JPWO2018047692A1 - Solidified yarn, method for producing the same, carbon fiber precursor fiber, method for producing carbon fiber - Google Patents

Solidified yarn, method for producing the same, carbon fiber precursor fiber, method for producing carbon fiber Download PDF

Info

Publication number
JPWO2018047692A1
JPWO2018047692A1 JP2017545982A JP2017545982A JPWO2018047692A1 JP WO2018047692 A1 JPWO2018047692 A1 JP WO2018047692A1 JP 2017545982 A JP2017545982 A JP 2017545982A JP 2017545982 A JP2017545982 A JP 2017545982A JP WO2018047692 A1 JPWO2018047692 A1 JP WO2018047692A1
Authority
JP
Japan
Prior art keywords
carbon fiber
yarn
coagulation
solvent
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017545982A
Other languages
Japanese (ja)
Inventor
健太郎 梶原
健太郎 梶原
綾信 堀之内
綾信 堀之内
治己 奥田
治己 奥田
知久 野口
知久 野口
史宜 渡邉
史宜 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018047692A1 publication Critical patent/JPWO2018047692A1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

強度の高い炭素繊維を得るための凝固糸、およびこれを用いた炭素繊維前駆体繊維、ならびにこれを用いた炭素繊維を提供する。炭素繊維の製造に用いられる凝固糸であって、表層空孔径が30nm以下で、膨潤度が100%未満である、凝固糸や、表層空孔径が30nm以下で、内層空孔径が30nm以下である、凝固糸とする。かかる凝固糸を用いて、炭素繊維前駆体繊維および炭素繊維を得る。Provided are a coagulated yarn for obtaining high strength carbon fiber, a carbon fiber precursor fiber using the same, and a carbon fiber using the same. A coagulated yarn used in the production of carbon fibers, wherein the surface pore diameter is 30 nm or less and the degree of swelling is less than 100%, or the surface yarn pore diameter is 30 nm or less, and the inner layer pore diameter is 30 nm or less , And coagulated yarn. Such coagulated yarn is used to obtain carbon fiber precursor fibers and carbon fibers.

Description

本発明は、航空機部材、自動車部材および船舶部材をはじめとして、ゴルフシャフトや釣竿等のスポーツ用途およびその他一般産業用途に好適に用いられる炭素繊維に関するものである。   The present invention relates to a carbon fiber suitably used for sports applications such as golf shafts and fishing rods, as well as for general industrial applications, including aircraft parts, automobile parts and marine parts.

炭素繊維は、比重が低く、かつ、比強度と比弾性率が高いため、複合材料用補強繊維として、スポーツ用途や航空・宇宙用途で広く使用されてきた。近年、自動車や土木・建築用途、圧力容器や風車ブレードなど、適用範囲が拡大しており、それに伴って、更なる性能向上が求められている。   Carbon fibers have been widely used in sports and aerospace applications as reinforcing fibers for composite materials because of their low specific gravity and high specific strength and specific elastic modulus. In recent years, the application range has been expanded for automobiles, civil engineering / building applications, pressure vessels and wind turbine blades, and accordingly, further performance improvement is required.

炭素繊維の性能は、炭素繊維前駆体繊維の性能に大きく左右されることが知られている。特に、炭素繊維前駆体繊維の表層に凹凸を有していると、炭素繊維の強度低下の要因になると考えられており、平滑な表面を形成し易い乾湿式紡糸法が提案されているが、更に強度を向上する技術が広く検討されている。   It is known that the performance of carbon fibers is largely dependent on the performance of carbon fiber precursor fibers. In particular, if the surface layer of the carbon fiber precursor fiber is uneven, it is considered to be a cause of the decrease in the strength of the carbon fiber, and a dry-wet spinning method that easily forms a smooth surface is proposed. Techniques for further improving the strength are widely studied.

例えば、特許文献1には、水系凝固浴を用いて乾湿式紡糸する工程および浴延伸する工程の条件を制御し、表層部を緻密化することによって油剤浸入を抑制する技術が提案されている。   For example, Patent Document 1 proposes a technique for controlling the conditions of the step of performing dry / wet spinning using a water-based coagulation bath and the step of performing bath drawing, and densifying the surface layer to suppress oil agent intrusion.

また、特許文献2にはパラフィン系炭化水素からなる凝固浴を用いて乾湿式紡糸することで、凝固糸の空隙を小さくする技術が提案されている。   Further, Patent Document 2 proposes a technique for reducing the voids of coagulated yarn by dry and wet spinning using a coagulation bath made of paraffinic hydrocarbon.

凝固工程に特徴のある技術として、特許文献3には、低濃度ポリマー溶液をアルコールからなる低温凝固浴でゲル化させておき、高い倍率での延伸によって、工程速度を上げて生産性を向上する技術も提案されている。   As a technology characterized by the coagulation process, Patent Document 3 gelates a low concentration polymer solution in a low temperature coagulation bath made of alcohol, and improves productivity by increasing the process speed by stretching at a high magnification. Technology has also been proposed.

国際公開第2010/143680号International Publication No. 2010/143680 特開平2−74607号公報JP-A-2-74607 特開2010−100970号公報Unexamined-Japanese-Patent No. 2010-100970

特許文献1に記載されている表層を緻密化した凝固糸や、特許文献2に記載されているボイドの少ない凝固糸を用いると、炭素繊維の強度を向上する効果が得られるものの、その効果が十分ではなかった。   When the coagulated yarn obtained by densifying the surface layer described in Patent Document 1 or the solidified yarn with few voids described in Patent Document 2 is used, although the effect of improving the strength of the carbon fiber is obtained, the effect is obtained. It was not enough.

特許文献1には、膨潤度160%以下の凝固糸を特定の条件で延伸することが好ましいとされ、実施例には膨潤度100〜155%の例が示されている。ところが、本発明者らの検討によると、強度を大きく向上させるためには、膨潤度が100%以上では不十分だとわかった。また、特許文献2には、さらに膨潤度を小さくする技術が開示されているが、本発明者らの検討によると、膨潤度を小さくするためにパラフィン系炭化水素の比率を増やすと、凝固速度が遅いためか、炭素繊維の均一性が低く、また、表層の空孔径が大きくなり、膨潤度を小さくしているにも関わらず、強度を向上する効果が限定的になることがわかった。 特許文献3の技術は、生産性が向上する効果を有するものの、必ずしも強度を向上する効果を有するものでなかった。この理由は、ポリマー溶液のポリマー濃度が低いため、凝固工程で、高い強度を達成するのに必要な緻密性を得ることが難しいためだと考えられる。   Patent Document 1 describes that it is preferable to draw a coagulated yarn having a degree of swelling of 160% or less under a specific condition, and examples show an example of a degree of swelling of 100 to 155%. However, according to the study of the present inventors, it was found that a swelling degree of 100% or more is not sufficient to greatly improve the strength. Further, Patent Document 2 discloses a technique for further reducing the degree of swelling, but according to the study of the present inventors, when the proportion of paraffinic hydrocarbon is increased to reduce the degree of swelling, the solidification rate is increased. It was found that the effect of improving the strength is limited despite the fact that the uniformity of the carbon fiber is low, the pore diameter of the surface layer is large, and the degree of swelling is reduced. Although the technology of Patent Document 3 has the effect of improving the productivity, it has not necessarily the effect of improving the strength. The reason for this is believed to be that it is difficult to obtain the necessary compactness to achieve high strength in the coagulation process because the polymer concentration of the polymer solution is low.

本発明は、強度の高い炭素繊維を得るための凝固糸および炭素繊維前駆体繊維、ならびに、これらを用いた炭素繊維を提供することを課題とする。   An object of the present invention is to provide a coagulated yarn and a carbon fiber precursor fiber for obtaining high strength carbon fiber, and a carbon fiber using them.

上記課題を解決するために、本発明の凝固糸は、表層空孔径が30nm以下で、膨潤度が100%未満とするか、あるいは、表層空孔径が30nm以下で、内層空孔径が30nm以下とするものである。   In order to solve the above problems, the coagulated yarn of the present invention has a surface pore diameter of 30 nm or less and a swelling degree of less than 100%, or a surface pore diameter of 30 nm or less and an inner layer pore diameter of 30 nm or less. It is

本発明の凝固糸は、表層空孔径が30nm以下で、膨潤度が100%未満であるか、あるいは、表層空孔径が30nm以下で、内層空孔径が30nm以下であることによって、高い強度の炭素繊維が得られる炭素繊維前駆体繊維、ならびに高い強度の炭素繊維が得られる。   The coagulated yarn of the present invention is a carbon having high strength because the surface pore diameter is 30 nm or less and the degree of swelling is less than 100%, or the surface pore diameter is 30 nm or less and the inner layer pore diameter is 30 nm or less. Carbon fiber precursor fibers from which fibers are obtained, as well as high strength carbon fibers are obtained.

実施例1の凝固糸表層のTEM像を示す図である。5 is a view showing a TEM image of the coagulated yarn surface layer of Example 1. FIG. 実施例1の凝固糸内層のTEM像を示す図である。5 is a view showing a TEM image of the solidified thread inner layer of Example 1. FIG. 比較例1の凝固糸表層のTEM像を示す図である。It is a figure which shows the TEM image of the coagulation | solidification thread surface layer of the comparative example 1. FIG. 比較例1の凝固糸内層のTEM像を示す図である。It is a figure which shows the TEM image of the coagulation | solidification thread | yarn inner layer of the comparative example 1. FIG.

本発明は、凝固糸の表層の空孔径を小さく制御し、かつ、膨潤度を極端に小さく制御することで強度の高い炭素繊維を得るものである。また、別の態様として、凝固糸の表層の空孔径を小さく制御し、かつ、内層の空孔径も小さく制御することで強度の高い炭素繊維を得るものである。   The present invention is to obtain a carbon fiber with high strength by controlling the pore diameter of the surface layer of the coagulated yarn to a small value and controlling the degree of swelling to an extremely small value. In another embodiment, a carbon fiber having high strength is obtained by controlling the pore diameter of the surface layer of the coagulated yarn to a small value and controlling the pore diameter of the inner layer to a small value.

なお、本発明で言う炭素繊維前駆体繊維とは、炭素繊維化可能な前駆体繊維であり、例えば、凝固糸を延伸した繊維である。   In addition, the carbon fiber precursor fiber said by this invention is a precursor fiber which can be carbon-fiber-ized, for example, is the fiber which extended | stretched coagulation | solidification yarn.

[凝固糸]
(凝固糸の表層の空孔径)
本発明の凝固糸は、表層空孔径が30nm以下である。このサイズは、小さいほど強度が高くなる傾向があるため、表層空孔径は20nm以下が好ましく、10nm以下がより好ましい。表層空孔径が1nm以下になると、水洗工程での脱溶媒に時間を有することから、下限は1nm程度である。表層空孔径は1nm〜10nmであることが炭素繊維強度およびプロセス性のバランスが取れるため、更に好ましい。
[Coagulation yarn]
(Pore diameter of the surface of coagulated yarn)
The coagulated yarn of the present invention has a surface pore diameter of 30 nm or less. The smaller the size, the higher the strength. Therefore, the surface pore diameter is preferably 20 nm or less, and more preferably 10 nm or less. When the surface layer pore diameter is 1 nm or less, the lower limit is about 1 nm because desolvation in the water-washing step has time. The surface pore diameter is more preferably 1 nm to 10 nm because the carbon fiber strength and processability can be balanced.

本発明で言う表層とは、繊維径方向の断面において、外周から内側に向かって500nm以内の範囲である。また、空孔径とは凝固糸のフィブリル構造や含有しているボイドによって形成される空孔の大きさを言う。   The surface layer referred to in the present invention is a range of 500 nm or less inward from the outer periphery in a cross section in the fiber diameter direction. Further, the pore size refers to the size of the pores formed by the fibril structure of the coagulated yarn and the contained voids.

(凝固糸の膨潤度)
本発明の態様のひとつは、凝固糸の膨潤度が100%未満である。表層空孔径が前述の範囲にある場合、膨潤度は、小さいほど強度が高くなる傾向があるため、90%未満が好ましく、85%未満がより好ましい。膨潤度が3%以下になると、水洗工程での脱溶媒に時間を有することから、下限は3%程度である。膨潤度は3%〜85%であることが炭素繊維強度およびプロセス性のバランスが取れるため、更に好ましい。
(Swelling degree of coagulated yarn)
One aspect of the present invention is that the degree of swelling of the coagulated yarn is less than 100%. When the surface layer pore diameter is in the above-mentioned range, the degree of swelling tends to be higher as the degree is smaller, so less than 90% is preferable and less than 85% is more preferable. When the degree of swelling is 3% or less, the lower limit is about 3% because it has time for desolvation in the water washing step. It is further preferable that the degree of swelling be 3% to 85% because the carbon fiber strength and processability are well balanced.

(凝固糸の内層の空孔径)
本発明の別の態様は、凝固糸の内層空孔径が30nm以下である。表層空孔径が前述の範囲にある場合、内層空孔径は、小さいほど強度が高くなる傾向があるため、内層空孔径は20nm以下が好ましく、10nm以下がより好ましい。内層空孔径が1nm以下になると、水洗工程での脱溶媒に時間を有することから、下限は1nm程度である。内層空孔径は1nm〜10nmであることが炭素繊維強度およびプロセス性のバランスが取れるため、更に好ましい。
(Pore size of inner layer of coagulated thread)
Another aspect of the present invention is that the inner diameter of the coagulated yarn is 30 nm or less. When the surface layer pore size is in the above-mentioned range, the strength tends to increase as the inner layer pore size decreases, so the inner layer pore size is preferably 20 nm or less, more preferably 10 nm or less. When the inner layer pore diameter is 1 nm or less, the lower limit is about 1 nm because there is time for desolvation in the water washing step. The inner layer pore diameter is more preferably 1 nm to 10 nm because the carbon fiber strength and processability are well balanced.

本発明で言う内層とは、繊維径方向の断面において、断面の重心を中心として直径500nm以内の円の範囲である。また、空孔径とは凝固糸のフィブリル構造や含有しているボイドによって形成される空孔の大きさを言う。   The inner layer referred to in the present invention is a range of a circle having a diameter of 500 nm or less centering on the center of gravity of the cross section in the cross section in the fiber radial direction. Further, the pore size refers to the size of the pores formed by the fibril structure of the coagulated yarn and the contained voids.

[凝固糸の製造方法]
本発明の凝固糸は、一例として、前記凝固糸を形成するポリマーの溶解度パラメーターに対して−11〜+20の溶解度パラメーターを有する非溶媒と、前記凝固糸の形成に用いるポリマー溶液の溶媒を、非溶媒:溶媒=1:9〜9:1の割合で混合した凝固浴を用いて、前記ポリマーを凝固する工程を含む工程によって製造することができる。
[Method of producing coagulated yarn]
The coagulated yarn of the present invention comprises, as an example, a non-solvent having a solubility parameter of -11 to +20 with respect to the solubility parameter of the polymer forming the coagulated yarn, and the solvent of the polymer solution used for forming the coagulated yarn. It can be manufactured by a process including the process of coagulating the polymer using a coagulation bath mixed in a ratio of solvent: solvent = 1: 9 to 9: 1.

なお、本発明において、紡糸工程でポリマー溶液を口金から吐出し、凝固工程で凝固浴中に導入してポリマーを析出させて凝固糸を形成した後、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を経て、炭素繊維前駆体繊維を得ることが好ましい。また、本発明の凝固糸は、ポリマー溶液を湿式紡糸または乾湿式紡糸して製造することができる。このとき、空孔径や膨潤度は、ポリマー溶液を凝固浴で凝固させる条件、すなわち、ポリマー溶液中のポリマーを溶媒から析出させる条件によって制御できる。   In the present invention, after a polymer solution is discharged from a die in a spinning step and introduced into a coagulation bath in a coagulation step to precipitate a polymer to form a coagulated yarn, a water washing step, a bath stretching step, an oil agent application step It is preferable to obtain a carbon fiber precursor fiber through a drying process. The coagulated yarn of the present invention can be produced by wet spinning or dry / wet spinning of a polymer solution. At this time, the pore size and the degree of swelling can be controlled by the conditions under which the polymer solution is solidified in the coagulation bath, that is, the conditions under which the polymer in the polymer solution is precipitated from the solvent.

(紡糸工程)
紡糸方法は、湿式紡糸法および乾湿式紡糸法のいずれでも構わない。ただし、後述の通り、本発明において凝固浴の温度は低く設定することが好ましい、一方、紡糸性の観点からポリマー溶液は一定の流動性が得られる温度にする必要があり、凝固浴の温度とポリマー溶液の温度に差を設けるケースが多い。このため、凝固浴温度と、ポリマー温度(ポリマー吐出口金温度)に差をつけやすい乾湿式紡糸法が好ましい。
(Spinning process)
The spinning method may be either a wet spinning method or a dry / wet spinning method. However, as described later, in the present invention, it is preferable to set the temperature of the coagulation bath low. On the other hand, from the viewpoint of spinnability, the polymer solution needs to be at a temperature at which constant fluidity can be obtained. In many cases, the temperature of the polymer solution is different. For this reason, a dry-wet spinning method is preferred which easily makes a difference between the coagulation bath temperature and the polymer temperature (polymer discharge nozzle temperature).

本発明で用いるポリマーは、炭素繊維化可能なものであれば特に限定されないが、例えば、ポリアクリロニトリルまたは、ポリアクリロニトリルを主成分とする共重合物、ならびにポリアクリロニトリルを主成分とする混合物である。なお、本発明の説明において、特に断りが無い場合は、ポリアクリロニトリルを主成分とする共重合物をポリマーと呼称する。   The polymer used in the present invention is not particularly limited as long as it can be carbon fiber, and is, for example, polyacrylonitrile, a copolymer containing polyacrylonitrile as a main component, and a mixture containing polyacrylonitrile as a main component. In the description of the present invention, unless otherwise specified, a copolymer containing polyacrylonitrile as a main component is referred to as a polymer.

ポリマーの溶媒は、ポリマーを溶解するものであれば特に限定されず、例えば、ジメチルスルホオキシド、ジメチルホルムアミド、ジメチルアセトアミドである。   The solvent for the polymer is not particularly limited as long as it dissolves the polymer, and examples thereof include dimethylsulfoxide, dimethylformamide and dimethylacetamide.

ポリマー溶液におけるポリマー濃度は特に限定されないが、ポリマー濃度が高いことにより膨潤度が小さくなり易いことから、10質量%以上が好ましい。ポリマーが溶媒に溶解していれば、上限は特に限定されないが、一般に、30質量%以下である。また、ポリマー濃度が高いことは、空孔径を小さくすることにも好ましい場合が多い。   The concentration of the polymer in the polymer solution is not particularly limited, but is preferably 10% by mass or more because the degree of swelling tends to be small due to the high concentration of the polymer. The upper limit is not particularly limited as long as the polymer is dissolved in the solvent, but generally 30% by mass or less. Also, a high polymer concentration is often preferred for reducing the pore size.

口金から吐出するポリマー溶液の温度は、高いほど流動性が得やすい。一方、ポリマー溶液の温度が低いほど凝固浴での析出は容易になる。凝固浴でポリマーが容易に析出すると、液液相分離過程でサイズの成長が進みにくくなるため、空孔径が小さくなり易い。このため、ポリマー溶液温度は、15〜95℃が好ましい。   The higher the temperature of the polymer solution discharged from the die, the easier it is to obtain fluidity. On the other hand, the lower the temperature of the polymer solution, the easier the precipitation in the coagulation bath. If the polymer is easily deposited in the coagulation bath, the growth of size is difficult to progress in the liquid-liquid phase separation process, and the pore diameter tends to be small. For this reason, the polymer solution temperature is preferably 15 to 95 ° C.

(凝固工程)
本発明の凝固糸は、一例として、前記凝固糸を形成するポリマーの溶解度パラメーターに対して−11〜+20の溶解度パラメーターを有する非溶媒と、前記凝固糸の形成に用いるポリマー溶液の溶媒を、非溶媒:溶媒=1:9〜9:1の割合で混合した凝固浴を用いて、前記ポリマーを凝固する工程を含む、工程によって製造することができる。本発明でいう溶解度パラメーターとはハンセン溶解度パラメーター(MPa0.5)である。
(Coagulation process)
The coagulated yarn of the present invention comprises, as an example, a non-solvent having a solubility parameter of -11 to +20 with respect to the solubility parameter of the polymer forming the coagulated yarn, and the solvent of the polymer solution used for forming the coagulated yarn. It can be manufactured by a process comprising coagulating the polymer using a coagulation bath mixed in a ratio of solvent: solvent = 1: 9 to 9: 1. The solubility parameter referred to in the present invention is a Hansen solubility parameter (MPa 0.5 ).

非溶媒の溶解度パラメーターと、ポリマーの溶解度パラメーターの差は、大きいほど溶解し難いことを意味する。本発明は、ポリマーの溶解度パラメーターと近い非溶媒を選択することで、膨潤度および内層の空孔径を小さくできるということを見出したものである。ポリマーの溶解度パラメーターに対して非溶媒の溶解度パラメーターは−9〜+15が好ましく、−7〜+10がより好ましい。ポリアクリロニトリルをポリマーとする場合、ポリアクリロニトリルの溶解度パラメーターは27.4であり、好ましい非溶媒の溶解度パラメーターは、16.4〜47.4である。このような非溶媒としては、メタノールやエタノール、プロパノール、ブタノール、グリセリンやエチレングリコール、プロピレングリコール、ブタンジオール、酢酸、酢酸エチル、アセトン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルエチルケトン、クロロホルムを例示することができる。ここでいう非溶媒とは、常圧、常温の環境で、ポリマー溶液に添加して、ポリマーが析出するものである。溶解度パラメーターは、例えば、ハンドブック(Hansen Solubility Parameters A User’s Handbook Second Edition、CRC Press(2007)参照)の値または記載されている方法で算出した値を用いる。ポリマーが混合物の場合は、非溶媒の溶解度パラメーター(δ)と、それぞれのポリマーの溶解度パラメーターの差を比較して、少なくともひとつのポリマーの溶解度パラメーターに対して−11〜+20の溶解度パラメーターを有する非溶媒を用いるものである。また、非溶媒が混合物の場合は、分散力(δd)、双極子相互作用(δp)、水素結合(δh)という3つのパラメーターを、混合物の体積分率に応じて足し合わせて算出し、得られた3つのパラメーターをそれぞれ2乗した値の総和について、平方根を取り、非溶媒の溶解度パラメーターとする。
例えば、非溶媒が非溶媒A、Bからなる2成分混合物の場合、混合非溶媒のδd、δp、δhは、
The difference between the nonsolvent's solubility parameter and the polymer's solubility parameter means that the larger the difference, the less soluble it is. The present invention has found that the degree of swelling and the pore size of the inner layer can be reduced by selecting a non-solvent close to the solubility parameter of the polymer. With respect to the solubility parameter of the polymer, the solubility parameter of the nonsolvent is preferably -9 to +15, and more preferably -7 to +10. When polyacrylonitrile is used as a polymer, the solubility parameter of polyacrylonitrile is 27.4, and the preferable nonsolvent solubility parameter is 16.4 to 47.4. Examples of such non-solvents include methanol, ethanol, propanol, butanol, glycerin, ethylene glycol, propylene glycol, butanediol, acetic acid, ethyl acetate, acetone, benzene, toluene, xylene, cyclohexane, methyl ethyl ketone and chloroform. it can. The non-solvent as referred to herein is one which is added to the polymer solution in the environment of normal pressure and normal temperature to precipitate the polymer. As the solubility parameter, for example, the value of a handbook (see Hansen Solubility Parameters A User's Handbook Second Edition, see CRC Press (2007)) or a value calculated according to the described method is used. When the polymer is a mixture, the nonsolvent's solubility parameter (δ) is compared with the difference in the solubility parameter of each polymer, and the nonsolvent has a solubility parameter of -11 to +20 with respect to the solubility parameter of at least one polymer. It uses a solvent. Also, when the non-solvent is a mixture, three parameters of dispersion force (δ d ), dipolar interaction (δ p ) and hydrogen bond (δ h ) are calculated according to the volume fraction of the mixture. Then, for the sum of the values obtained by squaring the three obtained parameters, the square root is taken as the nonsolvent solubility parameter.
For example, in the case of a binary mixture in which the non-solvent is composed of non-solvents A and B, the mixed non-solvents δ d , δ p and δ h are

である。ここで、φAおよびφBは混合物の体積分率であり、φAB = 1である。算出した混合非溶媒のδd、δp、δhにより混合非溶媒の溶解度パラメーター(δ)はIt is. Here, φ A and φ B are volume fractions of the mixture, and φ A + φ B = 1. The solubility parameter (δ) of the mixed nonsolvent is calculated from the calculated δ d , δ p and δ h of the mixed nonsolvent

と算出できる。 It can be calculated as

また、本発明者らは、ポリマーの溶媒を凝固浴に混合させることで表層および内層の空孔径を制御できることを見出した。また、前述の範囲の非溶媒を用いると真円度が低下する傾向が見られたが、ポリマー溶媒を多くすることで、膨潤度が小さいまま真円度を高くする効果を見出した。一方、ポリマー溶媒を少なくすると表層および内層の空孔径を小さくできることもわかった。本発明の態様において、非溶媒:溶媒=2:8〜8:2の割合がより好ましく、非溶媒:溶媒=3:7〜7:3の割合がさらに好ましく、非溶媒:溶媒=4:6〜6:4が一層好ましい。また、本発明の効果を損なわない範囲でその他の物質が含まれていてもよい。なお、ここで言う割合とは質量の割合である。   The present inventors also found that the pore diameter of the surface layer and the inner layer can be controlled by mixing the solvent of the polymer into the coagulation bath. Moreover, although the tendency for roundness to fall was seen when the nonsolvent of the above-mentioned range was used, the effect which makes high circularity while swelling degree was small was found by increasing a polymer solvent. On the other hand, it was also found that the pore diameter of the surface layer and the inner layer can be reduced by decreasing the amount of the polymer solvent. In the embodiment of the present invention, the ratio of non-solvent: solvent = 2: 8 to 8: 2 is more preferable, the ratio of non-solvent: solvent = 3: 7 to 7: 3 is more preferable, and non-solvent: solvent = 4: 6 To 6: 4 is more preferable. In addition, other substances may be contained as long as the effects of the present invention are not impaired. In addition, the ratio said here is a ratio of mass.

本発明における凝固浴における非溶媒の拡散係数Dが3.4×10−10・S−1以下であることが好ましい。拡散係数Dが小さいほど、得られる凝固糸の膨潤度および表層および内層の空孔径が小さくなる。ここで、非溶媒の拡散係数Dとはパルス磁場勾配核磁気共鳴法(PFG−NMR法)により得られるものである。PFG−NMRでは通常のNMR測定における静磁場方向にパルス磁場勾配(PFG)を印加することで物質の拡散移動距離、すなわち核スピンの位置に関する情報を取り出すことができる。It is preferable that the nonsolvent's diffusion coefficient D in the coagulation bath in the present invention is 3.4 × 10 −10 m 2 · S −1 or less. The smaller the diffusion coefficient D, the smaller the degree of swelling of the obtained coagulated yarn and the pore diameter of the surface layer and the inner layer. Here, the nonsolvent's diffusion coefficient D is obtained by pulsed magnetic field gradient nuclear magnetic resonance (PFG-NMR). In PFG-NMR, by applying a pulsed magnetic field gradient (PFG) in the direction of the static magnetic field in normal NMR measurement, it is possible to extract information on the diffusion migration distance of a substance, that is, the position of nuclear spins.

具体的にはPFG強度変化に基づく対象ピーク強度の減衰を追跡し、その減衰変化の指数関数解析による傾きから拡散係数を求める方法である。実際のPFG−NMRを用いた非溶媒拡散係数Dの測定にはDiff60プローブを装着したNMR装置(Bruker Biospin製 AVANCE III HD 400)を用い、Stejskal−Tanner の式
ln(I/I0)=-Dγ2G2α2(Δ-α/3)
を用いて評価した。ここで、Gは磁場勾配強度、αは磁場勾配パルス幅、Δは磁場勾配パルスの間隔(拡散時間)、γは観測核の核磁気回転比である。シグナル強度I をGが最小の時のシグナル強度I0 で規格化したln(I/I0)をG2γ2α2(Δ-α/3)に対してプロットし、その傾きから非溶媒の拡散係数Dを求めた。非溶媒種が2種以上含まれる場合は、最も拡散係数Dが大きい非溶媒(最も拡散が早い非溶媒)のDをその凝固液のDと定義する。
Specifically, it is a method of tracking the attenuation of the target peak intensity based on the PFG intensity change, and determining the diffusion coefficient from the slope by the exponential function analysis of the attenuation change. For measurement of non-solvent diffusion coefficient D using actual PFG-NMR, using the NMR apparatus (AVANCE III HD 400 manufactured by Bruker Biospin) equipped with a Diff 60 probe, the Stejskal-Tanner equation
ln (I / I 0 ) =-Dγ 2 G 2 α 2 (Δ-α / 3)
It evaluated using. Here, G is the magnetic field gradient strength, α is the magnetic field gradient pulse width, Δ is the interval of the magnetic field gradient pulse (diffusion time), and γ is the nuclear magnetic rotation ratio of the observed nucleus. Plot ln (I / I 0 ), where signal intensity I is normalized by signal intensity I 0 when G is minimum, against G 2 γ 2 α 2 (Δ-α / 3), and from the slope, nonsolvent The diffusion coefficient D of was determined. When two or more non-solvent species are contained, D of the non-solvent having the largest diffusion coefficient D (the non-solvent having the fastest diffusion) is defined as D of the coagulation liquid.

本発明における凝固浴は、粘度が2〜1000mPa・sであることが好ましい。凝固浴の粘度が高いことによって、膨潤度が低くなりやすく、凝固浴の粘度が低いことによって、ポリマーが析出しやすくなって空孔径が小さくなり易い。凝固浴の粘度は、5〜500mPa・sがより好ましく、10〜200mPaがさらに好ましい。   The coagulation bath in the present invention preferably has a viscosity of 2 to 1000 mPa · s. The high viscosity of the coagulation bath tends to lower the degree of swelling, and the low viscosity of the coagulation bath makes it easy for the polymer to precipitate and the pore diameter to be reduced. The viscosity of the coagulation bath is more preferably 5 to 500 mPa · s, further preferably 10 to 200 mPa.

また、本発明における凝固浴は、口金から吐出されたポリマーよりも10〜100℃温度が低いことが好ましい。凝固浴の温度が低いほどポリマーを析出させやすくなるため空孔径を小さくし易い。一方、凝固浴の温度を高くすると製糸性が向上し、毛羽や繊維間接着の少ない繊維を得やすい。ポリマー溶液よりも凝固浴の温度が20〜80℃低いことがより好ましく、30〜60℃低いことが更に好ましい。
[炭素繊維前駆体繊維の製造方法]
次に、本発明の炭素繊維前駆体繊維の製造方法について説明する。
In addition, the coagulation bath in the present invention preferably has a temperature 10 to 100 ° C. lower than that of the polymer discharged from the die. The lower the temperature of the coagulation bath, the easier it is for the polymer to precipitate, and therefore the smaller the pore diameter. On the other hand, when the temperature of the coagulation bath is raised, the spinning property is improved, and it is easy to obtain a fiber with little fluff and adhesion between fibers. The temperature of the coagulation bath is more preferably 20 to 80 ° C. lower than that of the polymer solution, and still more preferably 30 to 60 ° C. lower.
[Method of producing carbon fiber precursor fiber]
Next, the method for producing the carbon fiber precursor fiber of the present invention will be described.

本発明において、炭素繊維前駆体繊維の製造方法は、前述の方法で凝固糸を形成した後、延伸する工程を含むことが好ましい。また、凝固糸を形成した後、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を経て、炭素繊維前駆体繊維を得ることがより好ましい。また、前述の工程に乾熱延伸工程や蒸気延伸工程を加えることも好ましい態様である。凝固後の糸条は、水洗工程を省略して直接浴中延伸を行っても良いし、溶媒を水洗工程により除去した後に浴中延伸を行っても良い。   In the present invention, it is preferable that the method for producing a carbon fiber precursor fiber includes a step of forming a coagulated yarn by the above-mentioned method and then stretching it. In addition, it is more preferable to obtain a carbon fiber precursor fiber after forming a coagulated yarn and then passing through a water washing step, a bath stretching step, an oil agent application step and a drying step. Moreover, it is also a preferable aspect to add a dry heat drawing process and a steam drawing process to the above-mentioned process. The yarn after coagulation may be directly drawn in a bath by omitting a washing step, or may be drawn in a bath after the solvent is removed by a washing step.

浴中延伸工程の後、単繊維同士の接着を防止する目的から、延伸された繊維糸条にシリコーン系の油剤を付与することが好ましい。   After the in-bath drawing step, it is preferable to apply a silicone-based oil to the drawn fiber yarn for the purpose of preventing adhesion between single fibers.

油剤を付与した後に乾燥することが好ましい。また、生産性の向上や結晶配向度の向上として、乾燥工程後に加熱熱媒中で延伸することが好ましい。加熱熱媒としては、例えば、加圧水蒸気あるいは過熱水蒸気が操業安定性やコストの面で好適に用いられる。   It is preferable to dry after applying the oil solution. Moreover, it is preferable to extend | stretch in a heating heat medium after a drying process as a productivity improvement and the improvement of the degree of crystal orientation. As the heating heat medium, for example, pressurized steam or superheated steam is suitably used in terms of operation stability and cost.

延伸倍率を大きくすると、分子が繊維軸方向に整列しやすいため、炭素繊維化した際の引っ張り強度が向上しやすい。一方、延伸倍率を小さくすること、繊維の長さ方向の均一性を向上しやすくなる。このため、トータルの延伸倍率は1倍以上、20倍未満が好ましい。   When the draw ratio is increased, the molecules are easily aligned in the fiber axis direction, and thus the tensile strength at the time of carbon fiber formation is easily improved. On the other hand, it becomes easy to improve the uniformity of the longitudinal direction of a fiber by making a draw ratio small. Therefore, the total stretch ratio is preferably 1 or more and less than 20.

[炭素繊維の製造方法]
次に、本発明の炭素繊維の製造方法について説明する。
[Method of producing carbon fiber]
Next, the method for producing a carbon fiber of the present invention will be described.

本発明において、炭素繊維の製造方法は、炭素繊維前駆体繊維を得た後に、該炭素繊維前駆体繊維を熱処理する工程を含むことが好ましい。ここでいう熱処理する工程は、炭素繊維前駆体繊維を炭素繊維化させる際に、炭素繊維前駆体繊維を加熱するものであれば特に限定するものではないが、例えば、後述の耐炎化工程、予備炭化工程、炭化工程、黒鉛化工程である。   In the present invention, it is preferable that the method for producing carbon fibers includes the step of heat treating the carbon fiber precursor fibers after obtaining the carbon fiber precursor fibers. The heat treatment step is not particularly limited as long as the carbon fiber precursor fiber is heated when carbon fiber precursor fiber is carbonized. A carbonization process, a carbonization process, and a graphitization process.

本発明では、前述のようにして得た炭素繊維前駆体繊維を、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を順次経て炭素繊維を得ることが好ましい。   In the present invention, the carbon fiber precursor fiber obtained as described above is flameproofed in air at a temperature of 200 to 300 ° C., and the fiber obtained in the flameproof step is 300 to 800 ° C. Carbon fiber through a pre-carbonization step of pre-carbonizing in an inert atmosphere at a temperature of 1, and a carbonization step of carbonizing the fibers obtained in the pre-carbonization step in an inert atmosphere at a temperature of 1,000 to 3,000 ° C. It is preferable to obtain

より弾性率が高い炭素繊維を所望する場合には、炭化工程に続き黒鉛化を行うこともできる。黒鉛化工程の温度は2,000〜2,800℃であるのがよい。また、その最高温度は、所望する炭素繊維の要求特性に応じて適宜選択して使用される。黒鉛化工程における延伸比は、所望する炭素繊維の要求特性に応じて、毛羽発生など品位低下の生じない範囲で適宜選択するのがよい。   If carbon fibers having a higher modulus of elasticity are desired, graphitization can also be performed following the carbonization step. The temperature of the graphitization step may be 2,000 to 2,800 ° C. Moreover, the maximum temperature is suitably selected and used according to the request | requirement characteristic of the desired carbon fiber. The draw ratio in the graphitization step may be appropriately selected within a range that does not cause deterioration in quality such as fuzz generation, according to the required characteristics of the carbon fiber desired.

(表面改質工程)
得られた炭素繊維はその表面改質のため、電解処理をすることができる。電解処理により、得られる繊維強化複合材料において炭素繊維マトリックスとの接着性を適正化することができるためである。接着が強すぎることによる複合材料の脆性的な破壊や、繊維方向の引張強度が低下するという問題や、繊維方向における引張強度は高いものの樹脂との接着性に劣り、非繊維方向における強度特性が発現しないという問題が解消される。この結果、得られる繊維強化複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現される。
(Surface modification process)
The obtained carbon fiber can be subjected to an electrolytic treatment for surface modification. It is because the adhesiveness with a carbon fiber matrix can be optimized in the fiber reinforced composite material obtained by electrolytic treatment. It has the problem of brittle fracture of the composite material due to too strong adhesion, the problem that the tensile strength in the fiber direction is reduced, the tensile strength in the fiber direction is high but the adhesion to resin is inferior, and the strength characteristics in the non-fiber direction The problem of not expressing is resolved. As a result, in the fiber-reinforced composite material obtained, balanced strength characteristics are developed in both the fiber direction and the non-fiber direction.

電解処理の後、炭素繊維に集束性を付与するため、サイジング処理を施すこともできる。サイジング剤には、使用する樹脂の種類に応じて、マトリックス樹脂と相溶性の良いサイジング剤を適宜選択することができる。   After the electrolytic treatment, the carbon fiber may be subjected to a sizing treatment in order to impart focusing. As the sizing agent, a sizing agent compatible with the matrix resin can be appropriately selected according to the type of resin used.

実施例および比較例中のデータは以下の方法で測定した。   The data in the examples and comparative examples were measured by the following methods.

1.凝固糸の空孔径
(1)試料作製
凝固糸が含有している液を水に置換した。次に、水置換した凝固糸を凍結乾燥して得た凝固糸を樹脂で包埋し、ウルトラミクロトームで100nmの切片を作製した。
1. Pore diameter of coagulated yarn (1) Preparation of sample The liquid contained in the coagulated yarn was replaced with water. Next, the coagulated yarn obtained by lyophilizing the water-replaced coagulated yarn was embedded in a resin, and a 100 nm section was produced with an ultramicrotome.

(2)観察
作製した切片中の樹脂を除去した後、透過型電子顕微鏡を用いて、加速電圧100kVで観察した。このとき、繊維径方向の断面を1万倍の倍率で観察した。
(2) Observation After removing the resin in the prepared section, it was observed at an acceleration voltage of 100 kV using a transmission electron microscope. At this time, the cross section in the fiber diameter direction was observed at a magnification of 10,000.

(3)空孔径測定
A.画像処理ソフトJTrim ver.1.53c(ジェイ・トリム)を用いて、適用の強さを50としてノイズ除去を行った。
B.JTrimを用いて、A.で得られた画像に対してヒストグラムのノーマライズを行った。
C.JTrimを用いて、B.で得られた画像に対して境界の閾値を145として2階調化を行った。
D.画像処理ソフトImageJ 1.50i(イメージ・ジェイ)を用いて、C.で得られた画像に対して領域選択ツールで領域を選択した(表層:外周から内側に向かって500nmの範囲、内層:断面の重心を中心とした直径500nmの円の範囲)。
E.画像処理ソフトImageJ 1.50i(イメージ・ジェイ)を用いて、D.で得られた画像に対して粒子解析コマンドを用いて空孔に相当する部分の面積を測定し、その面積を円換算して粒径を求めた。
F.E.で得られた粒径のうち、2番目に大きなものから31番目に大きいものの平均値を粒径とした。31個検出されない場合は、検出された範囲の値を用いた。
(3) Pore diameter measurement A. Image processing software JTrim ver. A noise removal was performed with an application strength of 50 using 1.53c (Je Trim).
B. Using JTrim, A. Histogram normalization was performed on the image obtained in.
C. B. using JTrim; Two-tone processing was performed on the image obtained in the above with the threshold of the boundary being 145.
D. C. using the image processing software ImageJ 1.50i (image J); A region was selected with the region selection tool with respect to the image obtained in (Surface: range of 500 nm from the outer periphery toward the inside, inner layer: range of a circle with a diameter of 500 nm centered on the center of gravity of the cross section).
E. Using the image processing software ImageJ 1.50i (image J), D.I. The area of the portion corresponding to the void was measured using the particle analysis command with respect to the image obtained in 4., and the area was converted into a circle to determine the particle size.
F. E. Among the particle sizes obtained in the above, the average value of the second largest particle to the 31st largest particle diameter was taken as the particle diameter. When 31 were not detected, the value of the detected range was used.

2.凝固糸の膨潤度
まず、凝固糸を約10gサンプリングし、12hr以上水洗する。次に遠心脱水機(たとえばコクサン株式会社製H−110A)にて3000rpmで3分間脱水し脱水後の繊維質量を求める。その後、脱水後のサンプルを105℃で温調された乾燥機で2.5hr乾燥し、乾燥後の繊維質量を求め下記式により繊維膨潤度を算出する。
式:繊維膨潤度(%)=((脱水後の繊維質量―乾燥後の繊維質量)/乾燥後の繊維質量))×100。
2. First, about 10 g of coagulated yarn is sampled and washed with water for 12 hours or more. Next, it spin-dry | dehydrates for 3 minutes at 3000 rpm with a centrifugal dehydrator (for example, H-110A by Koksan Co., Ltd.), and calculates the fiber mass after dewatering. Thereafter, the dehydrated sample is dried for 2.5 hours with a dryer adjusted to a temperature of 105 ° C., the fiber mass after drying is determined, and the degree of fiber swelling is calculated by the following equation.
Formula: degree of swelling of fiber (%) = ((weight of fiber after dehydration−weight of fiber after drying) / weight of fiber after drying) × 100.

3.炭素繊維束の引張強度および弾性率
JIS R7608(2007)「炭素繊維−樹脂含浸ヤーン試料を用いた引張特性試験方法」に従って求めた。測定する炭素繊維の樹脂含浸ストランドは、3、4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシル−カルボキシレート(100質量部)/3フッ化ホウ素モノエチルアミン(3質量部)/アセトン(4質量部)を、炭素繊維または黒鉛化繊維に含浸させ、130℃の温度で30分で硬化させて作製した。また、炭素繊維のストランドの測定本数は6本とし、各測定結果の平均値を引張強度とした。本実施例では、3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキシル−カルボキシレートとして、ユニオンカーバイド(株)製“ベークライト”(登録商標)ERL4221を用いた。
3. Tensile strength and elastic modulus of carbon fiber bundle
It was determined in accordance with JIS R 7608 (2007) “Test method for tensile characteristics using carbon fiber-resin-impregnated yarn sample”. The resin impregnated strand of the carbon fiber to be measured is 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate (100 parts by mass) / 3 boron monofluoride monoethylamine (3 parts by mass) / acetone (4 parts by mass) Part) were prepared by impregnating carbon fiber or graphitized fiber and curing at a temperature of 130 ° C. for 30 minutes. Further, the number of carbon fiber strands measured was six, and the average value of the respective measurement results was taken as the tensile strength. In this example, "Bakelite" (registered trademark) ERL4221 manufactured by Union Carbide Co., Ltd. was used as 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate.

4.非溶媒の拡散係数(D)の測定
PFG−NMR法に基づき、Diff60プローブを装着したNMR装置(Bruker Biospin製 AVANCE III HD 400)を用いて各凝固浴の非溶媒の拡散係数(D)を測定した。測定温度は5℃とした。
4. Measurement of the nonsolvent's diffusion coefficient (D) Based on PFG-NMR method, the nonsolvent's diffusion coefficient (D) of each coagulation bath was measured using NMR equipment (AVANCE III HD 400 manufactured by Bruker Biospin) equipped with a Diff 60 probe. did. The measurement temperature was 5 ° C.

(実施例1)
アクリロニトリルとイタコン酸からなる共重合体を、ジメチルスルホキシドを溶媒とし、重合開始剤を用いて溶液重合法により重合させ、ポリアクリロニトリル系共重合体を製造し、紡糸溶液とした。
Example 1
A copolymer composed of acrylonitrile and itaconic acid is polymerized by solution polymerization using dimethylsulfoxide as a solvent and a polymerization initiator to prepare a polyacrylonitrile-based copolymer, which is used as a spinning solution.

得られた紡糸溶液を50℃にコントロールして一旦空気中に吐出し、5℃にコントロールしたポリマー溶媒であるジメチルスルホキシドを48質量%、非溶媒であるエチレングリコールを52質量%の比率で混合した凝固浴に導入して、紡糸ドラフト2.5になる速度で引き取る乾湿式紡糸法により凝固糸条とした。この凝固糸条を、水浴で洗浄した後、水浴において延伸した。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、加熱ローラーを用いて、乾燥緻密化処理を行い、加圧スチーム中で延伸することにより、製糸全延伸倍率を10倍とし、単繊維繊度0.8dtexのポリアクリロニトリル系炭素繊維前駆体繊維を得た。次に、得られたポリアクリロニトリル系炭素繊維前駆体繊維を温度220〜270℃の温度勾配を有する空気中において耐炎化処理し、耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300〜800℃の窒素雰囲気中において、予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1400℃で炭素化処理を行った。引き続いて硫酸水溶液を電解液として電解表面処理し、水洗、乾燥した後、サイジング剤を付与し、炭素繊維を得た。   The obtained spinning solution was controlled at 50 ° C. and discharged once into the air, and a polymer solvent controlled at 5 ° C. was mixed with 48% by mass of dimethylsulfoxide as a polymer solvent and 52% by mass of ethylene glycol as a nonsolvent. It was introduced into a coagulating bath and was coagulated by a dry-wet spinning method which was pulled at a speed of a spinning draft of 2.5. The coagulated filament was washed in a water bath and then stretched in a water bath. Subsequently, an amino-modified silicone-based silicone oil agent is applied to the fiber bundle after the water-bath drawing, and a drying roller is used to perform a drying and densification treatment, and drawing in pressurized steam is performed. The magnification was made 10 times to obtain a polyacrylonitrile-based carbon fiber precursor fiber having a single fiber fineness of 0.8 dtex. Next, the obtained polyacrylonitrile-based carbon fiber precursor fiber was subjected to a flameproofing treatment in air having a temperature gradient of 220 to 270 ° C. to obtain a flameproofed fiber bundle. The obtained flame-resistant fiber bundle was subjected to pre-carbonization treatment in a nitrogen atmosphere at a temperature of 300 to 800 ° C. to obtain a pre-carbonized fiber bundle. The obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1400 ° C. in a nitrogen atmosphere. Subsequently, an electrolytic solution was subjected to electrolytic surface treatment using a sulfuric acid aqueous solution as an electrolytic solution, washed with water and dried, and then a sizing agent was applied to obtain a carbon fiber.

(実施例2)
凝固浴の非溶媒としてメタノールを用いた以外は実施例1と同様にして炭素繊維を得た。
(Example 2)
A carbon fiber was obtained in the same manner as in Example 1 except that methanol was used as a nonsolvent for the coagulation bath.

(実施例3)
凝固浴温度を45℃にコントロールした以外は実施例1と同様にして炭素繊維を得た。
(Example 3)
Carbon fibers were obtained in the same manner as in Example 1 except that the coagulation bath temperature was controlled to 45 ° C.

(実施例4)
凝固浴の非溶媒としてn−ブタノールを用いて、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。
(Example 4)
Carbon fiber was obtained in the same manner as in Example 1 except that n-butanol was used as a non-solvent for the coagulation bath and the ratio to the polymer solvent was changed.

(実施例5)
凝固浴の非溶媒としてグリセリンとエタノールを用いた以外は実施例1と同様にして炭素繊維を得た。
(Example 5)
A carbon fiber was obtained in the same manner as in Example 1 except that glycerin and ethanol were used as the non-solvent for the coagulation bath.

(実施例6)
ポリマー溶媒としてジメチルホルムアミドを用いた以外は実施例1と同様にして炭素繊維を得た。
(Example 6)
A carbon fiber was obtained in the same manner as in Example 1 except that dimethylformamide was used as the polymer solvent.

(実施例7)
凝固浴の非溶媒としてエチレングリコールとエタノールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。
(Example 7)
Carbon fiber was obtained in the same manner as in Example 1 except that ethylene glycol and ethanol were used as the non-solvent for the coagulation bath, and the ratio to the polymer solvent was changed.

(実施例8)
凝固浴の非溶媒としてプロピレングリコールとエタノールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。
(Example 8)
Carbon fiber was obtained in the same manner as in Example 1 except that propylene glycol and ethanol were used as the non-solvent for the coagulation bath, and the ratio to the polymer solvent was changed.

(実施例9)
凝固浴の非溶媒として水とグリセリンを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは2.7×10−10・S−1であった。
(Example 9)
Carbon fiber was obtained in the same manner as in Example 1 except that water and glycerin were used as non-solvents of the coagulation bath, and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 2.7 × 10 −10 m 2 · S −1 .

(実施例10)
凝固浴の非溶媒として水とエチレングリコールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは2.7×10−10・S−1であった。
(Example 10)
Carbon fiber was obtained in the same manner as in Example 1 except that water and ethylene glycol were used as non-solvents for the coagulation bath, and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 2.7 × 10 −10 m 2 · S −1 .

(実施例11)
凝固浴温度を25℃にコントロールした以外は実施例10と同様にして炭素繊維を得た。
(Example 11)
A carbon fiber was obtained in the same manner as in Example 10 except that the coagulation bath temperature was controlled to 25 ° C.

(実施例12)
凝固浴温度を−15℃にコントロールした以外は実施例10と同様にして炭素繊維を得た。
(Example 12)
A carbon fiber was obtained in the same manner as in Example 10 except that the coagulation bath temperature was controlled to -15 ° C.

(実施例13)
凝固浴の非溶媒として水とプロピレングリコールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは3.3×10−10・S−1であった。
(Example 13)
Carbon fiber was obtained in the same manner as in Example 1 except that water and propylene glycol were used as the non-solvent for the coagulation bath and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 3.3 × 10 −10 m 2 · S −1 .

(実施例14)
凝固浴の非溶媒として水とメタノールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは4.4×10−10・S−1であった。
(Example 14)
Carbon fiber was obtained in the same manner as in Example 1 except that water and methanol were used as the non-solvent for the coagulation bath, and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 4.4 × 10 −10 m 2 · S −1 .

(実施例15)
凝固浴の非溶媒として水とエタノールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは3.4×10−10・S−1であった。
(Example 15)
Carbon fiber was obtained in the same manner as in Example 1 except that water and ethanol were used as non-solvents for the coagulation bath, and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 3.4 × 10 −10 m 2 · S −1 .

(実施例16)
凝固浴の非溶媒として水と1−プロパノールを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは5.3×10−10・S−1であった。
(Example 16)
Carbon fiber was obtained in the same manner as in Example 1 except that water and 1-propanol were used as the non-solvent for the coagulation bath, and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 5.3 × 10 −10 m 2 · S −1 .

(比較例1)
凝固浴の非溶媒として水を用いて、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは3.5×10−10・S−1であった。
(Comparative example 1)
Carbon fiber was obtained in the same manner as in Example 1 except that water was used as a nonsolvent for the coagulation bath and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 3.5 × 10 −10 m 2 · S −1 .

(比較例2)
凝固浴にポリマー溶媒を用いないこと以外は実施例1と同様にして炭素繊維を得た。
(Comparative example 2)
Carbon fibers were obtained in the same manner as in Example 1 except that the polymer solvent was not used in the coagulation bath.

(比較例3)
凝固浴の非溶媒として流動パラフィンとデカノールを用いて、ポリマー溶媒を用いない以外は実施例1と同様にして炭素繊維を得た。用いた非溶媒種とその組み合わせは特許文献2に記載の例と同様である。得られた凝固糸の表層空孔径は42nmであり、本請求項1〜3の範囲外であった。
(Comparative example 3)
A carbon fiber was obtained in the same manner as in Example 1 except that liquid paraffin and decanol were used as the non-solvent for the coagulation bath and no polymer solvent was used. The non-solvent species used and the combination thereof are the same as the example described in Patent Document 2. The surface pore diameter of the obtained coagulated yarn was 42 nm, which was outside the range of claims 1 to 3.

(比較例4)
凝固浴の非溶媒として水を用い、ポリマー溶媒としてジメチルホルムアミドを用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。用いた非溶媒種と溶媒種および混合比は特許文献1に記載の例と同様である。得られた凝固糸の表層空孔径は35nm、膨潤度は108%であり、本請求項1〜3の範囲外であった。PFG−NMRに基づき評価したDは5.5×10−10・S−1であった。
(Comparative example 4)
Carbon fiber was obtained in the same manner as in Example 1 except that water was used as a nonsolvent for the coagulation bath, dimethylformamide was used as a polymer solvent, and the ratio to the polymer solvent was changed. The non-solvent species, solvent species and mixing ratio used are the same as in the example described in Patent Document 1. The surface layer pore diameter of the obtained coagulated yarn was 35 nm, the degree of swelling was 108%, and it was out of the range of claims 1 to 3. D evaluated based on PFG-NMR was 5.5 × 10 −10 m 2 · S −1 .

(比較例5)
凝固浴の非溶媒として水を用い、ポリマー溶媒との比率を変更した以外は実施例1と同様にして炭素繊維を得た。PFG−NMRに基づき評価したDは5.8×10−10・S−1であった。
(Comparative example 5)
Carbon fiber was obtained in the same manner as in Example 1 except that water was used as a non-solvent for the coagulation bath and the ratio to the polymer solvent was changed. D evaluated based on PFG-NMR was 5.8 × 10 −10 m 2 · S −1 .

Claims (11)

炭素繊維前駆体繊維の製造に用いられる凝固糸であって、表層空孔径が30nm以下で、膨潤度が100%未満である、凝固糸。 A coagulated yarn used for producing a carbon fiber precursor fiber, wherein the surface layer pore diameter is 30 nm or less and the degree of swelling is less than 100%. 炭素繊維前駆体繊維の製造に用いられる凝固糸であって、表層空孔径が30nm以下で、内層空孔径が30nm以下である、凝固糸。 A coagulated yarn used for producing a carbon fiber precursor fiber, the coagulated yarn having a surface pore diameter of 30 nm or less and an inner layer pore diameter of 30 nm or less. 表層空孔径が30nm以下で、内層空孔径が30nm以下である、請求項1に記載の凝固糸。 The coagulated yarn according to claim 1, wherein the surface pore diameter is 30 nm or less and the inner layer pore diameter is 30 nm or less. 請求項1〜3のいずれかに記載の凝固糸の製造方法であって、前記凝固糸を形成するポリマーの溶解度パラメーターに対して−11〜+20の溶解度パラメーターを有する非溶媒と、前記凝固糸の形成に用いるポリマー溶液の溶媒を、非溶媒:溶媒=1:9〜9:1の割合で混合した凝固浴を用いて、前記ポリマーを凝固する工程を含む、凝固糸の製造方法。 The method for producing a coagulated yarn according to any one of claims 1 to 3, comprising: a non-solvent having a solubility parameter of -11 to +20 with respect to a solubility parameter of a polymer forming the coagulated yarn; A method for producing a coagulated yarn, comprising coagulating the polymer using a coagulation bath in which a solvent of a polymer solution used for formation is mixed in a ratio of non-solvent: solvent = 1: 9 to 9: 1. 非溶媒の拡散係数が3.4×10−10・S−1以下である凝固浴を用いた請求項4に記載の凝固糸の製造方法。The manufacturing method of the coagulation | solidification thread | yarn of Claim 4 using the coagulation | solidification bath whose diffusion coefficient of a nonsolvent is 3.4 * 10 <-10> m < 2 > S <-1> or less. 前記凝固浴の粘度が2〜1000mPa・sである、請求項4または5に記載の凝固糸の製造方法。 The manufacturing method of the coagulation | solidification thread | yarn of Claim 4 or 5 whose viscosity of the said coagulation bath is 2-1000 mPa * s. 前記ポリマー溶液よりも前記凝固浴の温度が10〜100℃低い、請求項4〜6のいずれかに記載の凝固糸の製造方法。 The manufacturing method of the coagulation | solidification yarn in any one of Claims 4-6 whose temperature of the said coagulation bath is 10-100 degreeC lower than the said polymer solution. 紡糸ドラフトを1〜20として紡糸する工程を含む、請求項4〜7のいずれかに記載の凝固糸の製造方法。 The manufacturing method of the coagulation | solidification yarn in any one of Claims 4-7 including the process of spinning as a spinning draft 1-20. 請求項1〜3のいずれかに記載の凝固糸を延伸する工程を含む、炭素繊維前駆体繊維の製造方法。 The manufacturing method of a carbon fiber precursor fiber including the process of extending | stretching the coagulation | solidification thread | yarn in any one of Claims 1-3. 請求項4〜8のいずれかに記載の凝固糸の製造方法により凝固糸を得た後に、該凝固糸を延伸する工程を含む、炭素繊維前駆体繊維の製造方法。 The manufacturing method of carbon fiber precursor fiber including the process of extending | stretching this coagulation | solidification yarn, after obtaining coagulation | solidification yarn by the manufacturing method of coagulation | solidification yarn in any one of Claims 4-8. 請求項9または10に記載の炭素繊維前駆体繊維の製造方法により炭素繊維前駆体繊維を得た後に、該炭素繊維前駆体繊維を熱処理する工程を含む、炭素繊維の製造方法。 A method for producing carbon fiber, comprising the step of heat treating the carbon fiber precursor fiber after obtaining the carbon fiber precursor fiber by the method for producing a carbon fiber precursor fiber according to claim 9 or 10.
JP2017545982A 2016-09-12 2017-08-30 Solidified yarn, method for producing the same, carbon fiber precursor fiber, method for producing carbon fiber Pending JPWO2018047692A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016177277 2016-09-12
JP2016177277 2016-09-12
PCT/JP2017/031124 WO2018047692A1 (en) 2016-09-12 2017-08-30 Coagulated yarn and manufacturing method thereof, carbon fiber precursor fiber, and method for manufacturing carbon fiber

Publications (1)

Publication Number Publication Date
JPWO2018047692A1 true JPWO2018047692A1 (en) 2019-06-24

Family

ID=61562494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017545982A Pending JPWO2018047692A1 (en) 2016-09-12 2017-08-30 Solidified yarn, method for producing the same, carbon fiber precursor fiber, method for producing carbon fiber

Country Status (7)

Country Link
US (1) US20190194829A1 (en)
EP (1) EP3511450A4 (en)
JP (1) JPWO2018047692A1 (en)
KR (1) KR20190044588A (en)
CN (1) CN109689950A (en)
TW (1) TW201819699A (en)
WO (1) WO2018047692A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877813B (en) * 2021-01-20 2022-08-05 中国科学院山西煤炭化学研究所 Coarse denier high-strength medium-modulus polyacrylonitrile-based carbon fiber and preparation method thereof
WO2024090196A1 (en) * 2022-10-24 2024-05-02 東レ株式会社 Carbon fiber bundle, and carbon fiber-reinforced composite material using same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779983A (en) * 1972-06-01 1973-12-18 Celanese Corp Acrylic fibers and films which particularly are suited for thermal stabilization
JPH0274607A (en) 1988-09-05 1990-03-14 Mitsubishi Rayon Co Ltd Production of precursor
JP3223452B2 (en) * 1991-02-08 2001-10-29 三菱レイヨン株式会社 Method for producing carbon fiber precursor fiber
JPH09268426A (en) * 1996-03-28 1997-10-14 Kuraray Co Ltd Production of fiber
JP4975217B2 (en) * 2001-03-06 2012-07-11 三菱レイヨン株式会社 Carbon fiber and method for producing the same, method for producing carbon fiber precursor fiber, and prepreg
JP4446991B2 (en) * 2002-11-22 2010-04-07 三菱レイヨン株式会社 Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2010100970A (en) 2008-10-24 2010-05-06 Toray Ind Inc Method for producing carbon fiber
JP5251524B2 (en) * 2009-01-09 2013-07-31 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
BRPI1012968A2 (en) 2009-06-10 2018-01-16 Mitsubishi Rayon Co carbon fiber acrylonitrile swollen fiber, precursor fiber beam, stabilized beam, carbon fiber beam and production methods thereof
JP2011001653A (en) * 2009-06-19 2011-01-06 Toray Ind Inc Method for producing polyacrylonitrile-based fiber
WO2011122881A2 (en) * 2010-03-31 2011-10-06 코오롱인더스트리 주식회사 Method for preparing carbon fiber and precursor fiber for carbon fiber
JP6428023B2 (en) * 2013-08-01 2018-11-28 三菱ケミカル株式会社 Polyacrylonitrile-based partially cyclized polymer, polyacrylonitrile-based flame resistant polymer, polyacrylonitrile-based flame resistant fiber, carbon fiber, and production method thereof

Also Published As

Publication number Publication date
EP3511450A1 (en) 2019-07-17
EP3511450A4 (en) 2020-05-06
TW201819699A (en) 2018-06-01
US20190194829A1 (en) 2019-06-27
WO2018047692A1 (en) 2018-03-15
CN109689950A (en) 2019-04-26
KR20190044588A (en) 2019-04-30

Similar Documents

Publication Publication Date Title
Park et al. Precursors and manufacturing of carbon fibers
Newcomb et al. The properties of carbon fibers
KR20160138776A (en) Ultrafine carbon fibers and their preparation method
JPWO2018047692A1 (en) Solidified yarn, method for producing the same, carbon fiber precursor fiber, method for producing carbon fiber
US11286580B2 (en) Method for producing acrylonitrile-based fiber
JP2007182657A (en) Polymer composition for carbon fiber precursor fiber
US10260172B2 (en) Carbon fibers, and production method therefor
JP7447788B2 (en) Carbon fiber bundle and its manufacturing method
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
KR101407127B1 (en) rocess of the congelation of precursor fiber for preparing a carbon fiber having high tensile and modulus
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
CN110330754B (en) Nascent thin film, polyacrylonitrile-based carbon thin film and preparation method
JP5066952B2 (en) Method for producing polyacrylonitrile-based polymer composition, and method for producing carbon fiber
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP2012193465A (en) Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
KR102299371B1 (en) A preparation method for resin fiber based polyacrylonitrile
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
KR102426346B1 (en) Polyacrylonitrile-based precursor fiber and its manufacturing method
JPH1112854A (en) Precursor fiber for acrylic carbon fiber and its production
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
KR101957061B1 (en) Process for preparing carbon fiber having high strength
JP2023536106A (en) Polyacrylonitrile chloride-resistant fiber, carbon fiber and method for producing the same
JP2022098766A (en) Polyacrylonitrile fiber and method of producing the same