface of the substrate.
The metal bonding layer is in contact with the entire lower surface of the substrate and has a larger area than the lower surface of the substrate.
The thermal conductivity of the metal bonding layer rather higher than the thermal conductivity of the heat radiating member,
The light-reflecting molded body is a semiconductor light emitting device that further covers the side surface of the wavelength conversion member.
前記光反射性成形体が、酸化チタン粒子を含む白色の樹脂材料から形成されている請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the light-reflecting molded body is formed of a white resin material containing titanium oxide particles. 前記金属接合層が、前記放熱部材の前記上面の全面を被覆していることを特徴とする請求項1または2に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 or 2, wherein the metal bonding layer covers the entire surface of the upper surface of the heat radiating member. 前記金属接合層の厚さが1nm以上10μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 3, wherein the thickness of the metal bonding layer is 1 nm or more and 10 μm or less. 前記金属接合層は、融点350℃以上の金属材料から成ることを特徴とする請求項1〜4のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 4, wherein the metal bonding layer is made of a metal material having a melting point of 350 ° C. or higher. 前記金属接合層が、少なくとも、Au、Ag、Al、Cu、W、Si、Rh、Ruおよびそれらの合金からなる群から選択される金属を含むことを特徴とする請求項1〜5のいずれか1項に記載の半導体発光装置。 Any of claims 1 to 5, wherein the metal bonding layer contains at least a metal selected from the group consisting of Au, Ag, Al, Cu, W, Si, Rh, Ru and alloys thereof. The semiconductor light emitting device according to item 1. 前記金属接合層が、AuまたはAu合金から成ることを特徴とする請求項1〜6のいずれか1項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 6, wherein the metal bonding layer is made of Au or an Au alloy. 前記金属接合層が、前記基板の下面側に位置する第1の金属層と、前記放熱部材の上面側に位置する第2の金属層とから成ることを特徴とする請求項1〜7のいずれか1項に記載の半導体発光装置。 Any of claims 1 to 7, wherein the metal bonding layer is composed of a first metal layer located on the lower surface side of the substrate and a second metal layer located on the upper surface side of the heat radiating member. The semiconductor light emitting device according to item 1. 1)基板の上面に半導体発光素子を載置する工程と、
2)前記半導体発光素子の上に、前記半導体発光素子からの光を変換するための波長変換部材を固定する工程と、
)前記半導体発光素子の側面および前記波長変換部材の側面に光反射性成形体を形成する工程と、
)前記基板の下面に第1の金属層を形成する工程と、
)放熱部材の上面に、前記基板の下面より大きい面積を有する第2の金属層を形成する工程と、
)前記第1の金属層と前記第2の金属層とを接触させてそれらを接合する工程と、を含み、
前記第1の金属層と前記第2の金属層とから成る金属接合層が、前記放熱部材の熱伝導率よりも高いことを特徴とする半導体発光装置の製造方法。
1) The process of placing the semiconductor light emitting element on the upper surface of the substrate and
2) A step of fixing a wavelength conversion member for converting light from the semiconductor light emitting element on the semiconductor light emitting element, and
3 ) A step of forming a light-reflecting molded body on the side surface of the semiconductor light emitting element and the side surface of the wavelength conversion member, and
4 ) A step of forming a first metal layer on the lower surface of the substrate, and
5 ) A step of forming a second metal layer having an area larger than the lower surface of the substrate on the upper surface of the heat radiating member, and
6 ) Including a step of bringing the first metal layer into contact with the second metal layer and joining them.
A method for manufacturing a semiconductor light emitting device, wherein the metal bonding layer composed of the first metal layer and the second metal layer has a higher thermal conductivity than the heat conductivity of the heat radiating member.
前記金属接合層は、融点350℃以上の金属材料から成ることを特徴とする請求項9に記載の製造方法。 The production method according to claim 9, wherein the metal bonding layer is made of a metal material having a melting point of 350 ° C. or higher. 工程)および工程)において、前記第1の金属層および前記第2の金属層は、スパッタリング法により成膜されることを特徴とする請求項9または10に記載の製造方法。 The production method according to claim 9 or 10, wherein in steps 4 ) and 5 ), the first metal layer and the second metal layer are formed by a sputtering method. 前記第1の金属層と前記第2の金属層とが同じ金属材料から成り、
工程)および工程)は同一工程として行われることを特徴とする請求項9〜11のいずれか1項に記載の製造方法。
The first metal layer and the second metal layer are made of the same metal material.
The manufacturing method according to any one of claims 9 to 11, wherein the steps 4 ) and 5) are performed as the same step.
前記金属接合層が、少なくとも、Au、Ag、Al、Cu、W、Si、Rh、Ruおよびそれらの合金からなる群から選択される金属を含み、
工程)、工程)および工程)は、真空チャンバ内で行われることを特徴とする請求項9〜12のいずれか1項に記載の製造方法。
The metal bonding layer contains at least a metal selected from the group consisting of Au, Ag, Al, Cu, W, Si, Rh, Ru and alloys thereof.
The manufacturing method according to any one of claims 9 to 12, wherein the steps 4 ), 5 ) and 6) are performed in a vacuum chamber.
前記第1の金属層の表面および前記第2の金属層の表面が、AuまたはAu合金から成り、
工程)は大気中で行われることを特徴とする請求項9〜12のいずれか1項に記載の製造方法。
The surface of the first metal layer and the surface of the second metal layer are made of Au or an Au alloy.
The production method according to any one of claims 9 to 12, wherein the step 6) is performed in the atmosphere.
JP2019040531A 2014-12-25 2019-03-06 Semiconductor devices and methods for manufacturing semiconductor devices Active JP6908859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040531A JP6908859B2 (en) 2014-12-25 2019-03-06 Semiconductor devices and methods for manufacturing semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263577A JP6492645B2 (en) 2014-12-25 2014-12-25 Semiconductor device and manufacturing method of semiconductor device
JP2019040531A JP6908859B2 (en) 2014-12-25 2019-03-06 Semiconductor devices and methods for manufacturing semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014263577A Division JP6492645B2 (en) 2014-12-25 2014-12-25 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2019091943A JP2019091943A (en) 2019-06-13
JP6908859B2 true JP6908859B2 (en) 2021-07-28

Family

ID=66836675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040531A Active JP6908859B2 (en) 2014-12-25 2019-03-06 Semiconductor devices and methods for manufacturing semiconductor devices

Country Status (1)

Country Link
JP (1) JP6908859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929294B2 (en) 2020-09-30 2024-03-12 Nichia Corporation Composite substrate and method of producing the composite substrate, and semiconductor device comprising the composite substrate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031136B2 (en) * 2000-03-01 2012-09-19 浜松ホトニクス株式会社 Semiconductor laser device
JP4377769B2 (en) * 2004-07-28 2009-12-02 京セラ株式会社 Electronic component storage package and electronic device
US8029152B2 (en) * 2005-03-24 2011-10-04 Kyocera Corporation Package for light-emitting device, light-emitting apparatus, and illuminating apparatus
JP2008199057A (en) * 2006-06-02 2008-08-28 Nec Lighting Ltd Electronic equipment and method of manufacturing the same
JP5070557B2 (en) * 2007-02-27 2012-11-14 武仁 島津 Room temperature bonding method
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device
JP5569964B2 (en) * 2010-05-07 2014-08-13 株式会社ムサシノエンジニアリング Atomic diffusion bonding method
JP5662064B2 (en) * 2010-06-25 2015-01-28 パナソニックIpマネジメント株式会社 Light emitting device
JP5619680B2 (en) * 2011-06-03 2014-11-05 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP2013239614A (en) * 2012-05-16 2013-11-28 Seiko Epson Corp Method of manufacturing light-emitting device
US9425373B2 (en) * 2013-03-15 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Light emitting module

Also Published As

Publication number Publication date
JP2019091943A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6492645B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI649840B (en) Base unit for power module and power module
TWI333230B (en) Composite leadframe led package and method of making the same
JP5146356B2 (en) Light emitting device and manufacturing method thereof
WO2006129690A1 (en) Substrate for led and led package
JP6499387B2 (en) Lead frame and light emitting device
JP2006086176A (en) Sub-mount for led and its manufacturing method
JP2005303012A (en) Semiconductor light emitting element mount member and semiconductor light emitting device using it
JP6381327B2 (en) LED light emitting device and manufacturing method thereof
JP2008235867A (en) Surface mount light-emitting diode and method of manufacturing the same
JP6468028B2 (en) Power module board with heat sink
JP2009239036A (en) Led substrate
JP2005183558A (en) Optical part mounting package, and method for manufacturing the same
JP2008263248A (en) Mounting member of semiconductor light-emitting element, and method of manufacturing the same
JP6435711B2 (en) Power module substrate with heat sink and power module
JP6908859B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
TWI769337B (en) Light emitting device
JP6681660B2 (en) Substrate for power module with heat sink and power module
TW201037803A (en) Multi-layer packaging substrate, method for making the packaging substrate, and package structure of light-emitting semiconductor
JP5057371B2 (en) Surface mount type light emitting diode and method for manufacturing the same
JP5055837B2 (en) Light emitting device
JP6503796B2 (en) Power module substrate with heat sink and power module
JP5522786B2 (en) Manufacturing method of heat dissipation board for semiconductor mounting
JP6066544B2 (en) Light emitting device
JP2011165726A (en) Power module substrate with identification symbol, and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6908859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150