JPWO2017195534A1 - 土壌状態評価装置、該方法および該プログラム - Google Patents

土壌状態評価装置、該方法および該プログラム Download PDF

Info

Publication number
JPWO2017195534A1
JPWO2017195534A1 JP2018516906A JP2018516906A JPWO2017195534A1 JP WO2017195534 A1 JPWO2017195534 A1 JP WO2017195534A1 JP 2018516906 A JP2018516906 A JP 2018516906A JP 2018516906 A JP2018516906 A JP 2018516906A JP WO2017195534 A1 JPWO2017195534 A1 JP WO2017195534A1
Authority
JP
Japan
Prior art keywords
evaluation
field
temperature
soil
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018516906A
Other languages
English (en)
Other versions
JP6881440B2 (ja
Inventor
康男 小柳
康男 小柳
片桐 哲也
哲也 片桐
弘志 藤井
弘志 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017195534A1 publication Critical patent/JPWO2017195534A1/ja
Application granted granted Critical
Publication of JP6881440B2 publication Critical patent/JP6881440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Landscapes

  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本発明にかかる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムでは、評価対象の圃場における熱分布画像が取得され、前記圃場の気温が取得され、この取得された前記圃場の熱分布画像と前記取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値が求められる。

Description

本発明は、圃場における土壌の状態を還元性の観点から評価する土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムに関する。
農作物は、一般に、土壌で育成されるため、土壌の状態は、その農作物の収量および品質に影響する。特に、近年の地球温暖化の影響により、農作物に障害が発生し、その健全性を損なう頻度が上昇傾向にある。一方、農業経営の環境は、厳しく、生産コストの低減が求められている。このため、土壌の状態を適切に評価し、その評価結果に応じた対策を適切に実施することが望ましく、土壌の状態を適切に評価する技術が要望されている。
このような土壌の状態を評価する技術は、例えば、特許文献1に開示されている。この特許文献1に開示された土壌分析方法は、所定の土壌における各種作物育成のための養分量を分析する土壌分析方法であって、所定の土壌を所定深さで切り取り、試料を採取するステップ、及び採取した試料を、強酸を含んでなる処理液により処理して抽出液を得、得られた抽出液をイオンクロマト装置により化学分析して、上記土壌における養分量を正確に把握するステップ、を具備する。
ところで、前記特許文献1に開示された土壌分析方法は、土壌から実際に試料を採取してイオンクロマト装置により化学分析するので、比較的、正確に土壌の養分量を分析できると考えられる。そして、前記特許文献1には、その[0012]段落に「サンプリングは、正確な分析結果が得られるように農場全体から必要なデータ収集が行えるように適当に分散された複数個所で行えばよいが、農場全体の四隅及び対角線上の任意の2点の計6点をサンプリング個所とするのが好ましい。」と提案されている。
一方、いわゆる還元障害を評価する場合、還元障害は、圃場全体に発生するケースは、少なく、圃場の所々で発生するケースが多い。このため、前記特許文献1に開示された土壌分析方法のように、土壌から試料をサンプリングすることによって還元障害を評価しようとすると、圃場全体に亘って多数の箇所でサンプリングしなければならず、手間がかかり、非効率となる。そもそも、土壌から試料をサンプリングすること自体に、手間がかかる。
特開2014−106089号公報(特許第5351325号公報)
本発明は、上述の事情に鑑みて為された発明であり、その目的は、還元性の度合いをより効率よく評価できる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムを提供することである。
本発明にかかる土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムでは、評価対象の圃場における熱分布画像が取得され、前記圃場の気温が取得され、この取得された前記圃場の熱分布画像と前記取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値が求められる。
上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
圃場における還元障害の発生と作物の温度との相関関係を説明するための図である。 実施形態における土壌状態評価システムの構成を示すための図である。 前記土壌状態評価システムの土壌状態評価装置に記憶される評価資材変換情報テーブルを示す図である。 前記土壌状態評価システムの土壌状態評価装置の動作を示すフローチャートである。 一例として、圃場の温度分布画像を示す模式図である。 図5に模式的に示す圃場の温度分布画像に基づいて求められる評価値マップを示す図である。 図6に示す評価値マップに基づいて求められる資材量マップを示す図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
(相関性)
まず、圃場における還元性の度合いと、作物の温度との相関関係について、一実験例に基づいて説明する。
図1は、圃場における還元障害の発生と作物の温度との相関関係を説明するための図である。図1Aは、水田の熱分布画像を示す図であり、図1Bは、前記水田で生育された稲における穂数の平均値を示す図である。実験対象の水田は、還元障害を改善する資材として10アール(a)当たり石灰窒素20kgを供給した領域である、紙面左側に示す石灰N区と、前記資材を供給しないそのままの領域である、紙面右側に示す対照区とに区分けした。これら石灰N区と対照区との水田には、紙面上方に示す“水口”から水が引き入れられ、紙面上方から紙面下方へ流れ、“水尻”から排水される。石灰N区および対照区それぞれは、領域上、紙面横方向に3個に分けられ、そして、紙面縦方向に6個に分けられ、3×6=18のサブ領域に分けられている。稲の穂数の平均値は、1個のサブ領域内に生育する稲の穂数を平均した数値であり、本/m単位で図1Bに表示されている。図1Aに示す水田の熱分布画像では、グレースケールで色が濃いほど水田からの熱放射、言い換えれば、水田の温度、さらに言い換えれば、稲の温度が高いことを示している。この図1Aに示す水田の熱分布画像を撮像したときの水田の周囲環境の気温は、31.2℃であった。
図1Bにおいて、紙面右側の対照区では、稲の穂数の平均値が400本/m台であるサブ領域が9個であり、稲の穂数の平均値が500本/m台であるサブ領域が8個であり、稲の穂数の平均値が600本/m台であるサブ領域が1個である一方、紙面左側の石灰N区では、稲の穂数の平均値が400本/m台であるサブ領域が2個であり、稲の穂数の平均値が500本/m台であるサブ領域が4個であり、稲の穂数の平均値が600本/m台であるサブ領域が12個である。したがって、石灰N区は、石灰窒素の資材により、大部分の領域で、還元性の度合いが小さく、還元障害の発生が抑制され、この結果、稲が順調に生育している。一方、対照区は、逆に、還元性の度合いが所々大きくなって、前記所々で還元障害が発生し、稲の生育が順調ではない。対照区おいて、特に、図1Bに○で囲むことによって示す9個のサブ領域では、稲の穂数がサブ領域の平均値で435本/m〜498本/mであり、明らかに、還元障害によって生育不良となっている。
一方、これを熱分布画像で見ると、図1Aに示すように、石灰N区は、比較的熱の高い(水田の温度の高い、稲の温度の高い)サブ領域の個数が対照区より少なく、石灰N区における水田の温度(稲の温度)は、対照区における水田の温度(稲の温度)より低いことが分かる。特に、図1Bで○囲むことによって示す9個のサブ領域の水田の温度(稲の温度)は、これに隣接する石灰N区の水田の温度(稲の温度)より明らかに高い。
これは、石灰N区では、石灰窒素の資材により、大部分の領域で、還元性の度合いが小さく、還元障害の発生が抑制され、この結果、稲が順調に生育し、気温が31.2℃で比較的暑いにもかかわらず、稲全体に水分が運ばれ、気孔からの蒸散量が順調であり、そのため、水田の温度(稲の温度)が低くなったためであると考察され、一方、対照区では、逆に、還元性の度合いが所々大きくなって、前記所々で還元障害が発生し、稲の生育が順調ではなく、気温が31.2℃で比較的暑いと、稲全体に水分が運ばれず、気孔からの蒸散量が少なくなり、そのため、水田の温度(稲の温度)が高くなったためであると考察される。
このように、圃場における還元性の度合いと、作物の温度との間には、相関関係が認められる。
(土壌状態評価システムS(熱分布画像生成装置M、土壌状態評価装置P))
図2は、実施形態における土壌状態評価システムの構成を示すための図である。図3は、前記土壌状態評価システムの土壌状態評価装置に記憶される評価資材変換情報テーブルを示す図である。
このような知見から、本実施形態における土壌状態評価装置は、土壌の状態を評価する装置であり、評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、前記圃場の気温を取得する圃場気温取得部と、前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える。このような土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場から放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)を生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)自体であって良いが、以下では、一例として、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を無線によって受信する通信インターフェース部(例えば通信カード等)である。
より具体的には、図2において、土壌状態評価システムSは、熱分布画像生成装置Mと、この熱分布画像生成装置Mと無線で通信可能に接続される土壌状態評価装置Pとを備える。
熱分布画像生成装置Mは、評価対象の圃場ARにおける熱分布画像SPを生成する装置である。熱分布画像生成装置Mは、例えば竿等の長尺なロッドの先端に取り付けられ、上方から圃場ARを俯瞰した前記圃場の熱分布画像SPを生成したり、前記圃場ARに隣接して比較的高い建物があれば、前記建物から前記圃場の熱分布画像SPを生成したり等しても良いが、本実施形態では、航空機を備え、上空から前記圃場の熱分布画像SPを生成するように構成されている。
より詳しくは、熱分布画像生成装置Mは、図2に示すように、GPS21と、気温測定部22と、制御部23と、熱分布画像生成部24と、記憶部25と、通信インターフェース部26と、航空機27とを備える。
航空機27は、大気中を飛行する装置であり、例えば、気球、飛行船、飛行機、ヘリコプタおよびマルチコプタ等である。航空機27は、有人機であって良いが、好ましくは、無線操縦飛行(誘導飛行)または自律飛行による無人機(ドローン)である。航空機27は、本実施形態では、制御部23に接続され、誘導飛行または自律飛行による制御部23の制御に従って飛行する。
GPS(Global Positioning System)21は、制御部23に接続され、制御部23の制御に従って、地球上における現在位置を測定するための衛星測位システムによって、航空機27の位置Papを測定する装置であり、その測位結果(位置Pap(緯度Xap、経度Yap、高度Zap))を制御部23へ出力する。なお、GPS21は、DGSP(Differential GSP)等の誤差を補正する補正機能を持ったGPSであっても良い。
気温測定部22は、制御部23に接続され、制御部23の制御に従って、圃場の気温Tsを測定する温度センサであり、その測定結果の気温Tsを制御部23へ出力する。本実施形態では、航空機27に搭載される気温測定部22によって圃場の気温Tsが測定されるので、航空機27は、比較的、低空で飛行することが好ましい。また、この航空機27に搭載された気温測定部22によって測定された圃場の気温Tsが地上における圃場の実際の気温Trと差がある場合には、航空機27に搭載された気温測定部22によって測定された圃場の気温Tsと、地上における圃場の実際の気温Trとの差が、航空機27の高度ごとに、予め複数のサンプルによって測定され、この結果を用いることによって、航空機27に搭載された気温測定部22によって測定された圃場の気温Tsが、地上における圃場の実際の気温Trとなるように、補正されても良い。
熱分布画像生成部24は、制御部23に接続され、制御部23の制御に従って、評価対象の圃場ARから放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)SPを生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)であり、その生成した熱分布画像SPを制御部23へ出力する。このような熱分布画像生成部24は、例えば、評価対象の圃場ARにおける赤外線による像を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記像を電気的な信号に変換する赤外線イメージセンサ、および、赤外線イメージセンサの出力を、赤外線放射量を熱(温度)に換算するなどの、画像処理することで熱分布画像(熱分布画像データ)SPを生成する画像処理部等を備える。
通信インターフェース部(通信IF部)26は、制御部23に接続され、制御部23の制御に従って無線で通信を行うための通信回路である。通信IF部26は、制御部23から入力された転送すべきデータを収容した通信信号を、これら熱分布画像生成装置Mと土壌状態評価装置Pとの間で用いられる通信プロトコルに従って生成し、この生成した通信信号を土壌状態評価装置Pへ送信する。通信IF部26は、土壌状態評価装置Pから通信信号を受信し、この受信した通信信号からデータを取り出し、この取り出したデータを制御部23が処理可能な形式のデータに変換して制御部23へ出力する。通信IF部26は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
記憶部25は、制御部23に接続され、制御部23の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、当該熱分布画像生成装置Mの各部21、22、24〜27を当該各部の機能に応じて制御する制御プログラムや、GPS21による測位と、気温測定部22による測温と、熱分布画像生成部24による撮像とが互いに同期するように、前記測位、前記測温および前記撮像それぞれを、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれに実行させるデータ測定プログラムや、前記測定制御プログラムによって前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Tsおよび撮像して生成された熱分布画像SPを通信信号で通信IF部26から土壌状態評価装置Pへ送信するデータ送信プログラム等の等の制御処理プログラムが含まれる。前記各種の所定のデータには、例えば土壌状態評価装置Pの通信アドレス等の、圃場の熱分布画像SPを撮像して生成する処理に必要なデータが含まれる。記憶部25は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。そして、記憶部25は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御部23のワーキングメモリとなるRAM(Random Access Memory)等を含む。
制御部23は、当該熱分布画像生成装置Mの各部21、22、24〜27を当該各部の機能に応じて制御し、熱分布画像生成装置Mの全体制御を司るものである。制御部23は、GPS21による測位と、気温測定部22による測温と、熱分布画像生成部24による撮像とが互いに同期するように、前記測位、前記測温および前記撮像それぞれを、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれに実行させる。制御部23は、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Ts、および、撮像して生成された熱分布画像SPを、通信信号で通信IF部26から土壌状態評価装置Pへ送信する。制御部23は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。
そして、これらGPS21、気温測定部22、制御部23、熱分布画像生成部24、記憶部25および通信IF部26は、航空機27に搭載され、適宜な位置に配置される。
一方、土壌状態評価装置Pは、図2に示すように、通信IF部11と、制御処理部12と、記憶部13と、入力部14と、出力部15とを備える。
通信IF部11は、通信IF部26と同様に、制御処理部12に接続され、制御処理部12の制御に従って無線で通信を行うための通信回路である。通信IF部11は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
後述するように、評価対象の圃場ARにおける熱分布画像SP、および、前記圃場の気温Tsは、通信IF部11によって熱分布画像生成装置Mから取得するので、通信IF部11は、評価対象の圃場ARにおける熱分布画像SPを取得する熱分布画像取得部の一例に相当し、前記圃場の気温Tsを取得する圃場気温取得部の一例にも相当する。
入力部14は、制御処理部12に接続され、例えば、評価開始を指示するコマンド等の各種コマンド、および、例えば圃場ARの名称や評価条件等の圃場ARを評価する上で必要な各種データを土壌状態評価装置Pに入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチや、キーボードやマウス等である。前記評価条件は、圃場の熱分布画像SPおよび気温Tsを実際に測定した際の、予め設定された所定の条件であり、後述の設定評価条件情報記憶部135に記憶された設定評価条件と対比される。本実施形態では、前記設定評価条件は、後述の土壌還元性評価部123で有意に評価値が求められるか否かを決定するための条件である。上述の還元障害のプロセスに鑑み、前記設定評価条件は、前記圃場の気温Tsが予め設定された所定の温度Th以上であることを、好ましくは含み、本実施形態では、天候が快晴または晴天であって時刻が9時から15時まであることを、さらに含む。このため、前記評価条件は、前記圃場の気温Tsを含む。この前記圃場の気温Tsは、気温測定部22によって測定され、この測定された前記圃場の気温Tsは、熱分布画像生成装置Mから通信IF部11で取得される。したがって、通信IF部11は、外部から評価条件を受け付ける評価条件受付部の一例にも相当する。前記所定の温度Thは、還元障害のプロセスに考慮することによって適宜な値、例えば25℃、28℃および30℃等に設定される。また、上述から、前記評価条件は、天候および時刻を含む。これら天候および時刻は、入力部14から入力される。したがって、入力部14は、外部から評価条件を受け付ける評価条件受付部の他の一例に相当する。
出力部15は、制御処理部12に接続され、制御処理部12の制御に従って、入力部14から入力されたコマンドやデータ、および、当該土壌状態評価装置Pによって求められた評価値EVや資材量MV等を出力する機器であり、例えばCRTディスプレイ、LCDおよび有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。
なお、入力部14および出力部15からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部14は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置であり、出力部15は、表示装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として土壌状態評価装置Pに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い土壌状態評価装置Pが提供される。
なお、本実施形態では、前記圃場の気温Tsは、熱分布画像生成装置Mから通信IF部11で取得されるが、オペレータが、圃場ARで温度計で測定し、この測定温度を圃場の気温Tsとして入力部14から入力しても良い。特に、上述した熱分布画像生成装置をロッドの先端に取り付けて圃場の熱分布画像SPを取得する場合や、隣接する建物等から圃場の熱分布画像SPを取得する場合には、この方法が有用である。したがって、このような場合では、入力部14は、前記圃場の気温Tsを取得する圃場気温取得部の他の一例に相当する。
記憶部13は、制御処理部12に接続され、制御処理部12の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、当該土壌状態評価装置Pの各部11、13〜15を当該各部の機能に応じて制御する制御プログラムや、通信IF部11で取得された圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求める圃場温度処理プログラムや、通信IF部11で取得された前記圃場の熱分布画像SPと前記圃場の気温Tsとに基づいて、前記圃場の土壌における還元性の度合いを表す評価値EVを求める土壌還元性評価プログラムや、前記土壌還元性評価プログラムで求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求める資材量処理プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、例えば、熱分布画像生成装置Mの通信アドレス、圃場の熱分布画像SP、圃場の熱分布画像SPから圃場の温度分布Tarを求めるための温度変換情報、圃場の温度分布情報Tarp、圃場の温度Tarと圃場の気温Tsとの差から評価値EVを求めるための評価値変換情報、圃場の還元性評価マップEVm、および、圃場の還元性評価マップEVmから圃場の資材量マップMVmを求めるための資材量変換情報、圃場の資材量マップMVm等の圃場の土壌状態を評価する上で必要なデータが含まれる。記憶部13は、例えばROMやEEPROM等を備える。そして、記憶部13は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部12のワーキングメモリとなるRAM等を含む。そして、これら上述の各情報を記憶するために、記憶部13は、機能的に、熱分布情報記憶部131、温度分布情報記憶部132、還元性評価情報記憶部133、資材量情報記憶部134、設定評価条件情報記憶部135および変換情報記憶部136を備える。
熱分布情報記憶部131は、前記圃場の熱分布画像(熱分布画像データ)SPを記憶するものである。本実施形態では、熱分布情報記憶部131は、通信IF部11で受信された圃場の熱分布画像SPと、この熱分布画像SPを生成するために熱分布画像生成部24の撮像に同期して得られた、GPS21の測位結果の位置Pap、および、気温測定部22の測定結果の気温Tsとを互いに対応付けて記憶する。
温度分布情報記憶部132は、前記圃場の温度分布画像Tarpを記憶するものである。本実施形態では、温度分布情報記憶部132は、後述の圃場温度処理部122によって、温度変換情報を用いることで、圃場の熱分布画像SPに基づいて求められた圃場の温度分布画像Tarpを記憶する。この圃場の温度分布画像Tarpは、これを求める際に用いた前記圃場の熱分布画像SPに対応付けられた位置Papおよび圃場の気温Tsと対応付けて温度分布情報記憶部132に記憶される。
還元性評価情報記憶部133は、前記圃場の還元性評価マップEVmを記憶するものである。本実施形態では、還元性評価情報記憶部133は、後述の土壌還元性評価部123によって、評価値変換情報を用いることで、前記圃場の温度Tarと圃場の気温Tsとに基づいて求められた圃場の還元性評価マップEVmを記憶する。この圃場の還元性評価マップEVmは、これを求める際に用いた前記圃場の温度分布画像Tarp(すなわち、前記圃場の熱分布画像SP)に対応付けられた位置Papおよび圃場の気温Tsと対応付けて還元性評価情報記憶部133に記憶される。
資材量情報記憶部134は、前記圃場の資材量マップMVmを記憶するものである。本実施形態では、資材量情報記憶部134は、後述の資材量処理部124によって、資材量変換情報を用いることで、前記圃場の還元性評価マップEVmに基づいて求められた圃場の資材量マップMVmを記憶する。この圃場の資材量マップMVmは、これを求める際に用いた還元性評価マップEVm(すなわち、前記圃場の熱分布画像SP)に対応付けられた位置Papと対応付けて資材量情報記憶部134に記憶される。
設定評価条件情報記憶部135は、前記設定評価条件を記憶するものである。本実施形態では、上述したように、設定評価条件情報記憶部135は、前記圃場の気温Tsが前記所定の温度Th以上であることを、前記設定評価条件の1つとして記憶し、さらに、天候が快晴または晴天であって時刻が9時から15時まであることを、前記設定評価条件の他の1つとして記憶する。
変換情報記憶部136は、前記温度変換情報、評価値変換情報および資材量変換情報を記憶するものである。これら温度変換情報、評価値変換情報および資材量変換情報は、それぞれ、予め複数のサンプルを測定してその測定結果を統計処理することによって生成され、変換情報記憶部136に記憶される。そして、本実施形態では、評価値変換情報および資材量変換情報は、テーブル形式で1つのテーブルに纏められ、変換情報記憶部136に記憶される。
これら評価値変換情報および資材量変換情報を登録する評価資材変換情報テーブルCTは、例えば、図3に示すように、前記圃場の温度Tarと前記圃場の気温Tsとの差を登録する差△Tフィールド311と、この差△Tフィールド311に登録された差△Tに対応する評価値EVを登録する評価値フィールド312と、この評価値フィールドに対応する資材量(言い換えれば差△Tフィールド311に登録された差△Tに対応する資材量)MVを登録する資材量フィールド313とを備え、評価値EVの種類の個数に応じてレコードを持つ。
評価値EVは、多段階であり、還元障害の発生の有無を表す評価を含む。より具体的には、本実施形態では、評価値EVは、“還元性なし”、“弱還元性”、“中還元性”および“強還元性”の4段階であり、前記“還元性なし”が“還元障害の発生無し”を表し、前記“強還元性”が“還元障害の発生有り”を表す。
したがって、本実施形態では、図3に示す評価資材変換情報テーブルCTは、4個のレコードを持つ。その1番目のレコードには、各フィールド311〜313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△Tが0以下である場合(△T≦0)、評価値EVが還元性無しであり、資材量MVが0[kg/10a](10アール当たり0kg)であることが登録されている。その2番目のレコードには、各フィールド311〜313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△Tが0より大きく、Th1以下である場合(0<△T≦Th1)、評価値EVが弱還元性であり、資材量MVがV1[kg/10a](10アール当たりV1kg)であることが登録されている。その3番目のレコードには、各フィールド311〜313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△TがTh1より大きく、Th2以下である場合(Th1<△T≦Th2)、評価値EVが中還元性であり、資材量MVがV2[kg/10a](10アール当たりV2kg)であることが登録されている。そして、その4番目のレコードには、各フィールド311〜313によって、前記圃場の温度Tarから前記圃場の気温Tsを減算することによって求められた差△TがTh2より大きい場合(Th2<△T)、評価値EVが強還元性であり、資材量MVがV3[kg/10a](10アール当たりV1kg)であることが登録されている。
一例では、前記Th1は、+1.5℃、+2℃および+2.5℃等であり、前記Th2は、+3.5℃、+4℃および+4.5℃等であり、Th1<Th2である。一例では、前記V1は、10[kg/10a]であり、前記V2は、20[kg/10a]であり、そして、前記V3は、30[kg/10a]であり、V1<V2<V3である。
制御処理部12は、当該土壌状態評価装置Pの各部11、13〜15を当該各部の機能に応じて制御し、評価値EVおよび資材量MVを求め、土壌状態評価装置Pの全体制御を司るものである。制御処理部12は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部12には、その制御処理プログラムが実行されることによって、制御部121、圃場温度処理部122、土壌還元性評価部123および資材量処理部124が機能的に構成される。
制御部121は、当該土壌状態評価装置Pの各部11、13〜15を当該各部の機能に応じて制御するものである。制御部121は、圃場の熱分布画像SP等を熱分布画像生成装置Mから通信信号によって通信IF部11で受信すると、前記通信信号に収容された圃場の熱分布画像SP、位置Papおよび気温Tsを互いに対応付けて熱分布情報記憶部131に記憶する。
圃場温度処理部122は、通信IF部11で受信された前記圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求めるものである。より具体的には、圃場温度処理部122は、変換情報記憶部136に記憶された前記温度変換情報を用いて、前記圃場の熱分布画像SPにおける各画素を、その画素値に応じた温度に変換することで、前記圃場の温度分布を表す画像(温度分布画像)Tarpを求める。したがって、この圃場の温度分布画像Tarpの各画素は、その画素位置における前記圃場の温度Tarを表す。そして、圃場温度処理部122は、この求めた温度分布画像Tarpを、前記圃場の熱分布画像SPに対応付けられていた位置Papおよび気温Tsと対応付けて温度分布情報記憶部132に記憶する。
土壌状態評価部123は、圃場温度処理部122で求められた前記圃場の温度分布画像Tarpと、通信IF部11で受信された前記圃場の気温Tsとの差に基づいて、前記圃場の評価値EVを多段階で求めるものである。より具体的には、土壌状態評価部123は、変換情報記憶部136に記憶された前記評価値変換情報を用いて、前記圃場の温度分布画像Tarpと前記圃場の気温Tsとの差を、評価値EVへ変換する。この評価値EVへの変換は、画素ごとに実行されてもよいが、本実施形態では、土壌状態評価部123は、圃場の温度分布画像Tarpを、予め設定された所定の広さのサブ領域SARに区分けし、これら各サブ領域SARごとに温度Tarの代表値を求め、この求めた代表値の温度Tarと前記圃場の気温Tsとの差を求め、この差を、前記評価値変換情報を用いて評価値EVへ変換する。1つの熱分布画像SP、すなわち、これに対応する1つの温度分布画像Tarpでは、圃場の気温Tsは、前記圃場全体に亘って(各サブ領域SARで)同一であるとみなしている。これによって各サブ領域SARごとに評価値EV(SAR)が付与された還元性評価マップEVmが作成される。前記サブ領域SARは、前記圃場ARを隙間無く区分けできれば任意の形状(例えば三角形、四角形、六角形等)であって任意の広さ(0.5アール、1アール、2アール等)であって良いが、一例では、一辺5mや10m等の正方形である。前記代表値は、例えば、当該サブ領域SARにおける全画素の平均値であって良く、また例えば当該サブ領域SARの中央値であって良い。そして、土壌還元性評価部123は、この求めた還元性評価マップEVmを、前記圃場の温度分布画像Tarpに対応付けられていた位置Papおよび圃場の気温Tsと対応付けて還元性評価情報記憶部133に記憶する。
ここで、本実施形態では、土壌還元性評価部123は、通信IF部11や入力部14で受け付けられた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たす場合に、上述のように求められた評価値EVを最終的な評価値EVとして求める。より具体的には、土壌還元性評価部123は、通信IF部11で受信した前記圃場の気温Tsが前記所定の温度Th以上である場合に、前記評価値EVを最終的な評価値EVとする。さらに、本実施形態では、土壌還元性評価部123は、前記圃場の熱分布画像SPが快晴または晴天であって9時から15時まで間のいずれかの時刻で撮像された場合に、前記評価値EVを最終的な評価値EVとする。
資材量処理部124は、土壌還元性評価部123で求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求めるものである。より具体的には、資材量処理部124は、変換情報記憶部136に記憶された前記資材量変換情報を用いて、還元性評価情報記憶部133に記憶された還元性評価マップEVmの各サブ領域SARに対応付けられた各評価値EV(SAR)を、資材量MV(SAR)へ変換する。これによって各サブ領域SARごとに資材量MV(SAR)が付与された資材量マップMVmが作成される。そして、資材量処理部124は、この求めた資材量マップMVmを、前記圃場の還元性評価マップEVmに対応付けられていた位置Papと対応付けて資材量情報記憶部134に記憶する。
次に、本実施形態における土壌状態評価システムS(熱分布画像生成装置M、土壌状態評価装置P)の動作について説明する。図4は、前記土壌状態評価システムの土壌状態評価装置の動作を示すフローチャートである。図5は、一例として、圃場の温度分布画像を示す模式図である。図6は、図5に模式的に示す圃場の温度分布画像に基づいて求められる評価値マップを示す図である。図7は、図6に示す評価値マップに基づいて求められる資材量マップを示す図である。
このような土壌状態評価システムSでは、まず、熱分布画像生成装置Mおよび土壌状態評価装置Pは、それぞれ、電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。土壌状態評価装置Pでは、その制御処理プログラムの実行により、制御処理部12には、制御部121、圃場温度処理部122、土壌還元性評価部123および資材量処理部124が機能的に構成される。
熱分布画像生成装置Mは、誘導飛行または自律飛行による制御部23の制御に従って飛行し、評価対象の圃場ARを上空から撮像し、その撮像と同期してGPS21により測位し、気温測定部22により測温する。そして、熱分布画像生成装置Mは、制御部23によって、前記GPS21、前記気温測定部22および前記熱分布画像生成部24それぞれで得られた測位結果Pap、測定結果の気温Tsおよび撮像して生成された熱分布画像SP(不図示)を通信信号で通信IF部26から土壌状態評価装置Pへ送信する。
図4において、土壌状態評価装置Pは、熱分布画像生成装置Mから通信IF部11で測位結果Pap(位置Pap)、測定結果の気温Ts(圃場の気温Ts)および圃場の熱分布画像SPを受信して取得すると、この取得した位置Pap、圃場の気温Tsおよび圃場の熱分布画像SPを互いに対応付けて記憶部13の熱分布情報記憶部131に記憶し(S11)、制御処理部12によって、評価条件を取得する(S12)。この評価条件は、例えば、土壌状態評価装置Pの稼働後に、入力部14で評価条件の入力を受け付け、記憶部13に記憶され、この記憶部13に記憶された評価条件を取得して良い。また例えば、前記評価条件は、熱分布画像生成装置Mから位置Pap、圃場の気温Tsおよび圃場の熱分布画像SPを取得した際に、入力部14で評価条件の入力を受け付けて取得しても良い。この評価条件の入力操作は、所定の時間間隔(例えば30分ごと、1時間ごと、2時間ごと等)で実行されて良い。本実施形態では、入力部14から天候および時刻が評価条件の1つとして入力される。一方、前記圃場の気温Tsは、上述のように通信IF部11で評価条件の他の1つとしても受信される。
次に、土壌状態評価装置Pは、制御処理部12の圃場温度処理部122によって、前記圃場の熱分布画像SPに基づいて前記圃場の温度Tarを求めて圃場の温度分布画像Tarpを求め、記憶する(S13)。より具体的には、圃場温度処理部122は、変換情報記憶部136に記憶された前記温度変換情報を用いて、処理S11で取得された圃場の熱分布画像SPにおける各画素を、その画素値に応じた温度に変換することで、前記圃場の温度分布を表す画像(温度分布画像)Tarpを求める。そして、圃場温度処理部122は、この求めた温度分布画像Tarpを、処理S11で取得された位置Papおよび気温Tsと対応付けて温度分布情報記憶部132に記憶する。
次に、土壌状態評価装置Pは、制御処理部12の土壌還元性評価部123によって、評価値EVを求める(S14)。より具体的には、土壌還元性評価部123は、処理S13で圃場温度処理部122によって求められた前記圃場の温度分布画像Tarpと、処理S11で取得された前記圃場の気温Tsとの差に基づいて、前記圃場の評価値EVを多段階で求める。より詳しくは、土壌還元性評価部123は、圃場ARを区分けした複数のサブ領域SARそれぞれについて、当該サブ領域SARの温度Tarの代表値を、処理S13で求めた前記圃場の温度分布画像Tarpから求め、この求めた代表値の温度Tarと前記圃場の気温Tsとの差△Tを求め、この差△Tを、変換情報記憶部136に記憶された評価資材変換情報テーブルCTを用いて評価値EV(SAR)へ変換する。これによって還元性評価マップEVmが作成される。
次に、土壌状態評価装置Pは、土壌還元性評価部123によって、受け付けた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たすか否かを判定する(S15)。この判定の結果、前記評価条件が前記設定評価条件を満たす場合(Yes)には、土壌還元性評価部123は、処理S14で求めた評価値EVを最終的に求められた評価値EVとし、前記評価条件が前記設定評価条件を満たさない場合(No)には、土壌還元性評価部123は、処理S14で求めた評価値EVをエラーとして最終的に求められた評価値EVとしない。より具体的には、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であるか否か、および、処理S12で受け付けた天候が快晴または晴天であって前記処理S12で受け付けた時刻が9時から15時まであるか否かを判定する。この判定の結果、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であり、かつ、処理S12で受け付けた天候が快晴または晴天であり、かつ、前記処理S12で受け付けた時刻が9時から15時まである場合を、前記評価条件が前記設定評価条件を満たす場合(Yes)と判定し、土壌還元性評価部123は、処理S14で求めた評価値EVを最終的に求められた評価値EVとする。一方、前記判定の結果、土壌還元性評価部123は、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上ではない、または、処理S12で受け付けた天候が快晴または晴天ではない、または、前記処理S12で受け付けた時刻が9時から15時まではない場合(すなわち、処理S11で取得した圃場の気温Tsが前記所定の温度Th以上であること、処理S12で受け付けた天候が快晴または晴天であること、および、前記処理S12で受け付けた時刻が9時から15時まであることのうち、いずれか1つが成立しない場合)を、前記評価条件が前記設定評価条件を満たさない場合(No)と判定し、土壌還元性評価部123は、処理S14で求めた評価値EVをエラーとして最終的に求められた評価値EVとしない。
次に、土壌状態評価装置Pは、土壌還元性評価部123によって、処理S14で求めた評価値EV(本実施形態では還元性評価マップEVm)を、処理S15の判定結果、ならびに、処理S11で取得された位置Papおよび気温Tsと対応付けて還元性評価情報記憶部133に記憶する(S16)。
次に、土壌状態評価装置Pは、制御処理部12の資材量処理部124によって、土壌還元性評価部123で求められた評価値EVに基づいて、前記還元性を改善するための資材の量MVを求め、記憶する(S17)。より具体的には、資材量処理部124は、変換情報記憶部136に記憶された前記資材量変換情報を用いて、処理S14で求められた還元性評価マップEVmの各サブ領域SARに対応付けられた各評価値EV(SAR)を、資材量MV(SAR)へ変換する。そして、資材量処理部124は、この求めた資材量マップMVmを、処理S11で取得された位置Papと対応付けて資材量情報記憶部134に記憶する。
そして、土壌状態評価装置Pは、制御処理部12によって、評価対象の圃場ARに対する評価値EVおよびその資材量MVを出力部15から出力し(S18)、処理を終了する。より具体的には、制御処理部12は、処理S15の判定結果に応じて、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力する。より詳しくは、例えば、制御処理部12は、処理S15の判定結果が処理S14で求めた評価値EV(本実施形態では還元性評価マップEVm)を最終的に求められた評価値EV(本実施形態では還元性評価マップEVm)とする場合では、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力し、制御処理部12は、処理S15の判定結果がエラーである場合には、設定評価条件を満たさず、エラーである旨を出力部15から出力する。なお、処理S15の判定結果がエラーである場合、制御処理部12は、設定評価条件を満たさず、エラーである旨を出力部15から出力するとともに、参考情報として、処理S14で求めた還元性評価マップEVmおよび処理S16で資材量マップMVmを出力部15から出力しても良い。
例えば、評価対象の圃場ARにおける熱分布画像SPから、各画素それぞれについて、当該画素値を前記温度変換情報を用いて変換することで、図5に示す温度分布画像Tarpが処理S13によって得られる。処理S14では、図5に示す温度分布画像Tarpの各サブ領域SARそれぞれについて、当該サブ領域SARの温度Tarの代表値が求められ、当該サブ領域SARの温度Tarの代表値を評価資材変換情報テーブルCTを用いて変換することで、図6に示す還元性評価マップEVmが求められる。そして、処理S17では、図6に示す還元性評価マップEVmの各サブ領域SARそれぞれについて、当該サブ領域SARの評価値EV(SAR)を評価資材変換情報テーブルCTを用いて変換することで、図7に示す資材量マップMVmが求められる。
そして、土壌状態評価装置Pは、熱分布画像生成装置Mから、測位結果Pap(位置Pap)、測定結果の気温Ts(圃場の気温Ts)および圃場の熱分布画像SPを収容した通信信号を受信するたびに、上述の各処理S11〜S18を実行する。このような動作によって、各位置Papそれぞれに応じた複数の還元性評価マップEVm(Par)を連結する場合には、複数の還元性評価マップEVm(Par)は、これら複数の還元性評価マップEVm(Par)それぞれに対応する各位置Papに基づいて連結される。例えば、複数の還元性評価マップEVm(Par)それぞれについて、熱分布画像生成部24の撮像方向(光軸方向)から、位置Papに対応する熱分布画像SP上の位置、すなわち、当該還元性評価マップEVm(Par)上の位置が求められ、熱分布画像生成部24の画角、位置Papおよび前記位置Papに対応する当該還元性評価マップEVm(Par)上の前記位置から、当該還元性評価マップEVm(Par)の周辺部分の位置が求められる。このように求められた各還元性評価マップEVm(Par)の各周辺部分の各位置に基づいて、これら各還元性評価マップEVm(Par)の互いの位置関係が求められ、各還元性評価マップEVm(Par)が連結される。各位置Papそれぞれに応じた複数の資材量マップMVm(Par)を連結する場合も、上述の複数の還元性評価マップEVmを連結する場合の処理と同様の処理によって、複数の資材量マップMVm(Par)は、これら複数の資材量マップMVm(Par)それぞれに対応する各位置Papに基づいて連結される。
以上説明したように、本実施形態における土壌状態評価システムS、土壌状態評価装置Pならびにこれに実装された土壌状態評価方法および土壌状態評価プログラムは、圃場の熱分布画像SPと前記圃場の気温Tsとに基づいて、評価対象の圃場ARの土壌における還元性の度合いを表す評価値EVを求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像SPが例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
上述の還元障害のプロセスから、前記圃場の温度Tarと前記圃場の気温Tsとの差が大きいほど、還元性の度合いは、大きくなる。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記圃場の温度Tarと前記圃場の気温Tsとの差△Tに基づいて、前記評価値EVを多段階で求めるので、適切な評価値EVを求めることができる。
上述の土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記評価値EVが還元障害の発生の有無を表す評価を含むので、還元障害の発生の有無を求めることができ、還元障害の発生の有無が分かる。
上述の還元障害のプロセスから、比較的高温の場合や晴天の場合等に好適に還元性の度合いが評価できる。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、土壌還元性評価部123が前記受け付けられた評価条件が設定評価条件情報記憶部135に記憶された設定評価条件を満たす場合に、最終的な評価値EVを求めるので、より適切な評価値EVを求めることができる。
上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、前記取得された前記圃場の気温Tsが所定の温度Th以上であることを前記設定評価条件の1つとして用いるので、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして用いるので、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、複数のサブ領域それぞれについて、評価値をそれぞれ求めるので、2次元空間分解能が向上でき、圃場の所々で発生する還元性の度合いを評価できる。
還元性の度合いが悪くなってしまった場合、次の作物の生育に備え、圃場ARには、例えば石灰窒素等の、前記還元性を改善するための資材が供給される。従前では、還元障害が発生すると、還元性の度合いが不明であるので、一律な量で圃場AR全体に資材が供給されていた。上記土壌状態評価システムS、土壌状態評価装置P、土壌状態評価方法および土壌状態評価プログラムは、評価値EVに基づいて資材の量MVを求めるので、より適切な量で圃場ARに資材を供給できる。この結果、一律な量で資材を圃場ARに供給する場合に比べて、資材の量MVを低減できるので、コストを低減でき、費用対効果が改善できる。特に、前記複数のサブ領域SARそれぞれについて前記評価値EV(SAR)がそれぞれ求められる場合には、前記複数のサブ領域SARそれぞれについて資材の量MV(SAR)がそれぞれ求められるので、還元性の度合いに応じて個々のサブ領域SARに資材を供給できるから、より効率良く資材を圃場ARに供給できる。
なお、上述の実施形態では、設定評価条件を満たすか否かにかかわらず、資材量が求められたが、設定評価条件を満たす場合のみ、資材量が求められても良い。すなわち、設定評価条件を満たさない場合には、資材量を求めて記憶する処理S17の実行がスキップされる。
また、上述の実施形態では、土壌状態評価装置Pは、熱分布画像SPを、熱分布画像生成装置Mから無線通信によって取得したが、熱分布画像生成装置Mと土壌状態評価装置Pとがケーブル等によって互いにデータ交換可能に接続され、土壌状態評価装置Pは、熱分布画像SPを、熱分布画像生成装置Mから前記ケーブルを介して取得してもよい。この場合では、前記熱分布画像取得部は、前記熱分布画像生成装置Mから、評価対象の圃場における熱分布画像SPを有線によって受信するインターフェース部である。また、土壌状態評価装置Pは、熱分布画像SPを、これを記憶および管理するサーバ装置から通信回線を介して取得しても良い。この場合では、前記熱分布画像取得部は、評価対象の圃場ARにおける熱分布画像SPを記憶および管理する前記サーバ装置から通信回線を介して前記熱分布画像SPを受信する通信インターフェース部である。また、土壌状態評価装置Pは、熱分布画像SPを、これを記録した記録媒体から取得しても良い。この場合では、前記熱分布画像取得部は、評価対象の圃場ARにおける熱分布画像SPを記録した記録媒体から前記熱分布画像SPを読み取る前記記憶媒体に応じたストレージ装置(例えばHDDドライブ装置やCD−ROMドライブ装置等)である。あるいは、前記記録媒体がUSBメモリ等である場合には、前記熱分布画像取得部は、USB(Universal Serial Bus)インターフェース部である。
本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
一態様にかかる土壌状態評価装置は、評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、前記圃場の気温を取得する圃場気温取得部と、前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える。好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場から放射された赤外線を撮像し、熱分布を図として表した熱分布画像(サーモグラム)を生成する熱分布画像生成装置(サーモグラフ、赤外線カメラ)である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を有線によって受信するインターフェース部である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、前記熱分布画像生成装置から、評価対象の圃場における熱分布画像を無線によって受信する通信インターフェース部(例えば通信カード等)である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場における熱分布画像を記憶および管理するサーバ装置から通信回線を介して前記熱分布画像を受信する通信インターフェース部である。また好ましくは、上述の土壌状態評価装置において、前記熱分布画像取得部は、評価対象の圃場における熱分布画像を記録した記録媒体から前記熱分布画像を読み取る前記記憶媒体に応じたストレージ装置(例えばHDDドライブ装置やCD−ROMドライブ装置等)である。
いわゆる還元障害は、次のプロセスによって発生すると考えられる。すなわち、例えば水田等の圃場における土壌中で硫化水素や有機酸が発生すると、例えば稲等の作物における根の伸長や活性が阻害され、この結果、作物の生育が抑制され、作物の水分を吸い上げる能力が弱まる。このため、例えば夏期の比較的暑い時期等において、気温が高くなると、作物全体に水分が運ばれず、気孔からの蒸散量が少なくなる。この結果、例えば人の熱中症のように、作物自体の温度(前記人で言えば体温に相当する)が充分に下げられず、生育不良や立ち枯れ等が発生する。このような還元障害が発生すれば、作物の収量は、低下し、その品質も悪くなってしまう。
本発明者は、このような還元障害のプロセスに鑑み、圃場における還元障害の発生の有無は、作物の温度と相関があることを見出した。
上記土壌状態評価装置は、圃場の熱分布画像と前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像が例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
他の一態様では、上述の土壌状態評価装置において、前記熱分布画像取得部で取得された前記熱分布画像に基づいて前記圃場の温度を求める圃場温度処理部をさらに備え、前記土壌還元性評価部は、前記圃場温度処理部で求められた前記圃場の温度と前記圃場気温取得部で取得された前記圃場の気温との差に基づいて、前記評価値を多段階で求める。
上述の還元障害のプロセスから、前記圃場の温度と前記圃場の気温との差が大きいほど、還元性の度合いは、大きくなる。上記土壌状態評価装置は、前記圃場の温度と前記圃場の気温との差に基づいて、前記評価値を多段階で求めるので、適切な評価値を求めることができる。
他の一態様では、これら上述の土壌状態評価装置において、前記評価値は、還元障害の発生の有無を表す評価を含む。
このような土壌状態評価装置は、前記評価値が還元障害の発生の有無を表す評価を含むので、還元障害の発生の有無を求めることができ、還元障害の発生の有無が分かる。
他の一態様では、これら上述の土壌状態評価装置において、前記土壌還元性評価部によって前記評価値を求める場合の設定評価条件を記憶する評価条件記憶部と、外部から評価条件を受け付ける評価条件受付部とをさらに備え、前記土壌還元性評価部は、前記評価条件受付部で受け付けられた評価条件が前記評価条件記憶部に記憶された設定評価条件を満たす場合に、前記評価値を求める。
上述の還元障害のプロセスから、比較的高温の場合や晴天の場合等に好適に還元性の度合いが評価できる。上記土壌状態評価装置は、土壌還元性評価部が評価条件受付部で受け付けられた評価条件が評価条件記憶部に記憶された設定評価条件を満たす場合に、評価値を求めるので、より適切な評価値を求めることができる。
他の一態様では、これら上述の土壌状態評価装置において、前記評価条件記憶部は、前記圃場気温取得部で取得された前記圃場の気温が所定の温度以上であることを前記設定評価条件の1つとして記憶し、前記評価条件受付部は、前記圃場気温取得部とを含む。
このような土壌状態評価装置は、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
他の一態様では、これら上述の土壌状態評価装置において、前記評価条件記憶部は、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして記憶し、前記評価条件受付部は、外部からデータの入力を受け付ける入力部である。
このような土壌状態評価装置は、上述の還元障害のプロセスに鑑み、より適切な評価値を求めることができる。
他の一態様では、これら上述の土壌状態評価装置において、前記評価対象の圃場は、区分けされた複数のサブ領域を備え、前記土壌還元性評価部は、前記複数のサブ領域それぞれについて、前記評価値をそれぞれ求める。
このような土壌状態評価装置は、複数のサブ領域それぞれについて、評価値をそれぞれ求めるので、2次元空間分解能が向上でき、圃場の所々で発生する還元性の度合いを評価できる。
他の一態様では、これら上述の土壌状態評価装置において、前記土壌還元性評価部で求められた評価値に基づいて、前記還元性を改善するための資材の量を求める資材量処理部をさらに備える。
還元性の度合いが悪くなってしまった場合、次の作物の生育に備え、圃場には、例えば石灰窒素等の、前記還元性を改善するための資材が供給される。従前では、還元障害が発生すると、還元性の度合いが不明であるので、一律な量で圃場全体に資材が供給されていた。上記土壌状態評価装置は、評価値に基づいて資材の量を求めるので、より適切な量で圃場に資材を供給できる。この結果、一律な量で資材を圃場に供給する場合に比べて、資材の量を低減できるので、コストを低減でき、費用対効果が改善できる。特に、前記複数のサブ領域それぞれについて前記評価値がそれぞれ求められる場合には、前記複数のサブ領域それぞれについて資材の量がそれぞれ求められるので、還元性の度合いに応じて個々のサブ領域に資材を供給できるから、より効率良く資材を圃場に供給できる。
他の一態様にかかる土壌状態評価方法は、評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、前記圃場の気温を取得する圃場気温取得工程と、前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを備える。
他の一態様にかかる土壌状態評価プログラムは、コンピュータに、評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、前記圃場の気温を取得する圃場気温取得工程と、前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを実行させるためのプログラムである。
このような土壌状態評価方法および土壌状態評価プログラムは、圃場の熱分布画像と前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求めるので、土壌から試料をサンプリングする必要が無く、熱分布画像が例えば熱分布画像生成装置等によって、比較的広い範囲を1度で得られるから、還元性の度合いをより効率よく評価できる。
この出願は、2016年5月10日に出願された日本国特許出願特願2016−94866を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、土壌状態評価装置、土壌状態評価方法および土壌状態評価プログラムが提供できる。

Claims (10)

  1. 評価対象の圃場における熱分布画像を取得する熱分布画像取得部と、
    前記圃場の気温を取得する圃場気温取得部と、
    前記熱分布画像取得部で取得された前記圃場の熱分布画像と前記圃場気温取得部で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価部とを備える、
    土壌状態評価装置。
  2. 前記熱分布画像取得部で取得された前記熱分布画像に基づいて前記圃場の温度を求める圃場温度処理部をさらに備え、
    前記土壌還元性評価部は、前記圃場温度処理部で求められた前記圃場の温度と前記圃場気温取得部で取得された前記圃場の気温との差に基づいて、前記評価値を多段階で求める、
    請求項1に記載の土壌状態評価装置。
  3. 前記評価値は、還元障害の発生の有無を表す評価を含む、
    請求項1または請求項2に記載の土壌状態評価装置。
  4. 前記土壌還元性評価部によって前記評価値を求める場合の設定評価条件を記憶する評価条件記憶部と、
    外部から評価条件を受け付ける評価条件受付部とをさらに備え、
    前記土壌還元性評価部は、前記評価条件受付部で受け付けられた評価条件が前記評価条件記憶部に記憶された設定評価条件を満たす場合に、前記評価値を求める、
    請求項1ないし請求項3のいずれか1項に記載の土壌状態評価装置。
  5. 前記評価条件記憶部は、前記圃場気温取得部で取得された前記圃場の気温が所定の温度以上であることを前記設定評価条件の1つとして記憶し、
    前記評価条件受付部は、前記圃場気温取得部とを含む、
    請求項2または請求項3を引用する請求項4に記載の土壌状態評価装置。
  6. 前記評価条件記憶部は、天候が快晴または晴天であって時刻が9時から15時まであることを前記設定評価条件の1つとして記憶し、
    前記評価条件受付部は、外部からデータの入力を受け付ける入力部である、
    請求項2もしくは請求項3を引用する請求項4、または、請求項5に記載の土壌状態評価装置。
  7. 前記評価対象の圃場は、区分けされた複数のサブ領域を備え、
    前記土壌還元性評価部は、前記複数のサブ領域それぞれについて、前記評価値をそれぞれ求める、
    請求項1ないし請求項6のいずれか1項に記載の土壌状態評価装置。
  8. 前記土壌還元性評価部で求められた評価値に基づいて、前記還元性を改善するための資材の量を求める資材量処理部をさらに備える、
    請求項1ないし請求項7のいずれか1項に記載の土壌状態評価装置。
  9. 評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、
    前記圃場の気温を取得する圃場気温取得工程と、
    前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを備える、
    土壌状態評価方法。
  10. コンピュータに、
    評価対象の圃場における熱分布画像を取得する熱分布画像取得工程と、
    前記圃場の気温を取得する圃場気温取得工程と、
    前記熱分布画像取得工程で取得された前記圃場の熱分布画像と前記圃場気温取得工程で取得された前記圃場の気温とに基づいて、前記圃場の土壌における還元性の度合いを表す評価値を求める土壌還元性評価工程とを実行させるための土壌状態評価プログラム。
JP2018516906A 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム Active JP6881440B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016094866 2016-05-10
JP2016094866 2016-05-10
PCT/JP2017/015487 WO2017195534A1 (ja) 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム

Publications (2)

Publication Number Publication Date
JPWO2017195534A1 true JPWO2017195534A1 (ja) 2019-03-07
JP6881440B2 JP6881440B2 (ja) 2021-06-02

Family

ID=60267620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516906A Active JP6881440B2 (ja) 2016-05-10 2017-04-17 土壌状態評価装置、該方法および該プログラム

Country Status (4)

Country Link
JP (1) JP6881440B2 (ja)
KR (1) KR102163610B1 (ja)
CN (1) CN109154591B (ja)
WO (1) WO2017195534A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081945B2 (ja) * 2018-03-09 2022-06-07 三菱重工業株式会社 温度管理装置、温度管理システム、温度管理方法、およびプログラム
CN110175870A (zh) * 2019-05-08 2019-08-27 深圳中大环保科技创新工程中心有限公司 土壤资源价值确定方法及相关产品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2079664C (en) * 1992-08-03 2001-01-30 Lloyd C. Fons Methods for locating oil or gas deposits employing earth surface temperatures
JP2004147651A (ja) * 2002-10-11 2004-05-27 Three N Gijutsu Consultant:Kk 植生のヘルスモニタリング方法
JP4437451B2 (ja) * 2005-03-28 2010-03-24 国立大学法人豊橋技術科学大学 水分測定装置およびその水分測定装置を備えた土壌灌水制御システム
JP2007143490A (ja) * 2005-11-29 2007-06-14 Yamaguchi Univ 気球空撮マルチバンドセンシングにより植生を診断する方法
JP5060440B2 (ja) * 2008-09-16 2012-10-31 株式会社日立ソリューションズ 緑地監視システム及び緑地監視配信方法
CN202025424U (zh) * 2011-03-15 2011-11-02 北京农业智能装备技术研究中心 农田墒情信息自动采集系统
JP2012200194A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 土中温度計測装置および土中温度計測方法
WO2014073570A1 (ja) * 2012-11-08 2014-05-15 小松精練株式会社 土壌改良材およびそれを含む培土
JP5351325B1 (ja) 2012-11-27 2013-11-27 株式会社みらい蔵 土壌分析システム及び土壌分析用プログラム
JP2015008699A (ja) * 2013-07-01 2015-01-19 株式会社日立ソリューションズ 植物計測処理装置、植物計測処理方法および植物計測処理プログラム
CN203772311U (zh) * 2014-03-18 2014-08-13 舟山市农林与渔农村委员会 一种土壤环境监测系统
US10667456B2 (en) * 2014-09-12 2020-06-02 The Climate Corporation Methods and systems for managing agricultural activities
CN204440130U (zh) * 2015-01-09 2015-07-01 河南慧之盟电子科技有限公司 一种基于农业物联网技术的智能化农业管理系统
JP6589978B2 (ja) * 2015-03-16 2019-10-16 コニカミノルタ株式会社 植物健全性診断装置、該方法および該プログラム

Also Published As

Publication number Publication date
CN109154591B (zh) 2021-06-01
KR20180127494A (ko) 2018-11-28
KR102163610B1 (ko) 2020-10-08
CN109154591A (zh) 2019-01-04
WO2017195534A1 (ja) 2017-11-16
JP6881440B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
Shi et al. Unmanned aerial vehicles for high-throughput phenotyping and agronomic research
Bai et al. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
Bagheri Development of a high-resolution aerial remote-sensing system for precision agriculture
Feng et al. Cotton yield estimation from UAV-based plant height
Gil-Docampo et al. Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry
Meron et al. Foliage temperature extraction from thermal imagery for crop water stress determination
US11543836B2 (en) Unmanned aerial vehicle action plan creation system, method and program
US10585210B2 (en) Apparatus for radiometric correction and orthorectification of aerial imagery
Atkinson et al. Field phenotyping for the future
JP6589978B2 (ja) 植物健全性診断装置、該方法および該プログラム
US20190258859A1 (en) Systems and methods for mapping emerged plants
CN104732564A (zh) 一种玉米叶面积无损动态监测装置与方法
Liu et al. Estimating maize seedling number with UAV RGB images and advanced image processing methods
CN111095339A (zh) 作物栽培支持装置
JP2017035055A (ja) 植物生育指標測定装置、該方法および該プログラム
WO2017195534A1 (ja) 土壌状態評価装置、該方法および該プログラム
Long et al. Row and water front detection from UAV thermal-infrared imagery for furrow irrigation monitoring
CN103424366A (zh) 一种多光谱精准识别的智能施肥实施方法
JP6862299B2 (ja) 圃場の空撮システム
Das et al. A high-throughput phenotyping pipeline for rapid evaluation of morphological and physiological crop traits across large fields
Dong et al. 4D mapping of fields using autonomous ground and aerial vehicles
Junagade et al. Estimation of plucking points with overhead imaging in tea-a case study
EP3554094B1 (en) Remote control system, remote control method, and program
JP2020028272A (ja) 判定システム、判定装置、判定方法及びコンピュータープログラム
CN111511195B (zh) 信息处理装置和信息处理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6881440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150