JPWO2018190382A1 - Pd−l1陽性癌細胞の検出方法 - Google Patents

Pd−l1陽性癌細胞の検出方法 Download PDF

Info

Publication number
JPWO2018190382A1
JPWO2018190382A1 JP2019512558A JP2019512558A JPWO2018190382A1 JP WO2018190382 A1 JPWO2018190382 A1 JP WO2018190382A1 JP 2019512558 A JP2019512558 A JP 2019512558A JP 2019512558 A JP2019512558 A JP 2019512558A JP WO2018190382 A1 JPWO2018190382 A1 JP WO2018190382A1
Authority
JP
Japan
Prior art keywords
cells
fluorescent dye
antibody
recognizes
labeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019512558A
Other languages
English (en)
Inventor
理美 八木
理美 八木
勝也 遠藤
勝也 遠藤
雅之 樋口
雅之 樋口
清太 中村
清太 中村
上原 寿茂
寿茂 上原
泰浩 洪
泰浩 洪
信之 山本
信之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Wakayama Medical University
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Wakayama Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Wakayama Medical University filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2018190382A1 publication Critical patent/JPWO2018190382A1/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明に係る血液試料中のPD−L1陽性癌細胞を検出する方法は、(a)血液試料から細胞を採取する工程と、(b)細胞に、PD−L1を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、PD−L1を認識する抗体であって蛍光色素で標識されている抗体を接触させる工程と、(c)細胞に蛍光色素の励起光を照射して、細胞から発せられる蛍光を検出する工程と、を備える。かかる方法によれば、被験者に大きな負担をかけることなくPD−L1陽性癌細胞を検出することができる。

Description

本発明は、PD−L1陽性癌細胞の検出方法に関する。
癌の治療方法の一つとして「免疫チェックポイント阻害療法」が知られている。免疫チェックポイント阻害療法では、免疫反応を抑制する反応経路(免疫チェックポイント)を阻害することにより、免疫細胞を活性化させる。免疫反応を抑制する反応経路としてPD−1/PD−L1経路が知られており、この経路を阻害する免疫チェックポイント阻害剤「ペムブロリズマブ」及び「ニボルマブ」の開発が進んでいる。患者の癌細胞がPD−L1を有さない場合、PD−1/PD−L1経路に作用する上記阻害剤の奏効性は低い。そのため、患者の癌細胞におけるPD−L1を検出することにより、阻害剤の奏効性を、実際に阻害剤を投与する前に確認することが重要である。
PD−L1を発現している癌細胞(PD−L1陽性癌細胞)を検出する方法として、患者から組織検体を採取して、検体におけるPD−L1を染色する方法が知られている(例えば、非特許文献1)。
"The New England Journal of Medicine"、2015、Vol.372、No.21、p.2018−2028
PD−L1陽性癌細胞を検出する従来の方法は、患者から腫瘍組織を採取することを要するため、患者への負担が大きかった。本発明は、被験者に大きな負担をかけることなくPD−L1陽性癌細胞を検出することを目的とする。
本発明は、血液試料中のPD−L1陽性癌細胞を検出する方法であって、(a)血液試料から細胞を採取する工程と、(b)細胞に、PD−L1を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、PD−L1を認識する抗体であって蛍光色素で標識されている抗体を接触させる工程と、(c)細胞に蛍光色素の励起光を照射して、細胞から発せられる蛍光を検出する工程と、を備える方法を提供する。
上記蛍光色素は第一の蛍光色素であってよく、工程(a)の後かつ工程(c)の前の任意の段階で、(x1)細胞に、白血球のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第二の蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、白血球を認識する抗体であって第二の蛍光色素で標識されている抗体を接触させる工程と、(x2)細胞に、上皮細胞のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第三の蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、上皮細胞のマーカータンパク質を認識する抗体であって第三の蛍光色素で標識されている抗体を接触させる工程と、(x3)細胞の核を第四の蛍光色素で標識する工程と、を任意の順でさらに備えてもよく、工程(c)において、細胞に、第一、第二、第三及び第四の蛍光色素の励起光をそれぞれ照射して、細胞から発せられる第一、第二、第三、及び第四の蛍光色素の蛍光をそれぞれ検出してもよい。
PD−L1を認識する一次抗体又はPD−L1を認識する抗体は、28−8又はSP142のクローンに由来してもよい。工程(a)は、血液試料をフィルターでろ過してフィルター上に細胞を捕捉する工程であってもよい。白血球のマーカータンパク質はCD45であってよい。上皮細胞のマーカータンパク質はサイトケラチンであってよい。第一、第二、及び第三の蛍光色素は、フルオレセイン、Alexa Fluor(登録商標) 594、及びAlexa Fluor(登録商標) 647からなる群より選ばれてよく、第4の蛍光色素は4′,6−ジアミジノ−2−フェニルインドールであってよい。PD−L1陽性癌細胞は肺癌由来であってよい。工程(x1)を工程(b)の前に行い、工程(x2)及び工程(x3)を工程(b)の後に、同時に行ってもよい。
本発明の方法によれば、血液試料を使用することにより、被験者に大きな負担をかけることなく、簡単かつ短時間でPD−L1陽性癌細胞を検出することができる。
細胞捕捉カートリッジの一実施形態を示す斜視図である。 図1におけるII−II線断面図である。 実施例1において蛍光標識された細胞の画像である。 実施例2において蛍光標識された細胞の画像である。 実施例2において蛍光標識された細胞の画像である。 実施例3において蛍光標識された細胞の画像である。 実施例3において蛍光標識された細胞の画像である。 実施例4において蛍光標識された細胞の画像である。
本発明の、血液試料中のPD−L1陽性癌細胞を検出する方法は、(a)血液試料から細胞を採取する工程と、(b)細胞に、PD−L1を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、PD−L1を認識する抗体であって蛍光色素で標識されている抗体を接触させる工程と、(c)細胞に蛍光色素の励起光を照射して、細胞から発せられる蛍光を検出する工程と、を備える。癌患者の血液中には、血中循環癌細胞(Circulating Tumor Cell、以下、「CTC」ともいう。)と呼ばれ、血管及びリンパ管を通じて体内を循環する癌細胞が存在する場合がある。CTCは、例えば、肺、肝臓、胃、頭頸、膀胱、尿路上皮、食道、胆道、乳腺、卵巣、子宮、肝臓、前立腺、又は膵臓における癌の細胞が血管及びリンパ管に侵入したものである。したがって、これらの器官における癌組織を採取せずとも、被験者の血液試料を使用することで、PD−L1陽性癌細胞(PD−L1陽性のCTC)を検出することができる。本明細書において、「CTC」と「血液試料中の癌細胞」は同義として扱う。
血液試料としては、被験者から採取した血液をそのまま使用してもよいし、リン酸緩衝生理食塩水(PBS)等の緩衝液又はその他適当な媒体で希釈された血液を使用してもよい。血液試料には、抗凝固剤及び固定剤等、通常血液試料に添加される添加剤が添加されていてもよい。
工程(a)において、細胞は、例えば、血液試料をフィルターでろ過して、フィルター上に血液試料中の細胞を捕捉することで、血液試料から採取することができる。血液中に含まれる細胞のうち、白血球はCTCと同程度の直径を有するため、フィルター上にはCTCとともに一部の白血球が捕捉される。フィルターにより血液試料中の細胞を採取する場合、PD−L1陽性癌細胞の検出は、そのままフィルター上で行うことができる。すなわち、本発明における全ての工程は、フィルター上に捕捉された細胞に対して行うことができる。「捕捉」とは、細胞を含有する液体をフィルターでろ過して、細胞をフィルター上に残留させることを意味する。
フィルターは、血液試料中に存在するCTCを捕捉できるフィルターであれば特に限定されず、従来公知のフィルターを使用できる。フィルターは、例えば、金属又は樹脂製のフィルターであってよく、基板と、基板上に設けられた、好ましくは5μm〜15μm、より好ましくは6μm〜12μm、さらに好ましくは7μm〜10μmの孔径の貫通孔と、を有してもよい。貫通孔の孔径は、貫通孔を通過できる球の直径の最大値をいう。
本明細書において、細胞に物質を「接触させる」ことは、例えば、細胞をその物質若しくはその物質の溶液に浸すことにより行うことができる。細胞の採取にフィルターを使用する場合、細胞に反応液又は洗浄液を接触させることは、これらの溶液をフィルターでろ過することにより行うことができる。ろ過の際、細胞へのダメージを最小限に抑える観点から、溶液の流速は、50μL/分〜3000μL/分が好ましく、100μL/分〜1000μL/分がより好ましく、200μL/分〜600μL/分がさらに好ましい。
工程(a)の後、細胞を洗浄してもよい。洗浄工程は、例えば、PBS等の既知の緩衝液を含む洗浄液を、細胞に接触させることで行う。洗浄液には、牛血清アルブミン(BSA)又はエチレンジアミン四酢酸(EDTA)等の添加物が含まれていてよい。洗浄は、工程(a)の後に限らず、各工程の後に適宜行うことができる。
さらに、工程(a)の後、細胞を固定化してもよい。ホルムアルデヒド等の公知の固定剤を細胞に接触させることで、細胞を固定化できる。細胞を固定化することにより、細胞の腐敗又は凝集をより軽減することができる。
固定化した細胞を、次いで透過処理してもよい。公知の透過処理剤を細胞に接触させることで、細胞を透過処理することができる。透過処理剤としては、例えば、ポリ(オキシエチレン)オクチルフェニルエーテルを使用することができる。
工程(b)では、細胞に、PD−L1を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって蛍光色素(第一の蛍光色素)で標識されている二次抗体を接触させる(二段階の蛍光標識)。あるいは、細胞に、PD−L1を認識する抗体であって蛍光色素(第一の蛍光色素)で標識されている抗体を接触させる(一段階の蛍光標識)。この工程によりPD−L1が蛍光標識される。PD−L1の蛍光標識は、上記のように、二段階又は一段階のいずれで行ってもよい。
PD−L1を認識する一次抗体又はPD−L1を認識する抗体であって蛍光色素(第一の蛍光色素)で標識されている抗体は、例えば、28−8、SP142、E1L3N(登録商標)、及びEPR1161(2)からなる群より選ばれるクローンに由来してもよく、ポリクローナル抗体(例えば、Prosci社のカタログ番号:4059)であってもよい。より高い感度でPD−L1陽性癌細胞を検出する観点から、PD−L1を認識する一次抗体又はPD−L1を認識する抗体は、28−8又はSP142に由来することが好ましい。また、28−8に由来する抗体又はSP142に由来する抗体を使用することで、抗体の非特異的な結合を低減することができ、したがって、偽陽性の少ない、より信頼性の高い検出結果を得ることができる。これらのクローンに由来する抗体は、いずれも抗PD−L1ウサギモノクローナル抗体である。
蛍光色素(第一の蛍光色素)は、抗体の蛍光標識に通常使用される蛍光色素であれば特に限定されない。第一の蛍光色素は、例えば、Alexa Fluor(登録商標) 647又はCy(登録商標)5である。
最後に、工程(c)において、細胞に蛍光色素の励起光を照射して、細胞から発せられる蛍光を検出する。蛍光色素(第一の蛍光色素)による蛍光が検出される(陽性)細胞が、PD−L1陽性癌細胞として同定される。
検出されたPD−L1陽性癌細胞に、その後、DNA、RNA又はタンパク質の解析を行うことができる。例えば、検出されたPD−L1陽性癌細胞に対し、シークエンサー、次世代シークエンサー、DNAチップ、マイクロアレイ、比較ゲノムハイブリダイゼーション、蛍光インサイツハイブリダイゼーション、デジタルPCR、定量逆転写PCR、ELISA、ウェスタンプロッティング、TOF−MS、MALDI−MS、ラマン分光スペクトル、クロマトグラフィー、X線結晶解析、二次元電気泳動、核磁気共鳴分光法、フローサイトメーター(FCM)等を利用した解析を行うことができる。
血液試料中には、PD−L1陽性癌細胞の他に、PD−L1陰性癌細胞、白血球等のその他の細胞が多数存在する。このため、工程(b)において、PD−L1を認識する抗体がPD−L1陰性の細胞に結合し、PD−L1陰性の細胞からPD−L1を示す蛍光が観察される場合がある(偽陽性)。このような偽陽性を減らし、より信頼性の高い検出結果を得る観点から、工程(a)の後かつ工程(c)の前の任意の段階で、以下の工程(x1)〜(x3)をさらに行うことが好ましい。
工程(x1)では、細胞に、白血球のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第二の蛍光色素で標識されている二次抗体を接触させる(二段階の蛍光標識)。あるいは、細胞に、白血球を認識する抗体であって第二の蛍光色素で標識されている抗体を接触させる(一段階の蛍光標識)。この工程により、白血球が蛍光標識される。白血球の蛍光標識は、上記のように二段階又は一段階のいずれで行ってもよい。
白血球のマーカータンパク質は、例えば、全造血幹細胞に発現するCD45である。
白血球のマーカータンパク質を認識する一次抗体、第二の蛍光色素で標識されている二次抗体、及び白血球のマーカータンパク質を認識する抗体であって第二の蛍光色素で標識されている抗体は、特に限定されず、ポリクローナル抗体又はモノクローナル抗体であってよい。抗体が由来する動物は、一次抗体が由来する動物と二次抗体が由来する動物とが異なる動物である限り、特に限定されない。
第二の蛍光色素は、抗体の蛍光標識に通常使用される蛍光色素であれば特に限定されない。第二の蛍光色素は、例えば、Alexa Fluor(登録商標) 594又はTexas Red(登録商標)である。第二の蛍光色素は、第一、第三及び第四の蛍光色素とは別の蛍光色素である。各蛍光色素は異なる蛍光波長を有するため、識別可能である。好ましくは、第一、第二、及び第三の蛍光色素は、フルオレセイン、Alexa Fluor 594、及びAlexa Fluor 647からなる群より選ばれ、第4の蛍光色素は4′,6−ジアミジノ−2−フェニルインドール(DAPI)である。
工程(x2)では、細胞に、上皮細胞のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第三の蛍光色素で標識されている二次抗体を接触させる(二段階の蛍光標識)。あるいは、細胞に、上皮細胞のマーカータンパク質を認識する抗体であって第三の蛍光色素で標識されている抗体を接触させる(一段階の蛍光標識)。この工程により、CTCが蛍光標識される。CTCの蛍光標識は、上記のように二段階又は一段階のいずれで行ってもよい。
上皮細胞のマーカータンパク質としては、例えば、サイトケラチン、上皮細胞接着分子(EpCAM)、CD146、及びCD176が挙げられ、サイトケラチンが好ましい。CTCは上皮細胞に由来するため、これら上皮細胞のマーカータンパク質を有する。
第三の蛍光色素は、抗体の蛍光標識に通常使用される蛍光色素であれば特に限定されない。第三の蛍光色素は、例えば、フルオレセインイソチオシアネート(FITC)等のフルオレセイン又はAlexa Fluor(登録商標) 488である。
上皮細胞のマーカータンパク質を認識する一次抗体、第三の蛍光色素で標識されている二次抗体、及び上皮細胞のマーカータンパク質を認識する抗体であって第三の蛍光色素で標識されている抗体は、特に限定されず、ポリクローナル抗体又はモノクローナル抗体であってよい。抗体が由来する動物は、一次抗体が由来する動物と二次抗体が由来する動物とが異なる動物である限り、特に限定されない。
工程(x3)では、細胞の核を第四の蛍光色素で標識する。核を標識する第四の蛍光色素は、核酸に結合することができる蛍光色素であれば特に限定されず、核を蛍光標識するのに通常用いられる蛍光色素を使用することができる。第四の蛍光色素としては、例えば、DAPI及び2′−(4−エトキシフェニル)−5−(4−メチル−1−ピペラジニル)−2,5′−ビ−1H−ベンゾイミダゾール三塩酸塩(Hoechst33342)が挙げられる。
任意であるこれらの工程(x1)〜(x3)を行う場合、工程(c)では、細胞に、第一、第二、第三及び第四の蛍光色素の励起光をそれぞれ照射して、細胞から発せられる第一、第二、第三及び第四の蛍光色素の蛍光をそれぞれ検出する。PD−L1陽性癌細胞は、第一、第三、及び第四の蛍光色素で標識されているが、第二の蛍光色素では標識されていない。したがって、第二の蛍光色素の蛍光が検出されず(陰性)、第一、第三、及び第四の蛍光色素の蛍光が検出される(陽性)細胞が、PD−L1陽性癌細胞として同定される。
上記の方法により血液試料中のPD−L1陽性癌細胞を検出するときは、例えば、図1及び図2に示すカートリッジを用いることができる。以下、本発明の一実施形態であって、カートリッジを使用して血液試料中のPD−L1陽性癌細胞を検出する方法について述べる。別段の記載がない限り、各工程についての詳細及び工程の順番は、上記実施形態で述べたとおりである。
図1及び図2に示すCTC捕捉カートリッジ(カートリッジ)100は、液体が流入する流入管125が接続された流入口130と、液体が流出する流出管135が接続された流出口140とを有する筐体120と、フィルター105とを備える。フィルター105は、上部部材110及び下部部材115から構成される筐体120により固定されている。血液試料、洗浄液及びその他の反応液は、流入管125を通って筐体120の内部に導入され、フィルター105を通って、流出管135から外部に排出される。このような液体の流れは、例えば、流入管125の上流又は流出管135の下流にポンプを接続することにより作り出すことができる。また、流入管125の上流及び/又は流出管135の下流にコックを設け、液体の流れを制御してもよい。
はじめに、血液試料を流入管125からカートリッジ100内に導入して、血液試料をフィルター105でろ過する(工程(a))。血液試料中のCTC及び一部の白血球は、フィルター105の貫通孔106を通過できず、フィルター105の表面に残留する。血液試料中のその他の成分は、貫通孔106を通過し、カートリッジ100の外へと排出される。次いで、洗浄液をフィルター105に通液してフィルター105を洗浄してもよい。フィルター105の洗浄は、以下の各工程の後にも、適宜行うことができる。
さらに、フィルター105上に細胞が捕捉された後、固定剤、次いで透過処理剤を含む反応液を、それぞれカートリッジ100内に任意で導入して、カートリッジ100内に所定時間保持することで、細胞と固定剤及び透過処理剤とをそれぞれ反応させてもよい。
同様にして、細胞に、PD−L1を認識する一次抗体を含む反応液、次いで一次抗体を認識する二次抗体であって蛍光色素(第一の蛍光色素)で標識されている二次抗体を含む反応液を、それぞれフィルター105上に捕捉された細胞と反応させる。あるいは、細胞に、PD−L1を認識する抗体であって蛍光色素(第一の蛍光色素)で標識されている抗体を含む反応液を、フィルター105上に捕捉された細胞と反応させる(工程(b))。
最後に、蛍光顕微鏡を使用してカートリッジ100に蛍光色素の励起光を照射して、フィルター105上に捕捉された細胞から発せられる蛍光を検出する(工程(c))。蛍光の検出は、例えば、カートリッジ100の垂直方向上面からカートリッジ100を観察し、蛍光観察像を処理することにより行う。上記実施形態で述べたとおり、工程(x1)〜(x3)を任意でさらに行うこともできる。
(実施例1)
培養フラスコに入った非小細胞肺癌細胞株を、二酸化炭素インキュベーター内で、37℃で培養した。培養フラスコに、濃度0.25%のトリプシン−EDTAを添加し、フラスコに張り付いた培養細胞をフラスコから剥離した。剥離させた細胞を血球計算盤及び位相差顕微鏡を用いて計数した。採血管に採血した健常人の血液に、100個の細胞を添加することで、肺癌患者の血液を摸した血液試料を調製した。細胞株としては、それぞれPD−L1の発現程度の異なる、NCI−H820(PD−L1高発現)、NCI−H441(PD−L1中発現)、A549(PD−L1低発現)、及びNCI−H23(PD−L1陰性)の4種類を用いて、4種類の血液試料を準備した。採血管としては、ベクトン・ディッキンソンアンドカンパニー社製のEDTA−2K(エチレンジアミン四酢酸二カリウム塩)入り採血管を使用した。
採血から1時間以内に、CTC捕捉装置を用いて上記4種類の血液試料中のPD−L1陽性癌細胞を以下のように検出した。CTC捕捉装置は、血液試料及びその他の反応液を導入するリザーバーと、CTC捕捉カートリッジとを備える。CTC捕捉カートリッジ(以下、カートリッジともいう)は、長径100μm、短径8μmの貫通孔を多数有する薄膜の金属フィルター(膜面積6mm×6mm、膜厚18μm)を内部に備え、上記実施形態で説明したカートリッジ100に相当する。
まず、カートリッジを、0.5%BSA及び2mM EDTAを含有したPBS溶液(以下、「洗浄液」という。)で満たした。リザーバーに、洗浄液を7mL入れ、洗浄液の下に、上記血液試料を3mL、血液試料と洗浄液が層をなすように加えた。CTC捕捉装置を作動させ、流速200μL/分でリザーバー中の血液試料及び洗浄液をカートリッジに導入し、血液試料中の細胞をフィルター上に捕捉した。カートリッジに洗浄液を導入し、フィルターに残留した血液成分を洗い流した。
1.25mLの抗ヒトCD45マウスモノクローナル抗体(クローン:2D1)を含む反応液を流速200μL/分でカートリッジに導入し、室温にて30分反応させた。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。1.25mLのAlexa Fluor 594標識抗マウスIgGヤギポリクロナール抗体を含む反応液を流速400μL/分でカートリッジに導入し、室温にて30分反応させた。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。
ホルムアルデヒドを0.5質量%〜4質量%含有するPBS溶液1.25mLを、流速400μL/分でカートリッジに導入し、室温にて10分反応させることにより、細胞を固定化した。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。
Triton X−100(シグマアルドリッチ社製)を0.05質量%〜0.1質量%含有するPBS溶液1.25mLを、流速400μL/分でカートリッジに導入し、室温にて10分反応させることにより、細胞を透過処理した。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。
1.25mLの抗ヒトPD−L1ウサギモノクローナル抗体(クローン:28−8)を含む反応液を流速200μL/分でカートリッジに導入し、室温にて60分反応させた。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。1.25mLのAlexa Fluor 647標識抗ウサギIgGヤギポリクロナール抗体を含む反応液を流速400μL/分でカートリッジに導入し、室温にて30分反応させた。1.40mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。
FITC標識抗ヒトサイトケラチンマウスモノクローナル抗体(クローン:CK3、6H5、AE1、及びAE3の混合物)、及びDAPIを含む反応液1.25mLを、400μL/分でカートリッジに導入し、室温にて30分反応させた。3.00mLの洗浄液を流速400μL/分でカートリッジに導入し、カートリッジ内の上記反応液を排出した。次いで、カートリッジをCTC捕捉装置から外した。
カートリッジを蛍光顕微鏡に設置した。蛍光ミラーユニットを使用して、細胞上の蛍光色素(FITC、Alexa Fluor 594、Alexa Fluor 647、及びDAPI)をそれぞれ励起させた。それぞれの蛍光色素から発せられた蛍光を撮影し、得られた画像を合成した。
結果を図3に示す。図中、H820はNCI−H820、H441はNCI−H441、H23はNCI−H23を、それぞれ意味する(以下、同じ)。PD−L1陽性の癌細胞株であるNCI−H820及びNCI−H441を用いた実験においては、細胞核(DAPI)、サイトケラチン(FITC)、及びPD−L1(Alexa Fluor 647)が陽性であり、かつ、CD45(Alexa Fluor 594)が陰性である細胞の蛍光画像が得られた。PD−L1陰性の癌細胞株であるNCI−H23を用いた実験においては、細胞核及びサイトケラチンが陽性であり、かつ、CD45及びPD−L1が陰性である細胞の蛍光画像が得られた。一方、いずれの実験においても、細胞核及びCD45が陽性であり、かつ、サイトケラチン及びPD−L1が陰性である、白血球の蛍光画像も得られた(図には示していない)。抗体の非特異的な結合による偽陽性はみられなかった。なお、「陽性」とは蛍光が検出されたことを意味し、「陰性」とは蛍光が検出されなかったことを意味する。
(実施例2)
細胞株としてNCI−H820を用いた。抗ヒトPD−L1ウサギモノクローナル抗体のクローンをSP142に変更した以外は実施例1と同様の方法により、細胞の蛍光を観察した。
結果を図4及び図5に示す。これらの図に示すように、細胞核、サイトケラチン、及びPD−L1が陽性であり、かつ、CD45が陰性である細胞の蛍光画像が得られた。また、図5の右下には、細胞核及びCD45が陽性であり、かつ、サイトケラチン及びPD−L1が陰性である、白血球がみられる。抗体の非特異的な結合による偽陽性はみられなかった。
(実施例3)
細胞株としてNCI−H820を用いた。抗ヒトPD−L1ウサギモノクローナル抗体を、E1L3N(登録商標)由来の抗体、EPR1161(2)由来の抗体、及びポリクローナル抗体(Prosci社製、カタログ番号:4059)に変更した以外は実施例1と同様の方法により、細胞の蛍光を観察した。結果を図6及び図7に示す。
図6及び図7に示すように、いずれの抗体を用いた実験においても、細胞核、サイトケラチン、及びPD−L1が陽性であり、かつ、CD45が陰性である細胞の蛍光画像が得られた。PD−L1の蛍光強度は、E1L3N由来の抗体を用いた実験において高く、ポリクローナル抗体を用いた実験において低かった。EPR1161(2)由来の抗体を用いた実験においては、PD−L1の蛍光は僅かに確認できる程度であった。
図7に示すように、いずれの抗体を用いた実験においても、細胞核及びCD45が陽性であり、かつ、サイトケラチン及びPD−L1が陰性である、白血球がみられる。一方、図7は、いずれの抗体を用いた実験においても、抗体の非特異的な結合が観察されたことをも示す。
(実施例4)
PD−L1に対する二次抗体(抗ウサギIgGヤギポリクロナール抗体)の標識色素をAlexa Fluor 680及びAlexa Fluor(登録商標) 700に変更した以外は実施例1と同様の方法により、細胞の蛍光を観察した。
結果を図8に示す。Alexa Fluor 680及びAlexa Fluor 700を用いた場合、PD−L1の蛍光強度が低かった。
100…CTC捕捉カートリッジ、105…フィルター、106…貫通孔、110…上部部材、115…下部部材、120…筐体、125…流入管、130…流入口、135…流出管、140…流出口。

Claims (9)

  1. 血液試料中のPD−L1陽性癌細胞を検出する方法であって、
    (a)血液試料から細胞を採取する工程と、
    (b)細胞に、PD−L1を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、PD−L1を認識する抗体であって蛍光色素で標識されている抗体を接触させる工程と、
    (c)細胞に蛍光色素の励起光を照射して、細胞から発せられる蛍光を検出する工程と、を備える
    方法。
  2. 前記蛍光色素が第一の蛍光色素であり、
    工程(a)の後かつ工程(c)の前の任意の段階で、
    (x1)細胞に、白血球のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第二の蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、白血球を認識する抗体であって第二の蛍光色素で標識されている抗体を接触させる工程と、
    (x2)細胞に、上皮細胞のマーカータンパク質を認識する一次抗体を接触させ、次いで一次抗体を認識する二次抗体であって第三の蛍光色素で標識されている二次抗体を接触させる工程、又は、細胞に、上皮細胞のマーカータンパク質を認識する抗体であって第三の蛍光色素で標識されている抗体を接触させる工程と、
    (x3)細胞の核を第四の蛍光色素で標識する工程と、
    を任意の順でさらに備え、
    工程(c)において、細胞に、第一、第二、第三及び第四の蛍光色素の励起光をそれぞれ照射して、細胞から発せられる第一、第二、第三、及び第四の蛍光色素の蛍光をそれぞれ検出する、請求項1に記載の方法。
  3. PD−L1を認識する一次抗体又はPD−L1を認識する抗体が、28−8又はSP142のクローンに由来する、請求項2に記載の方法。
  4. 工程(a)が、血液試料をフィルターでろ過してフィルター上に細胞を捕捉する工程である、請求項2又は3に記載の方法。
  5. 白血球のマーカータンパク質がCD45である、請求項2〜4のいずれか一項に記載の方法。
  6. 上皮細胞のマーカータンパク質がサイトケラチンである、請求項2〜5のいずれか一項に記載の方法。
  7. 第一、第二、及び第三の蛍光色素が、フルオレセイン、Alexa Fluor(登録商標) 594、及びAlexa Fluor(登録商標) 647からなる群より選ばれ、第4の蛍光色素が4′,6−ジアミジノ−2−フェニルインドールである、請求項2〜6のいずれか一項に記載の方法。
  8. PD−L1陽性癌細胞が肺癌由来である、請求項2〜7のいずれか一項に記載の方法。
  9. 工程(x1)を工程(b)の前に行い、
    工程(x2)及び工程(x3)を工程(b)の後に、同時に行う、請求項2〜8のいずれか一項に記載の方法。
JP2019512558A 2017-04-13 2018-04-11 Pd−l1陽性癌細胞の検出方法 Pending JPWO2018190382A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017080045 2017-04-13
JP2017080045 2017-04-13
PCT/JP2018/015274 WO2018190382A1 (ja) 2017-04-13 2018-04-11 Pd-l1陽性癌細胞の検出方法

Publications (1)

Publication Number Publication Date
JPWO2018190382A1 true JPWO2018190382A1 (ja) 2020-02-27

Family

ID=63792606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019512558A Pending JPWO2018190382A1 (ja) 2017-04-13 2018-04-11 Pd−l1陽性癌細胞の検出方法

Country Status (2)

Country Link
JP (1) JPWO2018190382A1 (ja)
WO (1) WO2018190382A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704590B2 (ja) * 2010-02-05 2015-04-22 国立大学法人東京農工大学 サイズ選択マイクロキャビティアレイを用いた循環腫瘍細胞の検出
JP6840330B2 (ja) * 2014-05-13 2021-03-10 学校法人順天堂 細胞の検出方法
WO2016035772A1 (ja) * 2014-09-03 2016-03-10 日立化成株式会社 生体物質捕獲用フィルター及び生体物質捕獲システム
JP2016086736A (ja) * 2014-11-05 2016-05-23 日立化成株式会社 血中希少細胞含有液の製造方法
WO2018029858A1 (ja) * 2016-08-12 2018-02-15 日立化成株式会社 血中循環癌細胞の検出方法及び血中循環癌細胞を検出するための前処理方法
KR20180048215A (ko) * 2016-11-02 2018-05-10 주식회사 싸이토젠 혈중 순환 암세포를 이용한 pd-l1 타겟 면역치료법을 위한 암 환자 선별 방법

Also Published As

Publication number Publication date
WO2018190382A1 (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6982327B2 (ja) マイクロ流体アッセイのための方法、組成物およびシステム
US9506927B2 (en) Method for detecting low concentrations of specific cell from high concentrations of cell populations, and method for collecting and analyzing detected cell
JP6639906B2 (ja) 生物試料検出方法
CN105785005A (zh) 一种循环肿瘤细胞的检测试剂盒及其应用
WO2021000949A1 (zh) 一种肿瘤细胞表面标志分子pd-l1的检测方法
US20190078153A1 (en) Method of analyzing genetically abnormal cells
JP6936984B2 (ja) 希少細胞を用いて癌患者の予後を予測する方法
US20180348213A1 (en) Centrifuge-free isolation and detection of rare cells
JP6617516B2 (ja) 血液試料中に含まれる目的細胞の検出方法
JP6582486B2 (ja) 血液中の稀少細胞検出方法
WO2018029858A1 (ja) 血中循環癌細胞の検出方法及び血中循環癌細胞を検出するための前処理方法
JPWO2018190382A1 (ja) Pd−l1陽性癌細胞の検出方法
CN109752308A (zh) 细胞检测方法及细胞检测系统
JPWO2018190379A1 (ja) 被験者に対する免疫チェックポイント阻害剤の奏効性を予測する方法
WO2018030547A1 (ja) 血中循環癌細胞の検出方法及び血中循環癌細胞を検出するための前処理方法
JP6913977B2 (ja) 前立腺特異膜抗原ベースの前立腺癌患者スクリーニング方法
Lee et al. Enrichment of circulating tumor cells using a centrifugal affinity plate system
WO2018116465A1 (ja) Her2陽性癌細胞の検出方法
JP6485576B2 (ja) 標準細胞液
US20180095086A1 (en) Standard cell suspension
WO2018047311A1 (ja) 血中循環癌細胞を検出するための前処理剤
Loots et al. The Role of Extracellular Vesicles in Metastasis
Tran et al. Concomitant sorting of circulating tumor cell subpopulations in cancer patients’ blood samples through the multiplexed-immunosensor combination design
JP2015175709A (ja) 標準細胞液
Choi et al. A portable microfluidic chip system for cancer diagnosis with simultaneous detection methods

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190618