JPWO2019032373A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019032373A5
JPWO2019032373A5 JP2020507575A JP2020507575A JPWO2019032373A5 JP WO2019032373 A5 JPWO2019032373 A5 JP WO2019032373A5 JP 2020507575 A JP2020507575 A JP 2020507575A JP 2020507575 A JP2020507575 A JP 2020507575A JP WO2019032373 A5 JPWO2019032373 A5 JP WO2019032373A5
Authority
JP
Japan
Prior art keywords
region
dielectric
dielectric barrier
gate
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020507575A
Other languages
Japanese (ja)
Other versions
JP2020530662A (en
Publication date
Priority claimed from US15/675,197 external-priority patent/US10446572B2/en
Application filed filed Critical
Publication of JP2020530662A publication Critical patent/JP2020530662A/en
Publication of JPWO2019032373A5 publication Critical patent/JPWO2019032373A5/ja
Pending legal-status Critical Current

Links

Description

誘電体ブロック領域109とゲート115との間にある薄い領域として構造化される誘電体バリア110は、ゲート115から誘電体ブロック領域109を通って電荷トラップ領域105への電子のバックトンネルを防止するトンネルバリアの向上を可能にし、それによって、動作上の消去飽和を小さい正の閾値電圧(V)レベルまたは小さい負の閾値電圧(V)レベルに制限することができる。誘電体バリア110は、誘電体ブロック領域109とゲート115との間に約15オングストローム~約50オングストロームの範囲の厚さを有し得る。誘電体バリア110の材料の選択はCT構造101の製作に基づき得る。例えば、ボイド120を含むCT構造101がCT構造101の側面に対するエリアからの材料の除去によって形成されるプロセスでは、誘電体バリア110の材料は、誘電体バリア110の材料がCT構造101の側面からのこれらの材料の除去に使用される処理ケミストリ及び温度において除去を阻むように、選択されることができる。誘電体バリア110の材料は、マスクとして働き、係る除去プロセスでは誘電体ブロック領域109の除去を防止することができる。 The dielectric barrier 110, which is structured as a thin region between the dielectric block region 109 and the gate 115, prevents electron back tunneling from the gate 115 through the dielectric block region 109 to the charge trap region 105. It allows for improved tunnel barriers, thereby limiting operational erasure saturation to small positive threshold voltage ( Vt ) levels or small negative threshold voltage ( Vt ) levels. The dielectric barrier 110 may have a thickness in the range of about 15 angstroms to about 50 angstroms between the dielectric block region 109 and the gate 115. The choice of material for the dielectric barrier 110 may be based on the fabrication of the CT structure 101. For example, in a process in which the CT structure 101 containing the void 120 is formed by removing the material from the area relative to the side surface of the CT structure 101, the material of the dielectric barrier 110 is such that the material of the dielectric barrier 110 is from the side surface of the CT structure 101. Can be selected to prevent removal at the treatment chemistry and temperature used to remove these materials. The material of the dielectric barrier 110 acts as a mask and can prevent the removal of the dielectric block region 109 in such a removal process.

図4は、導電領域の上方に電荷トラップ構造を形成する例示的な方法400の実施形態の特徴のフロー図である。410において、誘電体バリアは、材料スタック内の開口部の壁上に形成される。誘電体バリアを形成することは、酸化アルミニウム、または酸化アルミニウムの誘電率よりも大きい誘電率を有する誘電体を形成することを含み得る。他の誘電体を使用し得る。誘電体バリアを形成することは、電荷トラップ構造の処理中にエッチングされる誘電体ブロック領域をマスクするための温度及びエッチングケミストリに耐えることができる材料で誘電体バリアを形成することを含み得る。 FIG. 4 is a flow diagram of the features of the embodiment of the exemplary method 400 of forming a charge trap structure above the conductive region. At 410, the dielectric barrier is formed on the wall of the opening in the material stack. Forming a dielectric barrier may include forming aluminum oxide, or a dielectric having a dielectric constant greater than that of aluminum oxide. Other dielectrics may be used. Forming a dielectric barrier may include forming the dielectric barrier with a material that can withstand the temperature and etching chemistry to mask the dielectric block regions etched during the processing of the charge trap structure.

方法400と同様または同一の方法は、開口部を材料スタック内に形成することを含み得、材料スタックは交互に並ぶ犠牲領域及び分離誘電体を有する。誘電体バリアの材料を実質的に除去することなく犠牲領域を除去するケミストリ及びプロセスを使用して、誘電体バリアに隣接する犠牲領域を除去することができる。ゲートは犠牲領域が除去されている領域内に形成されることができ、隣接ゲートは犠牲領域の別の1つが除去されている領域内に形成されることができる。誘電体バリアの材料を実質的に除去することなく、ゲートの材料を実質的に除去することなく、及び隣接ゲートの材料を実質的に除去することなく、隣接する犠牲領域の間に事前に形成した分離誘電体を除去するケミストリ及びプロセスによって、開放エリアを形成するために、ゲートと隣接ゲートとの間から材料を除去することができる。ボイドを形成するために、開放エリアの少なくとも一部に誘電体を形成することができる。 Similar or identical methods to method 400 may include forming openings in the material stack, the material stack having alternating sacrificial regions and separating dielectrics. Chemistries and processes that remove the sacrificial region without substantially removing the material of the dielectric barrier can be used to remove the sacrificial region adjacent to the dielectric barrier. A gate can be formed in the area where the sacrificial area has been removed, and an adjacent gate can be formed in the area where another one of the sacrificial areas has been removed. Preformed between adjacent sacrificial regions without substantially removing the material of the dielectric barrier, without substantially removing the material of the gate, and without substantially removing the material of the adjacent gate. The chemistry and process of removing the separated dielectric can remove material from between the gate and the adjacent gate to form an open area. Dielectrics can be formed in at least a portion of the open area to form voids.

520において、誘電体バリアの材料に接触する複数のゲートは形成され、各ゲートが開放エリアによって複数のゲートの垂直隣接ゲートから分離されるように、材料をスタックから除去し、誘電体バリアの材料の一部を露出する。誘電体バリアの材料に接触する複数のゲートを形成し、各ゲートが複数のゲートの垂直隣接ゲートから分離されるように材料を除去することは、材料のスタックが、トンネル領域、電荷トラップ領域、誘電体ブロック領域、及び誘電体バリアを形成するために、材料に隣接する交互に並ぶ犠牲領域及び分離誘電体を含む状態で、誘電体バリアの材料を実質的に除去することなく犠牲領域を除去するケミストリ及びプロセスを使用して、誘電体バリアの材料に隣接する犠牲領域を除去することと、ゲート材料を犠牲領域が除去される各領域内に形成することと、誘電体バリアの材料を実質的に除去することなく及び各領域内のゲート材料を実質的に除去することなく、隣接する犠牲領域の間に事前に形成した分離誘電体を除去するケミストリ及びプロセスによって、各ゲート間から材料を除去することと、を含み得る。ゲート材料を犠牲領域が除去される各領域内に形成することは、メモリデバイスのメモリアレイ内のアクセス線に結合されるゲート材料を形成することを含み得る。 At 520, the material is removed from the stack so that a plurality of gates in contact with the material of the dielectric barrier are formed and each gate is separated from the vertically adjacent gates of the plurality of gates by an open area, and the material of the dielectric barrier. Exposing a part of. Forming multiple gates in contact with the material of the dielectric barrier and removing the material so that each gate is separated from the vertically adjacent gates of the multiple gates is a stack of materials in the tunnel region, charge trap region, Dielectric block regions, and sacrificial regions that include alternating sacrificial regions and separate dielectrics adjacent to the material to form the dielectric barrier, without substantially removing the material of the dielectric barrier. The removal of sacrificial regions adjacent to the material of the dielectric barrier and the formation of gate material within each region where the sacrificial region is removed, and the material of the dielectric barrier. From between each gate by a chemistry and process that removes the preformed separation dielectric between adjacent sacrificial regions without substantially removing the gate material within each region. May include removing material. Forming a gate material within each region where the sacrificial region is removed may include forming a gate material that is coupled to an access line in the memory array of the memory device.

図6A~図6Nは、電子デバイス内の複数のCT構造を形成する実施形態の段階の特徴を示す断面図である。図6Aは、基板602上の導電性領域613の上方に材料スタック621を示す。材料スタック621は、導電性領域613の上方に、交互に並ぶ分離誘電体618及び犠牲領域619を含む。交互に並ぶ分離誘電体618及び犠牲領域619の数は、垂直スタック内に形成されるCT構造の数によって決定され得る。3次元メモリデバイスでは、この数は、メモリデバイスのメモリアレイの段数(例えば、段毎の分離誘電体618及び犠牲領域619の対の数)によって決定され得る。メモリデバイスのメモリアレイの3つの段に対応し得る3つの分離誘電体618及び3つの犠牲領域619は、説明しやすくするために図6Aに示される。分離誘電体618は、限定ではないが、酸化ケイ素等の酸化物を含み得、犠牲領域619は、限定ではないが、窒化ケイ素等の窒化物を含み得る。分離誘電体618及び犠牲領域619の材料の選択は、複数のCT構造を製作する際に使用される温度及びケミストリによって決定され得る。 6A-6N are cross-sectional views showing the characteristics of the stages of the embodiment forming a plurality of CT structures in an electronic device. FIG. 6A shows the material stack 621 above the conductive region 613 on the substrate 602. The material stack 621 includes alternating dielectrics 618 and sacrificial regions 619 above the conductive regions 613. The number of alternating dielectrics 618 and sacrificial regions 619 can be determined by the number of CT structures formed in the vertical stack. In a three-dimensional memory device, this number can be determined by the number of stages in the memory array of the memory device (eg, the number of pairs of separating dielectric 618 and sacrificial region 619 per stage). Three separate dielectrics 618 and three sacrificial regions 619 that can correspond to the three stages of the memory array of the memory device are shown in FIG. 6A for ease of explanation. The separation dielectric 618 may include, but is not limited to, an oxide such as silicon oxide, and the sacrificial region 619 may contain, but not limited to, a nitride such as silicon nitride. The choice of materials for the separating dielectric 618 and the sacrificial region 619 can be determined by the temperature and chemistry used in the fabrication of multiple CT structures.

図6Kは、ゲート615の材料の間の分離領域618の材料を除去した後の図6Jの構造を示す。分離領域618の段の除去は、ゲート615の材料及び誘電体バリア610の材料の選択と関連して選択されるケミストリを使用して行われる。選択のために使用される基準は、ゲート615の材料及び誘電体バリア610の材料に対して選択的であるケミストリを選択することを含み得、それにより、ケミストリは、ゲート615の材料及び誘電体バリア610の材料に実質的に影響を及ぼさない。誘電体バリア610の材料は、誘電体ブロック領域609の材料を除去することなく、分離領域618の段を除去することを可能にするマスクとして働く。分離領域618の段の除去は、フッ化水素(HF)、蒸気エッチング、または誘電体バリア610の材料が耐えることができる他のケミストリの使用を含み得、これにより、誘電体ブロック領域609の下層にある材料は、分離領域618の段の除去によって除去されない。 FIG. 6K shows the structure of FIG. 6J after removing the material in the separation region 618 between the materials in the gate 615. Removal of the stage of the separation region 618 is performed using chemistry selected in connection with the selection of the material of the gate 615 and the material of the dielectric barrier 610. The criteria used for selection may include selecting a chemistry that is selective for the material of the gate 615 and the material of the dielectric barrier 610, whereby the chemistry may include the material and dielectric of the gate 615. It has virtually no effect on the material of the barrier 610. The material of the dielectric barrier 610 acts as a mask that allows the steps of the separation region 618 to be removed without removing the material of the dielectric block region 609. Removal of the stage of separation region 618 may include hydrogen fluoride (HF), vapor etching, or the use of other chemistries that the material of the dielectric barrier 610 can withstand, thereby underlaying the dielectric block region 609. The material at is not removed by the removal of the steps of the separation region 618.

AlOまたは他の高誘電率(高k(high-k))材料等の誘電体バリア610の材料は、窒化物除去等の犠牲領域619の高温リン酸除去と、酸化物段除去等の分離領域618の除去のために使用されるHFまたは他のケミストリとの両方に抵抗することが可能であるように堆積される。AlOに関して、これらのケミストリに耐えるようにAlOを堆積するために実施され得る、高温ALDプロセス及びハロゲン化合物ベースALDプロセスがある。ハロゲン化物法は、これらの堆積膜が高温リン酸ならびにHF及び他の酸化物エッチングケミストリに耐えるように実施され得るように、HfO及び他の高誘電率材料を堆積するために存在する。除去プロセスを存続するようにHfO及び/または誘電体バリア610の他の高誘電率材料を形成するための他のプロセスは、標準的な金属有機ALD前駆体の使用を含み得る。除去プロセスを存続するために誘電体バリア610を条件付ける他のプロセスは、ALD堆積後の様々な処置を使用することを含み得る。これらの他のプロセスは、アニール(不活性環境または反応環境のいずか一方で行われる)、プラズマ処理等を含み得る。 Dielectric barrier 610 materials, such as AlO x or other high dielectric constant ( high-k ) materials, are separated from high-temperature phosphoric acid removal in the sacrificial region 619, such as nitride removal, and oxide stage removal, etc. Accumulated to be capable of resisting both HF or other chemistries used for the removal of region 618. For AlO x , there are high temperature ALD processes and halogen compound based ALD processes that can be performed to deposit AlO x to withstand these chemistries . Halide methods exist to deposit HfOx and other high dielectric constant materials so that these deposits can be implemented to withstand high temperature phosphoric acid and HF and other oxide etching chemistries . Other processes for forming HfO x and / or other high dielectric constant materials of the dielectric barrier 610 to survive the removal process may include the use of standard metal organic ALD precursors. Other processes that condition the dielectric barrier 610 to survive the removal process may include the use of various treatments after ALD deposition. These other processes may include annealing (performed in either the inert environment or the reaction environment), plasma treatment and the like.

JP2020507575A 2017-08-11 2018-08-02 Void formation of charge trap structure Pending JP2020530662A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/675,197 2017-08-11
US15/675,197 US10446572B2 (en) 2017-08-11 2017-08-11 Void formation for charge trap structures
PCT/US2018/044990 WO2019032373A1 (en) 2017-08-11 2018-08-02 Void formation for charge trap structures

Publications (2)

Publication Number Publication Date
JP2020530662A JP2020530662A (en) 2020-10-22
JPWO2019032373A5 true JPWO2019032373A5 (en) 2022-05-20

Family

ID=65271376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507575A Pending JP2020530662A (en) 2017-08-11 2018-08-02 Void formation of charge trap structure

Country Status (8)

Country Link
US (3) US10446572B2 (en)
EP (1) EP3665726A4 (en)
JP (1) JP2020530662A (en)
KR (2) KR20210149242A (en)
CN (1) CN111164756A (en)
SG (1) SG11202001123PA (en)
TW (1) TWI692855B (en)
WO (1) WO2019032373A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136128B2 (en) 2011-08-31 2015-09-15 Micron Technology, Inc. Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials
US10164009B1 (en) 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
US10680006B2 (en) 2017-08-11 2020-06-09 Micron Technology, Inc. Charge trap structure with barrier to blocking region
US10446572B2 (en) 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10453855B2 (en) 2017-08-11 2019-10-22 Micron Technology, Inc. Void formation in charge trap structures
US10593695B1 (en) 2018-10-17 2020-03-17 Micron Technology, Inc. Integrated assemblies having charge-trapping material arranged in vertically-spaced segments, and methods of forming integrated assemblies
JP7086883B2 (en) * 2019-03-22 2022-06-20 キオクシア株式会社 Semiconductor storage device
US11211399B2 (en) 2019-08-15 2021-12-28 Micron Technology, Inc. Electronic apparatus with an oxide-only tunneling structure by a select gate tier, and related methods
CN110785844B (en) * 2019-09-20 2021-01-29 长江存储科技有限责任公司 Three-dimensional memory device and method of fabricating the same
JP2021118234A (en) * 2020-01-23 2021-08-10 キオクシア株式会社 Semiconductor storage device
US11672118B2 (en) 2020-09-04 2023-06-06 Micron Technology, Inc. Electronic devices comprising adjoining oxide materials and related systems
US11956954B2 (en) 2020-11-09 2024-04-09 Micron Technology, Inc. Electronic devices comprising reduced charge confinement regions in storage nodes of pillars and related methods
CN112103292B (en) * 2020-11-10 2021-02-12 长江先进存储产业创新中心有限责任公司 Memory and manufacturing method thereof
US11856766B2 (en) * 2021-08-02 2023-12-26 Micron Technology, Inc. Memory cell having programmable material comprising at least two regions comprising SiNx

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292677A (en) 1992-09-18 1994-03-08 Micron Technology, Inc. Reduced mask CMOS process for fabricating stacked capacitor multi-megabit dynamic random access memories utilizing single etch stop layer for contacts
KR100331554B1 (en) 1999-09-27 2002-04-06 윤종용 Capacitor array preventing crosstalk between adjacent capacitors in semiconductor device and method for fabricating the same
US6639835B2 (en) 2000-02-29 2003-10-28 Micron Technology, Inc. Static NVRAM with ultra thin tunnel oxides
TW497120B (en) 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
TW486773B (en) 2001-05-02 2002-05-11 Taiwan Semiconductor Mfg Method for forming air gap in bit line structure
TW490748B (en) 2001-05-04 2002-06-11 Macronix Int Co Ltd Flash memory structure
US7253467B2 (en) 2001-06-28 2007-08-07 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory devices
US6674138B1 (en) 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices
US6795348B2 (en) 2002-05-29 2004-09-21 Micron Technology, Inc. Method and apparatus for erasing flash memory
US6794764B1 (en) 2003-03-05 2004-09-21 Advanced Micro Devices, Inc. Charge-trapping memory arrays resistant to damage from contact hole information
US7045849B2 (en) 2003-05-21 2006-05-16 Sandisk Corporation Use of voids between elements in semiconductor structures for isolation
JP2005026589A (en) 2003-07-04 2005-01-27 Toshiba Corp Semiconductor memory and its manufacturing method
JP2006302950A (en) 2005-04-15 2006-11-02 Renesas Technology Corp Nonvolatile semiconductor device and method of manufacturing the same
US7436018B2 (en) * 2005-08-11 2008-10-14 Micron Technology, Inc. Discrete trap non-volatile multi-functional memory device
US8436410B2 (en) 2005-10-31 2013-05-07 Samsung Electronics Co., Ltd. Semiconductor devices comprising a plurality of gate structures
KR100784860B1 (en) 2005-10-31 2007-12-14 삼성전자주식회사 Nonvalitile memory device and method for fabricating the same
EP1804293A1 (en) 2005-12-30 2007-07-04 STMicroelectronics S.r.l. Process for manufacturing a non volatile memory electronic device
JP4762041B2 (en) 2006-04-24 2011-08-31 株式会社東芝 Nonvolatile semiconductor memory
JP2007299975A (en) 2006-05-01 2007-11-15 Renesas Technology Corp Semiconductor device, and its manufacturing method
JP4282692B2 (en) 2006-06-27 2009-06-24 株式会社東芝 Manufacturing method of semiconductor device
JP4764288B2 (en) 2006-08-22 2011-08-31 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US8106376B2 (en) 2006-10-24 2012-01-31 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US8686490B2 (en) 2006-12-20 2014-04-01 Sandisk Corporation Electron blocking layers for electronic devices
JP2008192991A (en) 2007-02-07 2008-08-21 Toshiba Corp Semiconductor device
KR100855993B1 (en) 2007-04-03 2008-09-02 삼성전자주식회사 Charge trap flash memory device and the method of manufacturing the same
JP2008283045A (en) 2007-05-11 2008-11-20 Toshiba Corp Method of manufacturing semiconductor device, and the semiconductor device
JP2008283095A (en) 2007-05-14 2008-11-20 Toshiba Corp Nonvolatile semiconductor memory device and method of manufacturing the same
US20090001443A1 (en) * 2007-06-29 2009-01-01 Intel Corporation Non-volatile memory cell with multi-layer blocking dielectric
JP4594973B2 (en) * 2007-09-26 2010-12-08 株式会社東芝 Nonvolatile semiconductor memory device
JP5148242B2 (en) 2007-10-29 2013-02-20 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2009123743A (en) 2007-11-12 2009-06-04 Panasonic Corp Manufacturing method of semiconductor device
JP2009212218A (en) 2008-03-03 2009-09-17 Toshiba Corp Semiconductor storage device and method for manufacturing the same
JP2009302116A (en) 2008-06-10 2009-12-24 Toshiba Corp Semiconductor device and method of fabricating it
KR101052921B1 (en) 2008-07-07 2011-07-29 주식회사 하이닉스반도체 Manufacturing method of flash memory device having vertical floating gate
JP4956500B2 (en) 2008-07-22 2012-06-20 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US20100078758A1 (en) 2008-09-29 2010-04-01 Sekar Deepak C Miim diodes
JP5515281B2 (en) 2008-12-03 2014-06-11 ソニー株式会社 THIN FILM TRANSISTOR, DISPLAY DEVICE, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
JP2010165803A (en) 2009-01-14 2010-07-29 Toshiba Corp Method of manufacturing semiconductor memory device, and semiconductor memory device
US8860124B2 (en) 2009-01-15 2014-10-14 Macronix International Co., Ltd. Depletion-mode charge-trapping flash device
JP2010177279A (en) 2009-01-27 2010-08-12 Toshiba Corp Nand flash memory and method for manufacturing the same
JP5395460B2 (en) 2009-02-25 2014-01-22 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
US8258034B2 (en) 2009-08-26 2012-09-04 Micron Technology, Inc. Charge-trap based memory
KR101603731B1 (en) 2009-09-29 2016-03-16 삼성전자주식회사 Vertical nand charge trap flash memory device and method for manufacturing same
JP2011165815A (en) 2010-02-08 2011-08-25 Toshiba Corp Nonvolatile semiconductor memory device
US8455940B2 (en) 2010-05-24 2013-06-04 Samsung Electronics Co., Ltd. Nonvolatile memory device, method of manufacturing the nonvolatile memory device, and memory module and system including the nonvolatile memory device
KR101660432B1 (en) 2010-06-07 2016-09-27 삼성전자 주식회사 Semiconductor memory device having vertical structure
US8546239B2 (en) 2010-06-11 2013-10-01 Sandisk Technologies Inc. Methods of fabricating non-volatile memory with air gaps
US8946048B2 (en) 2010-06-19 2015-02-03 Sandisk Technologies Inc. Method of fabricating non-volatile memory with flat cell structures and air gap isolation
US8603890B2 (en) 2010-06-19 2013-12-10 Sandisk Technologies Inc. Air gap isolation in non-volatile memory
US8492224B2 (en) 2010-06-20 2013-07-23 Sandisk Technologies Inc. Metal control gate structures and air gap isolation in non-volatile memory
US8187936B2 (en) 2010-06-30 2012-05-29 SanDisk Technologies, Inc. Ultrahigh density vertical NAND memory device and method of making thereof
US8237213B2 (en) * 2010-07-15 2012-08-07 Micron Technology, Inc. Memory arrays having substantially vertical, adjacent semiconductor structures and the formation thereof
KR20120007838A (en) 2010-07-15 2012-01-25 삼성전자주식회사 Vertical non-volatile memory device and methods of fabricating the same
KR101699515B1 (en) 2010-09-01 2017-02-14 삼성전자주식회사 Three Dimensional Semiconductor Memory Device And Method Of Fabricating The Same
US20130341701A1 (en) 2010-10-18 2013-12-26 Imec Vertical Semiconductor Memory Device and Manufacturing Method Thereof
JP2012109450A (en) 2010-11-18 2012-06-07 Toshiba Corp Non-volatile semiconductor memory device and method for manufacturing the same
JP5570953B2 (en) 2010-11-18 2014-08-13 株式会社東芝 Nonvolatile semiconductor memory device and method of manufacturing nonvolatile semiconductor memory device
US9054038B2 (en) 2011-01-25 2015-06-09 Applied Materials, Inc. Floating gates and methods of formation
JP2011082581A (en) 2011-01-25 2011-04-21 Tokyo Electron Ltd Memory device
JP5059204B2 (en) 2011-02-21 2012-10-24 株式会社東芝 Manufacturing method of semiconductor memory device
US8445347B2 (en) 2011-04-11 2013-05-21 Sandisk Technologies Inc. 3D vertical NAND and method of making thereof by front and back side processing
JP2012234980A (en) 2011-05-02 2012-11-29 Toshiba Corp Nonvolatile semiconductor storage device and manufacturing method of the same
KR20120007838U (en) 2011-05-04 2012-11-14 김종섭 Automatic Water Circulation Briquette Boiler
JP5613105B2 (en) 2011-05-27 2014-10-22 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
KR20120137861A (en) 2011-06-13 2012-12-24 삼성전자주식회사 Non-volatile memory device and mehtod of manufacturing the same
US9136128B2 (en) 2011-08-31 2015-09-15 Micron Technology, Inc. Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials
JP2013055131A (en) 2011-09-01 2013-03-21 Toshiba Corp Nonvolatile semiconductor memory device
US8709894B2 (en) 2011-09-16 2014-04-29 Micron Technology, Inc. 3D structured memory devices and methods for manufacturing thereof
KR102031182B1 (en) 2011-11-29 2019-10-14 삼성전자주식회사 Semiconductor memory devices and methods for fabricating the same
KR101929453B1 (en) 2012-03-27 2018-12-14 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same
KR20130116607A (en) 2012-04-16 2013-10-24 삼성전자주식회사 Three dimensional semiconductor memory device and method of fabricating the same
US8658499B2 (en) 2012-07-09 2014-02-25 Sandisk Technologies Inc. Three dimensional NAND device and method of charge trap layer separation and floating gate formation in the NAND device
KR101933116B1 (en) 2012-09-13 2018-12-27 삼성전자주식회사 Vertical memory devices and methods of manufacturing the same
KR102018614B1 (en) * 2012-09-26 2019-09-05 삼성전자주식회사 Semiconductor Device and Method ofFabricating the Same
JP6095951B2 (en) * 2012-11-09 2017-03-15 エスケーハイニックス株式会社SK hynix Inc. Semiconductor device and manufacturing method thereof
KR20140069925A (en) 2012-11-30 2014-06-10 에스케이하이닉스 주식회사 Semiconductor memory device and Manufacturing method thereof
US8946807B2 (en) 2013-01-24 2015-02-03 Micron Technology, Inc. 3D memory
US8637817B1 (en) 2013-03-01 2014-01-28 The Rockefeller University Multi-pole ion trap for mass spectrometry
US20150137062A1 (en) 2013-03-14 2015-05-21 Intermolecular Inc. Mimcaps with quantum wells as selector elements for crossbar memory arrays
US9184175B2 (en) 2013-03-15 2015-11-10 Micron Technology, Inc. Floating gate memory cells in vertical memory
WO2015105049A2 (en) 2014-01-10 2015-07-16 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing same
KR20150085735A (en) 2014-01-16 2015-07-24 삼성전자주식회사 Semiconductor device and method of manufacturing the same
KR102190647B1 (en) 2014-02-24 2020-12-14 삼성전자주식회사 Semiconductor Memory Device And Method of Fabricating The Same
KR102170770B1 (en) 2014-03-03 2020-10-28 삼성전자주식회사 Semiconductor device
JP2015177013A (en) 2014-03-14 2015-10-05 株式会社東芝 Semiconductor storage device
KR102248205B1 (en) 2014-06-25 2021-05-04 삼성전자주식회사 Semiconductor device having vertical channel and air gap
US9177966B1 (en) 2014-07-08 2015-11-03 Sandisk Technologies Inc. Three dimensional NAND devices with air gap or low-k core
US9356031B2 (en) 2014-08-11 2016-05-31 Sandisk Technologies Inc. Three dimensional NAND string memory devices with voids enclosed between control gate electrodes
US9245901B1 (en) * 2014-08-21 2016-01-26 Macronix International Co., Ltd. Memory device and method for fabricating the same
US9576975B2 (en) 2014-08-26 2017-02-21 Sandisk Technologies Llc Monolithic three-dimensional NAND strings and methods of fabrication thereof
US9666593B2 (en) 2014-09-29 2017-05-30 Sandisk Technologies Llc Alternating refractive index in charge-trapping film in three-dimensional memory
US9793124B2 (en) * 2014-10-07 2017-10-17 Micron Technology, Inc. Semiconductor structures
US9748311B2 (en) 2014-11-07 2017-08-29 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
FR3030883B1 (en) 2014-12-17 2017-12-22 Stmicroelectronics Rousset VERTICAL SELECTION GRID MEMORY CELL FORMED IN A FDSOI TYPE SUBSTRATE
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9711524B2 (en) 2015-01-13 2017-07-18 Sandisk Technologies Llc Three-dimensional memory device containing plural select gate transistors having different characteristics and method of making thereof
US20160343657A1 (en) * 2015-05-22 2016-11-24 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9368510B1 (en) 2015-05-26 2016-06-14 Sandisk Technologies Inc. Method of forming memory cell with high-k charge trapping layer
KR102357992B1 (en) 2015-05-26 2022-02-04 삼성전자주식회사 Semiconductor device
JP6343256B2 (en) * 2015-05-29 2018-06-13 東芝メモリ株式会社 Semiconductor device and manufacturing method thereof
US9455261B1 (en) 2015-07-10 2016-09-27 Micron Technology, Inc. Integrated structures
TWI627733B (en) 2015-07-24 2018-06-21 旺宏電子股份有限公司 Memory device and method for fabricating the same
US9659957B2 (en) * 2015-08-26 2017-05-23 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing same
KR102437416B1 (en) * 2015-08-28 2022-08-30 삼성전자주식회사 Three dimensional semiconductor device
KR102509915B1 (en) 2015-08-31 2023-03-15 삼성전자주식회사 Semiconductor memory device
KR102413766B1 (en) 2015-09-08 2022-06-27 삼성전자주식회사 Non-volatile memory device and method for fabricating the same
US9997533B2 (en) 2015-10-06 2018-06-12 Toshiba Memory Corporation Semiconductor device and method for manufacturing same
KR102435524B1 (en) 2015-10-21 2022-08-23 삼성전자주식회사 Semiconductor memory device
US9646989B1 (en) 2015-11-18 2017-05-09 Kabushiki Kaisha Toshiba Three-dimensional memory device
US9570464B1 (en) 2015-12-15 2017-02-14 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
JP6595357B2 (en) 2016-02-01 2019-10-23 東芝メモリ株式会社 Memory device
US9865616B2 (en) 2016-02-09 2018-01-09 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US9679907B1 (en) 2016-02-29 2017-06-13 Sandisk Technologies Llc Three-dimensional memory device with charge-trapping-free gate dielectric for top select gate electrode and method of making thereof
US20170278851A1 (en) 2016-03-23 2017-09-28 Kabushiki Kaisha Toshiba Semiconductor memory device
US9748262B1 (en) 2016-04-13 2017-08-29 Macronix International Co., Ltd. Memory structure and manufacturing method of the same
US9859298B1 (en) * 2016-06-23 2018-01-02 Sandisk Technologies Llc Amorphous silicon layer in memory device which reduces neighboring word line interference
US9960045B1 (en) 2017-02-02 2018-05-01 Applied Materials, Inc. Charge-trap layer separation and word-line isolation for enhanced 3-D NAND structure
US10269824B2 (en) 2017-04-01 2019-04-23 Intel Corporation Non-volatile memory structures having multi-layer conductive channels
US10680006B2 (en) 2017-08-11 2020-06-09 Micron Technology, Inc. Charge trap structure with barrier to blocking region
US10164009B1 (en) 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
US10446572B2 (en) 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10453855B2 (en) 2017-08-11 2019-10-22 Micron Technology, Inc. Void formation in charge trap structures

Similar Documents

Publication Publication Date Title
JPWO2019032373A5 (en)
CN111226316B (en) Multi-layer stack for 3D NAND scalability
CN109564922A (en) Three-dimensional storage equipment and its manufacturing method
US9379126B2 (en) Damascene conductor for a 3D device
TW201725726A (en) Semiconductor structure and method for manufacturing the same
US10790298B2 (en) Methods and apparatus for three-dimensional NAND structure fabrication
JP2009212218A (en) Semiconductor storage device and method for manufacturing the same
US20200194449A9 (en) Nonvolatile memory devices comprising a conductive line comprising portions having different profiles and methods of fabricating the same
US20230403855A1 (en) Vertical semiconductor device and method for fabricating the vertical semiconductor device
JP2009016823A (en) Method of fabricating nonvolatile memory device having charge trapping layer
CN110957260A (en) Method for manufacturing fin field effect transistor
TWI656567B (en) Semiconductor device and manufacturing method
US20160056165A1 (en) Semiconductor device and method of manufacturing the same
JP2021535627A (en) 3D memory device and its manufacturing method
TWI647822B (en) Three-dimensional non-volatile memory and manufacturing method thereof
US20090179284A1 (en) Semiconductor transistors having high-k gate dielectric layers, metal gate electrode regions, and low fringing capacitances
KR20180028045A (en) Wrap-around contact integration scheme
KR100546409B1 (en) 2-bit SONOS type memory cell comprising recessed channel and manufacturing method for the same
JP2006135304A (en) Manufacturing method for mosfet element in peripheral region
CN111162077B (en) Semiconductor structure and forming method thereof
CN109524414B (en) Three-dimensional memory and manufacturing method thereof
CN109256393B (en) Method for forming memory structure
TWI635573B (en) Memory device and method of manufacturing the same
TWI475648B (en) Method for manufacturing a non-volatile memory, non-volatile memory device, and an integrated circuit
CN110676325B (en) Semiconductor structure and manufacturing process thereof