JP2000283655A - Silicifying furnace - Google Patents

Silicifying furnace

Info

Publication number
JP2000283655A
JP2000283655A JP11090544A JP9054499A JP2000283655A JP 2000283655 A JP2000283655 A JP 2000283655A JP 11090544 A JP11090544 A JP 11090544A JP 9054499 A JP9054499 A JP 9054499A JP 2000283655 A JP2000283655 A JP 2000283655A
Authority
JP
Japan
Prior art keywords
furnace
heat insulating
iron chloride
material layer
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11090544A
Other languages
Japanese (ja)
Inventor
Akira Kato
加藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11090544A priority Critical patent/JP2000283655A/en
Publication of JP2000283655A publication Critical patent/JP2000283655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an influence to quality of a product steel sheet by forming a furnace wall lined by two layers sequentially of a heat insulator layer having a low thermal conductivity and a refractory layer at an inside of a shell of the furnace. SOLUTION: A heat insulator 4 of a dense refractory brick made of a ceramic fiber is disposed at an inside of a furnace of an iron shell 1 of a furnace wall, a heat insulator 4 of a dense refractory brick is disposed, and a carbon plate 5 is disposed at the inside of the furnace. Further, a refractory 6 made of the ceramic fiber is disposed at the inside of the furnace to form a structure in which two layers are lined through the plate 5. Then, the plate 5 is formed with a layer for preventing an iron chloride of a gaseous state from impregnating, and disposed at a position predicted to become 1050 deg.C or above during operation where the iron chloride is prevent in a gaseous state. Thus, an influence is not affected on quality of a product steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高珪素鋼板を製造
するための浸珪処理を行なう浸珪炉の炉壁の構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a furnace wall of a siliconizing furnace for performing a siliconizing treatment for manufacturing a high silicon steel sheet.

【0002】[0002]

【従来の技術】高珪素鋼板の工業的な製造は次のように
行われる。高珪素鋼を直接に圧延することはできないの
で、珪素(Si)を或る程度含有している鋼帯を加熱炉
へ導入して加熱した後、この加熱された鋼帯を、高温に
保持すると共に四塩化珪素ガス(SiCl4 )と窒素ガ
スよりなる無酸化性ガス雰囲気の浸珪炉へ導入し、鋼帯
表面にSiを浸透させる浸珪処理を施す。次いで、均熱
炉へ導入して熱処理し、Siを鋼帯の内部まで拡散させ
る拡散処理を行なう。
2. Description of the Related Art The industrial production of high silicon steel sheets is performed as follows. Since high silicon steel cannot be rolled directly, a steel strip containing a certain amount of silicon (Si) is introduced into a heating furnace and heated, and then the heated steel strip is kept at a high temperature. At the same time, the steel strip is introduced into a siliconizing furnace in a non-oxidizing gas atmosphere consisting of silicon tetrachloride gas (SiCl 4 ) and nitrogen gas to perform a siliconizing treatment for infiltrating Si into the surface of the steel strip. Next, it is introduced into a soaking furnace and subjected to a heat treatment to perform a diffusion treatment for diffusing Si to the inside of the steel strip.

【0003】浸珪炉は、炉内温度が1200℃以上の条
件で操業され、又、操業時の雰囲気ガスが反応性に富み
非常に腐食性が大きい四塩化珪素ガスであるので、その
内張り材料としては、上記の使用条件に耐える材質のも
のが選定されている。従来、浸珪炉用の内張り材料とし
ては、セラミックファイバー系の耐火物が使用されてい
る。
[0003] The siliconizing furnace is operated at a furnace temperature of 1200 ° C or higher, and the atmosphere gas during the operation is silicon tetrachloride gas which is highly reactive and highly corrosive. As the material, a material that can withstand the above use conditions is selected. Conventionally, ceramic fiber refractories have been used as a lining material for a siliconizing furnace.

【0004】[0004]

【発明が解決しようとする課題】しかし、セラミックフ
ァイバーが内張りされた浸珪炉を使用して鋼板の浸珪処
理を行なうと、シリカを主成分とする固形物が落下して
鋼板上に付着し、製品鋼板の表面に欠陥が生じたり、炉
内に備えているロールなどの機器類に付着してその付着
物が次第に成長し、操業に支障を来すと言う問題が発生
する。
However, when a steel sheet is subjected to a siliconizing treatment using a siliconizing furnace in which ceramic fibers are lined, solids containing silica as a main component fall and adhere to the steel sheet. There is a problem that defects occur on the surface of the product steel sheet, and the adhered material gradually adheres to equipment such as rolls provided in the furnace, and the adhered material gradually grows, thereby hindering the operation.

【0005】本発明は、上記の問題を解決するためにな
されたものであり、シリカを主成分とする固形物が生成
せず、製品鋼板の品質に影響を及ぼすことがない浸珪炉
を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a siliconizing furnace which does not produce a solid containing silica as a main component and does not affect the quality of a product steel sheet. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、第1の発明は、鉄皮の炉内側に低熱伝導率の断熱
材層、耐火材層の順で2層の内張りが施された炉壁を有
することを特徴としている。
According to a first aspect of the present invention, a two-layer lining is provided in the order of a heat insulating material layer having a low thermal conductivity and a refractory material layer inside a furnace of a steel shell. It is characterized by having a furnace wall.

【0007】第2の発明は、鉄皮の炉内側に断熱材層、
ガス不浸透層、耐火材層の順で3層の内張りが施された
炉壁を有することを特徴としている。
In a second aspect, a heat insulating material layer is provided on the inside of the furnace of the steel shell.
It is characterized by having a furnace wall provided with three layers of lining in order of a gas impermeable layer and a refractory material layer.

【0008】第3の発明は、鉄皮の炉内側に断熱材層、
液不浸透層、断熱材層、耐火材層の順で4層の内張りが
施された炉壁を有することを特徴としている。
[0008] A third aspect of the present invention is to provide a heat insulating material layer on the inside of a furnace of a steel shell,
It is characterized by having a furnace wall provided with four layers of lining in the order of a liquid impermeable layer, a heat insulating material layer, and a refractory material layer.

【0009】セラミックファイバーの断熱材が内張りさ
れた浸珪炉を使用して鋼板の浸珪処理を行なうと、前述
のように、シリカを主成分とする固形物の落下によっ
て、製品鋼板の表面に欠陥が発生したり、炉の操業に支
障が生じたりするが、本発明者が、このような問題が発
生する原因について種々の調査を行なったところ、その
問題は次のようにして起ることが分かった。
When a steel sheet is subjected to a siliconizing treatment using a siliconizing furnace lined with a ceramic fiber heat insulating material, as described above, solids containing silica as a main component fall on the surface of the product steel sheet. Defects may occur or the operation of the furnace may be impaired. When the present inventor conducted various investigations on the causes of such problems, the problems occurred as follows. I understood.

【0010】浸珪処理中の炉内においては、鋼板の表面
で(1)式の反応が起って、浸珪処理が行われ、副生物
として塩化鉄が生成する。この際、炉内温度が1200
℃以上の高温域に保持されており、塩化鉄は気化してい
るので、塩化鉄の気体がセラミックファイバーの断熱材
層へ浸透する。そして、塩化鉄は断熱材層の内部へ浸透
して行くにしたがって冷却され、約1050℃に達した
時点で液体になり、さらに冷却されて約500℃程度ま
で温度降下した時点で固体になる。このため、浸珪処理
時の反応に伴って生成した塩化鉄が液体又は固体の状態
で上記断熱材層の内部に蓄積される。蓄積された塩化鉄
は、主に、液体として存在する1050℃〜500℃の
断熱材層の部分に存在する。
In the furnace during the siliconizing treatment, the reaction of the formula (1) occurs on the surface of the steel sheet, the siliconizing treatment is performed, and iron chloride is generated as a by-product. At this time, the furnace temperature was 1200
Since the iron chloride is kept in a high temperature range of not less than ° C. and the iron chloride is vaporized, the gas of the iron chloride permeates into the heat insulating material layer of the ceramic fiber. The iron chloride is cooled as it permeates into the heat insulating material layer, becomes liquid when it reaches about 1050 ° C., and becomes solid when it is further cooled and its temperature drops to about 500 ° C. For this reason, iron chloride generated by the reaction during the siliconizing treatment is accumulated in the heat insulating material layer in a liquid or solid state. The accumulated iron chloride is mainly present in the portion of the thermal insulation layer at 1050 ° C. to 500 ° C. which exists as a liquid.

【0011】 Fe+SiCl4 → Fe3 Si+FeCl2 ・・・・(1) 上記のようにして浸珪処理を行なった後、点検・整備の
ために炉を休止して開放すると、セラミックファイバー
の断熱材層に蓄積されていた塩化鉄が空気中の水分と反
応し、塩化鉄の水和物が生成する。そして、点検・整備
後、炉を昇温して操業を再開すると、上記断熱材層中に
存在していた塩化鉄の水和物が分解して水分が脱離し、
順次、炉内へ放出される。そして、この水分は炉内へ吹
き込まれた四塩化珪素ガスと反応して、シリカ(SiO
2 )と塩酸(HCl)を生成させる。このため、断熱材
層中の塩化鉄の水和物から放出される水分が上記のよう
なトラブルを発生させる原因物質となる。
Fe + SiCl 4 → Fe 3 Si + FeCl 2 (1) After performing the siliconizing treatment as described above, the furnace is stopped and opened for inspection and maintenance. The iron chloride that has accumulated in the water reacts with moisture in the air to form hydrates of iron chloride. Then, after inspection and maintenance, when the furnace is heated and the operation is resumed, the hydrate of iron chloride present in the heat insulating material layer is decomposed and water is desorbed,
Released sequentially into the furnace. Then, the water reacts with the silicon tetrachloride gas blown into the furnace to produce silica (SiO 2).
2 ) and hydrochloric acid (HCl). For this reason, the water released from the iron chloride hydrate in the heat insulating material layer is a substance causing the above-mentioned trouble.

【0012】そこで、第1の発明においては、炉内側に
緻密質の耐火材層を設けることによって、気体状態の塩
化鉄の浸透量を少なくし、その外側(鉄皮側)に熱伝導
率の小さい断熱材層を設けることによって、塩化鉄の蓄
積量が少なくなるようにしている。すなわち、断熱材層
の温度勾配を鉄皮側に向かって急激に低下するようにす
れば、塩化鉄が液体状態で存在する温度域(1050℃
〜500℃)の部分の厚さを薄くすることができる。温
度勾配が上記のようになるような断熱材を使用すれば、
耐火材層を浸透してきた気体の塩化鉄は上記温度域の部
分に達した時点で凝縮して蓄積されるが、500℃付近
の部分においては、塩化鉄の固化が始まるので、液体の
塩化鉄はそれよりも鉄皮側へは浸透していかない。この
ように、塩化鉄が蓄積される温度域に位置する断熱材の
部分が減少するので、その蓄積量を大幅に減少させるこ
とができる。
Therefore, in the first invention, by providing a dense refractory material layer inside the furnace, the amount of permeated iron chloride in the gaseous state is reduced, and the heat conductivity is reduced outside (on the steel shell side). By providing a small heat insulating material layer, the accumulation amount of iron chloride is reduced. That is, if the temperature gradient of the heat insulating material layer is made to decrease sharply toward the steel shell side, the temperature range where iron chloride exists in a liquid state (1050 ° C.)
(.About.500.degree. C.). If you use insulation that has the above temperature gradient,
The gaseous iron chloride that has permeated the refractory layer condenses and accumulates when it reaches the above-mentioned temperature range, but in the vicinity of 500 ° C., solidification of the iron chloride starts, so the liquid iron chloride Does not penetrate the steel skin more than that. As described above, since the portion of the heat insulating material located in the temperature region where iron chloride is accumulated is reduced, the amount of accumulation can be significantly reduced.

【0013】なお、断熱材は熱伝導率が小さいものであ
ることのほかに、気孔率が小さく、塩化鉄が蓄積される
容積自体が小さいものが、さらに望ましい。
It is more desirable that the heat insulating material be low in heat conductivity, low in porosity and small in the volume itself in which iron chloride is accumulated.

【0014】上記の断熱材層に使用する断熱材として
は、本発明が目的とする効果を得るためには、熱伝導率
が0.3W/(m・K)程度以下のものが望ましい。
又、耐火材層に使用する耐火物としては、気孔率が30
%程度以下のものが望ましい。
The heat insulating material used in the heat insulating material layer desirably has a thermal conductivity of about 0.3 W / (m · K) or less in order to obtain the effects intended by the present invention.
The refractory used in the refractory layer has a porosity of 30%.
% Or less is desirable.

【0015】又、第2の発明においては、耐火材層と断
熱材層の間にガス不浸透層を設け、断熱材層への塩化鉄
の浸透を阻止する手段を講じている。このような構成に
よれば、炉の操業停止時に、炉壁に残留する塩化鉄は気
体状態で耐火材層へ浸透したものだけであるので、その
量はごく僅かである。ガス不浸透層を形成するものとし
ては、カーボン板などを使用することができる。
Further, in the second invention, a gas impermeable layer is provided between the refractory material layer and the heat insulating material layer, and a means for preventing permeation of iron chloride into the heat insulating material layer is taken. According to such a configuration, when the operation of the furnace is stopped, the amount of iron chloride remaining on the furnace wall is only a very small amount since it is only a gaseous state that has permeated the refractory material layer. For forming the gas impermeable layer, a carbon plate or the like can be used.

【0016】又、第3の発明においては、操業時に塩化
鉄が凝縮する温度(1050℃)になるものと予想され
る断熱材層内の位置に液不浸透層を設け、それよりも鉄
皮側への塩化鉄の浸透を阻止する手段を講じている。こ
のような構成によれば、炉の操業停止時に、炉壁に残留
する塩化鉄は主として気体状態で耐火材層へ浸透したも
のだけであるので、その量はごく僅かである。液不浸透
層を形成するものとしては、カーボンシートなどを使用
することができる。又、濡れ性が悪く、液の浸透を妨げ
る作用をなすものであれば、織布状のものをしようする
ことができる。
In the third invention, a liquid impervious layer is provided at a position in the heat insulating material layer where the temperature (1050 ° C.) at which iron chloride is condensed during operation is provided. Measures are taken to prevent the penetration of iron chloride into the side. According to such a configuration, when the operation of the furnace is stopped, the amount of iron chloride remaining on the furnace wall is very small because it is mainly the gaseous state that has penetrated into the refractory material layer. As a material for forming the liquid impermeable layer, a carbon sheet or the like can be used. In addition, a woven cloth can be used as long as it has poor wettability and has an effect of preventing liquid penetration.

【0017】このような材料を使用すれば、単純な平面
構造以外の炉壁部分にも液不浸透層を設けることができ
る。
If such a material is used, a liquid impermeable layer can be provided also on a furnace wall portion other than a simple planar structure.

【0018】[0018]

【発明の実施の形態】図1は第1の発明に係る炉壁の構
成の一例を示す図である。この炉壁は鉄皮1の炉内側に
低熱伝導率の断熱材2が配置され、その炉内側に耐火煉
瓦3が配置され、2層の内張りが施されている。
FIG. 1 is a diagram showing an example of the configuration of a furnace wall according to the first invention. The furnace wall has a heat insulating material 2 having a low thermal conductivity disposed inside a furnace of a steel shell 1, a refractory brick 3 disposed inside the furnace, and two layers of lining.

【0019】図2は第2の発明に係る炉壁の構成の一例
を示す図である。この炉壁は鉄皮1の炉内側にセラミッ
クファイバーよりなる断熱材4が配置され、その炉内側
にカーボン板5が配置され、さらにその炉内側にセラミ
ックファイバーよりなる耐火材6が配置され、3層の内
張りが施されている。カーボン板5は気体状態の塩化鉄
の浸透を阻止するための層を形成するものであって、操
業時の温度が塩化鉄が気体状態で存在する1050℃以
上になるものと予測される位置に配置される。
FIG. 2 is a diagram showing an example of the configuration of the furnace wall according to the second invention. In the furnace wall, a heat insulating material 4 made of ceramic fiber is arranged inside the furnace of the steel shell 1, a carbon plate 5 is arranged inside the furnace, and a refractory material 6 made of ceramic fiber is arranged inside the furnace. Layered lining. The carbon plate 5 forms a layer for preventing permeation of iron chloride in a gaseous state, and is provided at a position where the temperature during operation is expected to be 1050 ° C. or more where iron chloride exists in a gaseous state. Be placed.

【0020】図3は第3の発明に係る炉壁の構成の一例
を示す図である。この炉壁は鉄皮1の炉内側にセラミッ
クファイバーよりなる断熱材7が配置され、その炉内側
にカーボンシート8が配置され、さらにその炉内側にセ
ラミックファイバーよりなる耐火材9が配置され、3層
の内張りが施されている。カーボンシート8は液体状態
の塩化鉄の浸透を阻止するための層を形成するものであ
って、操業時の温度が塩化鉄が液体状態で存在する10
50℃以下になるものと予測される位置に配置される。
FIG. 3 is a diagram showing an example of the configuration of the furnace wall according to the third invention. In this furnace wall, a heat insulating material 7 made of ceramic fiber is arranged inside the furnace of the steel shell 1, a carbon sheet 8 is arranged inside the furnace, and a refractory material 9 made of ceramic fiber is arranged inside the furnace. Layered lining. The carbon sheet 8 forms a layer for preventing permeation of iron chloride in a liquid state.
It is arranged at a position expected to be 50 ° C. or less.

【0021】次に、本発明の構成による浸珪炉を使用し
た場合の操業結果について説明する。なお、比較のため
に、従来の炉による操業結果についても記載する。
Next, the operation results when the siliconizing furnace according to the present invention is used will be described. For comparison, the results of operation using a conventional furnace are also described.

【0022】(従来例)鉄皮の内側に気孔率90%以上
のセラミックファイバーよりなる耐火材300mmを内
張りした炉を使用した。この炉の操業時における各部の
温度は、炉内が1200℃で、鉄皮の外面が80℃であ
った。
(Conventional example) A furnace was used in which a refractory material made of ceramic fiber having a porosity of 90% or more and having a thickness of 300 mm was lined inside a steel shell. During operation of this furnace, the temperature of each part was 1200 ° C. in the furnace and 80 ° C. on the outer surface of the steel shell.

【0023】この炉による操業を休止し、炉内を観察し
たところ、炉壁にシリカが蜘蛛の巣のように付着してい
た。このシリカを取り除いて操業を再開したが、製品鋼
板の一部に新たに生成したシリカの落下によるものと思
われる表面欠陥が発生した。操業中の炉内からガスを採
取し、デューカップにより露点を測定したところ、この
ガスの露点は−30℃であった。
When the operation in the furnace was stopped and the inside of the furnace was observed, silica was attached to the furnace wall like a spider web. The operation was restarted after removing the silica, but surface defects appeared to be caused by the drop of newly generated silica on a part of the product steel sheet. When a gas was collected from the furnace during operation and the dew point was measured using a Dew cup, the dew point of the gas was -30 ° C.

【0024】(実施例1)鉄皮の内側に30mmの厚さ
のマイクロボアー断熱材(熱伝導率0.1W/(m・
K))を配置し、その炉内側に200mmの耐火煉瓦
(気孔率15%)を内張りした炉を使用した。この炉の
操業時における各部の温度は、炉内が1200℃で、マ
イクロボアー断熱材と耐火煉瓦の境界部が900℃、鉄
皮の外面が130℃であった。
(Example 1) A 30 mm thick microbore heat insulating material (thermal conductivity 0.1 W / (m
K)) was arranged, and a furnace having a 200-mm refractory brick (porosity 15%) lined inside the furnace was used. During operation of this furnace, the temperature of each part was 1200 ° C. inside the furnace, 900 ° C. at the boundary between the microbore insulation and the refractory brick, and 130 ° C. at the outer surface of the steel shell.

【0025】この炉による操業を停止し、炉内を観察し
たところ、シリカの付着は殆ど認められなかった。そし
て、操業を再開したが、シリカの落下によるものと思わ
れる製品鋼板の欠陥は発生しなかった。この実施例にお
いては、熱伝導率が極めて小さい断熱材を使用している
ので、上記のように、僅か30mmの厚さの間で急激な
温度低下が起っている。このため、炉内から浸透してき
た塩化鉄が蓄積される区域の断熱材層の部分が非常に薄
くなって、塩化鉄の蓄積量が非常に少なくり、塩化鉄に
起因する問題が発生しなかったものと考えられる。この
操業中における炉内ガスの露点の測定値は−40℃であ
り、従来の炉を使用した場合よりガス中の水分が減少し
ていることが確認された。
When the operation in this furnace was stopped and the inside of the furnace was observed, adhesion of silica was hardly observed. Then, the operation was restarted, but no defect occurred in the product steel sheet, which was considered to be caused by the fall of silica. In this embodiment, since a heat insulating material having an extremely low thermal conductivity is used, as described above, a sharp temperature drop occurs between the thicknesses of only 30 mm. Therefore, the portion of the heat insulating layer in the area where the iron chloride penetrated from the furnace is accumulated becomes very thin, and the amount of accumulated iron chloride is extremely small, so that the problem caused by the iron chloride does not occur. It is thought that it was. The measured value of the dew point of the gas in the furnace during this operation was −40 ° C., and it was confirmed that the moisture in the gas was lower than in the case where the conventional furnace was used.

【0026】(実施例2)鉄皮の内側に250mmのセ
ラミックファイバーよりなる断熱材を配置し、その炉内
側に緻密なカーボン板を配置し、さらにその炉内側にセ
ラミックファイバーよりなる耐火材を50mm配置した
炉を使用した。このように、この炉はセラミックファイ
バーよりなる断熱材と耐火材の間にガスの浸透を阻止し
得る緻密なカーボン板を挟み込んだ構成による内張りが
なされたものである。
(Example 2) A heat insulating material made of 250 mm ceramic fiber was placed inside a steel shell, a dense carbon plate was placed inside the furnace, and a refractory material made of ceramic fiber was placed 50 mm inside the furnace. The placed furnace was used. As described above, this furnace is lined with a structure in which a dense carbon plate capable of preventing gas permeation is interposed between a heat insulating material made of ceramic fiber and a refractory material.

【0027】この炉の操業時における各部の温度は、炉
内が1200℃で、カーボン板が1000℃、鉄皮の外
面が130℃であった。そして、この炉による操業にお
いては、実施例1の場合と同様に、シリカの落下による
ものと思われる製品鋼板の欠陥は発生せず、操業停止後
の炉内にはシリカの付着は殆ど認められられなかった。
これは、1000℃付近の位置にガス不浸透層となるカ
ーボン板が配置されていたため、凝縮して蓄積する塩化
鉄の量が非常に少なくなっていたためであると考えられ
る。この操業における炉内ガスの露点の測定値は−35
℃であり、従来の炉を使用した場合よりガス中の水分が
減少していることが確認された。
During the operation of this furnace, the temperature of each part was 1200 ° C. in the furnace, 1000 ° C. in the carbon plate, and 130 ° C. in the outer surface of the steel shell. Then, in the operation in this furnace, as in the case of Example 1, no defect of the product steel plate, which is considered to be caused by the fall of silica, occurred, and almost no silica adhesion was observed in the furnace after the operation was stopped. I couldn't.
This is considered to be because the amount of iron chloride condensed and accumulated was very small because the carbon plate serving as the gas impermeable layer was disposed at a position near 1000 ° C. The measured value of the dew point of the furnace gas in this operation was -35.
° C, and it was confirmed that the moisture in the gas was reduced as compared with the case where the conventional furnace was used.

【0028】(実施例3)鉄皮の内側に150mmのセ
ラミックファイバーよりなる断熱材を配置し、その炉内
側にカーボンシートを配置し、さらにその炉内側に15
0mmのセラミックファイバーよりなる耐火材を配置し
た炉を使用した。
(Example 3) A heat insulating material made of a 150 mm ceramic fiber was placed inside a steel shell, a carbon sheet was placed inside the furnace, and 15 mm was placed inside the furnace.
A furnace equipped with a refractory material made of 0 mm ceramic fiber was used.

【0029】この炉の操業時における各部の温度は、炉
内が1200℃で、カーボンシートが600℃、鉄皮の
外面が130℃であった。そして、この炉による操業結
果は、実施例1及び実施例2場合と同様に、シリカの落
下によるものと思われる製品鋼板の欠陥は発生せず、操
業停止後の炉内にはシリカの付着は殆ど認められられな
かった。これは、この炉がセラミックファイバーよりな
る断熱材と耐火材の間に液の浸透を阻止し得るカーボン
シートを挟み込んだ構成による内張りがなされたもので
あって、凝縮した塩化鉄がカーボンシート配置された6
00℃付近の位置よりも炉内側のセラミックファイバー
の耐火材内だけに留まっていたためであるものと考えら
れる。
During operation of this furnace, the temperature of each part was 1200 ° C. in the furnace, 600 ° C. in the carbon sheet, and 130 ° C. in the outer surface of the steel shell. The results of the operation by this furnace show that, as in the case of Example 1 and Example 2, no defect of the product steel plate, which seems to be caused by the fall of silica, occurred, and the adhesion of silica in the furnace after the operation was stopped. Almost no. This is a furnace in which a carbon sheet capable of preventing liquid permeation is interposed between a heat insulating material made of ceramic fiber and a refractory material. 6
It is considered that the reason was that the material remained only in the refractory material of the ceramic fiber inside the furnace than at a position near 00 ° C.

【0030】[0030]

【発明の効果】上述のように、本発明によれば、炉壁
が、炉内から炉壁へ浸透してきた気体あるいは液体の塩
化鉄がある位置で浸透が阻止されるように構成されてお
り、炉壁内に蓄積される塩化鉄の量が非常に少なくなる
ので、炉壁に蓄積された塩化鉄に起因するシリカの発生
が防止され、製品鋼板の欠陥が減少して歩留が向上する
と共に、炉の点検・整備の周期を長くすることが可能に
なる。
As described above, according to the present invention, the furnace wall is configured such that the penetration is prevented at a position where gaseous or liquid iron chloride penetrating from the inside of the furnace to the furnace wall is present. Since the amount of iron chloride accumulated in the furnace wall is very small, the generation of silica due to the iron chloride accumulated in the furnace wall is prevented, the defects of the product steel plate are reduced, and the yield is improved. At the same time, it is possible to lengthen the cycle of furnace inspection and maintenance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明に係る炉壁の構成の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a configuration of a furnace wall according to a first invention.

【図2】第2の発明に係る炉壁の構成の一例を示す図で
ある。
FIG. 2 is a diagram showing an example of a configuration of a furnace wall according to a second invention.

【図3】第3の発明に係る炉壁の構成の一例を示す図で
ある。
FIG. 3 is a view showing an example of a configuration of a furnace wall according to a third invention.

【符号の説明図】[Explanation of symbols]

1 鉄皮 2 低熱伝導率の断熱材 3 耐火煉瓦 4 セラミックファイバーよりなる断熱材4 5 カーボン板 6 セラミックファイバーよりなる耐火材 7 セラミックファイバーよりなる断熱材 8 カーボンシート 9 セラミックファイバーよりなる耐火材 DESCRIPTION OF SYMBOLS 1 Iron shell 2 Insulation material with low thermal conductivity 3 Refractory brick 4 Insulation material made of ceramic fiber 4 5 Carbon plate 6 Refractory material made of ceramic fiber 7 Insulation material made of ceramic fiber 8 Carbon sheet 9 Refractory material made of ceramic fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高珪素鋼板を製造するための浸珪処理を
行なう浸珪炉において、鉄皮の炉内側に低熱伝導率の断
熱材層、耐火材層の順で2層の内張りが施された炉壁を
有することを特徴とする浸珪炉。
In a siliconizing furnace for performing a siliconizing treatment for producing a high silicon steel sheet, two layers of a heat insulating material layer having a low thermal conductivity and a refractory material layer are provided on the inside of a furnace of a steel shell in this order. A silicified furnace characterized by having a furnace wall.
【請求項2】 高珪素鋼板を製造するための浸珪処理を
行なう浸珪炉において、鉄皮の炉内側に断熱材層、ガス
不浸透層、耐火材層の順で3層の内張りが施された炉壁
を有することを特徴とする浸珪炉。
2. In a siliconizing furnace for performing a siliconizing treatment for manufacturing a high silicon steel sheet, three layers of lining are provided in the order of a heat insulating material layer, a gas impervious layer, and a refractory material layer inside the furnace of the steel shell. A silicified furnace characterized by having a furnace wall which is provided.
【請求項3】 高珪素鋼板を製造するための浸珪処理を
行なう浸珪炉において、鉄皮の炉内側に断熱材層、液不
浸透層、断熱材層、耐火材層の順で4層の内張りが施さ
れた炉壁を有することを特徴とする浸珪炉。
3. In a siliconizing furnace for performing a siliconizing treatment for producing a high silicon steel sheet, four layers of a heat insulating material layer, a liquid impervious layer, a heat insulating material layer, and a refractory material layer are provided in this order on the inside of the furnace of the steel shell. A furnace for siliconizing characterized by having a furnace wall provided with a lining.
JP11090544A 1999-03-31 1999-03-31 Silicifying furnace Pending JP2000283655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11090544A JP2000283655A (en) 1999-03-31 1999-03-31 Silicifying furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11090544A JP2000283655A (en) 1999-03-31 1999-03-31 Silicifying furnace

Publications (1)

Publication Number Publication Date
JP2000283655A true JP2000283655A (en) 2000-10-13

Family

ID=14001369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11090544A Pending JP2000283655A (en) 1999-03-31 1999-03-31 Silicifying furnace

Country Status (1)

Country Link
JP (1) JP2000283655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040338A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Siliconizing treatment apparatus
WO2019054222A1 (en) * 2017-09-12 2019-03-21 Jfeスチール株式会社 Refractory for siliconizing furnaces

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040338A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Siliconizing treatment apparatus
WO2019054222A1 (en) * 2017-09-12 2019-03-21 Jfeスチール株式会社 Refractory for siliconizing furnaces
KR20200039740A (en) * 2017-09-12 2020-04-16 제이에프이 스틸 가부시키가이샤 Refractory for impregnation treatment furnace
CN111094212A (en) * 2017-09-12 2020-05-01 杰富意钢铁株式会社 Refractory for siliconizing treatment furnace
KR102401344B1 (en) * 2017-09-12 2022-05-23 제이에프이 스틸 가부시키가이샤 Refractory materials for acupuncture furnaces

Similar Documents

Publication Publication Date Title
JP5674527B2 (en) Equipment suitable for contact with hot gases
JPS5829129Y2 (en) Multilayer molded insulation material for vacuum furnaces
TWI248916B (en) Flexible high purity expanded graphite sheet, and carbon crucible lining using said sheet
Hansson et al. Oxidation behaviour of a MoSi2-based composite in different atmospheres in the low temperature range (400–550° C)
Li et al. High-temperature oxidation behavior of dense SiBCN monoliths: carbon-content dependent oxidation structure, kinetics and mechanisms
Shimoo et al. Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O2 gas mixtures
Zhuang et al. In-situ PIP-SiC NWs-toughened SiC–CrSi2–Cr3C2–MoSi2–Mo2C coating for oxidation protection of carbon/carbon composites
JPH0356795A (en) Adiabatic system
Lu et al. Optimal rare-earth disilicates as top coat in multilayer environmental barrier coatings
Dong et al. Improved water vapor resistance of environmental barrier coatings densified by aluminum infiltration
JP2005281085A (en) Crucible made of graphite
JP2000283655A (en) Silicifying furnace
JPH062637B2 (en) Single crystal pulling device
JP5864591B2 (en) Reduction of Pt and Rh evaporation loss at high temperature by using a barrier layer
He et al. Microstructural evolution of Hi-NicalonTM SiC fibers annealed and crept in various oxygen partial pressure atmospheres
JP6530659B2 (en) Ceramic composite and method of manufacturing the same
US10287703B2 (en) Substrate with low-permeability coating for the solidification of silicon
Koh et al. Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface
TW200905021A (en) Expandable graphite sheet, method for protecting carbonaceous crucible using the expandable graphite sheet, and single crystal pulling apparatus
Yan et al. Facile preparation of a SiC@ SiO 2 nanowire-toughened ZrB 2-SiC/SiC bilayer coating with good interfacial bonding, high toughness, and excellent cyclic ablation resistance on C/CA composites.
Rams et al. Dual layer silica coatings of SiC particle reinforcements in aluminium matrix composites
Butchereit et al. Oxidation behavior of precursor dervied ceramics in the system Si-(B)-CN
JPH031271B2 (en)
Ghanem et al. Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique
CN110342494A (en) The preparation and application of silicon nitride enveloped carbon nanometer tube

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070129