JPWO2019054222A1 - Refractories for siliconizing furnace - Google Patents

Refractories for siliconizing furnace Download PDF

Info

Publication number
JPWO2019054222A1
JPWO2019054222A1 JP2018560694A JP2018560694A JPWO2019054222A1 JP WO2019054222 A1 JPWO2019054222 A1 JP WO2019054222A1 JP 2018560694 A JP2018560694 A JP 2018560694A JP 2018560694 A JP2018560694 A JP 2018560694A JP WO2019054222 A1 JPWO2019054222 A1 JP WO2019054222A1
Authority
JP
Japan
Prior art keywords
refractory
silicon
furnace
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018560694A
Other languages
Japanese (ja)
Other versions
JP6747520B2 (en
Inventor
崇 土居
勝司 笠井
輝彦 戸部
琢実 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019054222A1 publication Critical patent/JPWO2019054222A1/en
Application granted granted Critical
Publication of JP6747520B2 publication Critical patent/JP6747520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising
    • C23C10/46Siliconising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

変質や脆化が少なく、寿命が長い浸珪処理炉用耐火物を提供することを目的とする。珪素の酸化物、珪素の窒化物および珪素の酸窒化物の中から選ばれる1種または2種以上を合計で35質量%以上と、アルカリ金属を合計で0.05質量%以下とを含有し、気孔率が25体積%以下であり、圧縮強度が5MPa以上である浸珪処理炉用耐火物。An object of the present invention is to provide a refractory for a siliconization furnace that has little alteration and embrittlement and has a long life. One or two or more selected from silicon oxide, silicon nitride and silicon oxynitride are contained in a total of 35% by mass or more, and alkali metals in total containing 0.05% by mass or less. A refractory for a siliconization furnace having a porosity of 25% by volume or less and a compressive strength of 5 MPa or more.

Description

本発明は、鋼帯の連続浸珪処理炉のように塩化珪素ガスを使用する炉に用いられる耐火物に関する。   The present invention relates to a refractory used in a furnace using silicon chloride gas, such as a continuous siliconization furnace for steel strip.

珪素鋼板は優れた軟磁気特性を有するため、トランスやモータの鉄心材料として広く用いられている。珪素鋼板はSi含有量が増すほど鉄損が低減し、Siが約6.5wt%では磁歪が0となり、最大透磁率がピークとなるなど優れた磁気特性を示すことが知られている。このような高珪素鋼板を工業的に製造する方法として、例えば特許文献1に示されるような気体浸珪法による製造方法が知られている。この製造方法は、Si含有量が比較的低い鋼帯を加熱して塩化珪素ガス(SiCl4)を含む無酸化性ガス雰囲気中で浸珪処理することによりSiを浸透させ、次いでSiを板厚方向に拡散させる拡散熱処理を施し、冷却後コイル状に巻き取る一連のプロセスを連続ライン化し、高珪素鋼帯を効率よく製造することができる。Silicon steel sheets are widely used as iron core materials for transformers and motors because they have excellent soft magnetic properties. It is known that the silicon steel sheet exhibits excellent magnetic properties such that the iron loss is reduced as the Si content is increased, and the magnetostriction becomes zero and the maximum magnetic permeability reaches a peak when Si is about 6.5 wt%. As a method for industrially manufacturing such a high silicon steel sheet, for example, a manufacturing method by a gas immersion method as shown in Patent Document 1 is known. In this manufacturing method, a steel strip having a relatively low Si content is heated and immersed in a non-oxidizing gas atmosphere containing silicon chloride gas (SiCl 4 ) to infiltrate Si. A series of processes in which a diffusion heat treatment for diffusing in the direction is performed and coiled after cooling is made into a continuous line, and a high silicon steel strip can be produced efficiently.

上記のような浸珪処理が行われる連続浸珪処理炉は、1200℃以上の炉内温度で長時間運転され、しかも、雰囲気ガスに含まれる塩化珪素ガス(SiCl)は非常に反応性に富み、腐食性の強いガスである。このため、高温の炉内で活性化した塩化珪素ガスが連続浸珪処理炉の炉材である耐火物と反応し、耐火物を劣化させるという問題がある。The continuous siliconization furnace in which the above-described siliconization treatment is performed is operated at a furnace temperature of 1200 ° C. or more for a long time, and silicon chloride gas (SiCl 4 ) contained in the atmosphere gas is very reactive. It is a rich and highly corrosive gas. For this reason, there exists a problem that the silicon chloride gas activated in the high temperature furnace reacts with the refractory which is a furnace material of a continuous siliconization furnace, and degrades a refractory.

連続浸珪処理炉用の耐火物としては、例えば特許文献2、3に記載の耐火物を適用することが知られている。   As a refractory for a continuous siliconizing furnace, it is known to apply the refractories described in Patent Documents 2 and 3, for example.

特開昭62−227078号公報JP-A-62-227078 特開平10−147856号公報Japanese Patent Laid-Open No. 10-147856 特開平08−169750号公報JP 08-169750 A

一方、高珪素鋼板の製造途中に副産物として発生する塩化鉄(ガス)が、炉内の耐火物中に浸透し、炉壁または炉床付近の温度低下部分で凝集または凝固するという問題がある。この凝集・凝固した塩化鉄が耐火物内に堆積することで、耐火物中の酸化物との還元反応が進み、耐火物の変質や脆化が促進される。   On the other hand, there is a problem that iron chloride (gas) generated as a by-product during the production of a high silicon steel sheet penetrates into the refractory in the furnace and aggregates or solidifies at a temperature-decreasing portion near the furnace wall or the hearth. As the agglomerated and solidified iron chloride is deposited in the refractory, the reduction reaction with the oxide in the refractory proceeds, and the alteration and embrittlement of the refractory are promoted.

また、補修等で炉内の耐火物が大気中に暴露された場合に、耐火物中に堆積した塩化鉄が大気中の水分を吸収し、膨張する。その結果、耐火物自体の体積が増加して膨張するため、炉壁や炉床の耐火物が炉内側に競り出てきたり、耐火物に亀裂が生じて崩壊してしまう。したがって、耐火物の寿命が短くなり、更新周期が短くなるという問題がある。   Also, when the refractory in the furnace is exposed to the atmosphere for repair or the like, the iron chloride accumulated in the refractory absorbs moisture in the atmosphere and expands. As a result, since the volume of the refractory itself increases and expands, the refractory on the furnace wall and the hearth comes up inside the furnace, or the refractory is cracked and collapses. Therefore, there is a problem that the life of the refractory is shortened and the renewal cycle is shortened.

特許文献2、3に記載の耐火物を用いると、塩化珪素ガスに起因する耐火物の変質・脆化を抑制することはできても、塩化鉄を起因とする耐火物の変質・脆化の促進までは抑制することが難しいことがわかった。   When the refractories described in Patent Documents 2 and 3 are used, it is possible to suppress the alteration and embrittlement of the refractory caused by the silicon chloride gas, but the alteration and embrittlement of the refractory caused by iron chloride. It turned out to be difficult to suppress until promotion.

本発明は上記実情に鑑みてなされたものであり、変質や脆化が少なく、寿命が長い浸珪処理炉用耐火物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refractory for a siliconization furnace having little deterioration and embrittlement and a long life.

本発明者らは鋭意検討した結果、所定の成分組成を有するとともに気孔率の低い耐火物を用いることで、耐火物の寿命が向上し、更新周期を延長することができるという知見を得た。   As a result of intensive studies, the present inventors have found that by using a refractory having a predetermined component composition and a low porosity, the life of the refractory can be improved and the renewal cycle can be extended.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]珪素の酸化物、珪素の窒化物および珪素の酸窒化物の中から選ばれる1種または2種以上を合計で35質量%以上と、アルカリ金属を合計で0.05質量%以下とを含有し、気孔率が25体積%以下であり、圧縮強度が5MPa以上である浸珪処理炉用耐火物。
[2]さらに、Mg、Ca、Ti、Fe、CrおよびZrの各酸化物を合計で1.0質量%以下を含有する[1]に記載の浸珪処理炉用耐火物。
[3]珪素の酸化物、珪素の窒化物および珪素の酸窒化物の中から選ばれる1種または2種以上を合計で90質量%以上含有する[1]または[2]に記載の浸珪処理炉用耐火物。
The present invention has been made on the basis of such knowledge and has the following gist.
[1] One or two or more selected from silicon oxide, silicon nitride, and silicon oxynitride in total 35% by mass or more and alkali metals in total 0.05% by mass or less A refractory for a siliconization furnace having a porosity of 25% by volume or less and a compressive strength of 5 MPa or more.
[2] The refractory for a siliconization furnace according to [1], further containing 1.0% by mass or less of each oxide of Mg, Ca, Ti, Fe, Cr, and Zr.
[3] The silicon immersion as set forth in [1] or [2], containing one or more selected from silicon oxide, silicon nitride and silicon oxynitride in a total of 90% by mass or more Refractory for processing furnace.

本発明によれば、変質や脆化が少なく、寿命が長い浸珪処理炉用耐火物を提供することができる。したがって、塩化珪素ガスを使用する連続浸珪処理炉の耐火物として本発明の耐火物を適用すると、長時間にわたって変質や脆化を生じることがなく、優れた耐久性を示す。このため、気体浸珪法による高珪素鋼板の連続製造ラインにおいては、耐火物の劣化等を生じることなく、長期間安定した操業が可能となる。   According to the present invention, it is possible to provide a refractory for a siliconization furnace that has little deterioration and embrittlement and has a long life. Therefore, when the refractory material of the present invention is applied as a refractory material for a continuous siliconization furnace using silicon chloride gas, it does not cause deterioration or embrittlement over a long period of time and exhibits excellent durability. For this reason, in the continuous production line of the high silicon steel plate by a gas immersion method, the stable operation for a long period of time becomes possible, without producing deterioration of a refractory.

図1は、高珪素鋼板を製造する連続浸珪処理設備の概略図である。FIG. 1 is a schematic view of a continuous siliconization treatment facility for producing a high silicon steel sheet.

種々の材質からなる耐火物を作製した。これら耐火物を、塩化珪素ガスを含む雰囲気(SiCl:約15vol%、炉内温度:約1200℃)の炉内に3ヵ月間置き、各耐火物の外観、重量、体積等の変化を調べた。その結果、珪素の酸化物(シリカ)、珪素の窒化物(窒化珪素)および珪素の酸窒化物(酸窒化珪素)のいずれか1種または2種以上を多く含む耐火物が塩化珪素ガスに対して最も損傷が少ないことがわかった。これに対して、珪素の炭化物からなる耐火物は損傷の度合いが大きいことが判明した。Refractories made of various materials were prepared. These refractories are placed in a furnace containing an atmosphere containing silicon chloride gas (SiCl 4 : about 15 vol%, furnace temperature: about 1200 ° C.) for 3 months, and changes in the appearance, weight, volume, etc. of each refractory are examined. It was. As a result, a refractory containing one or more of silicon oxide (silica), silicon nitride (silicon nitride) and silicon oxynitride (silicon oxynitride) is more effective against silicon chloride gas. The least damage was found. In contrast, it has been found that refractories made of silicon carbide are highly damaged.

次に、耐火物の塩化珪素ガスに対する耐損傷性の評価として、耐火物表面の変質状況や脆化状況を調べ、変質状況や脆化状況と珪素の酸化物、珪素の窒化物、珪素の酸窒化物の合計含有量との関係を検討した。   Next, as an evaluation of the damage resistance of the refractory to silicon chloride gas, the surface of the refractory is examined for the state of alteration and embrittlement, and the state of alteration and embrittlement and the silicon oxide, silicon nitride, silicon acid The relationship with the total content of nitride was investigated.

その結果、珪素の酸化物、珪素の窒化物、珪素の酸窒化物の中から選ばれる1種または2種以上の合計の含有量が35質量%未満の耐火物は、表面が変質や脆化して欠損ありの状態或いはヘアークラックを生じた状態となり、また亀裂やスポーリングの発生も著しかった。これに対し、珪素の酸化物、珪素の窒化物、珪素の酸窒化物の中から選ばれる1種または2種以上の合計の含有量が35質量%以上の耐火物は、一部に亀裂の発生するものも見られたが炉材表層部の脱落に至るような変質や脆化はなく、ほぼ継続使用可能であると判断できた。   As a result, the surface of a refractory having a total content of one or more selected from silicon oxide, silicon nitride, and silicon oxynitride of less than 35% by mass is altered or embrittled. It was in a state with defects or a hair crack, and cracks and spalling were also remarkable. On the other hand, a refractory having a total content of one or more selected from silicon oxide, silicon nitride, and silicon oxynitride of 35% by mass or more is partially cracked. Although some were generated, it was judged that there was no alteration or embrittlement leading to the dropping of the surface layer of the furnace material, and it could be used almost continuously.

以上より、本発明において、耐火物中に含まれる珪素の酸化物、珪素の窒化物、珪素の酸窒化物の含有量は、珪素の酸化物、珪素の窒化物、珪素の酸窒化物の中から選ばれる1種または2種以上を合計で35質量%以上と規定する。好ましくは、珪素の酸化物、珪素の窒化物、珪素の酸窒化物の中から選ばれる1種または2種以上を合計で90質量%以上含有する。90質量%以上にすることで、変質・脆化が著しく低減され、亀裂の発生もなく、良好な結果が得られる。   As described above, in the present invention, the content of silicon oxide, silicon nitride, and silicon oxynitride contained in the refractory is the same as that of silicon oxide, silicon nitride, and silicon oxynitride. 1 type or 2 types or more selected from are defined as 35 mass% or more in total. Preferably, 90% by mass or more in total of one or more selected from silicon oxide, silicon nitride, and silicon oxynitride is contained. When the content is 90% by mass or more, alteration and embrittlement are remarkably reduced, cracks are not generated, and good results are obtained.

本発明において、耐火物中に含まれる珪素の酸化物、珪素の窒化物、珪素の酸窒化物としては、窒化珪素や溶融シリカが好ましく、溶融シリカが特に好ましい。   In the present invention, the silicon oxide, silicon nitride, and silicon oxynitride contained in the refractory are preferably silicon nitride or fused silica, particularly preferably fused silica.

本発明では、耐火物中に含まれるアルカリ金属の含有量を合計で0.05質量%以下と規定する。耐火物中に含まれるアルカリ金属は塩化珪素ガスとの反応性に寄与する。アルカリ金属の含有量が0.05質量%を超えると耐火物と塩化珪素ガスとの反応が進行し、耐火物表面に亀裂が生じたり、欠損ありとなる恐れがある。   In the present invention, the total content of alkali metals contained in the refractory is defined as 0.05% by mass or less. The alkali metal contained in the refractory contributes to the reactivity with the silicon chloride gas. When the content of the alkali metal exceeds 0.05% by mass, the reaction between the refractory and the silicon chloride gas proceeds, and there is a risk that the surface of the refractory will be cracked or defective.

本発明では、耐火物中に含まれるMg、Ca、Ti、Fe、CrおよびZrの各酸化物の含有量の合計を1.0質量%以下とすることが好ましい。耐火物中に含まれるMg、Ca等の酸化物についても、塩化珪素ガスとの反応性に寄与する。Mg、Ca等の酸化物の含有量が1.0質量%を超えると耐火物と塩化珪素ガスとの反応が進行し、耐火物表面に亀裂が生じたり、欠損ありになる恐れがある。   In the present invention, the total content of Mg, Ca, Ti, Fe, Cr and Zr oxides contained in the refractory is preferably 1.0% by mass or less. Oxides such as Mg and Ca contained in the refractory also contribute to the reactivity with the silicon chloride gas. When the content of oxides such as Mg and Ca exceeds 1.0% by mass, the reaction between the refractory and the silicon chloride gas proceeds, and the surface of the refractory may be cracked or defective.

耐火物における上記以外の残部としては、Alや不純物であり、不純物として上記以外の金属酸化物等を含んでいてもよい。The remainder other than the above in the refractory is Al 2 O 3 or impurities, and metal impurities other than the above may be included as impurities.

高珪素鋼板の製造途中に副産物として発生する塩化鉄(ガス)が、炉内の耐火物中に浸透し、炉壁や炉床付近の温度低下部分で凝集もしくは凝固するという問題がある。この凝集もしくは凝固した塩化鉄が耐火物内に堆積することで、耐火物中の酸化物との還元反応が進み、耐火物の変質や脆化が促進される。また、補修等で炉内の耐火物が大気中に暴露された場合に、耐火物中に堆積した塩化鉄が大気中の水分を吸収し、膨張する。その結果、耐火物自体の体積が増加して膨張するため、炉壁や炉床の耐火物が炉内側に競り出てきたり、耐火物に亀裂が生じて崩壊してしまう。したがって、耐火物の寿命が短くなり、更新周期が短くなるという問題がある。   There is a problem that iron chloride (gas) generated as a by-product during the production of the high silicon steel sheet penetrates into the refractory in the furnace and aggregates or solidifies at the temperature-decreasing portion near the furnace wall and the hearth. As this agglomerated or solidified iron chloride accumulates in the refractory, the reduction reaction with the oxide in the refractory proceeds, and the alteration and embrittlement of the refractory are promoted. Also, when the refractory in the furnace is exposed to the atmosphere for repair or the like, the iron chloride accumulated in the refractory absorbs moisture in the atmosphere and expands. As a result, since the volume of the refractory itself increases and expands, the refractory on the furnace wall and the hearth comes up inside the furnace, or the refractory is cracked and collapses. Therefore, there is a problem that the life of the refractory is shortened and the renewal cycle is shortened.

このような塩化鉄を原因とする耐火物の変質や脆化について本発明者らが鋭意検討した。その結果、耐火物の気孔率を25体積%以下にすることにより、耐火物の変質や脆化を抑制できることを見出した。   The present inventors diligently investigated the alteration and embrittlement of refractories caused by iron chloride. As a result, it has been found that by setting the porosity of the refractory to 25% by volume or less, alteration and embrittlement of the refractory can be suppressed.

耐火物中に堆積する塩化鉄(固体)は耐火物中の気孔が多ければ多いほど、耐火物中に堆積し易い。耐火物中に堆積した塩化鉄は大気と触れることにより膨張し、耐火物に内側から圧力を付与することになるので、耐火物を劣化させる原因となる。このようなことから、耐火物中の気孔は少ない方が望ましく、気孔率を25体積%以下にすることで、耐火物中への塩化鉄の堆積を抑制し、耐火物の劣化を防止することが可能となる。したがって、本発明では、気孔率を25体積%以下にすることにより、耐火物の変質や脆化を抑制することができる。その結果、高珪素鋼板の連続製造ラインにおける長期間の安定操業を実現することができる。   The more iron chloride (solid) deposited in the refractory, the more the pores in the refractory, the more likely it will accumulate in the refractory. The iron chloride deposited in the refractory expands when it comes into contact with the atmosphere, and pressure is applied to the refractory from the inside, causing deterioration of the refractory. For this reason, it is desirable that the number of pores in the refractory is small. By setting the porosity to 25% by volume or less, deposition of iron chloride in the refractory is suppressed and deterioration of the refractory is prevented. Is possible. Therefore, in the present invention, alteration of the refractory and embrittlement can be suppressed by setting the porosity to 25% by volume or less. As a result, long-term stable operation in a continuous production line for high silicon steel sheets can be realized.

また、各種成分組成は一定で、圧縮強度の異なる耐火物を準備した。これら耐火物を、塩化鉄ガスを含む雰囲気(FeCl濃度):約15vol%、炉内温度:約1200℃)の炉内に1週間置いた後、2ヶ月間大気中に暴露した後の膨張状態の変化を調べた。その結果、圧縮強度と塩化鉄による膨張状態には密接な関係があり、圧縮強度が5MPaを下回ると膨張状態が大きくなり、崩壊してしまうことがわかった。この為、本発明では、耐火物の圧縮強度を5MPa以上とする。圧縮強度が5MPa未満では、副産物である塩化鉄ガスが耐火物中に浸透して耐火物が膨張し、耐火物が崩壊してしまい、表面外観に影響を及ぼす。好ましくは、圧縮強度は20〜200MPaである。なお、圧縮強度は200MPa以下であることが好ましい。Also, refractories having different component compositions and different compressive strengths were prepared. These refractories were placed in a furnace containing an iron chloride gas atmosphere (FeCl 2 concentration): about 15 vol%, furnace temperature: about 1200 ° C. for 1 week, and then expanded after being exposed to the atmosphere for 2 months. The state change was examined. As a result, it was found that there is a close relationship between the compressive strength and the expanded state due to iron chloride, and when the compressive strength is less than 5 MPa, the expanded state increases and collapses. For this reason, in this invention, the compressive strength of a refractory shall be 5 Mpa or more. If the compressive strength is less than 5 MPa, the by-product iron chloride gas penetrates into the refractory and expands the refractory, causing the refractory to collapse and affecting the surface appearance. Preferably, the compressive strength is 20 to 200 MPa. The compressive strength is preferably 200 MPa or less.

また、本発明において、気孔率および圧縮強度の測定方法については特に制限がなく、常法により求めればよい。また、気孔率が25体積%以下であり、圧縮強度が5MPa以上の耐化物を用いることもできる。   In the present invention, the method for measuring the porosity and compressive strength is not particularly limited, and may be obtained by a conventional method. Further, it is also possible to use a refractory having a porosity of 25% by volume or less and a compressive strength of 5 MPa or more.

種々の成分組成を有する耐火物(50mm×50mm×50mm)を作製し、これらを図1に示す高珪素鋼板の連続製造ラインの浸珪処理炉内に設置した。浸珪処理炉の雰囲気をSiCl濃度:15vol%、炉内温度:1200℃として3ヵ月間連続運転した後、各耐火物の損傷状況を調べた。各耐火物の成分組成、気孔率、圧縮強度および損傷状況の結果を表1に示す。Refractories (50 mm × 50 mm × 50 mm) having various component compositions were prepared, and these were installed in a siliconization furnace of a continuous production line for high silicon steel sheets shown in FIG. After continuously operating for 3 months with the atmosphere of the siliconization furnace set to SiCl 4 concentration: 15 vol%, furnace temperature: 1200 ° C., the state of damage of each refractory was examined. Table 1 shows the results of the component composition, porosity, compressive strength, and damage status of each refractory.

損傷状況としては、表面観察および反応性により判断した。表面観察は耐火物の外観を観察し、劣化状況から欠損あり>亀裂あり>変色>変化無しの4段階で評価を行った。また、反応性に関しては、劣化状況から◎◎、◎、○、×の4段階(◎◎:反応せず、◎:ほとんど反応せず、○:反応が小さい(耐火物の劣化が認められるが、継続使用可能なレベル)、×:反応が顕著)で評価を行った。表面観察は変色、変化無しを合格とし、反応性は◎◎、◎および○を合格とした。   The damage situation was judged by surface observation and reactivity. The surface observation was performed by observing the appearance of the refractory, and evaluated in four stages, from the state of deterioration to defects> cracks> discoloration> no change. Regarding the reactivity, there are four stages of ◎◎, ◎, ○, × from the deterioration situation (◎◎: no reaction, ◎: little reaction, ○: little reaction (deterioration of refractory is observed) , Level that can be used continuously), ×: the reaction was remarkable). For surface observation, discoloration and no change were acceptable, and reactivity was acceptable for ◎◎, ◎ and ○.

Figure 2019054222
Figure 2019054222

表1の結果から、本発明例はいずれも良好な結果であった。   From the results of Table 1, all of the inventive examples were good results.

実施例1において良好な結果を示したNo.10、19、31について、浸珪処理炉の耐火物として使用した際の更新周期について調べた。その結果、No.10、19を使用した場合、従来の耐火物(特許文献3の耐火物)の更新周期を1とした場合に、更新周期が1.5倍に延長することが可能となった。さらに、No.31を使用した場合、更新周期を従来の3倍に延長することが可能となった。   No. 1 which showed a good result in Example 1. About 10, 19, and 31, the update period at the time of using as a refractory of a siliconization furnace was investigated. As a result, no. In the case of using 10 and 19, when the update cycle of the conventional refractory (refractory of Patent Document 3) is set to 1, the update cycle can be extended 1.5 times. Furthermore, no. When 31 was used, it became possible to extend the update cycle to three times that of the prior art.

Claims (3)

珪素の酸化物、珪素の窒化物および珪素の酸窒化物の中から選ばれる1種または2種以上を合計で35質量%以上と、アルカリ金属を合計で0.05質量%以下とを含有し、
気孔率が25体積%以下であり、圧縮強度が5MPa以上
である浸珪処理炉用耐火物。
One or two or more selected from silicon oxide, silicon nitride and silicon oxynitride are contained in a total of 35% by mass or more, and alkali metals are contained in a total of 0.05% by mass or less. ,
A refractory for a siliconization furnace having a porosity of 25% by volume or less and a compressive strength of 5 MPa or more.
さらに、Mg、Ca、Ti、Fe、CrおよびZrの各酸化物を合計で1.0質量%以下を含有する請求項1に記載の浸珪処理炉用耐火物。   The refractory for a siliconization furnace according to claim 1, further comprising 1.0% by mass or less of Mg, Ca, Ti, Fe, Cr and Zr oxides in total. 珪素の酸化物、珪素の窒化物および珪素の酸窒化物の中から選ばれる1種または2種以上を合計で90質量%以上含有する請求項1または2に記載の浸珪処理炉用耐火物。   The refractory for a siliconization furnace according to claim 1 or 2, containing one or more selected from silicon oxide, silicon nitride, and silicon oxynitride in a total of 90 mass% or more. .
JP2018560694A 2017-09-12 2018-09-03 Refractories for furnaces using silicon chloride gas Active JP6747520B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017174424 2017-09-12
JP2017174424 2017-09-12
PCT/JP2018/032582 WO2019054222A1 (en) 2017-09-12 2018-09-03 Refractory for siliconizing furnaces

Publications (2)

Publication Number Publication Date
JPWO2019054222A1 true JPWO2019054222A1 (en) 2019-11-07
JP6747520B2 JP6747520B2 (en) 2020-08-26

Family

ID=65723673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018560694A Active JP6747520B2 (en) 2017-09-12 2018-09-03 Refractories for furnaces using silicon chloride gas

Country Status (4)

Country Link
JP (1) JP6747520B2 (en)
KR (1) KR102401344B1 (en)
CN (1) CN111094212A (en)
WO (1) WO2019054222A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE837268A (en) * 1975-12-31 1976-06-30 IMPROVED REFRACTORY MATERIALS INTENDED TO CONSTITUTE THE INTERIOR COATING OF OVENS FOR METALLURGIC USE AND MORE SPECIFICALLY OF ELECTRIC INDUCTION OVENS
JPS62227078A (en) 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip continuous line
JPH01282148A (en) * 1988-05-06 1989-11-14 Shinagawa Refract Co Ltd Melted siliceous refractory brick resistant to gaseous chlorine
JP3158921B2 (en) * 1994-12-15 2001-04-23 日本鋼管株式会社 Refractories for furnaces using silicon chloride gas
JP2947107B2 (en) * 1994-12-29 1999-09-13 日本鋼管株式会社 Continuous production method of high silicon steel strip
JP3259646B2 (en) 1996-11-15 2002-02-25 日本鋼管株式会社 Continuous siliconizing equipment for steel strip
JP2000283655A (en) * 1999-03-31 2000-10-13 Nkk Corp Silicifying furnace
DE102007004242B4 (en) * 2007-01-23 2018-01-04 Schott Ag A method for producing a shaped body of quartz glass by sintering, molding and use of the molding
CN101323530A (en) * 2008-07-01 2008-12-17 山东中齐耐火材料集团有限公司 Fused quartz block for coke oven hot repair
CN101407421B (en) * 2008-11-04 2011-08-31 西安交通大学 Method for preparing non-grain boundary phase porous silicon nitride ceramic based on siliconizing nitridation
CN102976720B (en) * 2012-11-07 2016-07-06 洛阳北苑特种陶瓷有限公司 A kind of preparation method of quartz ceramic
CN104628399B (en) * 2015-02-11 2017-04-19 江苏中正耐火材料有限公司 Crack-resistant and zero-expansion fused-silica brick and preparation method thereof
CN105924183A (en) * 2016-04-21 2016-09-07 武汉科技大学 Quartziferous side dam and preparation method thereof
CN106783132B (en) * 2016-12-26 2019-03-19 安徽工业大学 A kind of high silicon steel core and preparation method thereof to insulate between particle

Also Published As

Publication number Publication date
KR20200039740A (en) 2020-04-16
WO2019054222A1 (en) 2019-03-21
JP6747520B2 (en) 2020-08-26
KR102401344B1 (en) 2022-05-23
CN111094212A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP5837258B2 (en) Ferritic stainless steel having excellent surface corrosion resistance after polishing and method for producing the same
JP6068158B2 (en) Cast products having an alumina barrier layer
JP5475758B2 (en) High zirconia heat resistant material
JP4561527B2 (en) Castings with excellent seizure resistance and wear resistance
JP2022046521A (en) Ferritic alloy
JP6747520B2 (en) Refractories for furnaces using silicon chloride gas
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP6339284B1 (en) Steel products used in contact with steel
JP5553482B2 (en) Molten metal container
JP2005281793A (en) Method for producing wire rod for steel wire, and wire rod for steel wire
JP2005240124A (en) Thermally sprayed film coated on hearth roll
JP2010082653A (en) Basic plate refractory for sliding nozzle apparatus
JP5664286B2 (en) Method for producing high silicon steel sheet
JP5664287B2 (en) Method for producing high silicon steel sheet
JP3259646B2 (en) Continuous siliconizing equipment for steel strip
JP3158921B2 (en) Refractories for furnaces using silicon chloride gas
JP4031267B2 (en) Steel wire for spring and manufacturing method thereof
JP2006265634A (en) Ni-BASED ALLOY RESISTANT TO CORROSION AT HIGH TEMPERATURE
JP2005131656A (en) Member for molten aluminum
JP2000129404A (en) Heat resistant alloy steel excellent in oxidation resistance and seizing resistance and heating furnace member
TWI355422B (en)
JPH0812432A (en) Refractory resistant to atmosphere containing silicon chloride gas
JP2007162088A (en) Ferritic stainless steel wire for sealing into glass
JP2023089385A (en) Unfired low carbon magnesia-chrome brick
JP2013067548A (en) Monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6747520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250