JP2022098766A - Polyacrylonitrile fiber and method of producing the same - Google Patents

Polyacrylonitrile fiber and method of producing the same Download PDF

Info

Publication number
JP2022098766A
JP2022098766A JP2020212348A JP2020212348A JP2022098766A JP 2022098766 A JP2022098766 A JP 2022098766A JP 2020212348 A JP2020212348 A JP 2020212348A JP 2020212348 A JP2020212348 A JP 2020212348A JP 2022098766 A JP2022098766 A JP 2022098766A
Authority
JP
Japan
Prior art keywords
fiber
polyacrylonitrile
hot water
coagulation
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020212348A
Other languages
Japanese (ja)
Inventor
貴之 中西
Takayuki Nakanishi
貴也 藻寄
Takaya MOYORI
順久 山口
Yorihisa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2020212348A priority Critical patent/JP2022098766A/en
Publication of JP2022098766A publication Critical patent/JP2022098766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

To provide a polyacrylonitrile fiber which curbs formation of a void in a surface layer of a carbon fiber monofilament due to permeation of an oil agent to the surface layer of a polyacrylonitrile fiber monofilament that is used as a precursor fiber of a carbon fiber and from which the carbon fiber is obtained, the carbon fiber being able to be formed into a carbon fiber composite material excellent in interlayer fracture toughness.SOLUTION: A method of producing a polyacrylonitrile fiber includes: a coagulation step of obtaining a coagulated fiber by spinning a dope including a polyacrylonitrile-based polymer into a coagulant liquid; and a hot water drawing step of obtaining a hot water drawing coagulated fiber by drawing the coagulated fiber in how water. A temperature and turbidity of the coagulant liquid in the coagulation step are, respectively, 10-20°C and 10.0 or lower, and a maximum temperature of the hot water in the hot water drawing step is 90°C or higher.SELECTED DRAWING: None

Description

本発明は、高性能かつ高品位な炭素繊維を得るための前駆体繊維として用いられるポリアクリロニトリル系繊維およびその製造方法に関する。 The present invention relates to a polyacrylonitrile-based fiber used as a precursor fiber for obtaining high-performance and high-quality carbon fiber, and a method for producing the same.

炭素繊維は、複合材料の強化繊維として、多くの分野で注目を浴びている。炭素繊維の前駆体繊維としてポリアクリロニトリル系繊維を使用することが広く知られており、このポリアクリロニトリル系炭素繊維は、強度や弾性率、耐熱性などに優れることから、複合材料の補強繊維として広く用いられている。 Carbon fiber is attracting attention in many fields as a reinforcing fiber for composite materials. It is widely known that polyacrylonitrile-based fibers are used as precursor fibers for carbon fibers, and since these polyacrylonitrile-based carbon fibers are excellent in strength, elasticity, heat resistance, etc., they are widely used as reinforcing fibers for composite materials. It is used.

ポリアクリロニトリル系繊維は、一般的にポリアクリロニトリル系重合体を溶媒に溶解した紡糸原液を、湿式紡糸法または乾湿式紡糸法で紡糸して繊維状に賦形した後、延伸、洗浄および乾燥緻密化することにより得られる。溶媒としては無機溶媒または有機溶媒が使用され、無機溶媒では塩化亜鉛水溶液などの水溶液、有機溶媒ではジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどが広く使用されている。 Polyacrylonitrile-based fibers are generally formed by spinning a spinning stock solution in which a polyacrylonitrile-based polymer is dissolved in a solvent by a wet spinning method or a dry-wet spinning method to form fibers, and then drawing, washing and drying and densifying. Obtained by doing. As the solvent, an inorganic solvent or an organic solvent is used, an aqueous solution such as an aqueous solution of zinc chloride is widely used as the inorganic solvent, and dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like are widely used as the organic solvent.

ポリアクリロニトリル系繊維を前駆体繊維として製造される炭素繊維は、ポリアクリロニトリル系繊維を酸化性雰囲気中で200~300℃に加熱して耐炎繊維に転換し、その後、不活性雰囲気中で1000℃以上の温度に加熱する炭素化(焼成)を経ることで得られる。この過程では、単繊維同士の密着が発生することがあり、その場合、毛羽が顕著に増加し、得られる炭素繊維の強度低下が著しくなる。 Carbon fibers produced using polyacrylonitrile-based fibers as precursor fibers heat the polyacrylonitrile-based fibers to 200 to 300 ° C. in an oxidizing atmosphere to convert them into flame-resistant fibers, and then convert them into flame-resistant fibers at 1000 ° C. or higher in an inert atmosphere. It is obtained by undergoing carbonization (firing) by heating to the temperature of. In this process, adhesion between the single fibers may occur, in which case the fluff is significantly increased and the strength of the obtained carbon fibers is significantly reduced.

この問題を解決するために、前駆体繊維の製造工程にて、前駆体繊維に油剤を付与することが一般的に行われている。油剤としてシリコーンを主成分とする油剤が用いられ、前駆体繊維において単繊維の表面に均一に付与されるように繊維束内に十分に浸透させることが望ましい。しかし、この油剤が単繊維の表層に浸透しすぎると、浸透しすぎた油剤が焼成の工程で消失するときに繊維表面に欠けなどの欠陥を作る原因となる。その場合、得られる炭素繊維を補強材料として用いた複合材料の物性の低下の原因となる。 In order to solve this problem, it is common practice to apply an oil agent to the precursor fiber in the process of manufacturing the precursor fiber. An oil agent containing silicone as a main component is used as the oil agent, and it is desirable that the precursor fiber is sufficiently permeated into the fiber bundle so as to be uniformly applied to the surface of the single fiber. However, if this oil agent permeates too much into the surface layer of the single fiber, it causes defects such as chipping on the fiber surface when the oil agent that has permeated too much disappears in the firing process. In that case, it causes deterioration of the physical properties of the composite material using the obtained carbon fiber as a reinforcing material.

この対策として、例えば特許文献1および2には、水浴延伸糸の膨潤度を特定の範囲とし、油剤付与条件や紡糸条件を調整することで単糸間に密着のない炭素繊維を製造することが開示されている。 As a countermeasure for this, for example, in Patent Documents 1 and 2, it is possible to produce carbon fibers having no adhesion between single yarns by setting the degree of swelling of the water bath drawn yarn within a specific range and adjusting the oiling agent application conditions and the spinning conditions. It has been disclosed.

特開2014-163012号公報Japanese Unexamined Patent Publication No. 2014-163012 特開2008-308776号公報Japanese Unexamined Patent Publication No. 2008-308776

しかし、特許文献1および2に記載の技術では、凝固浴中に存在するポリマー重合触媒残渣等の異物や紡糸条件調整による単繊維の表面での欠陥生成の問題は考慮されておらず、前駆体繊維として用いられるポリアクリロニトリル系繊維の単繊維の表層への油剤の浸透を十分に抑制できるものではなかった。このため、特許文献1および2に記載の方法を用いても、前駆体繊維を焼成して得られる炭素繊維として表面に欠陥がないものを得ることはできず、この炭素繊維を用いて得られる炭素繊維複合材料の層間破壊靭性は、満足できるものではなかった。 However, the techniques described in Patent Documents 1 and 2 do not take into consideration the problem of foreign matter such as polymer polymerization catalyst residue existing in the coagulation bath and the generation of defects on the surface of the single fiber due to the adjustment of spinning conditions, and the precursor. It was not possible to sufficiently suppress the permeation of the oil agent into the surface layer of the single fiber of the polyacrylonitrile-based fiber used as the fiber. Therefore, even if the methods described in Patent Documents 1 and 2 are used, it is not possible to obtain carbon fibers having no surface defects as carbon fibers obtained by firing the precursor fibers, and the carbon fibers can be obtained. The interlayer fracture toughness of the carbon fiber composite material was not satisfactory.

本発明は、炭素繊維の前駆体繊維として用いられるポリアクリロニトリル系繊維の単繊維の表層への油剤の浸透に起因する、炭素繊維の単繊維の表層でのボイド生成を抑制することを課題とする。そして、炭素繊維複合材料としたときの層間破壊靭性に優れる炭素繊維を得ることのできるポリアクリロニトリル系繊維を提供することを目的とする。 An object of the present invention is to suppress the formation of voids on the surface layer of a single fiber of a carbon fiber caused by the permeation of an oil agent into the surface layer of a single fiber of a polyacrylonitrile fiber used as a precursor fiber of the carbon fiber. .. An object of the present invention is to provide a polyacrylonitrile-based fiber capable of obtaining a carbon fiber having excellent interlayer fracture toughness when used as a carbon fiber composite material.

本発明者らは、炭素繊維の表面や表層の欠陥を抑制するために、前駆体繊維として用いるポリアクリロニトリル系繊維の製造方法を鋭意検討し、熱水延伸後の糸の繊維膨潤度を制御することで繊維表層への油剤浸透を抑制することができること、および、凝固浴中に流出する触媒残渣等のドープ中に含まれる異物を連続的にろ過しながら凝固させることで、炭素繊維表面、表層の欠陥生成を抑制することができることを見出した。 The present inventors have diligently studied a method for producing a polyacrylonitrile-based fiber used as a precursor fiber in order to suppress defects on the surface and surface layer of the carbon fiber, and control the fiber swelling degree of the yarn after hot water drawing. As a result, the permeation of the oil agent into the fiber surface layer can be suppressed, and the foreign matter contained in the dope such as the catalyst residue flowing out into the coagulation bath is coagulated while being continuously filtered to form the carbon fiber surface and surface layer. It was found that the defect formation in the above can be suppressed.

すなわち本発明は、ポリアクリロニトリル系重合体からなるポリアクリロニトリル系繊維であって、結節弾性率が15~20GPaであり、かつ単糸強度が7.0~10.0cN/dtexであることを特徴とする、ポリアクリロニトリル系繊維である。 That is, the present invention is a polyacrylonitrile fiber made of a polyacrylonitrile polymer, characterized in that it has a nodular modulus of 15 to 20 GPa and a single yarn strength of 7.0 to 10.0 cN / dtex. It is a polyacrylonitrile fiber.

本発明はまた、ポリアクリロニトリル系重合体を含む紡糸原液を凝固液中に紡出することで凝固繊維を得る凝固工程と、該凝固繊維を熱水中で延伸することで熱水延伸凝固繊維を得る熱水延伸工程とを備えるポリアクリロニトリル系繊維の製造方法であって、凝固工程の凝固液の温度が10~20℃かつ濁度が10.0以下であり、熱水延伸工程の熱水の最高温度が90℃以上であることを特徴とする、ポリアクリロニトリル系繊維の製造方法である。 The present invention also has a coagulation step of obtaining coagulated fibers by spinning a spinning stock solution containing a polyacrylonitrile-based polymer into a coagulating liquid, and a hot water-stretched coagulated fiber by stretching the coagulated fibers in hot water. A method for producing a polyacrylonitrile-based fiber, which comprises a hot water stretching step of obtaining, wherein the temperature of the coagulating liquid in the coagulation step is 10 to 20 ° C. and the turbidity is 10.0 or less, and the hot water in the hot water stretching step is obtained. It is a method for producing a polyacrylonitrile-based fiber, characterized in that the maximum temperature is 90 ° C. or higher.

本発明によれば、炭素繊維の前駆体繊維として用いられるポリアクリロニトリル系繊維の単繊維の表層への油剤の浸透に起因する、炭素繊維の単繊維の表層でのボイド生成を抑制することができる。そして、炭素繊維複合材料としたときの層間破壊靭性に優れる炭素繊維を得ることのできるポリアクリロニトリル系繊維を提供することができる。 According to the present invention, it is possible to suppress the formation of voids on the surface layer of the single fiber of the carbon fiber due to the permeation of the oil agent into the surface layer of the single fiber of the polyacrylonitrile fiber used as the precursor fiber of the carbon fiber. .. Then, it is possible to provide a polyacrylonitrile-based fiber capable of obtaining a carbon fiber having excellent interlayer fracture toughness when used as a carbon fiber composite material.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

〔ポリアクリロニトリル系重合体〕
本発明のポリアクリロニトリル系繊維を構成するポリアクリロニトリル系重合体は、アクリロニトリルを主たるモノマー成分としてなる重合体であり、アクリロニトリル成分を好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95~99質量%を含有する重合体である。
[Polyacrylonitrile polymer]
The polyacrylonitrile-based polymer constituting the polyacrylonitrile-based fiber of the present invention is a polymer containing acrylonitrile as a main monomer component, and the acrylonitrile component is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 90% by mass or more. It is a polymer containing 95 to 99% by mass.

ポリアクリロニトリル系重合体として、溶媒への溶解性の観点から、ビニル骨格を有するアクリロニトリルと共重合可能なコモノマー成分を含有することが好ましい。アクリロニトリルと共重合可能なコモノマー成分として、好ましくはカルボキシル基含有のビニル化合物を用いる。例えばアクリル酸、イタコン酸およびそれらの塩、アクリル酸メチル、アクリル酸エチル等のアクリル酸エステル、アクリルアミド等のアミドを例示することができる。耐炎化反応の反応促進の観点から、アクリロニトリルと共重合可能なコモノマー成分として、好ましくはカルボキシル基含有ビニル化合物、特に好ましくはイタコン酸を用いる。 The polyacrylonitrile-based polymer preferably contains a comonomer component that can be copolymerized with acrylonitrile having a vinyl skeleton from the viewpoint of solubility in a solvent. As the comonomer component copolymerizable with acrylonitrile, a vinyl compound containing a carboxyl group is preferably used. For example, acrylic acid, itaconic acid and salts thereof, acrylic acid esters such as methyl acrylate and ethyl acrylate, and amides such as acrylamide can be exemplified. From the viewpoint of accelerating the flame resistance reaction, a carboxyl group-containing vinyl compound, particularly preferably itaconic acid, is used as the comonomer component copolymerizable with acrylonitrile.

ポリアクリロニトリル系重合体には、その重量平均分子量が、好ましくは10万以上、さらに好ましくは15万~100万、特に好ましくは20万~80万のものを用いる。ま
た、ポリアクリロニトリル系重合体の重量平均分子量/数平均分子量(Mw/Mn)の値は、好ましくは2.0以上、さらに好ましくは2より大きい。Mw/Mnの値を調整するために、分子量分布の異なるポリアクリロニトリル系重合体を混合して使用してもよい。
The polyacrylonitrile-based polymer having a weight average molecular weight of preferably 100,000 or more, more preferably 150,000 to 1,000,000, and particularly preferably 200,000 to 800,000 is used. Further, the value of the weight average molecular weight / number average molecular weight (Mw / Mn) of the polyacrylonitrile-based polymer is preferably 2.0 or more, more preferably larger than 2. In order to adjust the value of Mw / Mn, polyacrylonitrile-based polymers having different molecular weight distributions may be mixed and used.

ポリアクリロニトリル系重合体は、水系懸濁重合法と溶液重合法のいずれの重合方法で重合されたものであってもよい。重合方法として溶液重合法を用いる場合、溶媒としてジメチルスルホキシドが好ましい。 The polyacrylonitrile-based polymer may be polymerized by any of a water-based suspension polymerization method and a solution polymerization method. When a solution polymerization method is used as the polymerization method, dimethyl sulfoxide is preferable as the solvent.

〔結節弾性率〕
本発明のポリアクリロニトリル系繊維の結節弾性率は15GPa~20GPaであり、好ましくは16~19GPaである。結節弾性率が15GPa未満であると、得られる炭素繊維のストランド引張強度が低下する。他方、結節弾性率が20GPaを超えると、得られる炭素繊維を補強材料として用いた炭素繊維複合材料の層間破壊靭性(G1c)が低下する。
[Nodular modulus]
The nodular elastic modulus of the polyacrylonitrile-based fiber of the present invention is 15 GPa to 20 GPa, preferably 16 to 19 GPa. When the nodular elastic modulus is less than 15 GPa, the strand tensile strength of the obtained carbon fiber is lowered. On the other hand, when the knot elastic modulus exceeds 20 GPa, the interlayer fracture toughness (G1c) of the carbon fiber composite material using the obtained carbon fiber as a reinforcing material is lowered.

〔単糸強度〕
本発明のポリアクリロニトリル系繊維の単糸強度は7.0~10.0cN/dtex、好ましくは8.0~10.0cN/dtexである。単糸強度が7.0cN/dtex未満であると、炭素繊維の製造工程で繊維が切断しやすくなり得られる炭素繊維の品位が低下する。他方、単糸強度が10.0cN/dtexを超えると、得られる炭素繊維のストランド引張強度がかえって低下する。
[Single yarn strength]
The single yarn strength of the polyacrylonitrile-based fiber of the present invention is 7.0 to 10.0 cN / dtex, preferably 8.0 to 10.0 cN / dtex. When the single yarn strength is less than 7.0 cN / dtex, the fiber is easily cut in the carbon fiber manufacturing process, and the quality of the obtained carbon fiber is deteriorated. On the other hand, when the single yarn strength exceeds 10.0 cN / dtex, the strand tensile strength of the obtained carbon fiber is rather lowered.

〔ポリアクリロニトリル系繊維の製造方法〕
本発明のポリアクリロニトリル系繊維の製造方法は、ポリアクリロニトリル系重合体を含む紡糸原液を凝固液中に紡出することで凝固繊維を得る凝固工程と、該凝固繊維を熱水中で延伸することで熱水延伸凝固繊維を得る熱水延伸工程とを備える。
[Manufacturing method of polyacrylonitrile fiber]
The method for producing a polyacrylonitrile fiber of the present invention is a coagulation step of obtaining a coagulated fiber by spinning a spinning stock solution containing a polyacrylonitrile polymer into a coagulating solution, and stretching the coagulated fiber in hot water. It is provided with a hot water stretching step of obtaining a hot water stretched coagulated fiber.

〔紡糸原液〕
紡糸原液におけるポリアクリロニトリル系重合体の濃度は、好ましくは10~30重量%、さらに好ましくは15~25重量%である。この範囲の濃度とすることによって、優れた生産性で炭素繊維前駆体繊維を得ることができる。紡糸原液においてポリアクリロニトリル系重合体を溶解する溶媒は、ジメチルスルホキシドであることが好ましい。
[Spinning stock solution]
The concentration of the polyacrylonitrile-based polymer in the spinning stock solution is preferably 10 to 30% by weight, more preferably 15 to 25% by weight. By setting the concentration in this range, carbon fiber precursor fibers can be obtained with excellent productivity. The solvent for dissolving the polyacrylonitrile-based polymer in the spinning stock solution is preferably dimethyl sulfoxide.

紡糸原液は調製後、フィルター濾材に通してゲル状異物や非溶解成分を濾別し、紡糸工程に供される。生産性および性能の観点から、紡糸溶液は高度に脱泡または消泡され、気泡を有していないことが好ましい。脱泡または消泡は、加圧または減圧により促進することができる。 After preparation, the undiluted spinning solution is passed through a filter medium to filter out gel-like foreign substances and insoluble components, and is used in the spinning process. From the viewpoint of productivity and performance, it is preferable that the spinning solution is highly defoamed or defoamed and has no bubbles. Defoaming or defoaming can be accelerated by pressurization or depressurization.

紡糸原液には、添加剤が含有されていてもよい。特に、凝固を制御する観点から、ポリアクリロニトリル系共重合体の溶液中に残存する酸成分を中和する化合物を添加することが好ましい。この化合物として、塩基性化合物を用い、炭素繊維前駆体繊維の欠陥を抑制する観点から好ましくは非金属化合物、特に好ましくはアンモニアを用いる。 The undiluted spinning solution may contain additives. In particular, from the viewpoint of controlling coagulation, it is preferable to add a compound that neutralizes the acid component remaining in the solution of the polyacrylonitrile-based copolymer. As this compound, a basic compound is used, and a non-metal compound is preferably used, particularly preferably ammonia, from the viewpoint of suppressing defects in the carbon fiber precursor fiber.

〔紡出〕
上記のように調製したポリアクリルニトリル系重合体を含む紡糸原液は紡出し、凝固液中で凝固され、凝固繊維となる。ポリアクリロニトリル系重合体を含む紡糸原液を紡出し、凝固液中で凝固させるにあたり、紡糸原液を一旦空気中に押し出した後、凝固浴中に侵入せしめる乾湿式紡糸法を採用することが、得られるポリアクリロニトリル系繊維の表層が比較的平滑になり、炭素繊維複合材料としたときの層間破壊靭性が向上しやすいため、好ましい。他方、この方式を採用せずに、空気中を経ない完全湿式紡糸法を採用すると、ポリアクリロニトリル系繊維の表層に皺が形成され、皺のアンカー効果により炭素繊維複合材料としたときの繊維とマトリクス樹脂の接着力が向上する一方で、層間破壊靭性が低下する場合がある。
[Spinning]
The undiluted spinning solution containing the polyacrylic nitrile polymer prepared as described above is spun and coagulated in the coagulating solution to become coagulated fibers. When spinning a spinning stock solution containing a polyacrylonitrile-based polymer and coagulating it in a coagulating liquid, it is possible to adopt a dry-wet spinning method in which the spinning stock solution is once extruded into the air and then infiltrated into a coagulation bath. It is preferable because the surface layer of the polyacrylonitrile-based fiber becomes relatively smooth and the interlayer fracture toughness when used as a carbon fiber composite material is easily improved. On the other hand, if a completely wet spinning method that does not pass through the air is adopted without adopting this method, wrinkles are formed on the surface layer of the polyacrylonitrile fiber, and the fibers are formed into a carbon fiber composite material due to the anchor effect of the wrinkles. While the adhesive strength of the matrix resin is improved, the interlayer fracture toughness may be lowered.

紡糸原液を紡出するための紡糸口金は、例えば100~100000個、好ましくは1000~80000個、さらに好ましくは3000~50000個の吐出孔を備える。紡糸口金の吐出孔の孔径は、好ましくは0.02~0.5mmである。孔径が0.02mm以上であることで、吐出された糸同士の密着が起こりにくいので、均質性に優れたアクリロニトリル系繊維を得ることができる。孔径が0.5mm以下であることで、紡糸糸切れの発生を抑制し、紡糸安定性が維持することができる。 The spinneret for spinning the undiluted spinning solution has, for example, 100 to 100,000, preferably 1000 to 80,000, and more preferably 3000 to 50,000 discharge holes. The hole diameter of the discharge hole of the spinneret is preferably 0.02 to 0.5 mm. When the pore diameter is 0.02 mm or more, the discharged threads are less likely to adhere to each other, so that an acrylonitrile-based fiber having excellent homogeneity can be obtained. When the hole diameter is 0.5 mm or less, the occurrence of spinning yarn breakage can be suppressed and the spinning stability can be maintained.

〔凝固液〕
凝固工程の凝固液の温度は10~20℃、好ましくは10~15℃である。凝固液の温度が10℃未満であると炭素繊維の単糸間の密着が発生しやすくなり、凝固液の温度が20℃を超えるとポリアクリロニトリル系繊維の断面が楕円状になりやすく好ましくない。得られる炭素繊維の単繊維間の密着を抑制する観点からも、凝固液の温度を10~20℃に保つ必要がある。
[Coagulant]
The temperature of the coagulating liquid in the coagulation step is 10 to 20 ° C, preferably 10 to 15 ° C. If the temperature of the coagulating liquid is less than 10 ° C., adhesion between the single yarns of the carbon fibers tends to occur, and if the temperature of the coagulating liquid exceeds 20 ° C., the cross section of the polyacrylonitrile fiber tends to be elliptical, which is not preferable. It is necessary to keep the temperature of the coagulating liquid at 10 to 20 ° C. from the viewpoint of suppressing the adhesion between the single fibers of the obtained carbon fibers.

凝固工程の凝固液の濁度は10.0以下、好ましくは5.0以下、さらに好ましくは1.0以下である。凝固液の濁度が10.0を超えると、最終的に得られる炭素繊維表面の欠陥が顕著となり、ポリアクリロニトリル系繊維の高い結節弾性率を得ることが困難となる。得られる炭素繊維の表面欠陥を抑制する観点から、凝固液の濁度は10.0以下に保つ必要がある。 The turbidity of the coagulation liquid in the coagulation step is 10.0 or less, preferably 5.0 or less, and more preferably 1.0 or less. When the turbidity of the coagulation liquid exceeds 10.0, defects on the surface of the finally obtained carbon fiber become remarkable, and it becomes difficult to obtain a high knot elastic modulus of the polyacrylonitrile-based fiber. From the viewpoint of suppressing surface defects of the obtained carbon fiber, it is necessary to keep the turbidity of the coagulation liquid at 10.0 or less.

〔精密フィルター〕
凝固浴中の凝固液は精密フィルターにより連続的に濾過されていることが好ましい。この濾過が行われていないと、凝固浴の濁度が高くなりすぎる場合があり、凝固繊維に表面欠陥ができやすくなる傾向がある。これは、工程の周辺雰囲気中に存在する異物や、もともと紡糸原液中に含まれていた重合触媒残渣等の異物が凝固浴中の凝固液に移行し、凝固繊維の表面または表層に付着するためである。この付着した異物が、ポリアクリロニトリル系重合体を炭素繊維としたときに表面欠陥の原因となる。
[Precision filter]
The coagulation liquid in the coagulation bath is preferably continuously filtered by a precision filter. If this filtration is not performed, the turbidity of the coagulation bath may become too high, and the coagulation fibers tend to have surface defects. This is because foreign substances existing in the surrounding atmosphere of the process and foreign substances such as polymerization catalyst residues originally contained in the undiluted spinning solution migrate to the coagulating solution in the coagulation bath and adhere to the surface or surface layer of the coagulating fibers. Is. This attached foreign matter causes surface defects when the polyacrylonitrile-based polymer is made into carbon fiber.

精密フィルターは、凝固液の入った凝固浴に連結された凝固液循環ラインに設置されていることが好ましい。凝固液を連続的に循環させる凝固液循環ラインを設けることで、連続的に凝固液の濾過を行うことができる。精密フィルターは、好ましくは凝固液の入った凝固浴に連結された凝固液循環ラインに設置される。 The precision filter is preferably installed in a coagulation liquid circulation line connected to a coagulation bath containing the coagulation liquid. By providing a coagulation liquid circulation line that continuously circulates the coagulation liquid, the coagulation liquid can be continuously filtered. The precision filter is preferably installed in a coagulation liquid circulation line connected to a coagulation bath containing the coagulation liquid.

この精密フィルターは、そのろ過精度が好ましくは0.1~30μm、さらに好ましくは0.1μm~10μmである。ろ過精度が0.1μm未満であると圧力損失が高くなり過ぎ好ましくない。他方、30μmを超えると十分に異物をろ過することができず、炭素繊維の表面に欠陥を生じる可能性があり好ましくない。 The filtration accuracy of this precision filter is preferably 0.1 to 30 μm, more preferably 0.1 μm to 10 μm. If the filtration accuracy is less than 0.1 μm, the pressure loss becomes too high, which is not preferable. On the other hand, if it exceeds 30 μm, foreign matter cannot be sufficiently filtered, which may cause defects on the surface of the carbon fiber, which is not preferable.

〔凝固液〕
凝固浴に用いられる凝固液としては、水溶液また有機溶媒水溶液を用いることができる。例えば、塩化亜鉛水溶液、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドを挙げることができる。
[Coagulant]
As the coagulation liquid used in the coagulation bath, an aqueous solution or an organic solvent aqueous solution can be used. For example, zinc chloride aqueous solution, dimethylacetamide, dimethyl sulfoxide, dimethylformamide can be mentioned.

本発明において、凝固浴中の凝固液は、上述のとおり、精密フィルターにより連続的に濾過されていることが重要である。凝固液の循環流量は、好ましくは5L/min以上である。循環流量が5L/min未満であると凝固液に侵入する異物を十分にろ過すること
ができない場合がある。
In the present invention, it is important that the coagulation liquid in the coagulation bath is continuously filtered by the precision filter as described above. The circulating flow rate of the coagulant is preferably 5 L / min or more. If the circulation flow rate is less than 5 L / min, it may not be possible to sufficiently filter foreign substances that enter the coagulant.

〔熱水延伸〕
凝固液中で凝固して得られたポリアクリロニトリル系重合体の凝固繊維に対して水洗および熱水中での延伸を行う。水洗は水洗浴中で90℃以上の温度で行うことが好ましい。
[Hot water stretching]
The coagulated fibers of the polyacrylonitrile-based polymer obtained by coagulating in the coagulating liquid are washed with water and stretched in hot water. It is preferable to wash with water at a temperature of 90 ° C. or higher in the water washing bath.

熱水延伸工程での熱水の最高温度は90℃以上とする。熱水の最高温度が90℃未満であると、熱水延伸工程で凝固糸にかかる張力が高くなり、張力が欠点のできやすい凝固糸表面に集中してしまい、得られるポリアクリロニトリル系繊維の表面の欠陥が増大する。熱水延伸に用いられる熱水延伸浴は、ある程度の大きさがあるため、室温と熱水との温度差のため位置により熱水の温度が異なり得る。熱水の最高温度は、熱水延伸工程で用いられる熱水延伸浴中で最も温度の高い位置での熱水の温度である。 The maximum temperature of hot water in the hot water stretching step is 90 ° C. or higher. If the maximum temperature of hot water is less than 90 ° C., the tension applied to the coagulated yarn in the hot water drawing step becomes high, and the tension is concentrated on the surface of the coagulated yarn where defects are likely to occur, and the surface of the obtained polyacrylonitrile fiber. Defects increase. Since the hot water stretching bath used for hot water stretching has a certain size, the temperature of the hot water may differ depending on the position due to the temperature difference between the room temperature and the hot water. The maximum temperature of hot water is the temperature of hot water at the highest temperature position in the hot water stretching bath used in the hot water stretching step.

〔繊維膨潤度〕
熱水延伸後の凝固繊維の繊維膨潤度は、好ましくは80~110%、さらに好ましくは80~100%、特に好ましくは85~100%である。この範囲であることで、繊維の束内まで均一に油剤を付与することができ、かつ繊維表層への油剤の浸透を抑制することができる。熱水延伸後の凝固繊維の繊維膨潤度が80%未満であると、油剤を付与した際に油剤が繊維束内まで浸透せず、部分的に油剤の付与されていない部分ができ、単繊維間の密着が増える傾向がある。他方、熱水延伸後の凝固繊維の繊維膨潤度が110%を超えると、繊維表層に油剤が浸透し、焼成工程にて表層ボイド生成の原因となる場合がある。この繊維膨潤度は、用いるポリアクリロニトリル系重合体の分子量や重合体濃度、凝固液温度、濃度、熱水延伸温度、倍率を調整することによって所望の値に調節することができる。
[Fiber swelling degree]
The fiber swelling degree of the coagulated fiber after hot water stretching is preferably 80 to 110%, more preferably 80 to 100%, and particularly preferably 85 to 100%. Within this range, the oil agent can be uniformly applied to the inside of the bundle of fibers, and the permeation of the oil agent into the fiber surface layer can be suppressed. When the fiber swelling degree of the coagulated fiber after hot water stretching is less than 80%, the oil agent does not penetrate into the fiber bundle when the oil agent is applied, and a part where the oil agent is not applied is formed, and the single fiber is formed. There is a tendency for the close contact between them to increase. On the other hand, if the fiber swelling degree of the coagulated fiber after hot water stretching exceeds 110%, the oil agent may permeate into the fiber surface layer and cause surface void formation in the firing step. The degree of fiber swelling can be adjusted to a desired value by adjusting the molecular weight, polymer concentration, coagulation liquid temperature, concentration, hot water stretching temperature, and magnification of the polyacrylonitrile-based polymer used.

〔油剤付与〕
凝固繊維は、凝固工程の後に熱水延伸をされるが、熱水延伸後の延伸凝固繊維には、さらに油剤が付与されることが好ましい。油剤を付与する方法として、油剤を含有する水溶液中に熱水延伸後の延伸凝固繊維の糸条を浸漬させて、延伸凝固繊維の表面と油剤とを接触させる方法を用いることができる。延伸凝固繊維の単繊維間の密着を防止し、耐熱性や離形性、工程通過性を良好する観点から、油剤として好ましくはシリコーン系油剤を用いる。
[Adding oil]
The coagulated fibers are hot-water-stretched after the coagulation step, and it is preferable that an oil agent is further applied to the stretched coagulated fibers after the hot-water-stretched. As a method of applying the oil agent, a method of immersing the threads of the drawn coagulated fibers after hot water stretching in an aqueous solution containing the oil agent to bring the surface of the drawn coagulated fibers into contact with the oil agent can be used. A silicone-based oil is preferably used as the oil from the viewpoint of preventing adhesion between the single fibers of the stretched coagulated fibers and improving heat resistance, releasability, and process passability.

シリコーン系油剤として、アミノ変性シリコーン、エポキシ変性シリコーン、エーテル変性シリコーンを例示することができる。これらは2種以上を混合しても用いてもよい。油剤の付着量は、延伸凝固繊維の重量を基準に好ましくは0.01~10.0重量%、さらに好ましくは0.1~5.0重量%、さらに好ましくは0.1~1.0%である。油剤付着量をこの範囲にすることで、後の耐炎化工程での糸切れや毛羽の発生を効率的に抑制し、高品質の炭素繊維を得ることができる。 Examples of the silicone-based oil agent include amino-modified silicone, epoxy-modified silicone, and ether-modified silicone. These may be used by mixing two or more kinds. The amount of the oil adhered is preferably 0.01 to 10.0% by weight, more preferably 0.1 to 5.0% by weight, still more preferably 0.1 to 1.0% based on the weight of the drawn coagulated fiber. Is. By setting the amount of oil adhering to this range, it is possible to efficiently suppress the occurrence of yarn breakage and fluff in the subsequent flame resistance step, and to obtain high quality carbon fiber.

油剤の付着量がこれより少ないと、延伸凝固繊維に表面に十分に油剤が付着しないため、耐炎化工程での糸切れや毛羽の発生が多くなりやすく、他方、油剤の付着量がこれをより多いと、耐炎化工程での繊維搬送ローラーやガイドなどの表面に油剤が堆積することになり断糸の原因になりやすく好ましくない。 If the amount of the oil adhered is less than this, the oil does not sufficiently adhere to the surface of the stretched coagulated fiber, so that thread breakage and fluffing are likely to occur in the flame resistance process, while the amount of the oil adhered is more than this. If the amount is too large, the oil agent will be deposited on the surface of the fiber transport roller or the guide in the flame resistance process, which is likely to cause yarn breakage, which is not preferable.

〔乾燥緻密化〕
油剤を付与された延伸凝固繊維には、乾熱ローラーで乾燥緻密化処理を行うことが好ましい。乾熱ローラーの温度は好ましくは150℃以上、さらに好ましくは150℃~230℃、さらに好ましくは160℃~220℃、特に好ましくは160℃~200℃である。
[Drying and densification]
It is preferable that the stretched coagulated fiber to which the oil agent is applied is subjected to a drying and densifying treatment with a dry heat roller. The temperature of the dry heat roller is preferably 150 ° C. or higher, more preferably 150 ° C. to 230 ° C., still more preferably 160 ° C. to 220 ° C., and particularly preferably 160 ° C. to 200 ° C.

乾燥緻密化処理の乾熱ローラーの温度が150℃未満であると延伸凝固繊維の緻密化が不十分となり、その後のスチーム延伸工程で延伸性が下がってしまう傾向がある。他方、乾燥緻密化温度が230℃を超えると、乾燥緻密化の段階で耐炎化反応が進行してしまう可能性がある。 If the temperature of the dry heat roller in the dry densification treatment is less than 150 ° C., the densification of the stretched coagulated fibers becomes insufficient, and the stretchability tends to decrease in the subsequent steam stretching step. On the other hand, if the drying densification temperature exceeds 230 ° C., the flame resistance reaction may proceed at the stage of drying densification.

〔後延伸〕
乾熱ローラーによる乾燥緻密化処理の後の延伸凝固繊維に対して、好ましくはさらに後延伸処理を行う。この後延伸処理の延伸方法はスチーム延伸であることが好ましい。この場合、スチーム延伸の飽和スチーム圧力は好ましくは0.15~0.8MPaとする。
[Post-stretching]
The stretched coagulated fibers after the dry densification treatment with a dry heat roller are preferably further subjected to a post-stretching treatment. The stretching method for the post-stretching treatment is preferably steam stretching. In this case, the saturated steam pressure for steam stretching is preferably 0.15 to 0.8 MPa.

スチーム延伸での延伸倍率は、好ましくは2~10倍、さらに好ましくは2~5倍、特に好ましくは2.0~3.0倍である。スチーム延伸の温度は、好ましくは105~200℃、さらに好ましくは110~180℃である。 The stretching ratio in steam stretching is preferably 2 to 10 times, more preferably 2 to 5 times, and particularly preferably 2.0 to 3.0 times. The temperature of steam stretching is preferably 105 to 200 ° C, more preferably 110 to 180 ° C.

延伸倍率は、紡糸直後の熱水延伸、乾燥および後延伸処理を通してのトータル延伸倍率として、好ましくは10~20倍、さらに好ましくは10~17倍とする。スチーム延伸後のポリアクリロニトリル系繊維の繊度は、好ましくは0.5~1.7dtexである。 The draw ratio is preferably 10 to 20 times, more preferably 10 to 17 times, as the total draw ratio through hot water stretching immediately after spinning, drying and post-stretching treatment. The fineness of the polyacrylonitrile fiber after steam stretching is preferably 0.5 to 1.7 dtex.

〔炭素繊維の製造方法〕
次に、本発明のポリアクリロニトリル系繊維を前駆体繊維として用いて、炭素繊維を製造する方法について説明する。
本発明のポリアクリロニトリル系繊維は、200~300℃の温度の酸化性雰囲気中において焼成処理する耐炎化工程と、1000℃以上の温度の不活性雰囲気中で焼成処理する炭素化工程とを経ることで炭素繊維とする。
[Manufacturing method of carbon fiber]
Next, a method for producing carbon fiber using the polyacrylonitrile-based fiber of the present invention as a precursor fiber will be described.
The polyacrylonitrile fiber of the present invention undergoes a flame resistance step of firing in an oxidizing atmosphere at a temperature of 200 to 300 ° C. and a carbonization step of firing in an inert atmosphere at a temperature of 1000 ° C. or higher. To make carbon fiber.

〔予備熱処理〕
本発明のポリアクリロニトリル系繊維を用いた炭素繊維の製造方法では、耐炎化処理前に前駆体繊維に対して予備熱処理(予備耐炎化処理)を行うことが好ましい。この予備熱処理は、好ましくは200~260℃の温度、好ましくは0.80~1.20の延伸比で行う。
[Preliminary heat treatment]
In the method for producing carbon fiber using the polyacrylonitrile-based fiber of the present invention, it is preferable to perform a preliminary heat treatment (preliminary flame resistant treatment) on the precursor fiber before the flame resistant treatment. This preheat treatment is preferably carried out at a temperature of 200 to 260 ° C., preferably at a stretching ratio of 0.80 to 1.20.

〔耐炎化処理〕
予備熱処理(予備耐炎化処理)された前駆体繊維は、引き続き加熱空気中200~300℃、より好ましくは200~260℃で耐炎化処理される。耐炎化処理は、延伸倍率0.85~1.15の範囲で延伸処理をしながら行われることが好ましく、高強度・高弾性率の炭素繊維を得るために、延伸倍率は0.90~1.15が好ましい。この耐炎化処理は、前駆体繊維が繊維密度1.34~1.38g/cmの酸化されたポリアクリロニトリル系繊維である耐炎化繊維)となるまで行うことが好ましい。
[Flame resistant treatment]
The precursor fiber that has been preheat-treated (pre-flame resistant treatment) is subsequently subjected to flame resistant treatment at 200 to 300 ° C., more preferably 200 to 260 ° C. in heated air. The flame resistance treatment is preferably performed while the stretching treatment is performed in the range of a stretching ratio of 0.85 to 1.15, and the stretching ratio is 0.90 to 1 in order to obtain carbon fibers having high strength and high elastic modulus. .15 is preferred. This flame-resistant treatment is preferably performed until the precursor fiber becomes a flame-resistant fiber which is an oxidized polyacrylonitrile-based fiber having a fiber density of 1.34 to 1.38 g / cm 3 .

〔炭素化処理〕
上記で得た耐炎化繊維を炭素化処理することで炭素繊維を製造することができる。炭素化処理は、不活性雰囲気中で1000℃以上の温度で行われる。
本発明において炭素化処理は、耐炎化繊維を不活性雰囲気中にて1000℃未満で第一炭素化処理をし、その後1000℃以上の温度で第二炭素化処理をすることで行うことが好ましい。
[Carbonization treatment]
Carbon fibers can be produced by carbonizing the flame-resistant fibers obtained above. The carbonization treatment is carried out at a temperature of 1000 ° C. or higher in an inert atmosphere.
In the present invention, the carbonization treatment is preferably carried out by first carbonizing the flame-resistant fiber in an inert atmosphere at a temperature of less than 1000 ° C. and then performing a second carbonization treatment at a temperature of 1000 ° C. or higher. ..

第一炭素化処理では、窒素雰囲気下300~800℃の第一炭素化炉で徐々に温度を高めると共に、耐炎化繊維の張力を制御することが好ましい。第一炭素化炉の最高温度は、好ましくは550~700℃、さらに好ましくは620℃以上である。第一炭素化炉の最
低温度(入口温度)は、好ましくは300~500℃、さらに好ましくは300~450℃である。第一炭素化炉の滞留時間は、好ましくは1分間以上、さらに好ましくは2~20分間である。
In the first carbonization treatment, it is preferable to gradually raise the temperature in a first carbonization furnace at 300 to 800 ° C. under a nitrogen atmosphere and control the tension of the flame-resistant fiber. The maximum temperature of the first carbonization furnace is preferably 550 to 700 ° C, more preferably 620 ° C or higher. The minimum temperature (inlet temperature) of the first carbonization furnace is preferably 300 to 500 ° C, more preferably 300 to 450 ° C. The residence time of the first carbonization furnace is preferably 1 minute or more, more preferably 2 to 20 minutes.

第二炭素化処理では、より炭素化を進め且つグラファイト化(炭素の高結晶化)を進めるために、窒素等の不活性ガス雰囲気下にて500~1800℃の第二炭素化炉で徐々に温度を高めると共に、張力を制御して焼成することが好ましい。 In the second carbonization treatment, in order to further promote carbonization and graphitization (high crystallization of carbon), gradually in a second carbonization furnace at 500 to 1800 ° C. under an inert gas atmosphere such as nitrogen. It is preferable to raise the temperature and control the tension for firing.

各炭素化炉において、炉の入り口付近からに徐々に温度変化させると、表面欠陥、内部欠陥を抑制しやすく好ましい。上記の第一炭素化処理および第二炭素化処理では、複数の炉を用いて処理を行ってもよい。 In each carbonization furnace, it is preferable to gradually change the temperature from the vicinity of the inlet of the furnace because it is easy to suppress surface defects and internal defects. In the above-mentioned first carbonization treatment and second carbonization treatment, the treatment may be performed using a plurality of furnaces.

第二炭素化炉の入り口温度は、好ましくは550~700℃、さらに好ましくは600~650℃である。また、第二炭素化炉の最高温度は、好ましくは1400~1750℃、さらに好ましくは1500~1700℃である。第二炭素化炉での滞留時間は、好ましくは2.5分間以上、さらに好ましくは2.5~10分間である。
第二炭素化炉では好ましくは160~300mg/dtex、さらに好ましくは180~250mg/dtexの張力を付与しながら炭素化処理を行う。
The inlet temperature of the second carbonization furnace is preferably 550 to 700 ° C, more preferably 600 to 650 ° C. The maximum temperature of the second carbonization furnace is preferably 1400 to 1750 ° C, more preferably 1500 to 1700 ° C. The residence time in the second carbonization furnace is preferably 2.5 minutes or more, more preferably 2.5 to 10 minutes.
In the second carbonization furnace, the carbonization treatment is carried out while applying a tension of preferably 160 to 300 mg / dtex, more preferably 180 to 250 mg / dtex.

第一炭素化炉での第一炭素化処理と、第二炭素化炉での第二炭素化処理を合わせた全炭素化工程を通じての温度勾配は、好ましくは300~600℃/min、さらに好ましくは300~450℃/minである。 The temperature gradient through the total carbonization step, which is a combination of the first carbonization treatment in the first carbonization furnace and the second carbonization treatment in the second carbonization furnace, is preferably 300 to 600 ° C./min, more preferably. Is 300 to 450 ° C./min.

〔表面酸化処理〕
このようにして炭素化処理を経て得られた炭素繊維には、引き続き、電解液中で表面酸化処理を施すことが好ましい。このときの処理電気量は好ましくは10~250C/g、さらに好ましくは20~200C/gである。処理電気量が大きい方が、炭素繊維の表面酸素濃度比O/Cが大きく、炭素繊維とマトリックス樹脂間での接着性が向上する傾向があるが、処理電気量が大きすぎると、炭素繊維表面に欠陥が発生することがある。
[Surface oxidation treatment]
It is preferable that the carbon fibers obtained through the carbonization treatment in this manner are subsequently subjected to surface oxidation treatment in the electrolytic solution. The amount of electricity processed at this time is preferably 10 to 250 C / g, and more preferably 20 to 200 C / g. The larger the amount of electricity processed, the larger the surface oxygen concentration ratio O / C of the carbon fiber, and the adhesiveness between the carbon fiber and the matrix resin tends to improve. However, if the amount of electricity processed is too large, the surface of the carbon fiber May have defects.

電解液としては、硝酸、硫酸等の無機酸、硫酸アンモニウム等の無機酸塩の水溶液を用いることができ、安全性や取扱性の観点から硫酸アンモニウム水溶液が好ましい。電解液の温度は好ましくは20~50℃、電解液の濃度は好ましくは0.5~2.0N、さらに好ましく0.7~1.5Nである。 As the electrolytic solution, an aqueous solution of an inorganic acid such as nitric acid or sulfuric acid or an aqueous solution of an inorganic acid salt such as ammonium sulfate can be used, and an aqueous solution of ammonium sulfate is preferable from the viewpoint of safety and handleability. The temperature of the electrolytic solution is preferably 20 to 50 ° C., and the concentration of the electrolytic solution is preferably 0.5 to 2.0 N, more preferably 0.7 to 1.5 N.

〔サイズ剤処理〕
表面酸化処理された炭素繊維は、炭素繊維束の状態でサイジング液に通され、サイズ剤が付与されることが好ましい。サイジング液におけるサイズ剤の濃度は、好ましくは10~25質量%、サイズ剤の付着量は、好ましくは0.4~1.7質量%である。
[Sizing agent treatment]
It is preferable that the surface-oxidized carbon fibers are passed through a sizing solution in the form of carbon fiber bundles to be imparted with a sizing agent. The concentration of the sizing agent in the sizing solution is preferably 10 to 25% by mass, and the amount of the sizing agent adhered is preferably 0.4 to 1.7% by mass.

炭素繊維束に付与されるサイズ剤としては、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、ビニルエステル樹脂、ポリアミド樹脂、ポリエーテル樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリイミド樹脂やその変性物を例示することができる。複合材料のマトリックス樹脂に応じて適したサイズ剤を適宜選択することができる。サイズ剤は二種類以上を組み合わせて使用しよもよい。 Examples of the sizing agent applied to the carbon fiber bundle include epoxy resin, urethane resin, polyester resin, vinyl ester resin, polyamide resin, polyether resin, acrylic resin, polyolefin resin, polyimide resin and modified products thereof. .. A suitable sizing agent can be appropriately selected depending on the matrix resin of the composite material. Two or more types of sizing agents may be used in combination.

サイズ剤付与処理は、乳化剤等を用いて得られる水系エマルジョン中に炭素繊維束を浸漬するエマルジョン法が用いることができる。炭素繊維の取扱性や、耐擦過性、耐毛羽性、含浸性を向上させるため、分散剤、界面活性剤等の補助成分をサイズ剤に添加してもよい。 As the sizing agent applying treatment, an emulsion method in which a carbon fiber bundle is immersed in an aqueous emulsion obtained by using an emulsifier or the like can be used. Auxiliary components such as a dispersant and a surfactant may be added to the sizing agent in order to improve the handleability, scratch resistance, fluff resistance and impregnation property of the carbon fiber.

サイズ剤付与処理後の炭素繊維束に、サイズ剤の分散媒を蒸散させるための乾燥処理を行い、炭素繊維束の態様で炭素繊維が得られる。乾燥処理にはエアドライヤーを用いることが好ましい。乾燥処理の温度は、汎用的な水系エマルジョンの場合で例えば100~180℃である。乾燥処理の後、200℃以上の温度で熱処理をさらに行ってもよい。 The carbon fiber bundle after the sizing agent application treatment is subjected to a drying treatment for evaporating the dispersion medium of the sizing agent, and carbon fibers are obtained in the form of the carbon fiber bundle. It is preferable to use an air dryer for the drying treatment. The temperature of the drying treatment is, for example, 100 to 180 ° C. in the case of a general-purpose aqueous emulsion. After the drying treatment, further heat treatment may be performed at a temperature of 200 ° C. or higher.

以下、実施例等をあげて本発明を具体的に説明する。実施例および比較例における各種評価は、以下の方法により実施した。 Hereinafter, the present invention will be specifically described with reference to examples and the like. Various evaluations in Examples and Comparative Examples were carried out by the following methods.

(1)繊維膨潤度
熱水延伸後の凝固繊維を約1gサンプリングし、12hr水洗後、延伸脱水機(H-コクサン株式会社製)にて3000rpmで3分間脱水して脱水後の繊維重量を求めた。脱水後のサンプルを120℃に温調された熱風乾燥機で2hr乾燥し、乾燥後の繊維重量を求め、下記式により繊維膨潤度を算出した。
繊維膨潤度(%)
=((脱水後の繊維重量-乾燥後の繊維重量)/乾燥後繊維重量))×100
(1) Fiber swelling degree Approximately 1 g of coagulated fiber after hot water stretching was sampled, washed with water for 12 hours, and dehydrated at 3000 rpm for 3 minutes with a stretching dehydrator (manufactured by H-Kokusan Co., Ltd.) to determine the fiber weight after dehydration. rice field. The dehydrated sample was dried for 2 hours in a hot air dryer whose temperature was adjusted to 120 ° C., the weight of the dried fiber was determined, and the degree of fiber swelling was calculated by the following formula.
Fiber swelling degree (%)
= ((Fiber weight after dehydration-Fiber weight after drying) / Fiber weight after drying)) × 100

(2)凝固液の濁度
凝固液の濁度は濁度計(TR-55 アズワン(株)製)にて測定した。
(2) Turbidity of coagulant The turbidity of the coagulant was measured with a turbidity meter (manufactured by TR-55 AS ONE Co., Ltd.).

(3)結節弾性率
引張試験機(RTG (株)島津製作所製)にて、試長250mm、試験速度300mm/minの条件で測定した。
(3) Knot elastic modulus The measurement was carried out with a tensile tester (manufactured by Shimadzu Corporation, RTG Co., Ltd.) under the conditions of a test length of 250 mm and a test speed of 300 mm / min.

(4)単糸強度
単繊維引張試験機(EZ-SX (株)島津製作所製)にて、単繊維について、試長25mm、試験速度20mm/minの条件で測定した。
(4) Single yarn strength A single fiber was measured with a single fiber tensile tester (manufactured by Shimadzu Corporation, EZ-SX) under the conditions of a test length of 25 mm and a test speed of 20 mm / min.

(5)表層ボイド率
クライオイオンスライサ(EM-09100IS 日本電子(株)製)にて、-120℃の条件で薄膜試料を作成した。得られた薄膜試料を透過型電子顕微鏡(JEM-2100F 日本電子製)にて加速電圧200kVで観察した。炭素繊維の単繊維100本について、表層から100nmまでの範囲を対象として透過型電子顕微鏡像からボイドを手動で抜き出し、画像処理ソフトNexus NewQubeを用いてボイドの面積と測定領域の面積を算出した。ボイドの面積/測定領域の面積を算出して表層ボイド率とした。
(5) Surface void ratio A thin film sample was prepared with a cryoion slicer (EM-09100IS, manufactured by JEOL Ltd.) under the condition of −120 ° C. The obtained thin film sample was observed with a transmission electron microscope (JEM-2100F manufactured by JEOL Ltd.) at an acceleration voltage of 200 kV. For 100 single carbon fibers, voids were manually extracted from the transmission electron microscope image in the range from the surface layer to 100 nm, and the area of the voids and the area of the measurement area were calculated using the image processing software Nexus Newcube. The area of the void / the area of the measurement area was calculated and used as the surface void ratio.

(6)表面欠陥
上記(5)で撮影した透過型電子顕微鏡像から、炭素繊維の単繊維100本について、繊維の表面から深さ20nm以上の欠陥の数をカウントし、1本あたりの欠陥数を算出した。
(6) Surface Defects From the transmission electron microscope image taken in (5) above, the number of defects with a depth of 20 nm or more from the surface of 100 carbon fiber single fibers is counted, and the number of defects per fiber is counted. Was calculated.

(7)層間破壊靭性(G1c)
以下の樹脂組成物を用いて評価用のプリプレグを作成して評価した。
(7) Interlayer fracture toughness (G1c)
A prepreg for evaluation was prepared and evaluated using the following resin composition.

<樹脂組成物>
樹脂組成物の成分として、以下のものを用意した。
(エポキシ樹脂)
・MY0600:グリシジルアミン型エポキシ樹脂、ハンツマン・アドバンスト・マテリアルズ社製アラルダイトMY0600(商品名)35重量部
・EP604:グリシジルアミン型エポキシ樹脂、ジャパンエポキシレジン社製EP604(商品名)30重量部
・EP828:ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン社製EP828(商品名)15重量部
・EPU-6:ウレタン変性エポキシ樹脂、アデカ社製EPU-6(商品名)20重量部
(硬化剤)
・芳香族アミン系硬化剤:4,4’-ジアミノジフェニルスルホン(和歌山精化工業製セイカキュアS(商品名)40重量部
(ポリエーテルスルホン)
・ポリエーテルスルホン:住友化学工業(株)製PES-5003P(商品名)35重量部
(ポリアミド樹脂粒子)
・ポリアミド樹脂粒子:エムスケミージャパン社製グリルアミド TR-55(商品名)20重量部
<Resin composition>
The following were prepared as the components of the resin composition.
(Epoxy resin)
MY0600: glycidylamine type epoxy resin, Araldite MY0600 (trade name) manufactured by Huntsman Advanced Materials, 35 parts by weight ・ EP604: glycidylamine type epoxy resin, EP604 (trade name) manufactured by Japan Epoxy Resin, 30 parts by weight ・ EP828 : Bisphenol A type epoxy resin, EP828 (trade name) manufactured by Japan Epoxy Resin, 15 parts by weight ・ EPU-6: Urethane-modified epoxy resin, EPU-6 (trade name) manufactured by Adeca, 20 parts by weight (curing agent)
-Aromatic amine-based curing agent: 4,4'-diaminodiphenyl sulfone (Seika Cure S (trade name) manufactured by Wakayama Seika Kogyo Co., Ltd.) 40 parts by weight (polyether sulfone)
-Polyether sulfone: PES-5003P (trade name) manufactured by Sumitomo Chemical Co., Ltd. 35 parts by weight (polyamide resin particles)
-Polyamide resin particles: Grillamide TR-55 (trade name) manufactured by Ems-Chemie Japan Co., Ltd. 20 parts by weight

<樹脂組成物の調製>
上記のエポキシ樹脂に、ポリエーテルスルホンを添加し、120℃で60分間、プラネタリーミキサーを用いて撹拌し、ポリエーテルスルホンをエポキシ樹脂に完全溶解させた。樹脂温度を80℃以下に冷ました後、ポリアミド樹脂粒子および硬化剤を添加し、ロールミルを用いて混練して、エポキシ樹脂組成物を調製した。
<Preparation of resin composition>
A polyether sulfone was added to the above epoxy resin, and the mixture was stirred at 120 ° C. for 60 minutes using a planetary mixer to completely dissolve the polyether sulfone in the epoxy resin. After cooling the resin temperature to 80 ° C. or lower, polyamide resin particles and a curing agent were added and kneaded using a roll mill to prepare an epoxy resin composition.

<プリプレグの製造>
調製したエポキシ樹脂組成物を、フィルムコーターを用いてそれぞれ離型紙上に塗布して、50g/mの樹脂フィルムを2枚作製した。次に、炭素繊維束を一方向に配列させた炭素繊維シートに、上記で作製した樹脂フィルムをシート両面にそれぞれ1枚重ねた。加熱および加圧することにより、樹脂フィルムの樹脂を炭素繊維シートに含浸させ、炭素繊維の目付が190g/mで、マトリクス樹脂の質量分率が35.0%の一方向プリプレグを作製した。
<Manufacturing of prepreg>
The prepared epoxy resin composition was applied onto each release paper using a film coater to prepare two 50 g / m 2 resin films. Next, one resin film produced above was laminated on both sides of the carbon fiber sheet in which the carbon fiber bundles were arranged in one direction. By heating and pressurizing, the resin of the resin film was impregnated into the carbon fiber sheet to prepare a unidirectional prepreg having a carbon fiber texture of 190 g / m 2 and a mass fraction of the matrix resin of 35.0%.

<測定試料の調製および試験方法>
一方向プリプレグを一辺が360mmの正方形にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(繊維強化複合材料)を幅 12.7mm×長さ304.8 mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。GIcの試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、離型シートの先端から12.7mmの予亀裂(初期クラック)を発生させた後に、さらに亀裂を進展させる試験を行った。予亀裂の先端から、亀裂進展長さが127mmに到達した時点で試験を終了させた。試験片引張試験機のクロスヘッドスピードは12.7mm/分とし、n=5で測定を行った。亀裂進展長さは顕微鏡を用いて試験片の両端面から測定し、荷重および亀裂開口変位を計測することにより、積分法にて層間破壊靭性(G1c)を算出した。
<Preparation and test method of measurement sample>
The unidirectional prepreg was cut into a square having a side of 360 mm and then laminated to prepare two laminated bodies in which 10 layers were laminated in the 0 ° direction. In order to generate initial cracks, a release sheet was sandwiched between two laminated bodies, and both were combined to obtain a prepreg laminated body having a laminated structure [0] 20 . Using a normal vacuum autoclave molding method, molding was performed under a pressure of 0.59 MPa at 180 ° C. for 2 hours. The obtained molded product (fiber-reinforced composite material) was cut to a size of 12.7 mm in width × 304.8 mm in length to obtain a test piece of interlayer fracture toughness mode I (GIc). As a GIc test method, a double cantilever beam interlayer fracture toughness test method (DCB method) is used to generate a pre-crack (initial crack) of 12.7 mm from the tip of the release sheet, and then further develop the crack. Was done. The test was terminated when the crack extension length reached 127 mm from the tip of the pre-crack. The crosshead speed of the test piece tensile tester was 12.7 mm / min, and the measurement was performed at n = 5. The crack growth length was measured from both end faces of the test piece using a microscope, and the interlaminar fracture toughness (G1c) was calculated by the integral method by measuring the load and the crack opening displacement.

(8)炭素繊維密着数(CF密着数)
炭素繊維の単繊維の本数が24000本になるように炭素繊維の繊維束を合糸し、2mmの長さに切ったストランドをエタノールの入ったビーカー中で1分間、超音波処理後((株)カイジョー製卓上型超音波洗浄機ソノクリーナー200Dを使用)、エタノールをシャーレに移し替え、実体顕微鏡で単糸が2本以上の塊になっている箇所の数を測定した。測定は5回行い、測定結果はその平均値とした。測定結果は長さ2mmのサンプルの24000本あたりの密着数(個/24K)で表記した。
(8) Carbon fiber adhesion number (CF adhesion number)
The carbon fiber bundles were combined so that the number of carbon fiber single fibers was 24,000, and the strands cut to a length of 2 mm were ultrasonically treated in a beaker containing ethanol for 1 minute. ) Using Kaijo's desktop ultrasonic cleaner Sono Cleaner 200D), ethanol was transferred to a chalet, and the number of places where single yarns were in the form of two or more lumps was measured with a stereoscopic microscope. The measurement was performed 5 times, and the measurement result was the average value. The measurement results are expressed by the number of contacts (pieces / 24K) per 24,000 samples with a length of 2 mm.

(9)炭素繊維のストランド引張強度(CF強度)
炭素繊維のストランド引張強度(CF強度)は、JIS R 7608に規定された方法により測定した。
(9) Strand tensile strength of carbon fiber (CF strength)
The strand tensile strength (CF strength) of the carbon fiber was measured by the method specified in JIS R 7608.

〔実施例1〕
攪拌翼を槽内に有する重合槽にジメチルスルホキシド354重量部、アクリロニトリルを100重量部およびイタコン酸1重量部を仕込み、均一になるように攪拌混合し、60℃まで昇温させた。60℃に到達後、アゾビスイソブチロニトリル0.4重量部、オクチルメルカプタン0.1重量部を投入し、反応を開始した。反応開始後4時間までは反応温度が60℃となるように温度制御を行った。その後、10℃/時間の速度で2時間昇温した。続く6時間について、反応温度が80℃となるように温度制御を行い、ドープを得た。得られたドープを減圧することで、未反応のアクリロニトリルを留去させた。続いて、ドープにアンモニアガスを吹込み、均一になるように攪拌混合させ、ポリアクリロニトリル系重合体の紡糸原液を得た。得られた紡糸原液を貯蔵槽に移送した。
[Example 1]
354 parts by weight of dimethyl sulfoxide, 100 parts by weight of acrylonitrile and 1 part by weight of itaconic acid were charged in a polymerization tank having a stirring blade in the tank, and the mixture was stirred and mixed so as to be uniform, and the temperature was raised to 60 ° C. After reaching 60 ° C., 0.4 part by weight of azobisisobutyronitrile and 0.1 part by weight of octyl mercaptan were added to start the reaction. The temperature was controlled so that the reaction temperature was 60 ° C. up to 4 hours after the start of the reaction. Then, the temperature was raised for 2 hours at a rate of 10 ° C./hour. For the following 6 hours, the temperature was controlled so that the reaction temperature was 80 ° C. to obtain a dope. The unreacted acrylonitrile was distilled off by reducing the pressure of the obtained dope. Subsequently, ammonia gas was blown into the dope, and the mixture was stirred and mixed so as to be uniform, to obtain a spinning stock solution of a polyacrylonitrile-based polymer. The obtained undiluted spinning solution was transferred to a storage tank.

この紡糸原液を、孔径150μm、孔数3000の紡糸口金より吐出し、紡糸口金と凝固液面との距離を5mmとし、凝固液中にて凝固させることで乾湿式紡糸を行い、ポリアクリロニトリル系重合体の凝固繊維を得た。凝固浴中の凝固液の温度は15℃とし、凝固液をろ過精度0.5μmの精密フィルターで連続的にろ過し、凝固液の濁度を0.1に保った。得られた凝固繊維を水洗槽中で脱溶媒し、最高温度の位置の熱水温度が98℃の熱水延伸浴で3.0倍に延伸した。熱水延伸後の凝固繊維の膨潤度は87%であった。なお、凝固液の濾過に用いた精密フィルターは、凝固液の入った凝固浴に連結された凝固液循環ラインに設置されている。 This undiluted spinning solution is discharged from a spinning spout having a pore diameter of 150 μm and a number of holes of 3000, the distance between the spinning spout and the coagulating liquid surface is set to 5 mm, and the mixture is coagulated in the coagulating liquid to perform dry-wet spinning. Combined coagulated fibers were obtained. The temperature of the coagulation liquid in the coagulation bath was 15 ° C., and the coagulation liquid was continuously filtered with a precision filter having a filtration accuracy of 0.5 μm to maintain the turbidity of the coagulation liquid at 0.1. The obtained coagulated fibers were desolvated in a water washing tank and stretched 3.0 times in a hot water stretching bath having a hot water temperature of 98 ° C. at the highest temperature. The degree of swelling of the coagulated fibers after hot water stretching was 87%. The precision filter used for filtering the coagulating liquid is installed in the coagulating liquid circulation line connected to the coagulating bath containing the coagulating liquid.

上記の熱水延伸後の凝固繊維をシリコーン系油剤浴中に浸漬して油剤を付与し、加熱ローラーにより160℃×30秒間乾燥緻密化し、圧力0.40MPaの水蒸気中で4.0倍の後延伸を行い、最後に140℃×10秒間熱固定処理を行い、ポリアクリロニトリル系繊維の繊維束を得た。得られたポリアクリロニトリル系繊維の繊維束の単繊維の繊度は0.8dtex/fil、結節弾性率は19.0GPa、単繊維強度は8.2cN/dtexであった。 The coagulated fibers after stretching with hot water are immersed in a silicone-based oil bath to apply an oil, dried and densified at 160 ° C for 30 seconds with a heating roller, and after 4.0 times in steam at a pressure of 0.40 MPa. The fiber was stretched and finally heat-fixed at 140 ° C. for 10 seconds to obtain a fiber bundle of polyacrylonitrile-based fibers. The fineness of the single fiber of the fiber bundle of the obtained polyacrylonitrile fiber was 0.8 dtex / fill, the nodular elastic modulus was 19.0 GPa, and the single fiber strength was 8.2 cN / dtex.

得られたポリアクリロニトリル系繊維の繊維束の2つを合糸し、総フィラメント数を6000とした上で、240~260℃の温度の空気中において耐炎化処理し、続いて300~700℃の温度の窒素雰囲気中において予備炭素化処理を行い、さらに最高温度1500℃の窒素雰囲気中において炭化処理を行い、炭素繊維束を得た。得られた炭素繊維束の単繊維の表層ボイド率は0.02%、表面欠陥は見られず、CF強度は6700MPa、層間破壊靭性(G1c)は796J/m、CF密着数は5個/24Kであり、良好な性能を示した。 Two of the obtained polyacrylonitrile-based fiber bundles were combined to make the total number of filaments 6000, and then flame-resistant in air at a temperature of 240 to 260 ° C., followed by a flame resistance treatment at 300 to 700 ° C. Preliminary carbonization treatment was carried out in a nitrogen atmosphere at a temperature, and carbonization treatment was further carried out in a nitrogen atmosphere at a maximum temperature of 1500 ° C. to obtain carbon fiber bundles. The surface void ratio of the single fiber of the obtained carbon fiber bundle was 0.02%, no surface defects were observed, the CF strength was 6700 MPa, the interlaminar fracture toughness (G1c) was 796 J / m 2 , and the number of CF adhesions was 5 /. It was 24K and showed good performance.

〔実施例2〕
実施例1にてポリアクリロニトリル系重合体の分子量分布Mw/Mnを2.2から2.8に変更した以外は実施例1と同様にして、ポリアクリロニトリル系繊維および炭素繊維を得た。
[Example 2]
Polyacrylonitrile-based fibers and carbon fibers were obtained in the same manner as in Example 1 except that the molecular weight distribution Mw / Mn of the polyacrylonitrile-based polymer was changed from 2.2 to 2.8 in Example 1.

熱水延伸後の凝固繊維の膨潤度は90%であり、得られたポリアクリロニトリル系繊維の結節弾性率は19.0GPa、単繊維強度は8.8cN/dtexであった。得られた炭素繊維の単繊維の表層ボイド率は0.00%、表面欠陥は見られず、CF強度は6600MPa、層間破壊靭性(G1c)は675J/m、CF密着数は5個/24Kであり、良好な性能を示した。 The swelling degree of the coagulated fiber after hot water stretching was 90%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 19.0 GPa, and the single fiber strength was 8.8 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 0.00%, no surface defects were observed, the CF strength was 6600 MPa, the interlaminar fracture toughness (G1c) was 675 J / m 2 , and the number of CF adhesions was 5 / 24K. It showed good performance.

〔実施例3〕
実施例1において凝固浴中の凝固液の温度を15℃から10℃に変更し、熱水延伸浴の最高温度を90℃に変更した以外は実施例1と同様にして、ポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸後の凝固繊維の膨潤度は90%であり、得られたポリアクリロニトリル系繊維の結節弾性率は19.5GPa、単繊維強度は9.3cN/dtexであった。得られた炭素繊維の単繊維の表層ボイド率は0.02%、表面欠陥は見られず、CF強度は6300MPa、層間破壊靭性(G1c)は571J/m、CF密着数は5個/24Kであり、良好な性能を示した。
[Example 3]
The polyacrylonitrile fiber and the polyacrylonitrile fiber and the same as in Example 1 except that the temperature of the coagulating liquid in the coagulation bath was changed from 15 ° C. to 10 ° C. Obtained carbon fiber. The swelling degree of the coagulated fiber after hot water stretching was 90%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 19.5 GPa, and the single fiber strength was 9.3 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 0.02%, no surface defects were observed, the CF strength was 6300 MPa, the interlaminar fracture toughness (G1c) was 571 J / m 2 , and the number of CF adhesions was 5 / 24K. It showed good performance.

〔実施例4〕
実施例2において凝固浴中の凝固液の温度を15℃から20℃に変更した以外は実施例2と同様にして、ポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸後の凝固糸の膨潤度は98%であり、得られたポリアクリロニトリル系繊維の結節弾性率は18.0GPa、単繊維強度は7.8cN/dtexであった。得られた炭素繊維の単繊維の表層ボイド率は0.33%、表面欠陥は見られず、CF強度は6100MPa、層間破壊靭性(G1c)は588J/m、CF密着数は1個/24Kであり、良好な性能を示した。
[Example 4]
Polyacrylonitrile-based fibers and carbon fibers were obtained in the same manner as in Example 2 except that the temperature of the coagulating liquid in the coagulation bath was changed from 15 ° C to 20 ° C in Example 2. The degree of swelling of the coagulated yarn after hot water drawing was 98%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 18.0 GPa, and the single fiber strength was 7.8 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 0.33%, no surface defects were observed, the CF strength was 6100 MPa, the interlaminar fracture toughness (G1c) was 588 J / m 2 , and the number of CF adhesions was 1 / 24K. It showed good performance.

〔実施例5〕
実施例2において凝固浴中の凝固液の温度を15℃から20℃に変更し、ポリアクリロニトリル系繊維の繊度を1.3dtex/filに変更した以外は実施例2と同様の方法にてポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸糸の膨潤度は85%であり、得られたポリアクリロニトリル系繊維の結節弾性率は17.0GPa、単繊維強度は7.0cN/dtexであった。得られた炭素繊維の単繊維の表層ボイド率は0.00%、表面欠陥は見られず、CF強度は5400MPa、層間破壊靭性(G1c)は623J/m、CF密着数は2個/24Kであり、良好な性能を示した。
[Example 5]
In Example 2, the temperature of the coagulating liquid in the coagulation bath was changed from 15 ° C. to 20 ° C., and the fineness of the polyacrylonitrile fiber was changed to 1.3 dtex / fill, but the polyacrylonitrile was changed in the same manner as in Example 2. System fibers and carbon fibers were obtained. The swelling degree of the hot water drawn yarn was 85%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 17.0 GPa, and the single fiber strength was 7.0 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 0.00%, no surface defects were observed, the CF strength was 5400 MPa, the interlaminar fracture toughness (G1c) was 623 J / m 2 , and the number of CF adhesions was 2 / 24K. It showed good performance.

〔実施例6〕
実施例2にて凝固浴フィルターのろ過精度を0.5μmから30μmに変更した以外は実施例2と同様の方法にてポリアクリロニトリル繊維および炭素繊維を得た。熱水延伸糸の膨潤度は90%であり、得られたポリアクリロニトリル繊維の結節弾性率は19.0GPa、単繊維強度は8.5cN/dtexであった。また得られた炭素繊維の単繊維の表層ボイド率は0.03%、表面欠陥は見られず、CF強度は6500MPa、層間破壊靭性(G1c)は571J/m、CF密着数は3個/24Kであり、良好な性能を示した。
[Example 6]
Polyacrylonitrile fibers and carbon fibers were obtained in the same manner as in Example 2 except that the filtration accuracy of the coagulation bath filter was changed from 0.5 μm to 30 μm in Example 2. The swelling degree of the hot water drawn yarn was 90%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 19.0 GPa, and the single fiber strength was 8.5 cN / dtex. The surface void ratio of the obtained single carbon fiber was 0.03%, no surface defects were observed, the CF strength was 6500 MPa, the interlaminar fracture toughness (G1c) was 571 J / m 2 , and the number of CF adhesions was 3 /. It was 24K and showed good performance.

〔比較例1〕
実施例2において凝固浴フィルターを使用しなかったこと以外は実施例2と同様の方法にてポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸糸の膨潤度は90%であり、得られたポリアクリロニトリル繊維の結節弾性率は20.5GPa、単繊維強度は9.0cN/dtexであった。また得られた炭素繊維の単繊維の表層ボイド率は0.01%、CF強度は6500MPa、CF密着数は4個/24Kであり、良好な性能であったが、表面欠陥が21個/本存在し、層間破壊靭性(G1c)は415J/mにとどまった。
[Comparative Example 1]
Polyacrylonitrile-based fibers and carbon fibers were obtained in the same manner as in Example 2 except that the coagulation bath filter was not used in Example 2. The degree of swelling of the hot water drawn yarn was 90%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 20.5 GPa, and the single fiber strength was 9.0 cN / dtex. The surface void ratio of the obtained single carbon fiber was 0.01%, the CF strength was 6500 MPa, and the number of CF adhesions was 4 / 24K, which were good performance, but 21 surface defects / piece. It was present and the interlayer fracture toughness (G1c) remained at 415 J / m 2 .

〔比較例2〕
実施例1において凝固浴中の凝固液の温度を3℃に変更した以外は実施例1と同様の方法にてポリアクリロニトリル繊維および炭素繊維を得た。熱水延伸糸の膨潤度は70%であり、得られたポリアクリロニトリル系繊維の結節弾性率は22.0GPa、単繊維強度
は9.4cN/dtexであった。また得られた炭素繊維の単繊維の表層ボイド率は0.00%、表面欠陥がみられず、CF強度は6300MPa、層間破壊靭性(G1c)は588J/m、CF密着数は40個/24Kであり、CF密着数が目的に対して不十分な結果となった。
[Comparative Example 2]
Polyacrylonitrile fibers and carbon fibers were obtained in the same manner as in Example 1 except that the temperature of the coagulating liquid in the coagulation bath was changed to 3 ° C. in Example 1. The swelling degree of the hot water drawn yarn was 70%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 22.0 GPa, and the single fiber strength was 9.4 cN / dtex. The surface void ratio of the obtained single carbon fiber was 0.00%, no surface defects were observed, the CF strength was 6300 MPa, the interlaminar fracture toughness (G1c) was 588 J / m 2 , and the number of CF adhesions was 40 /. It was 24K, and the CF adhesion number was insufficient for the purpose.

〔比較例3〕
実施例5において凝固浴中の凝固液の温度を15℃から3℃に変更し、熱水延伸浴の最高温度を70℃に変更し、ポリアクリロニトリル系繊維の繊度を1.3dtex/filに変更した以外は実施例5と同様の方法にてポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸糸の膨潤度は120%であり、得られたポリアクリロニトリル繊維の結節弾性率は21.0GPa、単繊維強度は9.3cN/dtexであった。また得られた炭素繊維の単繊維の表層ボイド率は10.54%、表面欠陥が10個/本存在し、CF強度は5000MPa、層間破壊靭性(G1c)は294J/m、CF密着数は5個/24Kであり、CF強度及びG1cが目的に対して不十分な結果となった。
[Comparative Example 3]
In Example 5, the temperature of the coagulating liquid in the coagulation bath was changed from 15 ° C to 3 ° C, the maximum temperature of the hot water stretching bath was changed to 70 ° C, and the fineness of the polyacrylonitrile fiber was changed to 1.3 dtex / fill. Polyacrylonitrile-based fibers and carbon fibers were obtained in the same manner as in Example 5 except for the above. The swelling degree of the hot water drawn yarn was 120%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 21.0 GPa, and the single fiber strength was 9.3 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 10.54%, 10 surface defects / line were present, the CF strength was 5000 MPa, the interlaminar fracture toughness (G1c) was 294 J / m 2 , and the CF adhesion number was. The number was 5 / 24K, and the CF strength and G1c were insufficient for the purpose.

〔比較例4〕
実施例2において熱水延伸浴の最高温度を80℃に変更した以外は実施例2と同様の方法にてポリアクリロニトリル系繊維および炭素繊維を得た。熱水延伸糸の膨潤度は114%であり、得られたポリアクリロニトリル系繊維の結節弾性率は19.0GPa、単繊維強度は10.6cN/dtexであった。また、得られた炭素繊維の単繊維の表層ボイド率は2.50%、表面欠陥が13個/本存在し、CF強度は6000MPa、層間破壊靭性(G1c)は415J/m、CF密着数は7個/24Kであり、GIcが目的に対して不十分な結果となった。
[Comparative Example 4]
Polyacrylonitrile-based fibers and carbon fibers were obtained in the same manner as in Example 2 except that the maximum temperature of the hot water stretching bath was changed to 80 ° C. in Example 2. The swelling degree of the hot water drawn yarn was 114%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 19.0 GPa, and the single fiber strength was 10.6 cN / dtex. The surface void ratio of the obtained single fiber of the carbon fiber was 2.50%, 13 surface defects / line were present, the CF strength was 6000 MPa, the interlaminar fracture toughness (G1c) was 415 J / m 2 , and the number of CF adhesions. Was 7 / 24K, which was an insufficient result for the purpose of GIc.

〔比較例5〕
比較例2において熱水延伸浴の最高温度を80℃に変更した以外は比較例2と同様の方法にてポリアクリロニトリル繊維および炭素繊維を得た。熱水延伸糸の膨潤度は93%であり、得られたポリアクリロニトリル系繊維の結節弾性率は22.0GPa、単繊維強度は10.5cN/dtexであった。また得られた炭素繊維の単繊維の表層ボイド率は0.03%、表面欠陥が8個/本存在し、CF強度は6200MPa、層間破壊靭性(G1c)は502J/m、CF密着数は4個/24Kであり、GIcが目的に対して不十分な結果となった。
[Comparative Example 5]
Polyacrylonitrile fibers and carbon fibers were obtained in the same manner as in Comparative Example 2 except that the maximum temperature of the hot water stretching bath was changed to 80 ° C. in Comparative Example 2. The swelling degree of the hot water drawn yarn was 93%, the knot elastic modulus of the obtained polyacrylonitrile fiber was 22.0 GPa, and the single fiber strength was 10.5 cN / dtex. The surface void ratio of the obtained carbon fiber single fiber was 0.03%, 8 surface defects / line were present, the CF strength was 6200 MPa, the interlaminar fracture toughness (G1c) was 502 J / m 2 , and the CF adhesion number was. It was 4 pieces / 24K, and the result was insufficient for the purpose of GIc.

Figure 2022098766000001
Figure 2022098766000001

Figure 2022098766000002
Figure 2022098766000002

本発明のポリアクリロニトリル系繊維は炭素繊維の前駆体繊維として用いることができる。本発明のポリアクリロニトリル系繊維から得られる炭素繊維は、繊維強化複合材料の強化繊維として用いることができる。 The polyacrylonitrile-based fiber of the present invention can be used as a precursor fiber of carbon fiber. The carbon fiber obtained from the polyacrylonitrile-based fiber of the present invention can be used as a reinforcing fiber of a fiber-reinforced composite material.

Claims (10)

ポリアクリロニトリル系重合体からなるポリアクリロニトリル系繊維であって、結節弾性率が15~20GPaであり、かつ単糸強度が7.0~10.0cN/dtexであることを特徴とする、ポリアクリロニトリル系繊維。 A polyacrylonitrile fiber made of a polyacrylonitrile polymer, characterized by a knot elastic modulus of 15 to 20 GPa and a single yarn strength of 7.0 to 10.0 cN / dtex. fiber. 炭素繊維の前駆体繊維として用いられる、請求項1に記載のポリアクリロニトリル系繊維。 The polyacrylonitrile-based fiber according to claim 1, which is used as a precursor fiber for carbon fiber. ポリアクリロニトリル系重合体を含む紡糸原液を凝固液中に紡出することで凝固繊維を得る凝固工程と、該凝固繊維を熱水中で延伸することで熱水延伸凝固繊維を得る熱水延伸工程とを備えるポリアクリロニトリル系繊維の製造方法であって、凝固工程の凝固液の温度が10~20℃かつ濁度が10.0以下であり、熱水延伸工程の熱水の最高温度が90℃以上であることを特徴とする、ポリアクリロニトリル系繊維の製造方法。 A coagulation step of obtaining coagulated fibers by spinning a spinning stock solution containing a polyacrylonitrile-based polymer into a coagulating liquid, and a hot water stretching step of stretching the coagulated fibers in hot water to obtain hot water-stretched coagulated fibers. A method for producing a polyacrylonitrile fiber having A method for producing a polyacrylonitrile-based fiber, which is characterized by the above. 凝固工程において、紡糸原液を凝固液中に紡出するにあたり、紡糸溶液を空気中に押出してから凝固液中に侵入させることで凝固液中に紡出する、請求項3に記載のポリアクリロニトリル系繊維の製造方法。 The polyacrylonitrile system according to claim 3, wherein in the coagulation step, when the undiluted spinning solution is spun into the coagulation solution, the spinning solution is extruded into the air and then infiltrated into the coagulation solution to be spun into the coagulation solution. Fiber manufacturing method. 熱水延伸後の凝固繊維の繊維膨潤度が80~110%である、請求項3または4に記載のポリアクリロニトリル系繊維の製造方法。 The method for producing a polyacrylonitrile-based fiber according to claim 3 or 4, wherein the coagulated fiber has a fiber swelling degree of 80 to 110% after hot water stretching. 凝固工程の凝固液が精密フィルターにより連続的に濾過されている、請求項3乃至5のいずれかに記載のポリアクリロニトリル系繊維の製造方法。 The method for producing a polyacrylonitrile-based fiber according to any one of claims 3 to 5, wherein the coagulating liquid in the coagulation step is continuously filtered by a precision filter. 精密フィルターのろ過精度が0.1~30μmである、請求項6に記載のポリアクリロニトリル系繊維の製造方法。 The method for producing a polyacrylonitrile-based fiber according to claim 6, wherein the filtration accuracy of the precision filter is 0.1 to 30 μm. 精密フィルターが、凝固液の入った凝固浴に連結された凝固液循環ラインに設置されている、請求項3乃至7のいずれかに記載のポリアクリロニトリル系繊維の製造方法。 The method for producing a polyacrylonitrile-based fiber according to any one of claims 3 to 7, wherein the precision filter is installed in a coagulation liquid circulation line connected to a coagulation bath containing the coagulation liquid. 請求項1または2に記載のポリアクリロニトリル系繊維を、酸化性雰囲気中で200~300℃の温度で耐炎化することで耐炎化繊維を得る工程と、該耐炎化繊維を不活性雰囲気中で1000℃以上の温度で炭素化することで炭素繊維を得る工程とを備えた、炭素繊維の製造方法。 A step of obtaining flame-resistant fibers by flame-resistant the polyacrylonitrile-based fiber according to claim 1 or 2 at a temperature of 200 to 300 ° C. in an oxidizing atmosphere, and 1000 of the flame-resistant fibers in an inert atmosphere. A method for producing carbon fiber, which comprises a step of obtaining carbon fiber by carbonizing at a temperature of ° C. or higher. 請求項3乃至8のいずれかに記載の製造方法で得たポリアクリロニトリル系繊維の製造方法で得たポリアクリロニトリル系繊維を、酸化性雰囲気中で200~300℃の温度で耐炎化することで耐炎化繊維を得る工程と、耐炎化繊維を不活性雰囲気中で1000℃以上の温度で炭素化することで炭素繊維を得る工程とを備えた、炭素繊維の製造方法。 Flame resistant by making the polyacrylonitrile fiber obtained by the method for producing a polyacrylonitrile fiber obtained by the production method according to any one of claims 3 to 8 flame resistant at a temperature of 200 to 300 ° C. in an oxidizing atmosphere. A method for producing carbon fiber, comprising a step of obtaining chemical fiber and a step of obtaining carbon fiber by carbonizing the flame-resistant fiber at a temperature of 1000 ° C. or higher in an inert atmosphere.
JP2020212348A 2020-12-22 2020-12-22 Polyacrylonitrile fiber and method of producing the same Pending JP2022098766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020212348A JP2022098766A (en) 2020-12-22 2020-12-22 Polyacrylonitrile fiber and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020212348A JP2022098766A (en) 2020-12-22 2020-12-22 Polyacrylonitrile fiber and method of producing the same

Publications (1)

Publication Number Publication Date
JP2022098766A true JP2022098766A (en) 2022-07-04

Family

ID=82261719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020212348A Pending JP2022098766A (en) 2020-12-22 2020-12-22 Polyacrylonitrile fiber and method of producing the same

Country Status (1)

Country Link
JP (1) JP2022098766A (en)

Similar Documents

Publication Publication Date Title
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP7414000B2 (en) Fiber-reinforced resin prepreg, molded body, fiber-reinforced thermoplastic resin prepreg
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
WO2006070706A1 (en) Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
JP6510299B2 (en) Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same
JP2022098766A (en) Polyacrylonitrile fiber and method of producing the same
JP6145960B2 (en) Method for producing acrylonitrile polymer solution and method for producing carbon fiber precursor acrylonitrile fiber
JP2020015997A (en) Method for producing precursor fiber for carbon fiber
KR20120077785A (en) Carbon fiber manufacturing method and precipitating bath
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2012193465A (en) Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
KR20100073760A (en) Method for preparing carbon fiber precursor
JP4957634B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber bundle and method for producing the same
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JP6217342B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2008214562A (en) Polyacrylonitrile polymer composition and process for producing carbon fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
US20230235485A1 (en) Polyacrylonitrile-based stabilized fiber, carbon fiber, and manufacturing method therefor
JP4715386B2 (en) Carbon fiber bundle manufacturing method
WO2023140212A1 (en) Carbon fiber bundle
KR101490530B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
JP2011122255A (en) Carbon fiber precursor fiber bundle, carbon fiber bundle, and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604