JPWO2017122691A1 - Anti-reflective material - Google Patents

Anti-reflective material Download PDF

Info

Publication number
JPWO2017122691A1
JPWO2017122691A1 JP2017561141A JP2017561141A JPWO2017122691A1 JP WO2017122691 A1 JPWO2017122691 A1 JP WO2017122691A1 JP 2017561141 A JP2017561141 A JP 2017561141A JP 2017561141 A JP2017561141 A JP 2017561141A JP WO2017122691 A1 JPWO2017122691 A1 JP WO2017122691A1
Authority
JP
Japan
Prior art keywords
group
resin composition
weight
epoxy
porous filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017561141A
Other languages
Japanese (ja)
Other versions
JP7127989B2 (en
Inventor
尚史 ▲高▼林
尚史 ▲高▼林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of JPWO2017122691A1 publication Critical patent/JPWO2017122691A1/en
Application granted granted Critical
Publication of JP7127989B2 publication Critical patent/JP7127989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

本発明は、十分な反射防止機能を有しながら、光源の全光束低下を防ぐことができる反射防止材及び当該反射防止材により光半導体素子が封止された光半導体装置を提供することを目的とする。
本発明は、多孔質フィラーが分散された樹脂層からなる反射防止材であって、当該多孔質フィラーは当該樹脂層の表面に反射を抑える凹凸を形成し、反射防止材全量(100重量%)に対する多孔質フィラーの含有量が4〜40重量%であることを特徴とする反射防止材、及び当該反射防止材により光半導体素子が封止された光半導体装置を提供する。
An object of the present invention is to provide an antireflection material capable of preventing a decrease in the total luminous flux of a light source while having a sufficient antireflection function, and an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material. And
The present invention is an antireflection material comprising a resin layer in which a porous filler is dispersed, and the porous filler forms irregularities to suppress reflection on the surface of the resin layer, and the total amount of the antireflection material (100% by weight). The content of the porous filler is 4 to 40% by weight, and an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.

Description

本発明は、反射防止材に関する。また、本発明は、当該反射防止材により光半導体素子が封止された光半導体装置に関する。本願は、2016年1月15日に日本に出願した特願2016−006638号、及び2016年9月6日に日本に出願した特願2016−173980号の優先権を主張し、その内容をここに援用する。   The present invention relates to an antireflection material. The present invention also relates to an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material. This application claims the priority of Japanese Patent Application No. 2006-006638 filed in Japan on January 15, 2016 and Japanese Patent Application No. 2006-173980 filed in Japan on September 6, 2016. Incorporated into.

近年、各種の屋内又は屋外表示板、交通信号、大型ディスプレイ用ユニット等においては、光半導体素子(LED素子)を光源とする発光装置(光半導体装置)の採用が進んでいる。このような光半導体装置としては、一般に、基板(光半導体素子搭載用基板)上に光半導体素子が搭載され、さらに該光半導体素子が透明な封止材により封止された光半導体装置が普及している。このような光半導体装置における封止材には、外部からの照明光や太陽光などの入射光が全反射することによる視認性の低下を防止するためにその表面に反射防止処理が施されている。
従来、樹脂層の表面に反射防止機能を付与する方法としては、樹脂にガラスビーズ、シリカ等の無機フィラーを分散させることによって入射光を散乱させる方法が知られている(例えば、特許文献1参照)。
In recent years, in various indoor or outdoor display boards, traffic signals, large display units, etc., a light emitting device (optical semiconductor device) using an optical semiconductor element (LED element) as a light source has been advanced. As such an optical semiconductor device, in general, an optical semiconductor device in which an optical semiconductor element is mounted on a substrate (substrate for mounting an optical semiconductor element) and the optical semiconductor element is sealed with a transparent sealing material is widespread. doing. The sealing material in such an optical semiconductor device is subjected to antireflection treatment on its surface in order to prevent a decrease in visibility due to total reflection of incident light such as illumination light from outside and sunlight. Yes.
Conventionally, as a method for imparting an antireflection function to the surface of a resin layer, a method of scattering incident light by dispersing an inorganic filler such as glass beads or silica in a resin is known (see, for example, Patent Document 1). ).

特開2007−234767JP2007-234767

しかしながら、特許文献1の方法を光半導体封止用の樹脂に適用した場合には、十分な反射防止機能を付与しながら、光源の全光束を確保することが困難であることが判明した。すなわち、十分な反射防止機能を得るために必要十分な量の無機フィラーを配合した場合には光源の全光束が大幅に低下する一方、光源の全光束低下を防ぐために無機フィラーの配合量を少なくした場合には十分な反射防止能が得られないというトレードオフの関係にあることが明らかとなった。   However, when the method of Patent Document 1 is applied to a resin for sealing an optical semiconductor, it has been found that it is difficult to ensure the total luminous flux of the light source while providing a sufficient antireflection function. That is, when a sufficient amount of inorganic filler is added to obtain a sufficient antireflection function, the total luminous flux of the light source is greatly reduced, while the inorganic filler is reduced in order to prevent a decrease in the total luminous flux of the light source. In this case, it was revealed that there was a trade-off relationship that sufficient antireflection performance could not be obtained.

従って、本発明の目的は、十分な反射防止機能を有しながら、光源の全光束低下を防ぐことができる反射防止材を提供することである。
また、本発明の他の目的は、光半導体封止用樹脂組成物である、上記反射防止材を提供することである。
さらに、本発明の他の目的は、上記反射防止材により光半導体素子が封止された光半導体装置を提供することである。
Accordingly, an object of the present invention is to provide an antireflection material capable of preventing a decrease in the total luminous flux of a light source while having a sufficient antireflection function.
Moreover, the other object of this invention is to provide the said antireflection material which is a resin composition for optical semiconductor sealing.
Furthermore, another object of the present invention is to provide an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.

無機フィラーの配合量を少なくした場合に十分な反射防止能が得られない原因の1つとして、無機フィラーの沈降により樹脂層全体に行き渡らず、その結果、その表面全体に均一な凹凸が形成されないために入射光が効率的に散乱されない一方、無機フィラーが沈降しても樹脂層表面全体に反射防止能が得られるように配合量を増やした場合には、無機フィラー自身が光を吸収して全光束が大幅に低下するということを本発明者はつきとめた。
本発明者は上記課題を解決するために鋭意検討した結果、反射防止材を構成する樹脂層中のフィラーとして多孔質フィラーを配合したところ、少量の添加でも十分な反射防止機能が付与されることを見出した。これにより、光源の全光束を大幅に低下させることなく十分な反射防止機能を有する反射防止材が提供され、光半導体装置における光半導体素子を封止するための材料として極めて適していることを見出し、本発明を完成するに至った。
One reason why sufficient antireflection performance cannot be obtained when the amount of the inorganic filler is reduced is that the inorganic filler does not reach the entire resin layer due to sedimentation, and as a result, uniform unevenness is not formed on the entire surface. For this reason, incident light is not efficiently scattered, but when the amount of blending is increased so that antireflection performance can be obtained on the entire resin layer surface even if the inorganic filler settles, the inorganic filler itself absorbs light. The inventor has found that the total luminous flux is greatly reduced.
As a result of intensive studies to solve the above problems, the present inventors have formulated a porous filler as a filler in the resin layer constituting the antireflection material, and a sufficient antireflection function is imparted even with a small amount of addition. I found. As a result, an antireflection material having a sufficient antireflection function is provided without significantly reducing the total luminous flux of the light source, and it has been found that it is extremely suitable as a material for sealing an optical semiconductor element in an optical semiconductor device. The present invention has been completed.

すなわち、本発明は、多孔質フィラーが分散された樹脂層からなる反射防止材であって、当該多孔質フィラーは当該樹脂層の表面に反射を抑える凹凸を形成し、反射防止材全量(100重量%)に対する多孔質フィラーの含有量が4〜40重量%であることを特徴とする、反射防止材を提供する。   That is, the present invention is an antireflection material comprising a resin layer in which a porous filler is dispersed, and the porous filler forms irregularities that suppress reflection on the surface of the resin layer, and the total amount of antireflection material (100 wt. %)), The content of the porous filler is 4 to 40% by weight.

前記反射防止材において、多孔質フィラーは、無機多孔質フィラーであってもよい。   In the antireflection material, the porous filler may be an inorganic porous filler.

前記反射防止材において、硬化前の反射防止材は、液状であってもよい。   In the antireflection material, the antireflection material before curing may be liquid.

前記反射防止材において、硬化前の反射防止材の全量(100重量%)に対する硬化中に揮発する成分の量は、10重量%以下であってもよい。   In the antireflection material, the amount of components that volatilize during curing relative to the total amount (100 wt%) of the antireflection material before curing may be 10 wt% or less.

前記反射防止材において、前記樹脂層は、透明な硬化性樹脂組成物からなっていてもよい。   In the antireflection material, the resin layer may be made of a transparent curable resin composition.

前記反射防止材において、前記硬化性樹脂組成物は、エポキシ樹脂、シリコーン樹脂、及びアクリル樹脂からなる群より選択される少なくとも1種の硬化性化合物を含む組成物からなっていてもよい。   In the antireflection material, the curable resin composition may comprise a composition containing at least one curable compound selected from the group consisting of an epoxy resin, a silicone resin, and an acrylic resin.

前記反射防止材は、光半導体封止用樹脂組成物であってもよい。   The antireflection material may be an optical semiconductor sealing resin composition.

また、本発明は、前記反射防止材により光半導体素子が封止された光半導体装置を提供する。   The present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material.

より具体的には、本発明は、以下に関する。
[1]多孔質フィラーが分散された樹脂層からなる反射防止材であって、当該多孔質フィラーは当該樹脂層の表面に反射を抑える凹凸を形成し、反射防止材全量(100重量%)に対する多孔質フィラーの含有量が4〜40重量%であることを特徴とする、反射防止材。
[2]多孔質フィラーが、樹脂層全体に均一に行き渡っている、上記[1]に記載の反射防止材。
[3]多孔質フィラーが、無機多孔質フィラー、及び有機多孔質フィラーからなる群から選ばれる少なくとも1種(好ましくは無機多孔質フィラー)である、上記[1]又は[2]に記載の反射防止材。
[4]無機多孔質フィラーが、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、水酸化アルミニウム、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化アルミニウム、硫酸カルシウム、硫酸バリウム、フォステライト、ステアタイト、スピネル、クレー、カオリン、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土、及びタルクからなる群から選ばれる少なくとも一種の粉体であって多孔質構造を有するもの、又はこれらの成型体(例えば、球形化したビーズ等)(好ましくは多孔質無機ガラス又は多孔質シリカ、より好ましくは多孔質シリカ)である、上記[1]〜[3]のいずれか1つに記載の反射防止材。
[5]無機多孔質フィラーが、表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたものである、上記[1]〜[4]のいずれか1つに記載の反射防止材。
[6]多孔質シリカが、溶融シリカ、結晶シリカ、高純度合成シリカ、及びコロイド状シリカからなる群から選ばれる少なくとも一種の多孔質シリカである、上記[4]又は[5]に記載の反射防止材。
[7]有機多孔質フィラーが、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル−スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン−共役ジエン系樹脂、アクリル−共役ジエン系樹脂、オレフィン系樹脂、及びセルロース樹脂等のポリマー(これらポリマーの架橋体も含む)からなる群から選ばれる少なくとも一種の有機物により構成された高分子多孔質焼結体、高分子発泡体、又はゲル多孔質体である、上記[1]〜[6]のいずれか1つに記載の反射防止材。
[8]多孔質フィラーの形状が、粉体、球状、破砕状、繊維状、針状、及び鱗片状からなる群から選ばれる少なくとも一種(好ましくは球状、又は破砕状)である、上記[1]〜[7]のいずれか1つに記載の反射防止材。
[9]多孔質フィラーの中心粒径が、0.1〜100μm(好ましくは1〜50μm)である、上記[1]〜[8]のいずれか1つに記載の反射防止材。
[10]多孔質フィラーの比表面積が、10〜2000m2/g(好ましくは100〜1000m2/g)である、上記[1]〜[9]のいずれか1つに記載の反射防止材。
[11]多孔質フィラーの細孔容積が、0.1〜10mL/g(好ましくは0.2〜5mL/g)である、上記[1]〜[10]のいずれか1つに記載の反射防止材。
[12]多孔質フィラーの吸油量が、10〜2000mL/100g(好ましくは100〜1000mL/100g)である、上記[1]〜[11]のいずれか1つに記載の反射防止材。
[13]多孔質フィラーの含有量(配合量)が、反射防止材を全量(100重量%)に対して、4〜35重量%(好ましくは4〜30重量%)である、上記[1]〜[12]のいずれか1つに記載の反射防止材。
[14]多孔質フィラーの含有量(配合量)が、反射防止材を構成する樹脂組成物(100重量部)に対して、5〜80重量部(好ましくは5〜70重量部、より好ましくは5〜60重量部)である、上記[1]〜[13]のいずれか1つに記載の反射防止材。
More specifically, the present invention relates to the following.
[1] An antireflection material comprising a resin layer in which a porous filler is dispersed, wherein the porous filler forms irregularities that suppress reflection on the surface of the resin layer, and is based on the total amount (100% by weight) of the antireflection material. An antireflection material, wherein the content of the porous filler is 4 to 40% by weight.
[2] The antireflection material according to the above [1], wherein the porous filler is uniformly distributed throughout the resin layer.
[3] The reflection according to [1] or [2], wherein the porous filler is at least one selected from the group consisting of an inorganic porous filler and an organic porous filler (preferably an inorganic porous filler). Prevention material.
[4] The inorganic porous filler is an inorganic glass [eg, borosilicate glass, sodium borosilicate glass, sodium silicate glass, aluminum silicate glass, quartz, etc.], silica, alumina, zircon, calcium silicate, calcium phosphate, calcium carbonate, carbonic acid Magnesium, silicon carbide, silicon nitride, boron nitride, aluminum hydroxide, iron oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium oxide, aluminum oxide, calcium sulfate, barium sulfate, fosterite, steatite, spinel, clay, kaolin , Dolomite, hydroxyapatite, nepheline syenite, cristobalite, wollastonite, diatomaceous earth, and talc at least one powder having a porous structure, or a molded product thereof (for example, spheres) It turned into beads, etc.) (preferably a porous inorganic glass or porous silica, more preferably porous silica), the above-mentioned [1] - antireflective member according to any one of [3].
[5] The inorganic porous filler has been subjected to a surface treatment [for example, a surface treatment with a surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, or silicone]. The antireflection material according to any one of the above [1] to [4].
[6] The reflection according to [4] or [5], wherein the porous silica is at least one kind of porous silica selected from the group consisting of fused silica, crystalline silica, high-purity synthetic silica, and colloidal silica. Prevention material.
[7] Organic porous filler is styrene resin, acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride resin, vinylidene chloride resin, amide resin, urethane resin, phenol resin, styrene -Polymer porous material composed of at least one organic material selected from the group consisting of polymers (including cross-linked products of these polymers) such as conjugated diene resins, acrylic-conjugated diene resins, olefin resins, and cellulose resins. The antireflection material according to any one of [1] to [6], which is a sintered body, a polymer foam, or a gel porous body.
[8] The above [1], wherein the shape of the porous filler is at least one (preferably spherical or crushed) selected from the group consisting of powder, spherical, crushed, fibrous, acicular, and scale-like. ] The antireflection material as described in any one of [7].
[9] The antireflection material according to any one of [1] to [8], wherein the porous filler has a center particle size of 0.1 to 100 μm (preferably 1 to 50 μm).
[10] The specific surface area of the porous filler, 10~2000m 2 / g (preferably 100~1000m 2 / g) is the above-mentioned [1] to antireflective member according to any one of [9].
[11] The reflection according to any one of [1] to [10], wherein the pore volume of the porous filler is 0.1 to 10 mL / g (preferably 0.2 to 5 mL / g). Prevention material.
[12] The antireflection material according to any one of [1] to [11], wherein the oil absorption of the porous filler is 10 to 2000 mL / 100 g (preferably 100 to 1000 mL / 100 g).
[13] The above [1], wherein the content (blending amount) of the porous filler is 4 to 35% by weight (preferably 4 to 30% by weight) with respect to the total amount (100% by weight) of the antireflection material. -The antireflection material as described in any one of [12].
[14] The content (blending amount) of the porous filler is 5 to 80 parts by weight (preferably 5 to 70 parts by weight, more preferably, relative to the resin composition (100 parts by weight) constituting the antireflection material. The antireflection material according to any one of [1] to [13], which is 5 to 60 parts by weight).

[15]反射防止材における樹脂層を構成する樹脂が、エポキシ樹脂、シリコーン樹脂、及びアクリル樹脂からなる群より選択される少なくとも1種の硬化性化合物を含む組成物からなる、上記[1]〜[14]のいずれか1つに記載の反射防止材。
[16]硬化前の反射防止材が、液状である、上記[1]〜[15]のいずれか1つに記載の反射防止材。
[17]硬化前の反射防止材の全量(100重量%)に対する硬化中に揮発する成分の量が、10重量%以下(好ましくは8重量%以下であり、さらに好ましくは5重量%以下)である、上記[1]〜[16]のいずれか1つに記載の反射防止材。
[18]前記樹脂層は、透明な硬化性樹脂組成物からなる、上記[1]〜[17]のいずれか1つに記載の反射防止材。
[19]前記硬化性樹脂組成物が、エポキシ樹脂、シリコーン樹脂、及びアクリル樹脂からなる群より選択される少なくとも1種の硬化性化合物を含む組成物からなる、上記[18]に記載の反射防止材。
[20]反射防止材に形成された凹凸形状の算術平均表面粗さRaが、0.1〜1.0μmの範囲(好ましくは0.2〜0.8μmの範囲)である、上記[1]〜[19]のいずれか1つに記載の反射防止材。
[21]光半導体封止用樹脂組成物である、上記[1]〜[20]のいずれか1つに記載の反射防止材。
[22]上記[21]に記載の反射防止材により光半導体素子が封止された光半導体装置。
[15] The above [1] to [1], wherein the resin constituting the resin layer in the antireflection material is composed of a composition containing at least one curable compound selected from the group consisting of an epoxy resin, a silicone resin, and an acrylic resin. [14] The antireflection material according to any one of [14].
[16] The antireflection material according to any one of the above [1] to [15], wherein the antireflection material before curing is liquid.
[17] The amount of components volatilized during curing relative to the total amount (100% by weight) of the antireflection material before curing is 10% by weight or less (preferably 8% by weight or less, more preferably 5% by weight or less). The antireflection material according to any one of the above [1] to [16].
[18] The antireflection material according to any one of [1] to [17], wherein the resin layer is made of a transparent curable resin composition.
[19] The antireflection according to [18], wherein the curable resin composition comprises a composition containing at least one curable compound selected from the group consisting of an epoxy resin, a silicone resin, and an acrylic resin. Wood.
[20] The above-mentioned [1], wherein the concavo-convex arithmetic average surface roughness Ra formed on the antireflection material is in the range of 0.1 to 1.0 μm (preferably in the range of 0.2 to 0.8 μm). -The antireflection material as described in any one of [19].
[21] The antireflection material according to any one of [1] to [20], which is a resin composition for sealing an optical semiconductor.
[22] An optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material according to [21].

本発明の反射防止材は上記構成を有するため、多孔質フィラーの配合量を少なくした場合であっても十分な反射防止機能が得られ、且つ光源の全光束の大幅な低下を防ぐことができる。従って、本発明の反射防止材を光半導体装置における光半導体素子を封止するための材料として使用することにより、高品質な(例えば、光沢を抑えつつ明るさも十分な)光半導体装置が得られる。   Since the antireflection material of the present invention has the above-described configuration, a sufficient antireflection function can be obtained even when the amount of the porous filler is reduced, and a significant decrease in the total luminous flux of the light source can be prevented. . Therefore, by using the antireflection material of the present invention as a material for sealing the optical semiconductor element in the optical semiconductor device, a high-quality optical semiconductor device (for example, sufficient brightness while suppressing gloss) can be obtained. .

本発明の反射防止材を含む光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device containing the reflection preventing material of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view.

<反射防止材>
本発明の反射防止材は、多孔質フィラーが樹脂層に分散され、当該多孔質フィラーが当該樹脂層の表面に反射を抑える凹凸を形成し、反射防止材全量(100重量%)に対する多孔質フィラーの含有量が4〜40重量%であることを特徴とするものである。
<Antireflection material>
In the antireflection material of the present invention, the porous filler is dispersed in the resin layer, and the porous filler forms irregularities to suppress reflection on the surface of the resin layer, and the porous filler with respect to the total amount (100% by weight) of the antireflection material. The content of is 4 to 40% by weight.

多孔質フィラーの多孔質構造により、多孔質でないフィラーと比べ、樹脂層に対する見かけ上の体積が増加するため、少量の添加でも樹脂層全体に行き渡らせることができ、その表面に均一で微細な凹凸を形成できる。また、多孔質構造に樹脂層が浸み込み、多孔質フィラーと樹脂層の見かけ上の比重差が低下することで、分散状態が安定になるとともに、多孔質フィラーの表面同士の相互作用が抑制されて凝集しにくくなり、多孔質フィラーが樹脂層全体に行き渡ることができるので、均一で微細な凹凸を樹脂層表面に形成して効率的に入射光を散乱させることができる。
なお、本明細書において、多孔質フィラーの添加量(使用量)が少量(少ない)とは、重量換算で少ないことを意味し、容量(体積)換算で少ないことを意味するものではない。
Due to the porous structure of the porous filler, the apparent volume of the resin layer increases compared to non-porous fillers, so even a small amount of addition can be distributed throughout the resin layer, and the surface has uniform and fine irregularities. Can be formed. In addition, the resin layer soaks into the porous structure and the apparent difference in specific gravity between the porous filler and the resin layer is reduced, so that the dispersion state is stabilized and the interaction between the surfaces of the porous filler is suppressed. Therefore, the porous filler can spread over the entire resin layer, so that uniform and fine irregularities can be formed on the surface of the resin layer to efficiently scatter incident light.
In addition, in this specification, the addition amount (use amount) of the porous filler is small (small) means that it is small in terms of weight, and does not mean that it is small in terms of capacity (volume).

多孔質フィラーを使用した場合には、多孔質でないフィラーと比較して、使用量を少なくしても反射を効率的に抑制することができるので、多孔質フィラー自身の光線吸収による全光束の大幅な低下を抑えながら、十分な反射防止機能を担保することができる。
以下、各構成要素について詳細に説明する。
When a porous filler is used, reflection can be effectively suppressed even if the amount used is small compared to a non-porous filler, so that the total luminous flux is greatly increased by the light absorption of the porous filler itself. A sufficient anti-reflection function can be secured while suppressing a significant decrease.
Hereinafter, each component will be described in detail.

[多孔質フィラー]
本発明の反射防止材における多孔質フィラーは、樹脂層全体に行き渡っており、分散状態が安定した結果、樹脂層の表面に存在する多孔質フィラーが入射光を散乱させるための凹凸を形成する働きを有する。
[Porous filler]
The porous filler in the antireflection material of the present invention is spread over the entire resin layer, and as a result of the stable dispersion state, the porous filler present on the surface of the resin layer forms irregularities for scattering incident light. Have

本発明の反射防止材に使用できる多孔質フィラーとは、フィラーの真比重に比べて見掛け比重が小さく、その内部に多孔質構造を有する無機又は有機のフィラーを意味する。以下、それぞれ、「無機多孔質フィラー」、「有機多孔質フィラー」と称する場合がある。   The porous filler that can be used in the antireflection material of the present invention means an inorganic or organic filler having an apparent specific gravity smaller than the true specific gravity of the filler and having a porous structure therein. Hereinafter, they may be referred to as “inorganic porous filler” and “organic porous filler”, respectively.

無機多孔質フィラーとしては、公知乃至慣用のものを使用することができ、特に限定されないが、例えば、無機ガラス[例えば、硼珪酸ガラス、硼珪酸ソーダガラス、珪酸ソーダガラス、アルミ珪酸ガラス、石英等]、シリカ、アルミナ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、水酸化アルミニウム、酸化鉄、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、酸化チタン、酸化アルミニウム、硫酸カルシウム、硫酸バリウム、フォステライト、ステアタイト、スピネル、クレー、カオリン、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土、タルク等の粉体であって多孔質構造を有するもの、又はこれらの成型体(例えば、球形化したビーズ等)等が挙げられる。また、無機多孔質フィラーとしては、上述の無機多孔質フィラーに公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたもの等も挙げられる。このような表面処理を施すことにより、樹脂層の成分との相溶性や分散性を向上させることができる場合がある。中でも、無機多孔質フィラーとしては、樹脂層全体に行き渡って、その表面に凹凸を効率的に形成できるという観点で、多孔質無機ガラス又は多孔質シリカ(多孔質シリカフィラー)が好ましい。   As the inorganic porous filler, known or conventional ones can be used, and are not particularly limited. For example, inorganic glass [for example, borosilicate glass, borosilicate soda glass, sodium silicate glass, aluminum silicate glass, quartz, etc. ], Silica, alumina, zircon, calcium silicate, calcium phosphate, calcium carbonate, magnesium carbonate, silicon carbide, silicon nitride, boron nitride, aluminum hydroxide, iron oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium oxide, aluminum oxide, Powders having a porous structure such as calcium sulfate, barium sulfate, fosterite, steatite, spinel, clay, kaolin, dolomite, hydroxyapatite, nepheline sinite, cristobalite, wollastonite, diatomaceous earth, talc, These molded body (e.g., spheronized beads, etc.) and the like. The inorganic porous filler may be a known or commonly used surface treatment for the above-mentioned inorganic porous filler [for example, a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, a silicone or the like. And the like that have been subjected to a surface treatment by, etc.]. By performing such a surface treatment, there are cases where compatibility and dispersibility with the components of the resin layer can be improved. Among these, as the inorganic porous filler, porous inorganic glass or porous silica (porous silica filler) is preferable from the viewpoint that the entire resin layer is spread and irregularities can be efficiently formed on the surface thereof.

多孔質シリカとしては、特に限定されず、例えば、溶融シリカ、結晶シリカ、高純度合成シリカ、コロイド状シリカ等の公知乃至慣用の多孔質シリカを使用できる。なお、多孔質シリカとしては、公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたものを使用することもできる。   The porous silica is not particularly limited, and for example, known or conventional porous silica such as fused silica, crystalline silica, high-purity synthetic silica, colloidal silica, or the like can be used. The porous silica is subjected to known or conventional surface treatment [for example, surface treatment with a metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone, or other surface treatment agent]. Can also be used.

有機多孔質フィラーとしては、公知乃至慣用のものを使用することができ、特に限定されないが、例えば、スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル−スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン−共役ジエン系樹脂、アクリル−共役ジエン系樹脂、オレフィン系樹脂、セルロース樹脂等のポリマー(これらポリマーの架橋体も含む)等の有機物により構成された高分子多孔質焼結体、高分子発泡体、ゲル多孔質体等の有機多孔質フィラー等が挙げられる。
また、上記無機物と有機物のハイブリッド材料により構成された無機−有機多孔質フィラー等も使用することができる。
As the organic porous filler, known or commonly used ones can be used, and are not particularly limited. For example, styrene resin, acrylic resin, silicone resin, acrylic-styrene resin, vinyl chloride resin, chloride Polymers (including cross-linked products of these polymers) such as vinylidene resins, amide resins, urethane resins, phenol resins, styrene-conjugated diene resins, acrylic-conjugated diene resins, olefin resins, and cellulose resins Examples thereof include organic porous fillers such as polymer porous sintered bodies, polymer foams, and gel porous bodies composed of organic substances.
Moreover, the inorganic-organic porous filler etc. which were comprised with the said hybrid material of the inorganic substance and the organic substance can also be used.

上記多孔質フィラーは、単一の材料より構成されたものであってもよいし、二種以上の材料より構成されたものであってもよい。中でも、多孔質フィラーとしては、樹脂層全体に行き渡ってその表面に凹凸を効率的に形成できるという観点で、無機多孔質フィラーが好ましく、入手性や製造容易性の観点から、多孔質シリカ(多孔質シリカフィラー)がより好ましい。   The porous filler may be composed of a single material or may be composed of two or more materials. Among these, as the porous filler, an inorganic porous filler is preferable from the viewpoint that the entire resin layer can be formed and irregularities can be efficiently formed on the surface thereof. From the viewpoint of availability and ease of manufacture, porous silica (porous Silica filler) is more preferable.

多孔質フィラーの形状は、特に限定されないが、例えば、粉体、球状、破砕状、繊維状、針状、鱗片状等が挙げられる。中でも、多孔質フィラーが樹脂層全体に行き渡ってその表面に均一で微細な凹凸形状を形成しやすくなるという観点から、球状、又は破砕状の多孔質フィラーが好ましい。   The shape of the porous filler is not particularly limited, and examples thereof include powder, spherical shape, crushed shape, fibrous shape, needle shape, scale shape, and the like. Of these, spherical or crushed porous fillers are preferred from the viewpoint that the porous filler spreads over the entire resin layer and facilitates the formation of uniform and fine irregular shapes on the surface.

多孔質フィラーの中心粒径は、特に限定されないが、多孔質フィラーが樹脂層全体に行き渡ってその表面に均一で微細な凹凸形状を形成しやすくなるという観点から、0.1〜100μmが好ましく、より好ましくは1〜50μmである。なお、上記中心粒径は、レーザー回折・散乱法で測定した粒度分布における積算値50%での体積粒径(メディアン体積径)を意味する。   The central particle diameter of the porous filler is not particularly limited, but is preferably 0.1 to 100 μm from the viewpoint that the porous filler spreads over the entire resin layer and easily forms a uniform and fine uneven shape on the surface. More preferably, it is 1-50 micrometers. The central particle diameter means a volume particle diameter (median volume diameter) at an integrated value of 50% in a particle size distribution measured by a laser diffraction / scattering method.

多孔質フィラーの多孔質構造は、比表面積、細孔容積、吸油量等の各種パラメーターにより特定することができ、それぞれ、本発明の反射防止材に適したパラメーターを有するグレードの多孔質フィラーを、特に制限なく選択することができる。   The porous structure of the porous filler can be specified by various parameters such as specific surface area, pore volume, oil absorption, etc., each of grade porous filler having parameters suitable for the antireflection material of the present invention, It can be selected without particular limitation.

多孔質フィラーの比表面積は、特に限定されないが、多孔質フィラーが樹脂層全体に行き渡ってその表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、10〜2000m2/gが好ましく、より好ましくは100〜1000m2/gである。比表面積が10m2/g以上であれば、多孔質フィラーが樹脂層全体に行き渡ってその表面の反射防止機能が向上する傾向がある。一方、比表面積が、2000m2/g以下であることにより、多孔質フィラーを含む樹脂組成物の粘度上昇やチキソトロピー性が抑制され、反射防止材を製造する際の流動性が担保される傾向がある。なお、上記比表面積は、JIS K6430附属書Eに準拠して、−196℃における窒素の吸着等温線からBET式に基づいて求められる窒素吸着比表面積を意味する。The specific surface area of the porous filler is not particularly limited, but from the viewpoint that the porous filler spreads over the entire resin layer to easily form a uniform and fine uneven shape on the surface and efficiently prevents reflection. ~2000m 2 / g, and more preferably from 100~1000m 2 / g. When the specific surface area is 10 m 2 / g or more, the porous filler spreads over the entire resin layer, and the antireflection function of the surface tends to be improved. On the other hand, when the specific surface area is 2000 m 2 / g or less, the viscosity increase and thixotropy of the resin composition containing the porous filler are suppressed, and the fluidity when producing the antireflection material tends to be secured. is there. In addition, the said specific surface area means the nitrogen adsorption specific surface area calculated | required based on BET type | formula from the adsorption isotherm of nitrogen in -196 degreeC based on JISK6430 appendix E.

多孔質フィラーの細孔容積は、特に限定されないが、多孔質フィラーが樹脂層全体に行き渡ってその表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、0.1〜10mL/gが好ましく、より好ましくは0.2〜5mL/gである。細孔容積が、0.1mL/g以上であれば、多孔質フィラーが樹脂層全体に行き渡ってその表面に凹凸形状を形成しやすくなる傾向がある。一方、細孔容積が、5mL/g以下であることにより、多孔質フィラーの機械的強度が向上する傾向がある。なお、多孔質フィラーの細孔容積は水銀圧入法(ポロシメータ法)によって細孔分布を測定することにより求めることができる。   The pore volume of the porous filler is not particularly limited, but the porous filler spreads over the entire resin layer to easily form a uniform and fine uneven shape on the surface, and from the viewpoint of efficiently preventing reflection, 0.1-10 mL / g is preferable, More preferably, it is 0.2-5 mL / g. If the pore volume is 0.1 mL / g or more, the porous filler tends to spread over the entire resin layer and easily form an uneven shape on the surface. On the other hand, when the pore volume is 5 mL / g or less, the mechanical strength of the porous filler tends to be improved. The pore volume of the porous filler can be determined by measuring the pore distribution by mercury porosimetry (porosimeter method).

多孔質フィラーの吸油量は、特に限定されないが、多孔質フィラーが樹脂層全体に行き渡ってその表面に均一で微細な凹凸形状を形成しやすくし、反射を効率的に防止するという観点から、10〜2000mL/100gが好ましく、より好ましくは100〜1000mL/100gである。吸油量が、10mL/100g以上であれば、多孔質フィラーが樹脂層全体に行き渡ってその表面に凹凸形状を形成しやすくなる傾向がある。一方、吸油量が、2000mL/100g以下であることにより、多孔質フィラーの機械的強度が向上する傾向がある。なお、多孔質フィラーの給油量は、フィラー100gが吸収する油の量であり、JIS K5101に準拠して測定することができる。   The amount of oil absorption of the porous filler is not particularly limited, but from the viewpoint that the porous filler spreads over the entire resin layer to easily form a uniform and fine uneven shape on the surface, and effectively prevents reflection. -2000mL / 100g is preferable, More preferably, it is 100-1000mL / 100g. If the oil absorption is 10 mL / 100 g or more, the porous filler tends to spread over the entire resin layer and easily form an uneven shape on the surface. On the other hand, when the oil absorption is 2000 mL / 100 g or less, the mechanical strength of the porous filler tends to be improved. The oil supply amount of the porous filler is the amount of oil absorbed by 100 g of the filler, and can be measured according to JIS K5101.

本発明の反射防止材において多孔質フィラーは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、多孔質フィラーは、公知乃至慣用の製造方法により製造することもできるし、例えば、商品名「サイリシア250N」、「サイリシア256」、「サイリシア256N」、「サイリシア310」、「サイリシア320」、「サイリシア350」、「サイリシア358」、「サイリシア430」、「サイリシア431」、「サイリシア440」、「サイリシア450」、「サイリシア470」、「サイリシア435」、「サイリシア445」、「サイリシア436」、「サイリシア446」、「サイリシア456」、「サイリシア530」、「サイリシア540」、「サイリシア550」、「サイリシア730」、「サイリシア740」、「サイリシア770」等のサイリシアシリーズ、商品名「サイロスフェアC−1504」、「サイロスフェアC−1510」等のサイロスフェアシリーズ(以上、富士シリシア化学(株)製)、商品名「サンスフェアH−31」、「サンスフェアH−32」、「サンスフェアH−33」、「サンスフェアH−51」、「サンスフェアH−52」、「サンスフェアH−53」、「サンスフェアH−121」、「サンスフェアH−122」、「サンスフェアH−201」等のサンスフェアHシリーズ(以上、AGCエスアイテック(株)製)等の市販品を使用することもできる。   In the antireflection material of the present invention, the porous filler can be used alone or in combination of two or more. The porous filler can also be produced by a known or conventional production method. For example, the trade names “Silicia 250N”, “Silicia 256”, “Silicia 256N”, “Silicia 310”, “Silicia 320”, “Silicia 350”, “Silicia 358”, “Silicia 430”, “Silicia 431”, “Silicia 440”, “Silicia 450”, “Silicia 470”, “Silicia 435”, “Silicia 445”, “Silicia 436”, "Silisia 446", "Silicia 456", "Silicia 530", "Silicia 540", "Silicia 550", "Silicia 730", "Silicia 740", "Silicia 770", etc. C-1504 "," Rhino Shirosphere series such as “Sphere C-1510” (manufactured by Fuji Silysia Chemical Ltd.), trade names “Sunsphere H-31”, “Sunsphere H-32”, “Sunsphere H-33”, “Sans Sunsphere H such as “Fair H-51”, “Sunsphere H-52”, “Sunsphere H-53”, “Sunsphere H-121”, “Sunsphere H-122”, “Sunsphere H-201” Commercial products such as a series (above, manufactured by AGC S-Tech Co., Ltd.) can also be used.

本発明の反射防止材における多孔質フィラーの含有量(配合量)は、反射防止材を全量(100重量%)に対して、4〜40重量%であり、好ましくは4〜35重量%、より好ましくは4〜30重量%である。多孔質フィラーの含有量が4重量%以上であることにより、多孔質フィラーが反射防止材を構成する樹脂層全体に行き渡り、その表面全体に均一な凹凸形状を形成しやすくなる。一方、多孔質フィラーの含有量が40重量%以下であることにより、本発明の反射防止材を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。   The content (blending amount) of the porous filler in the antireflection material of the present invention is 4 to 40% by weight, preferably 4 to 35% by weight, based on the total amount (100% by weight) of the antireflection material. Preferably, it is 4 to 30% by weight. When the content of the porous filler is 4% by weight or more, the porous filler spreads over the entire resin layer constituting the antireflection material, and it becomes easy to form a uniform uneven shape on the entire surface. On the other hand, when the content of the porous filler is 40% by weight or less, when the antireflection material of the present invention is used as, for example, a sealing material for an optical semiconductor device, it is sufficient to prevent a significant decrease in total luminous flux. There is a tendency to ensure illuminance.

本発明の反射防止材における多孔質フィラーの含有量(配合量)は、反射防止材を構成する樹脂組成物(100重量部)に対して、通常、5〜80重量部であり、好ましくは5〜70重量部、より好ましくは5〜60重量部である。多孔質フィラーの含有量が5重量部以上であることにより、多孔質フィラーが反射防止材を構成する樹脂層全体に行き渡り、その表面全体に均一な凹凸形状を形成しやすくなる。一方、多孔質フィラーの含有量が80重量部以下であることにより、本発明の反射防止材を例えば光半導体装置用の封止材として使用した場合に全光束の著しい低下を防止して十分な照度を確保できる傾向がある。   The content (blending amount) of the porous filler in the antireflection material of the present invention is usually 5 to 80 parts by weight, preferably 5 with respect to the resin composition (100 parts by weight) constituting the antireflection material. It is -70 weight part, More preferably, it is 5-60 weight part. When the content of the porous filler is 5 parts by weight or more, the porous filler spreads over the entire resin layer constituting the antireflection material, and it becomes easy to form a uniform uneven shape on the entire surface. On the other hand, when the content of the porous filler is 80 parts by weight or less, when the antireflection material of the present invention is used as, for example, a sealing material for an optical semiconductor device, it is sufficient to prevent a significant decrease in total luminous flux. There is a tendency to ensure illuminance.

[樹脂層]
本発明の反射防止材における樹脂層を構成する樹脂は、特に限定されるものではないが、光半導体装置における光半導体素子の封止材、即ち、光半導体封止用樹脂組成物として適したものが好ましく使用可能であり、例えば、熱又は光により硬化して、高い透明性を有し、耐久性(例えば、加熱によっても透明性が低下しにくい特性、高温の熱や熱衝撃が加えられてもクラックや被着体からの剥離が生じにくい特性等)にも優れる硬化物を与える硬化性樹脂を好適に使用できる。
[Resin layer]
The resin constituting the resin layer in the antireflection material of the present invention is not particularly limited, but is suitable as a sealing material for an optical semiconductor element in an optical semiconductor device, that is, a resin composition for optical semiconductor sealing. Can be preferably used, for example, cured by heat or light, has high transparency, durability (for example, characteristics that transparency is not easily lowered by heating, high temperature heat and thermal shock are applied) In addition, a curable resin that gives a cured product that is also excellent in cracks and properties that do not easily peel off from the adherend can be used.

このような硬化性樹脂としては、熱硬化性又は光硬化性を有する公知乃至慣用の樹脂組成物を特に限定なく使用することができ、例えば、エポキシ樹脂(エポキシ化合物)(「エポキシ樹脂(A)」と称する)、シリコーン樹脂(シリコーン化合物)(「シリコーン樹脂(B)」と称する)、及びアクリル樹脂(アクリル化合物)(「アクリル樹脂(C)」と称する)からなる群より選択される少なくとも1種の硬化性化合物を含む組成物であることが好ましい。このような組成物としては、例えば、エポキシ樹脂(A)を含む組成物(硬化性エポキシ樹脂組成物)、シリコーン樹脂(B)を含む組成物(硬化性シリコーン樹脂組成物)、アクリル樹脂(C)を含む組成物(硬化性アクリル樹脂組成物)が挙げられる。以下、これら態様の組成物について説明する。但し、本発明の硬化性樹脂組成物は、以下の態様の組成物には限定されない。
また、本発明の反射防止材は、光半導体封止用樹脂組成物の用途に限定されるものではなく、例えば、後述の各種光学部材等にも適用可能であり、それぞれの用途に適した樹脂(例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂など)にも適用可能である。
本発明の反射防止材における樹脂層を構成する樹脂としては、耐熱性、透明性、耐久性等に優れる硬化性エポキシ樹脂組成物、硬化性シリコーン樹脂組成物、硬化性アクリル樹脂組成物が好ましく、硬化性エポキシ樹脂組成物がより好ましい。
As such a curable resin, a known or commonly used resin composition having thermosetting property or photo-curing property can be used without particular limitation. For example, an epoxy resin (epoxy compound) (“epoxy resin (A)” At least one selected from the group consisting of a silicone resin (silicone compound) (referred to as “silicone resin (B)”), and an acrylic resin (acrylic compound) (referred to as “acrylic resin (C)”). A composition containing a seed curable compound is preferred. Examples of such a composition include a composition containing an epoxy resin (A) (curable epoxy resin composition), a composition containing a silicone resin (B) (curable silicone resin composition), and an acrylic resin (C ) (A curable acrylic resin composition). Hereinafter, the composition of these embodiments will be described. However, the curable resin composition of this invention is not limited to the composition of the following aspects.
Further, the antireflection material of the present invention is not limited to the use of the resin composition for sealing an optical semiconductor, and can be applied to, for example, various optical members described later, and is a resin suitable for each use. (For example, it is applicable also to polyolefin resin, polyester resin, polyamide resin, polyurethane resin, etc.).
As the resin constituting the resin layer in the antireflection material of the present invention, a curable epoxy resin composition, a curable silicone resin composition, and a curable acrylic resin composition excellent in heat resistance, transparency, durability, and the like are preferable. A curable epoxy resin composition is more preferable.

1.硬化性エポキシ樹脂組成物
上記硬化性エポキシ樹脂組成物(「本発明の硬化性エポキシ樹脂組成物」と称する場合がある)は、エポキシ樹脂(A)を必須成分として含む硬化性組成物である。本発明の硬化性エポキシ樹脂組成物は、さらに、硬化剤(D)及び硬化促進剤(E)、又は、硬化触媒(F)を必須成分として含む。即ち、本発明の硬化性エポキシ樹脂組成物は、エポキシ樹脂(A)と硬化剤(D)と硬化促進剤(E)とを必須成分として含む組成物、又は、エポキシ樹脂(A)と硬化触媒(F)とを必須成分として含む組成物である。本発明の硬化性エポキシ樹脂組成物は、上述の必須成分以外のその他の成分を含んでいてもよい。
1. Curable Epoxy Resin Composition The curable epoxy resin composition (sometimes referred to as “the curable epoxy resin composition of the present invention”) is a curable composition containing the epoxy resin (A) as an essential component. The curable epoxy resin composition of the present invention further contains a curing agent (D) and a curing accelerator (E) or a curing catalyst (F) as essential components. That is, the curable epoxy resin composition of the present invention is a composition containing an epoxy resin (A), a curing agent (D), and a curing accelerator (E) as essential components, or an epoxy resin (A) and a curing catalyst. It is a composition containing (F) as an essential component. The curable epoxy resin composition of the present invention may contain other components other than the essential components described above.

1−1.エポキシ樹脂(A)
本発明の硬化性エポキシ樹脂組成物におけるエポキシ樹脂(A)は、分子内に1個以上のエポキシ基(オキシラン環)を有する化合物であり、公知乃至慣用のエポキシ化合物から任意に選択して用いることができる。エポキシ樹脂(A)としては、例えば、芳香族エポキシ化合物(芳香族エポキシ樹脂)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)、脂環式エポキシ化合物(脂環式エポキシ樹脂)、複素環式エポキシ化合物(複素環式エポキシ樹脂)、分子内にエポキシ基を1個以上有するシロキサン誘導体等が挙げられる。
1-1. Epoxy resin (A)
The epoxy resin (A) in the curable epoxy resin composition of the present invention is a compound having one or more epoxy groups (oxirane rings) in the molecule, and is arbitrarily selected from known or commonly used epoxy compounds. Can do. Examples of the epoxy resin (A) include an aromatic epoxy compound (aromatic epoxy resin), an aliphatic epoxy compound (aliphatic epoxy resin), an alicyclic epoxy compound (alicyclic epoxy resin), and a heterocyclic epoxy compound. (Heterocyclic epoxy resin), siloxane derivatives having one or more epoxy groups in the molecule, and the like.

上記芳香族エポキシ化合物としては、例えば、芳香族グリシジルエーテル系エポキシ樹脂[例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂(例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのクレゾールノボラック型エポキシ樹脂)等、ナフタレン型エポキシ樹脂、トリスフェノールメタンから得られるエポキシ樹脂等]等が挙げられる。   Examples of the aromatic epoxy compound include aromatic glycidyl ether type epoxy resins [for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenol type epoxy resins, novolac type epoxy resins (for example, phenol novolac type epoxy resins, Cresol novolac type epoxy resin, bisphenol A cresol novolac type epoxy resin), naphthalene type epoxy resin, epoxy resin obtained from trisphenol methane, etc.].

上記脂肪族エポキシ化合物としては、例えば、脂肪族グリシジルエーテル系エポキシ化合物[例えば、脂肪族ポリグリシジルエーテル等]等が挙げられる。   Examples of the aliphatic epoxy compound include aliphatic glycidyl ether type epoxy compounds [for example, aliphatic polyglycidyl ether and the like].

上記脂環式エポキシ化合物は、分子内に1個以上の脂環(脂肪族炭化水素環)と1個以上のエポキシ基とを有する化合物である(但し、上述の分子内にエポキシ基を1個以上有するシロキサン誘導体は除かれる)。脂環式エポキシ化合物としては、例えば、(i)分子内に脂環エポキシ基(脂環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)を少なくとも1個(好ましくは2個以上)有する化合物;(ii)脂環に直接単結合で結合したエポキシ基を有する化合物;(iii)脂環とグリシジル基とを有する化合物等が挙げられる。   The alicyclic epoxy compound is a compound having one or more alicyclic rings (aliphatic hydrocarbon rings) and one or more epoxy groups in the molecule (provided that one epoxy group is present in the molecule). The siloxane derivative having the above is excluded). Examples of the alicyclic epoxy compound include (i) at least one alicyclic epoxy group (an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring) in the molecule (preferably (Ii) a compound having an epoxy group bonded directly to the alicyclic ring with a single bond; (iii) a compound having an alicyclic ring and a glycidyl group.

上述の(i)分子内に脂環エポキシ基を少なくとも1個有する化合物が有する脂環エポキシ基としては、特に限定されないが、中でも、硬化性の観点で、シクロヘキセンオキシド基(シクロヘキサン環を構成する隣接する2個の炭素原子と酸素原子とで構成されるエポキシ基)が好ましい。特に、(i)分子内に脂環エポキシ基を少なくとも1個有する化合物としては、硬化物の透明性、耐熱性の観点で、分子内に2個以上のシクロヘキセンオキシド基を有する化合物が好ましく、より好ましくは下記式(1)で表される化合物である。   Although it does not specifically limit as an alicyclic epoxy group which the compound which has at least one alicyclic epoxy group in the above-mentioned (i) molecule | numerator has, From a sclerosing | hardenable viewpoint, a cyclohexene oxide group (adjacent which comprises a cyclohexane ring) And an epoxy group composed of two carbon atoms and an oxygen atom). In particular, (i) the compound having at least one alicyclic epoxy group in the molecule is preferably a compound having two or more cyclohexene oxide groups in the molecule from the viewpoint of transparency and heat resistance of the cured product. A compound represented by the following formula (1) is preferable.

Figure 2017122691
Figure 2017122691

式(1)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、炭素−炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。   In formula (1), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include divalent hydrocarbon groups, alkenylene groups in which some or all of carbon-carbon double bonds are epoxidized, carbonyl groups, ether bonds, ester bonds, carbonate groups, amide groups, and the like. And a group in which a plurality of are connected.

式(1)中のXが単結合である化合物としては、3,4,3’,4’−ジエポキシビシクロヘキサンが挙げられる。   Examples of the compound in which X in the formula (1) is a single bond include 3,4,3 ′, 4′-diepoxybicyclohexane.

上記2価の炭化水素基としては、炭素数が1〜18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1〜18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記2価の脂環式炭化水素基としては、例えば、1,2−シクロペンチレン基、1,3−シクロペンチレン基、シクロペンチリデン基、1,2−シクロヘキシレン基、1,3−シクロヘキシレン基、1,4−シクロヘキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。   As said bivalent hydrocarbon group, a C1-C18 linear or branched alkylene group, a bivalent alicyclic hydrocarbon group, etc. are mentioned. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.

上記炭素−炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1−ブテニレン基、2−ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2〜8の直鎖又は分岐鎖状のアルケニレン基(アルカポリエニレン基も含まれる)等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素−炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素−炭素二重結合の全部がエポキシ化された炭素数2〜4のアルケニレン基である。   Examples of the alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as “epoxidized alkenylene group”) include, for example, a vinylene group, a propenylene group, and a 1-butenylene group. , 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group, etc., straight chain or branched chain alkenylene groups having 2 to 8 carbon atoms (including alkapolyenylene groups) and the like. . In particular, the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.

上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、−CO−、−O−CO−O−、−COO−、−O−、−CONH−、エポキシ化アルケニレン基;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基等が挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。   The linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation. An alkenylene group; a group in which a plurality of these groups are linked; a group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include those exemplified above.

上記式(1)で表される化合物の代表的な例としては、2,2−ビス(3,4−エポキシシクロヘキサン−1−イル)プロパン、ビス(3,4−エポキシシクロヘキシルメチル)エーテル、1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン、1,2−エポキシ−1,2−ビス(3,4−エポキシシクロヘキサン−1−イル)エタン、下記式(1−1)〜(1−10)で表される化合物等が挙げられる。なお、下記式(1−5)、(1−7)中のl、mは、それぞれ1〜30の整数を表す。下記式(1−5)中のRは炭素数1〜8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s−ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1〜3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(1−9)、(1−10)中のn1〜n6は、それぞれ1〜30の整数を示す。

Figure 2017122691
Figure 2017122691
Representative examples of the compound represented by the above formula (1) include 2,2-bis (3,4-epoxycyclohexane-1-yl) propane, bis (3,4-epoxycyclohexylmethyl) ether, , 2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, the following formula (1-1) The compound etc. which are represented by-(1-10) are mentioned. In the following formulas (1-5) and (1-7), l and m each represent an integer of 1 to 30. R in the following formula (1-5) is an alkylene group having 1 to 8 carbon atoms, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene. And linear or branched alkylene groups such as a group, a heptylene group, and an octylene group. Among these, C1-C3 linear or branched alkylene groups, such as a methylene group, ethylene group, a propylene group, an isopropylene group, are preferable. N1 to n6 in the following formulas (1-9) and (1-10) each represent an integer of 1 to 30.
Figure 2017122691
Figure 2017122691

上述の(ii)脂環に直接単結合で結合したエポキシ基を有する化合物としては、例えば、下記式(2)で表される化合物等が挙げられる。

Figure 2017122691
Examples of the compound (ii) having an epoxy group bonded directly to the alicyclic ring with a single bond include compounds represented by the following formula (2).
Figure 2017122691

式(2)中、R’は、構造式上、p価のアルコールからp個の水酸基(−OH)を除いた基(p価の有機基)であり、p、qはそれぞれ自然数を表す。p価のアルコール[R’(OH)p]としては、2,2−ビス(ヒドロキシメチル)−1−ブタノール等の多価アルコール(炭素数1〜15のアルコール等)等が挙げられる。pは1〜6が好ましく、qは1〜30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるqは同一でもよく異なっていてもよい。上記式(2)で表される化合物としては、具体的には、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。In the formula (2), R ′ is a group obtained by removing p hydroxyl groups (—OH) from a p-valent alcohol (p-valent organic group) in the structural formula, and p and q each represent a natural number. Examples of the p-valent alcohol [R ′ (OH) p ] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol. p is preferably from 1 to 6, and q is preferably from 1 to 30. When p is 2 or more, q in each () (inside the parenthesis) may be the same or different. Specific examples of the compound represented by the above formula (2) include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol [for example, , Trade name “EHPE3150” (manufactured by Daicel Corporation), etc.].

上述の(iii)脂環とグリシジル基とを有する化合物としては、例えば、2,2−ビス[4−(2,3−エポキシプロポキシ)シクロへキシル]プロパン、2,2−ビス[3,5−ジメチル−4−(2,3−エポキシプロポキシ)シクロへキシル]プロパン、ビスフェノールA型エポキシ樹脂を水素化したもの(水添ビスフェノールA型エポキシ樹脂)等;ビス[2−(2,3−エポキシプロポキシ)シクロへキシル]メタン、[2−(2,3−エポキシプロポキシ)シクロへキシル][4−(2,3−エポキシプロポキシ)シクロへキシル]メタン、ビス[4−(2,3−エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5−ジメチル−4−(2,3−エポキシプロポキシ)シクロへキシル]メタン、ビスフェノールF型エポキシ樹脂を水素化したもの(水添ビスフェノールF型エポキシ樹脂)等;水添ビフェノール型エポキシ樹脂;水添ノボラック型エポキシ樹脂(例えば、水添フェノールノボラック型エポキシ樹脂、水添クレゾールノボラック型エポキシ樹脂、ビスフェノールAの水添クレゾールノボラック型エポキシ樹脂等);水添ナフタレン型エポキシ樹脂;トリスフェノールメタンから得られるエポキシ樹脂の水添エポキシ樹脂等が挙げられる。   Examples of the compound (iii) having an alicyclic ring and a glycidyl group are 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5 -Dimethyl-4- (2,3-epoxypropoxy) cyclohexyl] propane, hydrogenated bisphenol A type epoxy resin (hydrogenated bisphenol A type epoxy resin), etc .; bis [2- (2,3-epoxy Propoxy) cyclohexyl] methane, [2- (2,3-epoxypropoxy) cyclohexyl] [4- (2,3-epoxypropoxy) cyclohexyl] methane, bis [4- (2,3-epoxy) Propoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,3-epoxypropoxy) cyclohexyl] methane, bisphenol F type epoxy Hydrogenated fat (hydrogenated bisphenol F type epoxy resin), etc .; hydrogenated biphenol type epoxy resin; hydrogenated novolak type epoxy resin (for example, hydrogenated phenol novolak type epoxy resin, hydrogenated cresol novolak type epoxy resin, bisphenol) A hydrogenated cresol novolac type epoxy resin of A); hydrogenated naphthalene type epoxy resin; hydrogenated epoxy resin of an epoxy resin obtained from trisphenolmethane, and the like.

上記脂環式エポキシ化合物としては、その他、例えば、1,2,8,9−ジエポキシリモネン等が挙げられる。   Other examples of the alicyclic epoxy compound include 1,2,8,9-diepoxy limonene.

上記複素環式エポキシ化合物としては、例えば、分子内にエポキシ基(オキシラン環)以外の複素環[例えば、テトラヒドロフラン環、テトラヒドロピラン環、モルホリン環、クロマン環、イソクロマン環、テトラヒドロチオフェン環、テトラヒドロチオピラン環、アジリジン環、ピロリジン環、ピペリジン環、ピペラジン環、インドリン環、2,6−ジオキサビシクロ[3.3.0]オクタン環、1,3,5−トリアザシクロヘキサン環、1,3,5−トリアザシクロヘキサ−2,4,6−トリオン環(イソシアヌル環)等の非芳香族性複素環;チオフェン環、ピロール環、フラン環、ピリジン環等の芳香族性複素環等]と、エポキシ基とを有する化合物が挙げられる。   Examples of the heterocyclic epoxy compound include heterocycles other than an epoxy group (oxirane ring) in the molecule [for example, tetrahydrofuran ring, tetrahydropyran ring, morpholine ring, chroman ring, isochroman ring, tetrahydrothiophene ring, tetrahydrothiopyran. Ring, aziridine ring, pyrrolidine ring, piperidine ring, piperazine ring, indoline ring, 2,6-dioxabicyclo [3.3.0] octane ring, 1,3,5-triazacyclohexane ring, 1,3,5 -Non-aromatic heterocycles such as triazacyclohexa-2,4,6-trione ring (isocyanuric ring); aromatic heterocycles such as thiophene ring, pyrrole ring, furan ring, pyridine ring, etc.] and epoxy And a compound having a group.

上記複素環式エポキシ化合物としては、例えば、分子内に1個以上のエポキシ基を有するイソシアヌレート(以下、「エポキシ基含有イソシアヌレート」と称する場合がある)を好ましく使用できる。上記エポキシ基含有イソシアヌレートが分子内に有するエポキシ基の数は、特に限定されないが、1〜6個が好ましく、より好ましくは1〜3個である。   As the heterocyclic epoxy compound, for example, isocyanurate having one or more epoxy groups in the molecule (hereinafter sometimes referred to as “epoxy group-containing isocyanurate”) can be preferably used. Although the number of the epoxy groups which the said epoxy group containing isocyanurate has in a molecule | numerator is not specifically limited, 1-6 pieces are preferable, More preferably, it is 1-3.

上記エポキシ基含有イソシアヌレートとしては、例えば、下記式(3)で表される化合物が挙げられる。   Examples of the epoxy group-containing isocyanurate include compounds represented by the following formula (3).

Figure 2017122691
Figure 2017122691

式(3)中、RX、RY、及びRZ(RX〜RZ)は、同一又は異なって、水素原子又は1価の有機基を示す。但し、RX〜RZの少なくとも1個は、エポキシ基を含有する1価の有機基である。上記1価の有機基としては、例えば、1価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);1価の芳香族炭化水素基(例えば、アリール基等);1価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された1価の基等が挙げられる。なお、1価の有機基は置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等の置換基)を有していてもよい。エポキシ基を含有する1価の有機基としては、例えば、エポキシ基、グリシジル基、2−メチルエポキシプロピル基、シクロヘキセンオキシド基等の後述のエポキシ基を含有する1価の基等が挙げられる。In Formula (3), R X , R Y , and R Z (R X to R Z ) are the same or different and represent a hydrogen atom or a monovalent organic group. However, at least one of R X to R Z is a monovalent organic group containing an epoxy group. Examples of the monovalent organic group include a monovalent aliphatic hydrocarbon group (for example, an alkyl group and an alkenyl group); a monovalent aromatic hydrocarbon group (for example, an aryl group); A cyclic group; a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. Note that the monovalent organic group may have a substituent (for example, a substituent such as a hydroxy group, a carboxy group, or a halogen atom). Examples of the monovalent organic group containing an epoxy group include monovalent groups containing an epoxy group described later such as an epoxy group, a glycidyl group, a 2-methylepoxypropyl group, and a cyclohexene oxide group.

より具体的には、上記エポキシ基含有イソシアヌレートとしては、下記式(3−1)で表される化合物、下記式(3−2)で表される化合物、下記式(3−3)で表される化合物等が挙げられる。   More specifically, the epoxy group-containing isocyanurate includes a compound represented by the following formula (3-1), a compound represented by the following formula (3-2), and a formula represented by the following formula (3-3). And the like.

Figure 2017122691
Figure 2017122691
Figure 2017122691
Figure 2017122691
Figure 2017122691
Figure 2017122691

上記式(3−1)、式(3−2)、及び式(3−3)(式(3−1)〜(3−3))中、R1、R2は、同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。炭素数1〜8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1〜3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(3−1)〜(3−3)中のR1及びR2は、水素原子であることが特に好ましい。In the above formula (3-1), formula (3-2), and formula (3-3) (formulas (3-1) to (3-3)), R 1 and R 2 are the same or different, A hydrogen atom or an alkyl group having 1 to 8 carbon atoms is shown. Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, and octyl groups. Examples thereof include a chain or branched alkyl group. Among these, a linear or branched alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is preferable. R 1 and R 2 in the above formulas (3-1) to (3-3) are particularly preferably hydrogen atoms.

上記式(3−1)で表される化合物の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1−アリル−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート、1−(2−メチルプロペニル)−3,5−ジグリシジルイソシアヌレート、1−(2−メチルプロペニル)−3,5−ビス(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。   Representative examples of the compound represented by the formula (3-1) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2 -Methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate and the like.

上記式(3−2)で表される化合物の代表的な例としては、ジアリルモノグリシジルイソシアヌレート、1,3−ジアリル−5−(2−メチルエポキシプロピル)イソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−グリシジルイソシアヌレート、1,3−ビス(2−メチルプロペニル)−5−(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。   Representative examples of the compound represented by the above formula (3-2) include diallyl monoglycidyl isocyanurate, 1,3-diallyl-5- (2-methylepoxypropyl) isocyanurate, 1,3-bis ( 2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5- (2-methylepoxypropyl) isocyanurate and the like.

上記式(3−3)で表される化合物の代表的な例としては、トリグリシジルイソシアヌレート、トリス(2−メチルエポキシプロピル)イソシアヌレート等が挙げられる。   Typical examples of the compound represented by the above formula (3-3) include triglycidyl isocyanurate, tris (2-methylepoxypropyl) isocyanurate, and the like.

なお、上記エポキシ基含有イソシアヌレートは、アルコールや酸無水物等のエポキシ基と反応する化合物を加えてあらかじめ変性して用いることもできる。   The epoxy group-containing isocyanurate can be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.

上述の分子内にエポキシ基を1個以上有するシロキサン誘導体(「エポキシ基含有シロキサン誘導体」と称する場合がある)としては、分子内にシロキサン結合(Si−O−Si)により構成されたシロキサン骨格を有し、エポキシ基を1個以上有する化合物である。上記シロキサン骨格としては、例えば、環状シロキサン骨格;直鎖又は分岐鎖状のシリコーン(直鎖又は分岐鎖状ポリシロキサン)や、かご型やラダー型のポリシルセスキオキサン等のポリシロキサン骨格等が挙げられる。上記エポキシ基含有シロキサン誘導体が分子内に有するエポキシ基の数は、特に限定されないが、2〜4個が好ましく、より好ましくは3個又は4個である。   As a siloxane derivative having one or more epoxy groups in the molecule (sometimes referred to as “epoxy group-containing siloxane derivative”), a siloxane skeleton composed of siloxane bonds (Si—O—Si) in the molecule is used. And a compound having at least one epoxy group. Examples of the siloxane skeleton include a cyclic siloxane skeleton; a linear or branched silicone (linear or branched polysiloxane), a polysiloxane skeleton such as a cage-type or ladder-type polysilsesquioxane, and the like. Can be mentioned. The number of epoxy groups in the molecule of the epoxy group-containing siloxane derivative is not particularly limited, but is preferably 2 to 4, more preferably 3 or 4.

上記エポキシ基含有シロキサン誘導体が有するエポキシ基は、特に限定されないが、硬化性エポキシ樹脂組成物を効率的に硬化させることができ、より強度に優れた硬化物が得られる点で、少なくとも1個が脂環エポキシ基であることが好ましく、中でも、エポキシ基の少なくとも1個がシクロヘキセンオキシド基であることが特に好ましい。   Although the epoxy group which the said epoxy group containing siloxane derivative has is not specifically limited, at least 1 piece is a point which can harden a curable epoxy resin composition efficiently and the hardened | cured material excellent in intensity | strength is obtained. An alicyclic epoxy group is preferred, and among them, at least one of the epoxy groups is particularly preferably a cyclohexene oxide group.

上記エポキシ基含有シロキサン誘導体としては、例えば、下記式(4)で表される化合物(環状シロキサン)が挙げられる。   As said epoxy group containing siloxane derivative, the compound (cyclic siloxane) represented by following formula (4) is mentioned, for example.

Figure 2017122691
Figure 2017122691

上記式(4)中、R3は、同一又は異なって、アルキル基、又は、エポキシ基を含有する1価の有機基を示す。但し、式(4)で表される化合物におけるR3のうち、少なくとも1個(好ましくは少なくとも2個)は、エポキシ基を含有する1価の有機基(特に、脂環エポキシ基を含有する1価の有機基)である。また、式(4)中のpは、3以上の整数(好ましくは3〜6の整数)を示す。なお、複数のR3は同一であってもよいし、異なっていてもよい。In said formula (4), R < 3 > is the same or different and shows the monovalent | monohydric organic group containing an alkyl group or an epoxy group. However, at least one (preferably at least two) of R 3 in the compound represented by the formula (4) is a monovalent organic group containing an epoxy group (in particular, 1 containing an alicyclic epoxy group). Valent organic group). Moreover, p in Formula (4) shows an integer greater than or equal to 3 (preferably an integer of 3-6). The plurality of R 3 may be the same or different.

上記エポキシ基を含有する1価の有機基としては、例えば、エポキシ基、グリシジル基、メチルグリシジル基、−A−R4で表される基[Aはアルキレン基を示し、R4は脂環エポキシ基を示す。]が挙げられる。上記A(アルキレン基)としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等の炭素数1〜18の直鎖又は分岐鎖状のアルキレン基等が挙げられる。上記R4としては、例えば、シクロヘキセンオキシド基等が挙げられる。Examples of the monovalent organic group containing the epoxy group include an epoxy group, a glycidyl group, a methyl glycidyl group, and a group represented by -A-R 4 [A represents an alkylene group, and R 4 represents an alicyclic epoxy. Indicates a group. ]. Examples of A (alkylene group) include linear or branched alkylene groups having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. It is done. Examples of R 4 include a cyclohexene oxide group.

より具体的には、上記エポキシ基含有シロキサン誘導体としては、例えば、2,4−ジ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−2,4,6,6,8,8−ヘキサメチル−シクロテトラシロキサン、4,8−ジ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−2,2,4,6,6,8−ヘキサメチル−シクロテトラシロキサン、2,4−ジ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−6,8−ジプロピル−2,4,6,8−テトラメチル−シクロテトラシロキサン、4,8−ジ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−2,6−ジプロピル−2,4,6,8−テトラメチル−シクロテトラシロキサン、2,4,8−トリ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−2,4,6,6,8−ペンタメチル−シクロテトラシロキサン、2,4,8−トリ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−6−プロピル−2,4,6,8−テトラメチル−シクロテトラシロキサン、2,4,6,8−テトラ[2−(3−{オキサビシクロ[4.1.0]ヘプチル})エチル]−2,4,6,8−テトラメチル−シクロテトラシロキサン等が挙げられる。   More specifically, examples of the epoxy group-containing siloxane derivative include, for example, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6. 6,8,8-Hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,2,4,6,6,8 -Hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6,8-dipropyl-2,4,6,8-tetramethyl -Cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,6-dipropyl-2,4,6,8-tetramethyl-cyclo Tetrasiloxane, 2,4,8-tri [2- (3- { Xabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8-pentamethyl-cyclotetrasiloxane, 2,4,8-tri [2- (3- {oxabicyclo [4.1 .0] heptyl}) ethyl] -6-propyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,6,8-tetra [2- (3- {oxabicyclo [4.1]. .0] heptyl}) ethyl] -2,4,6,8-tetramethyl-cyclotetrasiloxane and the like.

また、上記エポキシ基含有シロキサン誘導体としては、例えば、下記式(5)で表される化合物(鎖状ポリシロキサン)が挙げられる。

Figure 2017122691
Examples of the epoxy group-containing siloxane derivative include compounds represented by the following formula (5) (chain polysiloxane).
Figure 2017122691

上記式(5)中、R5、R6は、同一又は異なって、エポキシ基を含有する1価の有機基、アルコキシ基(例えば、メトキシ基、エトキシ基等の炭素数1〜4のアルコキシ基等)、アルキル基(例えば、メチル基、エチル基等の炭素数1〜4のアルキル基等)、又はアリール基(例えば、フェニル基、ナフチル基等の炭素数6〜12のアリール基等)を示す。但し、式(5)で表される化合物におけるR5及びR6のうち、少なくとも1個(好ましくは少なくとも2個)はエポキシ基を含有する1価の有機基である。エポキシ基を含有する1価の有機基としては、上記式(4)におけるものと同様の基が挙げられる。特に、硬化性の観点で、R6のいずれか一方又は両方がエポキシ基を含有する1価の有機基であることが好ましい。また、式(5)中のqは、1以上の整数(例えば、1〜500の整数)を示す。qが付された括弧内の構造は、それぞれ同一であってもよいし、異なっていてもよい。また、qが付された括弧内の構造として2種以上が存在する場合、その付加形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。In said formula (5), R < 5 >, R < 6 > is the same or different and is a monovalent organic group containing an epoxy group, an alkoxy group (for example, C1-C4 alkoxy groups, such as a methoxy group, an ethoxy group, etc.). Etc.), an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms such as a methyl group or an ethyl group), or an aryl group (for example, an aryl group having 6 to 12 carbon atoms such as a phenyl group or a naphthyl group). Show. However, at least one (preferably at least two) of R 5 and R 6 in the compound represented by the formula (5) is a monovalent organic group containing an epoxy group. Examples of the monovalent organic group containing an epoxy group include the same groups as those in the above formula (4). In particular, from the viewpoint of curability, it is preferable that either one or both of R 6 is a monovalent organic group containing an epoxy group. Moreover, q in Formula (5) shows an integer greater than or equal to 1 (for example, an integer of 1 to 500). The structures in parentheses marked with q may be the same or different. In addition, when two or more kinds of structures in parentheses with q are present, the additional form is not particularly limited, and may be a random type or a block type.

上記エポキシ基含有シロキサン誘導体としては、その他にも例えば、エポキシ基を有するシリコーン樹脂(例えば、特開2008−248169号公報に記載の脂環エポキシ基含有シリコーン樹脂等)、エポキシ基を有するシルセスキオキサン(例えば、特開2008−19422号公報に記載の1分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂等)等が挙げられる。   Other examples of the epoxy group-containing siloxane derivative include a silicone resin having an epoxy group (for example, an alicyclic epoxy group-containing silicone resin described in JP-A-2008-248169) and a silsesquioxy having an epoxy group. Sun (for example, organopolysilsesquioxane resin having at least two epoxy functional groups in one molecule described in JP-A-2008-19422) and the like.

中でも、エポキシ樹脂(A)としては、硬化性エポキシ樹脂組成物の硬化をより効率的に進行させることができる点で、ビスフェノールA型エポキシ樹脂、分子内にエポキシ基を1個以上有するイソシアヌレート、ノボラック型エポキシ樹脂、脂環式エポキシ化合物、脂肪族エポキシ化合物、分子内にエポキシ基を1個以上有するシロキサン誘導体が好ましい。特に、透明性及び耐久性に優れた硬化物を高い生産性で得ることができる点で、本発明の硬化性エポキシ樹脂組成物はエポキシ樹脂(A)として、脂環式エポキシ化合物を必須成分として含むことが好ましい。上記脂環式エポキシ化合物としては、特に、分子内にシクロヘキセンオキシド基を有する化合物(特に、分子内に2個以上のシクロヘキセンオキシド基を有する化合物)が好ましく、より好ましくは式(1)で表される化合物(特に、式(1−1)で表される化合物)である。   Among them, as the epoxy resin (A), bisphenol A type epoxy resin, isocyanurate having one or more epoxy groups in the molecule, in terms of allowing the curing of the curable epoxy resin composition to proceed more efficiently, A novolak type epoxy resin, an alicyclic epoxy compound, an aliphatic epoxy compound, and a siloxane derivative having one or more epoxy groups in the molecule are preferable. In particular, the curable epoxy resin composition of the present invention is an epoxy resin (A) and an alicyclic epoxy compound as an essential component in that a cured product excellent in transparency and durability can be obtained with high productivity. It is preferable to include. The alicyclic epoxy compound is particularly preferably a compound having a cyclohexene oxide group in the molecule (particularly a compound having two or more cyclohexene oxide groups in the molecule), more preferably represented by the formula (1). (Especially a compound represented by the formula (1-1)).

本発明の硬化性エポキシ樹脂組成物においてエポキシ樹脂(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、エポキシ樹脂(A)は公知乃至慣用の方法により製造することもできるし、市販品を使用することもできる。   In the curable epoxy resin composition of the present invention, the epoxy resin (A) can be used alone or in combination of two or more. In addition, an epoxy resin (A) can also be manufactured by a well-known thru | or usual method, and a commercial item can also be used for it.

本発明の硬化性エポキシ樹脂組成物におけるエポキシ樹脂(A)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、25〜99.8重量%(例えば、25〜95重量%)が好ましく、より好ましくは30〜90重量%、さらに好ましくは35〜85重量%、特に好ましくは40〜60重量%である。エポキシ樹脂(A)の含有量を25重量%以上とすることにより、硬化をいっそう効率的に進行させることができる傾向がある。一方、エポキシ樹脂(A)の含有量を99.8重量%以下とすることにより、硬化物の強度がより向上する傾向がある。   Although content (blending amount) of the epoxy resin (A) in the curable epoxy resin composition of the present invention is not particularly limited, it is 25 to 99.99 with respect to the total amount (100% by weight) of the curable epoxy resin composition. It is preferably 8% by weight (for example, 25 to 95% by weight), more preferably 30 to 90% by weight, still more preferably 35 to 85% by weight, and particularly preferably 40 to 60% by weight. By setting the content of the epoxy resin (A) to 25% by weight or more, curing tends to proceed more efficiently. On the other hand, when the content of the epoxy resin (A) is 99.8% by weight or less, the strength of the cured product tends to be further improved.

本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、20〜99.8重量%が好ましく、より好ましくは40〜95重量%(例えば、40〜60重量%)、さらに好ましくは50〜95重量%、特に好ましくは60〜90重量%、最も好ましくは70〜85重量%である。脂環式エポキシ化合物の含有量を20重量%以上とすることにより、硬化をいっそう効率的に進行させることができ、硬化物の透明性及び耐久性がより向上する傾向がある。一方、脂環式エポキシ化合物の含有量を99.8重量%以下とすることにより、硬化物の強度がより向上する傾向がある。   Although content (blending amount) of the alicyclic epoxy compound in the curable epoxy resin composition of the present invention is not particularly limited, it is 20 to 99. with respect to the total amount (100% by weight) of the curable epoxy resin composition. 8% by weight is preferable, more preferably 40 to 95% by weight (for example, 40 to 60% by weight), still more preferably 50 to 95% by weight, particularly preferably 60 to 90% by weight, and most preferably 70 to 85% by weight. It is. By setting the content of the alicyclic epoxy compound to 20% by weight or more, curing can proceed more efficiently, and the transparency and durability of the cured product tend to be further improved. On the other hand, when the content of the alicyclic epoxy compound is 99.8% by weight or less, the strength of the cured product tends to be further improved.

本発明の硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)(100重量%)に対する脂環式エポキシ化合物の割合は、特に限定されないが、40〜100重量%(例えば、40〜90重量%)が好ましく、より好ましくは80〜100重量%、さらに好ましくは90〜100重量%、特に好ましくは95〜100重量%である。脂環式エポキシ化合物の割合を40重量%以上とすることにより、硬化をいっそう効率的に進行させることができ、硬化物の透明性及び耐久性がより向上する傾向がある。   Although the ratio of the alicyclic epoxy compound to the total amount of the epoxy compound contained in the curable epoxy resin composition of the present invention (total epoxy compound; for example, total amount of epoxy resin (A)) (100% by weight) is not particularly limited. 40 to 100% by weight (for example, 40 to 90% by weight), more preferably 80 to 100% by weight, still more preferably 90 to 100% by weight, and particularly preferably 95 to 100% by weight. By setting the ratio of the alicyclic epoxy compound to 40% by weight or more, the curing can proceed more efficiently, and the transparency and durability of the cured product tend to be further improved.

1−2.硬化剤(D)
本発明の硬化性エポキシ樹脂組成物の必須成分のひとつである硬化剤(D)は、エポキシ化合物と反応することにより硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化剤(D)としては、特に限定されず、エポキシ樹脂用硬化剤として周知慣用のものを使用することができ、例えば、酸無水物類(酸無水物系硬化剤)、アミン類(アミン系硬化剤)、ポリアミド樹脂、イミダゾール類(イミダゾール系硬化剤)、ポリメルカプタン類(ポリメルカプタン系硬化剤)、フェノール類(フェノール系硬化剤)、ポリカルボン酸類、ジシアンジアミド類、有機酸ヒドラジド等が挙げられる。
1-2. Curing agent (D)
The curing agent (D) which is one of the essential components of the curable epoxy resin composition of the present invention is a compound having a function of curing the curable epoxy resin composition by reacting with the epoxy compound. The curing agent (D) is not particularly limited, and those well known and commonly used as curing agents for epoxy resins can be used. For example, acid anhydrides (acid anhydride-based curing agents), amines (amine-based) Curing agents), polyamide resins, imidazoles (imidazole curing agents), polymercaptans (polymercaptan curing agents), phenols (phenol curing agents), polycarboxylic acids, dicyandiamides, organic acid hydrazides, and the like. .

硬化剤(D)としての酸無水物類(酸無水物系硬化剤)としては、公知乃至慣用の酸無水物系硬化剤を使用でき、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4−メチルテトラヒドロ無水フタル酸、3−メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4−メチルヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4−(4−メチル−3−ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル−無水マレイン酸共重合体、アルキルスチレン−無水マレイン酸共重合体等が挙げられる。中でも、取り扱い性の観点で、25℃で液状の酸無水物[例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等]が好ましい。一方、25℃で固体状の酸無水物については、例えば、25℃で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の硬化性エポキシ樹脂組成物における硬化剤(D)としての取り扱い性が向上する傾向がある。酸無水物系硬化剤としては、硬化物の耐熱性、透明性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。   As the acid anhydrides (acid anhydride curing agents) as the curing agent (D), known or commonly used acid anhydride curing agents can be used, and are not particularly limited. For example, methyltetrahydrophthalic anhydride (4 -Methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), methylhexahydrophthalic anhydride (such as 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride), dodecenyl succinic anhydride, methyl Endomethylenetetrahydrophthalic anhydride, phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenonetetracarboxylic anhydride, anhydrous Nadic acid, anhydrous methyl nadic acid, methyl hydride Dic anhydride, 4- (4-methyl-3-pentenyl) tetrahydrophthalic anhydride, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanedioic anhydride, methylcyclohexene tetracarboxylic anhydride, vinyl ether-maleic anhydride Examples include acid copolymers and alkylstyrene-maleic anhydride copolymers. Among these, acid anhydrides [for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.] that are liquid at 25 ° C. are preferable from the viewpoint of handleability. On the other hand, for a solid acid anhydride at 25 ° C., for example, by dissolving in a liquid acid anhydride at 25 ° C. to form a liquid mixture, the curing agent (D in the curable epoxy resin composition of the present invention (D ) Tends to be improved. As the acid anhydride curing agent, saturated monocyclic hydrocarbon dicarboxylic acid anhydrides (including those in which a substituent such as an alkyl group is bonded to the ring) are preferable from the viewpoint of heat resistance and transparency of the cured product.

硬化剤(D)としてのアミン類(アミン系硬化剤)としては、公知乃至慣用のアミン系硬化剤を使用でき、特に限定されないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミン等の脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)−3,4,8,10−テトラオキサスピロ[5,5]ウンデカン等の脂環式ポリアミン;m−フェニレンジアミン、p−フェニレンジアミン、トリレン−2,4−ジアミン、トリレン−2,6−ジアミン、メシチレン−2,4−ジアミン、3,5−ジエチルトリレン−2,4−ジアミン、3,5−ジエチルトリレン−2,6−ジアミン等の単核ポリアミン、ビフェニレンジアミン、4,4−ジアミノジフェニルメタン、2,5−ナフチレンジアミン、2,6−ナフチレンジアミン等の芳香族ポリアミン等が挙げられる。   As the amines (amine-based curing agent) as the curing agent (D), a known or conventional amine-based curing agent can be used, and is not particularly limited. For example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, Aliphatic polyamines such as dipropylenediamine, diethylaminopropylamine, polypropylenetriamine; mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-amino Cycloaliphatic polyamines such as ethylpiperazine, 3,9-bis (3-aminopropyl) -3,4,8,10-tetraoxaspiro [5,5] undecane; m-phenylenediamine, p-phenylenediamine, tri 2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, 3,5-diethyltolylene-2,4-diamine, 3,5-diethyltolylene-2,6- Examples include mononuclear polyamines such as diamine, aromatic polyamines such as biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, and 2,6-naphthylenediamine.

硬化剤(D)としてのフェノール類(フェノール系硬化剤)としては、公知乃至慣用のフェノール系硬化剤を使用でき、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパン等が挙げられる。   As the phenols (phenolic curing agents) as the curing agent (D), known or conventional phenolic curing agents can be used, and are not particularly limited. For example, novolac type phenol resins, novolac type cresol resins, paraxylylene-modified phenols. Examples thereof include aralkyl resins such as resins, paraxylylene / metaxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.

硬化剤(D)としてのポリアミド樹脂としては、例えば、分子内に第1級アミノ基及び第2級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。   Examples of the polyamide resin as the curing agent (D) include a polyamide resin having one or both of a primary amino group and a secondary amino group in the molecule.

硬化剤(D)としてのイミダゾール類(イミダゾール系硬化剤)としては、公知乃至慣用のイミダゾール系硬化剤を使用でき、特に限定されないが、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−フェニルイミダゾリウムイソシアヌレート、2,4−ジアミノ−6−[2−メチルイミダゾリル−(1)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2−エチル−4−メチルイミダゾリル−(1)]−エチル−s−トリアジン等が挙げられる。   As the imidazole (imidazole curing agent) as the curing agent (D), a known or commonly used imidazole curing agent can be used, and is not particularly limited. For example, 2-methylimidazole, 2-ethyl-4-methylimidazole 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanate Nu 2,4-diamino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)] -Ethyl-s-triazine and the like.

硬化剤(D)としてのポリメルカプタン類(ポリメルカプタン系硬化剤)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。   Examples of the polymercaptans (polymercaptan-based curing agent) as the curing agent (D) include liquid polymercaptans and polysulfide resins.

硬化剤(D)としてのポリカルボン酸類としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシ基含有ポリエステル等が挙げられる。   Examples of polycarboxylic acids as the curing agent (D) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, carboxy group-containing polyester, and the like.

中でも、硬化剤(D)としては、硬化性、硬化物の耐熱性、透明性の観点で、酸無水物類(酸無水物系硬化剤)が好ましい。なお、本発明の硬化性エポキシ樹脂組成物において硬化剤(D)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、硬化剤(D)としては、市販品を使用することもできる。例えば、酸無水物類の市販品としては、商品名「リカシッド MH−700」、「リカシッド MH−700F」(以上、新日本理化(株)製);商品名「HN−5500」(日立化成工業(株)製)等が挙げられる。   Among these, as the curing agent (D), acid anhydrides (acid anhydride curing agents) are preferable from the viewpoint of curability, heat resistance of the cured product, and transparency. In addition, in the curable epoxy resin composition of this invention, a hardening | curing agent (D) can also be used individually by 1 type, and can also be used in combination of 2 or more type. Moreover, a commercial item can also be used as a hardening | curing agent (D). For example, as commercial products of acid anhydrides, trade names “Licacid MH-700” and “Licacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.); trade name “HN-5500” (Hitachi Chemical Industries) Etc.).

本発明の硬化性エポキシ樹脂組成物における硬化剤(D)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)100重量部に対して、50〜200重量部が好ましく、より好ましくは75〜150重量部、さらに好ましくは100〜120重量部である。より具体的には、硬化剤(D)として酸無水物類を使用する場合、本発明の硬化性エポキシ樹脂組成物に含まれる全てのエポキシ化合物におけるエポキシ基1当量当たり、0.5〜1.5当量となる割合で使用することが好ましい。硬化剤(D)の含有量を50重量部以上とすることにより、硬化をより効率的に進行させることができ、硬化物の強靱性がより向上する傾向がある。一方、硬化剤(D)の含有量を200重量部以下とすることにより、着色の無い(又は少ない)、色相に優れた硬化物が得られやすい傾向がある。   The content (blending amount) of the curing agent (D) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of the epoxy compound contained in the curable epoxy resin composition (total epoxy compound; for example, epoxy The total amount of the resin (A)) is preferably 50 to 200 parts by weight, more preferably 75 to 150 parts by weight, and still more preferably 100 to 120 parts by weight with respect to 100 parts by weight. More specifically, when acid anhydrides are used as the curing agent (D), 0.5 to 1. per epoxy group equivalent in all epoxy compounds contained in the curable epoxy resin composition of the present invention. It is preferable to use it at a ratio of 5 equivalents. By making content of a hardening | curing agent (D) into 50 weight part or more, hardening can be advanced more efficiently and there exists a tendency for the toughness of hardened | cured material to improve more. On the other hand, when the content of the curing agent (D) is 200 parts by weight or less, there is a tendency that a cured product having no color (or little) and excellent in hue is easily obtained.

1−3.硬化促進剤(E)
本発明の硬化性エポキシ樹脂組成物の必須成分のひとつである硬化促進剤(E)は、エポキシ化合物の反応(特に、エポキシ樹脂(A)と硬化剤(D)との反応)の反応速度を促進する機能を有する化合物である。硬化促進剤(E)としては、エポキシ樹脂用硬化促進剤として周知慣用のものを使用することができ、特に限定されないが、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、及びその塩(例えば、フェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、N,N−ジメチルシクロヘキシルアミン等の3級アミン;2−エチル−4−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール等のイミダゾール;リン酸エステル、トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムテトラ(p−トリル)ボレート等のホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛等の有機金属塩;金属キレート等が挙げられる。
1-3. Curing accelerator (E)
The curing accelerator (E), which is one of the essential components of the curable epoxy resin composition of the present invention, has a reaction rate of the reaction of the epoxy compound (particularly the reaction between the epoxy resin (A) and the curing agent (D)). It is a compound having a function to promote. As the curing accelerator (E), those well known and commonly used as curing accelerators for epoxy resins can be used, and are not particularly limited. For example, 1,8-diazabicyclo [5.4.0] undecene-7 ( DBU), and salts thereof (eg, phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) ), And salts thereof (eg, phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts, etc.); benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, Tertiary amines such as N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazoles such as ruimidazole; phosphines such as phosphate esters and triphenylphosphine; phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate; organometallic salts such as tin octylate and zinc octylate; Can be mentioned.

なお、本発明の硬化性エポキシ樹脂組成物において硬化促進剤(E)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。   In addition, a hardening accelerator (E) can also be used individually by 1 type in a curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.

本発明の硬化性エポキシ樹脂組成物における硬化促進剤(E)としては、例えば、商品名「U−CAT SA 506」、「U−CAT SA 102」、「U−CAT 5003」、「U−CAT 18X」、「12XD」(開発品)(以上、サンアプロ(株)製);商品名「TPP−K」、「TPP−MK」(以上、北興化学工業(株)製);商品名「PX−4ET」(日本化学工業(株)製)等の市販品を使用することができる。   Examples of the curing accelerator (E) in the curable epoxy resin composition of the present invention include trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT”. 18X "," 12XD "(developed product) (above, manufactured by San Apro Corporation); trade names" TPP-K "," TPP-MK "(above, manufactured by Hokuko Chemical Co., Ltd.); trade name" PX- " Commercially available products such as “4ET” (manufactured by Nippon Chemical Industry Co., Ltd.) can be used.

本発明の硬化性エポキシ樹脂組成物における硬化促進剤(E)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)100重量部に対して、0.05〜5重量部が好ましく、より好ましくは0.1〜3重量部、さらに好ましくは0.2〜3重量部、特に好ましくは0.25〜2.5重量部である。硬化促進剤(E)の含有量を0.05重量部以上とすることにより、より十分な硬化促進効果を得ることができる傾向がある。一方、硬化促進剤(E)の含有量を5重量部以下とすることにより、着色の無い(又は少ない)、色相に優れた硬化物が得られやすい傾向がある。   The content (blending amount) of the curing accelerator (E) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of the epoxy compound contained in the curable epoxy resin composition (total epoxy compound; for example, The total amount of the epoxy resin (A)) is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, particularly preferably 100 parts by weight. 0.25 to 2.5 parts by weight. By setting the content of the curing accelerator (E) to 0.05 parts by weight or more, there is a tendency that a more sufficient curing acceleration effect can be obtained. On the other hand, when the content of the curing accelerator (E) is 5 parts by weight or less, there is a tendency that a cured product having no color (or little) and excellent in hue is easily obtained.

1−4.硬化触媒(F)
本発明の硬化性エポキシ樹脂組成物の必須成分のひとつである硬化触媒(F)は、エポキシ化合物等のカチオン重合性化合物の硬化反応(重合反応)を開始及び/又は促進させることにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化触媒(F)としては、特に限定されないが、例えば、熱によりカチオン種を発生して、重合を開始させるカチオン重合開始剤(熱カチオン重合開始剤)や、ルイス酸・アミン錯体、ブレンステッド酸塩類、イミダゾール類等が挙げられる。
1-4. Curing catalyst (F)
The curing catalyst (F), which is one of the essential components of the curable epoxy resin composition of the present invention, is curable by initiating and / or accelerating the curing reaction (polymerization reaction) of a cationically polymerizable compound such as an epoxy compound. It is a compound having a function of curing the epoxy resin composition. Although it does not specifically limit as a curing catalyst (F), For example, the cationic polymerization initiator (thermal cation polymerization initiator) which generate | occur | produces a cationic seed | species by heat and starts superposition | polymerization, a Lewis acid amine complex, a Bronsted acid Examples thereof include salts and imidazoles.

具体的には、硬化触媒(F)としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン−イオン錯体等が挙げられ、商品名「PP−33」、「CP−66」、「CP−77」(以上(株)ADEKA製);商品名「FC−509」(スリーエム製);商品名「UVE1014」(G.E.製);商品名「サンエイドSI−60L」、「サンエイドSI−80L」、「サンエイドSI−100L」、「サンエイドSI−110L」、「サンエイドSI−150L」(以上、三新化学工業(株)製);商品名「CG−24−61」(BASF社製)等の市販品を好ましく使用することができる。さらに、硬化触媒(F)としては、例えば、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタン等の金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物等も挙げられる。   Specifically, examples of the curing catalyst (F) include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, etc., and trade names “PP-33”, “CP-66”, “CP-77” (manufactured by ADEKA); trade name “FC-509” (manufactured by 3M); trade name “UVE1014” (manufactured by GE); trade names “Sun Aid SI-60L”, “Sun Aid” "SI-80L", "Sun-Aid SI-100L", "Sun-Aid SI-110L", "Sun-Aid SI-150L" (manufactured by Sanshin Chemical Industry Co., Ltd.); trade name "CG-24-61" (BASF Corporation) (Commercially available products) can be preferably used. Furthermore, as the curing catalyst (F), for example, a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or a diketone and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid Alternatively, a compound of a chelate compound with a diketone and a phenol such as bisphenol S is also included.

硬化触媒(F)としてのルイス酸・アミン錯体としては、公知乃至慣用のルイス酸・アミン錯体系硬化触媒を使用することができ、特に限定されないが、例えば、BF3・n−ヘキシルアミン、BF3・モノエチルアミン、BF3・ベンジルアミン、BF3・ジエチルアミン、BF3・ピペリジン、BF3・トリエチルアミン、BF3・アニリン、BF4・n−ヘキシルアミン、BF4・モノエチルアミン、BF4・ベンジルアミン、BF4・ジエチルアミン、BF4・ピペリジン、BF4・トリエチルアミン、BF4・アニリン、PF5・エチルアミン、PF5・イソプロピルアミン、PF5・ブチルアミン、PF5・ラウリルアミン、PF5・ベンジルアミン、AsF5・ラウリルアミン等が挙げられる。As the Lewis acid / amine complex as the curing catalyst (F), a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited. For example, BF 3 .n-hexylamine, BF 3 · monoethylamine, BF 3 · benzylamine, BF 3 · diethylamine, BF 3 · piperidine, BF 3 · triethylamine, BF 3 · aniline, BF 4 - n-hexylamine, BF 4 - monoethylamine, BF 4 - benzylamine , BF 4 · diethylamine, BF 4 · piperidine, BF 4 · triethylamine, BF 4 · aniline, PF 5 · ethylamine, PF 5 · isopropylamine, PF 5 · butylamine, PF 5 · laurylamine, PF 5 · benzylamine, AsF 5. Laurylamine etc. are mentioned.

硬化触媒(F)としてのブレンステッド酸塩類としては、公知乃至慣用のブレンステッド酸塩類を使用することができ、特に限定されないが、例えば、脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩、ホスホニウム塩等が挙げられる。   As the Bronsted acid salts as the curing catalyst (F), known or commonly used Bronsted acid salts can be used, and are not particularly limited. For example, aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts, phosphoniums. Examples include salts.

硬化触媒(F)としてのイミダゾール類としては、公知乃至慣用のイミダゾール類を使用することができ、特に限定されないが、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテート、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2−メチルイミダゾリウムイソシアヌレート、2−フェニルイミダゾリウムイソシアヌレート、2,4−ジアミノ−6−[2−メチルイミダゾリル−(1)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2−エチル−4−メチルイミダゾリル−(1)]−エチル−s−トリアジン等が挙げられる。   As the imidazoles as the curing catalyst (F), known or conventional imidazoles can be used, and are not particularly limited. For example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl Imidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanurate, 2,4 - Mino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)]-ethyl-s-triazine, etc. Is mentioned.

なお、本発明の硬化性エポキシ樹脂組成物において硬化触媒(F)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、上述のように、硬化触媒(F)としては、例えば、市販品を使用することができる。   In the curable epoxy resin composition of the present invention, the curing catalyst (F) can be used singly or in combination of two or more. In addition, as above-mentioned as a curing catalyst (F), a commercial item can be used, for example.

本発明の硬化性エポキシ樹脂組成物における硬化触媒(F)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)100重量部に対して、0.01〜15重量部が好ましく、より好ましくは0.01〜12重量部、さらに好ましくは0.05〜10重量部、特に好ましくは0.05〜8重量部である。硬化触媒(F)の含有量を0.01重量部以上とすることにより、より十分に硬化反応を進行させることができる傾向がある。一方、硬化触媒(F)の含有量を15重量部以下とすることにより、着色の無い(又は少ない)、色相に優れた硬化物が得られやすい傾向がある。即ち、硬化触媒(F)の含有量を上記範囲に制御することによって、硬化性エポキシ樹脂組成物の硬化速度が向上し、また、透明性及び耐久性のバランスに優れた硬化物が得られやすい傾向がある。   The content (blending amount) of the curing catalyst (F) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of the epoxy compound contained in the curable epoxy resin composition (total epoxy compound; for example, epoxy The total amount of the resin (A)) is preferably 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0 to 100 parts by weight. 0.05 to 8 parts by weight. By setting the content of the curing catalyst (F) to 0.01 parts by weight or more, the curing reaction tends to proceed more sufficiently. On the other hand, by setting the content of the curing catalyst (F) to 15 parts by weight or less, there is a tendency that a cured product having no color (or little) and excellent in hue is easily obtained. That is, by controlling the content of the curing catalyst (F) within the above range, the curing rate of the curable epoxy resin composition is improved, and a cured product having a good balance between transparency and durability is easily obtained. Tend.

なお、本発明の硬化性エポキシ樹脂組成物は、光の照射によりカチオン重合の開始種(酸等)を発生する光カチオン重合開始剤を実質的に含んでいてもよい。本発明の硬化性エポキシ樹脂組成物が光カチオン重合開始剤を含む場合、その含有量は、例えば、硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)100重量部に対して、例えば、0.01〜20重量部程度、好ましくは0.1〜10重量部である。   In addition, the curable epoxy resin composition of this invention may contain substantially the photocationic polymerization initiator which generate | occur | produces the seeds (acid etc.) of cationic polymerization by irradiation of light. When the curable epoxy resin composition of the present invention contains a photocationic polymerization initiator, the content thereof is, for example, the total amount of epoxy compounds contained in the curable epoxy resin composition (total epoxy compounds; for example, epoxy resin (A )) To 100 parts by weight, for example, about 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight.

1−5.多価アルコール
本発明の硬化性エポキシ樹脂組成物は、多価アルコールを含んでいてもよい。特に、本発明の硬化性エポキシ樹脂組成物が硬化剤(D)及び硬化促進剤(E)を含む場合には、硬化をより効率的に進行させることができる点で、さらに多価アルコールを含むことが好ましい。多価アルコールとしては、公知乃至慣用の多価アルコールを使用することができ、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
1-5. Polyhydric alcohol The curable epoxy resin composition of the present invention may contain a polyhydric alcohol. In particular, when the curable epoxy resin composition of the present invention includes a curing agent (D) and a curing accelerator (E), it further includes a polyhydric alcohol in that curing can proceed more efficiently. It is preferable. As the polyhydric alcohol, known or conventional polyhydric alcohols can be used, and are not particularly limited. For example, ethylene glycol, propylene glycol, butylene glycol, 1,3-butanediol, 1,4-butanediol, Examples include 1,6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, polybutylene glycol, trimethylolpropane, glycerin, pentaerythritol, and dipentaerythritol.

中でも、上記多価アルコールとしては、硬化を良好に制御することができ、クラックや剥離がより生じにくい硬化物が得られやすい点で、炭素数1〜6のアルキレングリコールが好ましく、より好ましくは炭素数2〜4のアルキレングリコールである。   Among them, the polyhydric alcohol is preferably an alkylene glycol having 1 to 6 carbon atoms, more preferably carbon in terms of being able to control curing well and obtaining a cured product that is less prone to cracking and peeling. It is an alkylene glycol of formula 2-4.

本発明の硬化性エポキシ樹脂組成物において多価アルコールは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。   In the curable epoxy resin composition of the present invention, the polyhydric alcohol can be used alone or in combination of two or more.

本発明の硬化性エポキシ樹脂組成物における多価アルコールの含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ化合物の全量(全エポキシ化合物;例えば、エポキシ樹脂(A)の全量)100重量部に対して、0.05〜5重量部が好ましく、より好ましくは0.1〜3重量部、さらに好ましくは0.2〜3重量部、特に好ましくは0.25〜2.5重量部である。多価アルコールの含有量を0.05重量部以上とすることにより、硬化をより効率的に進行させることができる傾向がある。一方、多価アルコールの含有量を5重量部以下とすることにより、上記硬化の反応速度を制御しやすい傾向がある。   The content (blending amount) of the polyhydric alcohol in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of the epoxy compound contained in the curable epoxy resin composition (total epoxy compound; for example, epoxy resin ( The total amount of A) is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, particularly preferably 0.25 to 100 parts by weight. -2.5 parts by weight. By setting the content of the polyhydric alcohol to 0.05 parts by weight or more, curing tends to proceed more efficiently. On the other hand, when the content of the polyhydric alcohol is 5 parts by weight or less, the reaction rate of the curing tends to be easily controlled.

1−6.蛍光体
本発明の硬化性エポキシ樹脂組成物は、蛍光体を含んでいてもよい。本発明の硬化性エポキシ樹脂組成物が蛍光体を含む場合には、光半導体装置における光半導体素子の封止用途(封止材用途)、即ち、光半導体封止用樹脂組成物として特に好ましく使用できる。上記蛍光体としては、公知乃至慣用の蛍光体(特に、光半導体素子の封止用途において使用される蛍光体)を使用でき、特に限定されないが、例えば、一般式A3512:M[式中、Aは、Y、Gd、Tb、La、Lu、Se、及びSmからなる群より選択された1種以上の元素を示し、Bは、Al、Ga、及びInからなる群より選択された1種以上の元素を示し、Mは、Ce、Pr、Eu、Cr、Nd、及びErからなる群より選択された1種以上の元素を示す]で表されるYAG系の蛍光体微粒子(例えば、Y3Al512:Ce蛍光体微粒子、(Y,Gd,Tb)3(Al,Ga)512:Ce蛍光体微粒子等)、シリケート系蛍光体微粒子(例えば、(Sr,Ca,Ba)2SiO4:Eu等)等が挙げられる。なお、蛍光体は、例えば、分散性向上のために、有機基(例えば、長鎖アルキル基、リン酸基等)等により表面が修飾されたものであってもよい。本発明の硬化性エポキシ樹脂組成物において蛍光体は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、蛍光体としては市販品を使用することができる。
1-6. Phosphor The curable epoxy resin composition of the present invention may contain a phosphor. When the curable epoxy resin composition of the present invention contains a phosphor, it is particularly preferably used as an optical semiconductor device sealing application (sealing material application) in an optical semiconductor device, that is, an optical semiconductor sealing resin composition. it can. As the phosphor, a known or commonly used phosphor (in particular, a phosphor used for sealing an optical semiconductor element) can be used, and is not particularly limited. For example, the general formula A 3 B 5 O 12 : M [Wherein, A represents one or more elements selected from the group consisting of Y, Gd, Tb, La, Lu, Se, and Sm, and B is selected from the group consisting of Al, Ga, and In. YAG phosphor fine particles represented by the following formula: M represents one or more elements selected from the group consisting of Ce, Pr, Eu, Cr, Nd, and Er] (For example, Y 3 Al 5 O 12 : Ce phosphor fine particles, (Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce phosphor fine particles, etc.), silicate type phosphor fine particles (for example, (Sr, Ca, Ba) 2 SiO 4 : Eu and the like. In addition, the surface of the phosphor may be modified with an organic group (for example, a long-chain alkyl group, a phosphate group, etc.) to improve dispersibility, for example. In the curable epoxy resin composition of the present invention, the phosphor may be used alone or in combination of two or more. Moreover, a commercial item can be used as a fluorescent substance.

本発明の硬化性エポキシ樹脂組成物における蛍光体の含有量(配合量)は、特に限定されず、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、0.5〜20重量%の範囲で適宜選択することができる。   The phosphor content (blending amount) in the curable epoxy resin composition of the present invention is not particularly limited, and is 0.5 to 20% by weight with respect to the total amount (100% by weight) of the curable epoxy resin composition. It can select suitably in the range of.

1−7.その他の成分
本発明の硬化性エポキシ樹脂組成物は、硬化性や透明性等に大きな悪影響が及ばない範囲で、上記以外のその他の成分を含んでいてもよい。上記その他の成分としては、例えば、直鎖又は分岐鎖を有するシリコーン系樹脂、脂環を有するシリコーン系樹脂、芳香環を有するシリコーン系樹脂、かご型/ラダー型/ランダム型のシルセスキオキサン、γ−グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、シリコーン系やフッ素系の消泡剤等が挙げられる。上記その他の成分の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物の全量(100重量%)に対して、5重量%以下(例えば、0〜3重量%)が好ましい。
1-7. Other Components The curable epoxy resin composition of the present invention may contain other components other than those described above within a range that does not adversely affect the curability and transparency. Examples of the other components include a silicone resin having a linear or branched chain, a silicone resin having an alicyclic ring, a silicone resin having an aromatic ring, a cage type / ladder type / random type silsesquioxane, Examples include silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, silicone-based and fluorine-based antifoaming agents, and the like. The content (blending amount) of the other components is not particularly limited, but is preferably 5% by weight or less (for example, 0 to 3% by weight) with respect to the total amount (100% by weight) of the curable epoxy resin composition. .

本発明の硬化性エポキシ樹脂組成物は、特に限定されないが、例えば、上述の各成分を、必要に応じて加熱した状態で撹拌、混合することによって調製することができる。なお、本発明の硬化性エポキシ樹脂組成物は、各成分の全てがあらかじめ混合されたものをそのまま使用する1液系の組成物であってもよいし、例えば、2以上に分割された成分を使用の直前で所定の割合で混合して使用する多液系(例えば、2液系)の組成物であってもよい。撹拌、混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。   Although the curable epoxy resin composition of this invention is not specifically limited, For example, it can prepare by stirring and mixing each above-mentioned component in the state heated as needed. In addition, the curable epoxy resin composition of the present invention may be a one-component composition that uses a mixture of all the components in advance, or, for example, a component divided into two or more. It may be a multi-liquid composition (for example, a two-liquid system) used by mixing at a predetermined ratio immediately before use. The method of stirring and mixing is not particularly limited, and for example, known or conventional stirring and mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under reduced pressure or under vacuum.

2.硬化性シリコーン樹脂組成物
上記硬化性シリコーン樹脂組成物(「本発明の硬化性シリコーン樹脂組成物」と称する場合がある)は、硬化性化合物としてシリコーン樹脂(B)を必須成分として含む硬化性組成物である。本発明の硬化性シリコーン樹脂組成物は、シリコーン樹脂(B)以外の成分を含んでいてもよい。
2. Curable Silicone Resin Composition The curable silicone resin composition (sometimes referred to as “the curable silicone resin composition of the present invention”) is a curable composition containing a silicone resin (B) as an essential component as a curable compound. It is a thing. The curable silicone resin composition of the present invention may contain components other than the silicone resin (B).

シリコーン樹脂(B)としては、例えば、主鎖として−Si−O−Si−(シロキサン結合)に加えて、−Si−RA−Si−(シルアルキレン結合:RAはアルキレン基を示す)を含むポリオルガノシロキシシルアルキレン;主鎖として上記シルアルキレン結合を含まないポリオルガノシロキサン等の硬化性ポリシロキサンが挙げられる。As the silicone resin (B), for example, in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A —Si— (silalkylene bond: R A represents an alkylene group) Included polyorganosiloxysilalkylene; curable polysiloxanes such as polyorganosiloxane that does not contain the above-mentioned silalkylene bond as the main chain.

また、シリコーン樹脂(B)としては、硬化性化合物として公知乃至慣用の硬化性シリコーン樹脂(硬化性ポリシロキサン)を使用することができ、特に限定されないが、例えば、付加型(付加反応硬化型)のシリコーン樹脂、縮合型(縮合反応硬化型)のシリコーン樹脂等が挙げられる。本発明の硬化性シリコーン樹脂組成物が前者を含む場合には付加反応硬化性シリコーン樹脂組成物として使用することができ、後者を含む場合には縮合反応硬化性シリコーン樹脂組成物として使用することができる。以下、これらの付加反応硬化性シリコーン樹脂組成物及び縮合反応硬化性シリコーン樹脂組成物について説明するが、本発明の硬化性シリコーン樹脂組成物はこれらに限定されず、例えば、付加型のシリコーン樹脂と縮合型のシリコーン樹脂の両方を含む、付加反応と縮合反応により硬化するシリコーン樹脂組成物であってもよい。即ち、上記硬化工程における硬化性シリコーン樹脂組成物の硬化は、付加反応及び縮合反応からなる群より選択される少なくとも1種の反応により進行するものであってよい。   As the silicone resin (B), a known or commonly used curable silicone resin (curable polysiloxane) can be used as the curable compound, and is not particularly limited. For example, an addition type (addition reaction curable type) Silicone resin, condensation type (condensation reaction curing type) silicone resin, and the like. When the curable silicone resin composition of the present invention contains the former, it can be used as an addition reaction curable silicone resin composition, and when it contains the latter, it can be used as a condensation reaction curable silicone resin composition. it can. Hereinafter, the addition reaction curable silicone resin composition and the condensation reaction curable silicone resin composition will be described. However, the curable silicone resin composition of the present invention is not limited thereto. For example, an addition type silicone resin and It may be a silicone resin composition that contains both condensation type silicone resins and cures by addition reaction and condensation reaction. That is, curing of the curable silicone resin composition in the curing step may proceed by at least one reaction selected from the group consisting of an addition reaction and a condensation reaction.

2−1.付加反応硬化性シリコーン樹脂組成物
上記付加反応硬化性シリコーン樹脂組成物としては、例えば、シリコーン樹脂(B)として分子内に2個以上のアルケニル基を有するポリシロキサン(B1)を含有し、さらに必要に応じて、分子内に1個以上(好ましくは2個以上)のヒドロシリル基を有するポリシロキサンや金属硬化触媒等を含む硬化性シリコーン樹脂組成物が挙げられる。
2-1. Addition reaction curable silicone resin composition The addition reaction curable silicone resin composition contains, for example, a polysiloxane (B1) having two or more alkenyl groups in the molecule as the silicone resin (B), and further required. Depending on the case, a curable silicone resin composition containing polysiloxane having one or more (preferably two or more) hydrosilyl groups in the molecule, a metal curing catalyst, or the like may be mentioned.

上記ポリシロキサン(B1)は、ポリオルガノシロキサン(B1−1)とポリオルガノシロキシシルアルキレン(B1−2)とに分類される。本明細書においてポリオルガノシロキシシルアルキレン(B1−2)とは、分子内に2個以上のアルケニル基を有し、主鎖として−Si−O−Si−(シロキサン結合)に加えて、−Si−RA−Si−(シルアルキレン結合:RAはアルキレン基を示す)を含むポリシロキサンである。そして、本明細書におけるポリオルガノシロキサン(B1−1)は、分子内に2個以上のアルケニル基を有し、主鎖として上記シルアルキレン結合を含まないポリシロキサンである。The polysiloxane (B1) is classified into a polyorganosiloxane (B1-1) and a polyorganosiloxysilalkylene (B1-2). In this specification, polyorganosiloxysilalkylene (B1-2) has two or more alkenyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si A polysiloxane containing —R A —Si— (silalkylene bond: R A represents an alkylene group). And polyorganosiloxane (B1-1) in this specification is a polysiloxane which has two or more alkenyl groups in a molecule | numerator, and does not contain the said silalkylene bond as a principal chain.

ポリオルガノシロキサン(B1−1)としては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するものが挙げられる。なお、ポリオルガノシロキサン(B1−1)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、分子構造が異なるポリオルガノシロキサン(B1−1)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキサン(B1−1)と分岐鎖状のポリオルガノシロキサン(B1−1)とを併用することもできる。   Examples of the polyorganosiloxane (B1-1) include those having a molecular structure of linear or branched (linear, partially branched, network, etc. partially branched). In addition, polyorganosiloxane (B1-1) can also be used individually by 1 type, and can also be used in combination of 2 or more type. Two or more polyorganosiloxanes (B1-1) having different molecular structures can be used in combination, for example, a linear polyorganosiloxane (B1-1) and a branched polyorganosiloxane (B1-). 1) can be used in combination.

ポリオルガノシロキサン(B1−1)が分子内に有するアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等の置換又は無置換アルケニル基が挙げられる。置換基としては、ハロゲン原子、ヒドロキシ基、カルボキシ基等が挙げられる。中でも、アルケニル基としては、ビニル基が好ましい。また、ポリオルガノシロキサン(B1−1)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキサン(B1−1)が有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。   Examples of the alkenyl group that the polyorganosiloxane (B1-1) has in the molecule include substituted or unsubstituted alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, and hexenyl group. Examples of the substituent include a halogen atom, a hydroxy group, and a carboxy group. Among these, as the alkenyl group, a vinyl group is preferable. The polyorganosiloxane (B1-1) may have only one alkenyl group, or may have two or more alkenyl groups. Although the alkenyl group which polyorganosiloxane (B1-1) has is not specifically limited, It is preferable that it is a thing couple | bonded with the silicon atom.

ポリオルガノシロキサン(B1−1)が有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、1価の有機基等が挙げられる。1価の有機基としては、例えば、アルキル基[例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等]、シクロアルキル基[例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等]、アリール基[例えば、フェニル基、トリル基、キシリル基、ナフチル基等]、シクロアルキル−アルキル基[例えば、シクロへキシルメチル基、メチルシクロヘキシル基等]、アラルキル基[例えば、ベンジル基、フェネチル基等]、炭化水素基における1以上の水素原子がハロゲン原子で置換されたハロゲン化炭化水素基[例えば、クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基等]等の1価の置換又は無置換炭化水素基等が挙げられる。なお、本明細書において「ケイ素原子に結合した基」とは、通常、ケイ素原子を含まない基を指すものとする。   Although the group couple | bonded with silicon atoms other than the alkenyl group which polyorganosiloxane (B1-1) has is not specifically limited, For example, a hydrogen atom, a monovalent organic group, etc. are mentioned. Examples of the monovalent organic group include alkyl groups [eg, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc.], cycloalkyl groups [eg, cyclopropyl group, cyclobutyl group, cyclopentyl group, etc. Cyclohexyl group, cyclododecyl group, etc.], aryl group [eg, phenyl group, tolyl group, xylyl group, naphthyl group, etc.], cycloalkyl-alkyl group [eg, cyclohexylmethyl group, methylcyclohexyl group, etc.], aralkyl group [For example, a benzyl group, a phenethyl group, etc.], a halogenated hydrocarbon group in which one or more hydrogen atoms in a hydrocarbon group are substituted with a halogen atom [for example, a chloromethyl group, a 3-chloropropyl group, 3, 3, 3 Monovalent substituted or unsubstituted carbonization such as -halogenated alkyl group such as trifluoropropyl group] Containing group, and the like. In the present specification, the “group bonded to a silicon atom” usually means a group not containing a silicon atom.

また、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。   In addition, the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.

ポリオルガノシロキサン(B1−1)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。   The property of polyorganosiloxane (B1-1) is not particularly limited, and may be liquid or solid.

ポリオルガノシロキサン(B1−1)としては、下記平均単位式:
(R7SiO3/2a1(R7 2SiO2/2a2(R7 3SiO1/2a3(SiO4/2a4(ZO1/2a5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R7は、同一又は異なって、1価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化炭化水素基等)が挙げられる。但し、R7の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R7の全量(100モル%)に対するアルケニル基の割合は、0.1〜40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR7としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
As polyorganosiloxane (B1-1), the following average unit formula:
(R 7 SiO 3/2) a1 ( R 7 2 SiO 2/2) a2 (R 7 3 SiO 1/2) a3 (SiO 4/2) a4 (ZO 1/2) a5
The polyorganosiloxane represented by these is preferable. In the above average unit formula, R 7 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the specific examples described above (for example, alkyl group, alkenyl group, aryl group, aralkyl group, halogenated carbonization) Hydrogen group, etc.). However, a part of R 7 is an alkenyl group (particularly a vinyl group), and the ratio thereof is controlled within a range of 2 or more in the molecule. For example, the ratio of the alkenyl group to the total amount of R 7 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the ratio of the alkenyl group to the above range, the curability of the curable silicone resin composition tends to be further improved. Further, as R 7 other than the alkenyl group, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.

上記平均単位式中、Zは、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。   In the above average unit formula, Z is a hydrogen atom or an alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.

上記平均単位式中、a1は0又は正数、a2は0又は正数、a3は0又は正数、a4は0又は正数、a5は0又は正数であり、且つ、(a1+a2+a3)は正数である。   In the above average unit formula, a1 is 0 or positive number, a2 is 0 or positive number, a3 is 0 or positive number, a4 is 0 or positive number, a5 is 0 or positive number, and (a1 + a2 + a3) is positive Is a number.

ポリオルガノシロキシシルアルキレン(B1−2)は、上述のように、分子内に2個以上のアルケニル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ポリオルガノシロキシシルアルキレン(B1−2)は、ポリオルガノシロキサン(B1−1)と比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(−SiOH)を生じ難いため、ポリオルガノシロキシシルアルキレン(B1−2)を使用した場合、硬化性シリコーン樹脂組成物の硬化物の表面粘着性(タック性)が低くなり、より黄変し難い傾向がある。As described above, the polyorganosiloxysilalkylene (B1-2) is a polyorganosiloxane having two or more alkenyl groups in the molecule and containing a silalkylene bond as a main chain in addition to a siloxane bond. The alkylene group in the silalkylene bond is preferably a C 2-4 alkylene group (particularly an ethylene group). The polyorganosiloxysilalkylene (B1-2) is less likely to produce a low molecular weight ring in the production process than the polyorganosiloxane (B1-1), and is decomposed by heating or the like to produce a silanol group (—SiOH). Therefore, when polyorganosiloxysilalkylene (B1-2) is used, the surface tackiness (tackiness) of the cured product of the curable silicone resin composition tends to be low, and it tends to be more difficult to yellow.

ポリオルガノシロキシシルアルキレン(B1−2)としては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するものが挙げられる。なお、ポリオルガノシロキシシルアルキレン(B1−2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。例えば、分子構造が異なるポリオルガノシロキシシルアルキレン(B1−2)の2種以上を併用することができ、例えば、直鎖状のポリオルガノシロキシシルアルキレン(B1−2)と分岐鎖状のポリオルガノシロキシシルアルキレン(B1−2)とを併用することもできる。   Examples of the polyorganosiloxysilalkylene (B1-2) include those having a molecular structure such as a straight chain or a branched chain (a linear chain having a partial branch, a branched chain, a network, etc.). In addition, polyorgano siloxysil alkylene (B1-2) can also be used individually by 1 type, and can also be used in combination of 2 or more type. For example, two or more kinds of polyorganosiloxysilalkylene (B1-2) having different molecular structures can be used in combination, for example, linear polyorganosiloxysilalkylene (B1-2) and branched polyorgano Siloxysilalkylene (B1-2) can also be used in combination.

ポリオルガノシロキシシルアルキレン(B1−2)が分子内に有するアルケニル基としては、上述の具体例が挙げられるが、中でもビニル基が好ましい。また、ポリオルガノシロキシシルアルキレン(B1−2)は、1種のみのアルケニル基を有するものであってもよいし、2種以上のアルケニル基を有するものであってもよい。ポリオルガノシロキシシルアルキレン(B1−2)が有するアルケニル基は、特に限定されないが、ケイ素原子に結合したものであることが好ましい。   Examples of the alkenyl group that polyorganosiloxysilalkylene (B1-2) has in the molecule include the specific examples described above, and among them, a vinyl group is preferable. Further, the polyorganosiloxysilalkylene (B1-2) may have only one alkenyl group or may have two or more alkenyl groups. The alkenyl group of the polyorganosiloxysilalkylene (B1-2) is not particularly limited, but is preferably bonded to a silicon atom.

ポリオルガノシロキシシルアルキレン(B1−2)が有するアルケニル基以外のケイ素原子に結合した基は、特に限定されないが、例えば、水素原子、1価の有機基等が挙げられる。1価の有機基としては、例えば、上述の1価の置換又は無置換炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。   Although the group couple | bonded with silicon atoms other than the alkenyl group which polyorganosiloxysil alkylene (B1-2) has is not specifically limited, For example, a hydrogen atom, a monovalent organic group, etc. are mentioned. As a monovalent organic group, the above-mentioned monovalent substituted or unsubstituted hydrocarbon group etc. are mentioned, for example. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.

また、ケイ素原子に結合した基として、ヒドロキシ基、アルコキシ基を有していてもよい。   In addition, the group bonded to the silicon atom may have a hydroxy group or an alkoxy group.

ポリオルガノシロキシシルアルキレン(B1−2)の性状は、特に限定されず、液状であってもよいし、固体状であってもよい。   The property of polyorganosiloxysilalkylene (B1-2) is not particularly limited, and may be liquid or solid.

ポリオルガノシロキシシルアルキレン(B1−2)としては、下記平均単位式:
(R8 2SiO2/2b1(R8 3SiO1/2b2(R8SiO3/2b3(SiO4/2b4(RAb5(ZO1/2b6
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R8は、同一又は異なって、1価の置換又は無置換炭化水素基であり、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R8の一部はアルケニル基(特にビニル基)であり、その割合は、分子内に2個以上となる範囲に制御される。例えば、R8の全量(100モル%)に対するアルケニル基の割合は、0.1〜40モル%が好ましい。アルケニル基の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、アルケニル基以外のR8としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
As polyorganosiloxysilalkylene (B1-2), the following average unit formula:
(R 8 2 SiO 2/2 ) b 1 (R 8 3 SiO 1/2 ) b 2 (R 8 SiO 3/2 ) b 3 (SiO 4/2 ) b 4 (R A ) b 5 (ZO 1/2 ) b 6
A polyorganosiloxysilalkylene represented by the formula is preferred. In the above average unit formula, R 8 is the same or different and is a monovalent substituted or unsubstituted hydrocarbon group, and the above specific examples (for example, alkyl group, alkenyl group, aryl group, aralkyl group, alkyl halide) Group). However, a part of R 8 is an alkenyl group (particularly a vinyl group), and the ratio thereof is controlled within a range of 2 or more in the molecule. For example, the ratio of the alkenyl group to the total amount of R 8 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the ratio of the alkenyl group to the above range, the curability of the curable silicone resin composition tends to be further improved. Further, R 8 other than an alkenyl group is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).

上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。In the average unit formula, R A is an alkylene group as described above. An ethylene group is particularly preferable.

上記平均単位式中、Zは、上記と同じく、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。   In the average unit formula, Z is a hydrogen atom or an alkyl group as described above. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.

上記平均単位式中、b1は正数、b2は正数、b3は0又は正数、b4は0又は正数、b5は正数、b6は0又は正数である。中でも、b1は1〜200が好ましく、b2は1〜200が好ましく、b3は0〜10が好ましく、b4は0〜5が好ましく、b5は1〜100が好ましい。特に、(b3+b4)が正数の場合には、硬化物の機械強度がより向上する傾向がある。   In the above average unit formula, b1 is a positive number, b2 is a positive number, b3 is 0 or a positive number, b4 is 0 or a positive number, b5 is a positive number, b6 is 0 or a positive number. Among these, b1 is preferably 1 to 200, b2 is preferably 1 to 200, b3 is preferably 0 to 10, b4 is preferably 0 to 5, and b5 is preferably 1 to 100. In particular, when (b3 + b4) is a positive number, the mechanical strength of the cured product tends to be further improved.

上記付加反応硬化性シリコーン樹脂組成物は、上述のように、さらに分子内に1個以上(好ましくは2個以上)のヒドロシリル基(Si−H)を有するポリシロキサン(「ヒドロシリル基含有ポリシロキサン」と称する場合がある)を含んでいてもよい。上記ヒドロシリル基含有ポリシロキサンは、ヒドロシリル基含有ポリオルガノシロキサンとヒドロシリル基含有ポリオルガノシロキシシルアルキレンとに分類される。本明細書においてヒドロシリル基含有ポリオルガノシロキシシルアルキレンとは、分子内に1個以上のヒドロシリル基を有し、主鎖として−Si−O−Si−(シロキサン結合)に加えて、−Si−RA−Si−(シルアルキレン結合:RAはアルキレン基を示す)を含むポリシロキサンである。そして、本明細書におけるヒドロシリル基含有ポリオルガノシロキサンは、分子内に1個以上のヒドロシリル基を有し、主鎖として上記シルアルキレン結合を含まないポリシロキサンである。なお、RA(アルキレン基)としては、上記と同じく、例えば、直鎖又は分岐鎖状のC1-12アルキレン基が挙げられ、好ましくは直鎖又は分岐鎖状のC2-4アルキレン基(特に、エチレン基)である。As described above, the addition reaction curable silicone resin composition is a polysiloxane having one or more (preferably two or more) hydrosilyl groups (Si—H) in the molecule (“hydrosilyl group-containing polysiloxane”). May be included). The hydrosilyl group-containing polysiloxane is classified into a hydrosilyl group-containing polyorganosiloxane and a hydrosilyl group-containing polyorganosiloxysil alkylene. In this specification, the hydrosilyl group-containing polyorganosiloxysilalkylene has one or more hydrosilyl groups in the molecule, and in addition to —Si—O—Si— (siloxane bond) as a main chain, —Si—R A polysiloxane containing A-Si- (silalkylene bond: RA represents an alkylene group). And the hydrosilyl group containing polyorganosiloxane in this specification is a polysiloxane which has 1 or more hydrosilyl groups in a molecule | numerator, and does not contain the said silalkylene bond as a principal chain. As R A (alkylene group), as described above, for example, a linear or branched C 1-12 alkylene group may be mentioned, and preferably a linear or branched C 2-4 alkylene group ( In particular, ethylene group).

上記ヒドロシリル基含有ポリオルガノシロキサンとしては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するものが挙げられる。なお、上記ヒドロシリル基含有ポリオルガノシロキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。分子構造が異なるヒドロシリル基含有ポリオルガノシロキサンの2種以上を併用することができ、例えば、直鎖状のヒドロシリル基含有ポリオルガノシロキサンと分岐鎖状のヒドロシリル基含有ポリオルガノシロキサンとを併用することもできる。   Examples of the hydrosilyl group-containing polyorganosiloxane include those having a molecular structure of linear or branched (linear, partially branched, networked, etc. partially branched). In addition, the said hydrosilyl group containing polyorganosiloxane can also be used individually by 1 type, and can also be used in combination of 2 or more type. Two or more hydrosilyl group-containing polyorganosiloxanes having different molecular structures can be used in combination. For example, a linear hydrosilyl group-containing polyorganosiloxane and a branched hydrosilyl group-containing polyorganosiloxane may be used in combination. it can.

上記ヒドロシリル基含有ポリオルガノシロキサンが有するケイ素原子に結合した基の中でも水素原子以外の基は、特に限定されないが、例えば、上述の1価の置換又は無置換炭化水素基、より詳しくは、アルキル基、アリール基、アラルキル基、ハロゲン化炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。また、上記ヒドロシリル基含有ポリオルガノシロキサンは、水素原子以外のケイ素原子に結合した基として、アルケニル基(例えばビニル基)を有していてもよい。   Among the groups bonded to the silicon atom of the hydrosilyl group-containing polyorganosiloxane, groups other than hydrogen atoms are not particularly limited. For example, the monovalent substituted or unsubstituted hydrocarbon group described above, more specifically, an alkyl group , Aryl group, aralkyl group, halogenated hydrocarbon group and the like. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable. Moreover, the said hydrosilyl group containing polyorganosiloxane may have an alkenyl group (for example, vinyl group) as a group couple | bonded with silicon atoms other than a hydrogen atom.

上記ヒドロシリル基含有ポリオルガノシロキサンの性状は、特に限定されず、液状であってもよいし、固体状であってもよい。中でも液状であることが好ましく、25℃における粘度が0.1〜1000000000mPa・sの液状であることがより好ましい。   The properties of the hydrosilyl group-containing polyorganosiloxane are not particularly limited, and may be liquid or solid. Among them, a liquid is preferable, and a liquid having a viscosity at 25 ° C. of 0.1 to 1,000,000 mPa · s is more preferable.

上記ヒドロシリル基含有ポリオルガノシロキサンとしては、下記平均単位式:
(R9SiO3/2c1(R9 2SiO2/2c2(R9 3SiO1/2c3(SiO4/2c4(ZO1/2c5
で表されるポリオルガノシロキサンが好ましい。上記平均単位式中、R9は、同一又は異なって、水素原子、又は、1価の置換若しくは無置換炭化水素基であり、水素原子、上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R9の一部は水素原子(ヒドロシリル基を構成する水素原子)であり、その割合は、ヒドロシリル基が分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R9の全量(100モル%)に対する水素原子の割合は、0.1〜40モル%が好ましい。水素原子の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR9としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。
The hydrosilyl group-containing polyorganosiloxane has the following average unit formula:
(R 9 SiO 3/2 ) c 1 (R 9 2 SiO 2/2 ) c 2 (R 9 3 SiO 1/2 ) c 3 (SiO 4/2 ) c 4 (ZO 1/2 ) c 5
The polyorganosiloxane represented by these is preferable. In the above average unit formula, R 9 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and a hydrogen atom, the above-mentioned specific examples (for example, alkyl group, alkenyl group, aryl Group, aralkyl group, halogenated alkyl group and the like). However, a part of R 9 is a hydrogen atom (hydrogen atom constituting a hydrosilyl group), and the ratio thereof is controlled in a range in which one or more (preferably two or more) hydrosilyl groups are present in the molecule. For example, the ratio of hydrogen atoms to the total amount of R 9 (100 mol%) is preferably 0.1 to 40 mol%. By controlling the proportion of hydrogen atoms within the above range, the curability of the curable silicone resin composition tends to be further improved. R 9 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group).

上記平均単位式中、Zは、上記と同じく、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。   In the average unit formula, Z is a hydrogen atom or an alkyl group as described above. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.

上記平均単位式中、c1は0又は正数、c2は0又は正数、c3は0又は正数、c4は0又は正数、c5は0又は正数であり、且つ、(c1+c2+c3)は正数である。   In the above average unit formula, c1 is 0 or positive, c2 is 0 or positive, c3 is 0 or positive, c4 is 0 or positive, c5 is 0 or positive, and (c1 + c2 + c3) is positive Is a number.

上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンは、上述のように、分子内に1個以上のヒドロシリル基を有し、主鎖としてシロキサン結合に加えて、シルアルキレン結合を含むポリオルガノシロキサンである。なお、上記シルアルキレン結合におけるアルキレン基としては、例えば、C2-4アルキレン基(特に、エチレン基)が好ましい。上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンは、上記ヒドロシリル基含有ポリオルガノシロキサンと比較して製造工程において低分子量の環を生じ難く、また、加熱等により分解してシラノール基(−SiOH)を生じ難いため、上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンを使用した場合、硬化性シリコーン樹脂組成物の硬化物の表面粘着性が低くなり、より黄変し難い傾向がある。As described above, the hydrosilyl group-containing polyorganosiloxysilalkylene is a polyorganosiloxane having one or more hydrosilyl groups in the molecule and containing a silalkylene bond as a main chain in addition to a siloxane bond. In addition, as an alkylene group in the said silalkylene bond, a C2-4 alkylene group (especially ethylene group) is preferable, for example. The hydrosilyl group-containing polyorganosiloxysilalkylene is less likely to produce a low molecular weight ring in the production process than the hydrosilyl group-containing polyorganosiloxane, and is not easily decomposed by heating or the like to produce a silanol group (—SiOH). Therefore, when the above hydrosilyl group-containing polyorganosiloxysilalkylene is used, the surface tackiness of the cured product of the curable silicone resin composition tends to be low, and it tends to be more difficult to yellow.

上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンとしては、直鎖状、分岐鎖状(一部分岐を有する直鎖状、分岐鎖状、網目状等)の分子構造を有するものが挙げられる。なお、上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。分子構造が異なるヒドロシリル基含有ポリオルガノシロキシシルアルキレンの2種以上を併用することができ、例えば、直鎖状のヒドロシリル基含有ポリオルガノシロキシシルアルキレンと分岐鎖状のヒドロシリル基含有ポリオルガノシロキシシルアルキレンとを併用することもできる。   Examples of the hydrosilyl group-containing polyorganosiloxysilalkylene include those having a molecular structure of linear or branched (linear, partially branched, network, etc. having a partial branch). In addition, the said hydrosilyl group containing polyorganosiloxy silalkylene can also be used individually by 1 type, and can also be used in combination of 2 or more type. Two or more hydrosilyl group-containing polyorganosiloxysil alkylenes having different molecular structures can be used in combination, for example, a linear hydrosilyl group-containing polyorganosiloxysil alkylene and a branched hydrosilyl group-containing polyorganosiloxysil alkylene. Can also be used in combination.

上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンが有する水素原子以外のケイ素原子に結合した基は、特に限定されないが、例えば、1価の有機基等が挙げられる。1価の有機基としては、例えば、上述の1価の置換又は無置換炭化水素基等が挙げられる。中でも、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。   Although the group couple | bonded with silicon atoms other than the hydrogen atom which the said hydrosilyl group containing polyorganosiloxysil alkylene has is not specifically limited, For example, a monovalent organic group etc. are mentioned. As a monovalent organic group, the above-mentioned monovalent substituted or unsubstituted hydrocarbon group etc. are mentioned, for example. Of these, an alkyl group (particularly a methyl group) and an aryl group (particularly a phenyl group) are preferable.

上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンの性状は、特に限定されず、液状であってもよいし、固体状であってもよい。   The property of the hydrosilyl group-containing polyorganosiloxysilalkylene is not particularly limited, and may be liquid or solid.

上記ヒドロシリル基含有ポリオルガノシロキシシルアルキレンとしては、下記平均単位式:
(R10 2SiO2/2d1(R10 3SiO1/2d2(R10SiO3/2d3(SiO4/2d4(RAd5(ZO1/2d6
で表されるポリオルガノシロキシシルアルキレンが好ましい。上記平均単位式中、R10は、同一又は異なって、水素原子、又は1価の置換若しくは無置換炭化水素基であり、水素原子及び上述の具体例(例えば、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等)が挙げられる。但し、R10の一部は水素原子であり、その割合は、分子内に1個以上(好ましくは2個以上)となる範囲に制御される。例えば、R10の全量(100モル%)に対する水素原子の割合は、0.1〜50モル%が好ましく、より好ましくは5〜35モル%である。水素原子の割合を上記範囲に制御することにより、硬化性シリコーン樹脂組成物の硬化性がより向上する傾向がある。また、水素原子以外のR10としては、アルキル基(特にメチル基)、アリール基(特にフェニル基)が好ましい。特に、R10の全量(100モル%)に対するアリール基(特にフェニル基)の割合は、5モル%以上(例えば、5〜80モル%)が好ましく、より好ましくは10モル%以上である。
Examples of the hydrosilyl group-containing polyorganosiloxysilalkylene include the following average unit formula:
(R 10 2 SiO 2/2) d1 (R 10 3 SiO 1/2) d2 (R 10 SiO 3/2) d3 (SiO 4/2) d4 (R A) d5 (ZO 1/2) d6
A polyorganosiloxysilalkylene represented by the formula is preferred. In the above average unit formula, R 10 is the same or different and is a hydrogen atom or a monovalent substituted or unsubstituted hydrocarbon group, and the hydrogen atom and the above-described specific examples (for example, an alkyl group, an alkenyl group, an aryl group) Aralkyl group, halogenated alkyl group, etc.). However, a part of R 10 is a hydrogen atom, and the ratio thereof is controlled within a range of 1 or more (preferably 2 or more) in the molecule. For example, the ratio of hydrogen atoms to the total amount of R 10 (100 mol%) is preferably 0.1 to 50 mol%, more preferably 5 to 35 mol%. By controlling the proportion of hydrogen atoms within the above range, the curability of the curable silicone resin composition tends to be further improved. R 10 other than a hydrogen atom is preferably an alkyl group (particularly a methyl group) or an aryl group (particularly a phenyl group). In particular, the ratio of aryl groups (particularly phenyl groups) to the total amount of R 10 (100 mol%) is preferably 5 mol% or more (for example, 5 to 80 mol%), more preferably 10 mol% or more.

上記平均単位式中、RAは、上述のようにアルキレン基である。特にエチレン基が好ましい。In the average unit formula, R A is an alkylene group as described above. An ethylene group is particularly preferable.

上記平均単位式中、Zは、上記と同じく、水素原子又はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、特にメチル基であることが好ましい。   In the average unit formula, Z is a hydrogen atom or an alkyl group as described above. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.

上記平均単位式中、d1は正数、d2は正数、d3は0又は正数、d4は0又は正数、d5は正数、d6は0又は正数である。中でも、d1は1〜50が好ましく、d2は1〜50が好ましく、d3は0〜10が好ましく、d4は0〜5が好ましく、d5は1〜30が好ましい。   In the above average unit formula, d1 is a positive number, d2 is a positive number, d3 is 0 or a positive number, d4 is 0 or a positive number, d5 is a positive number, d6 is 0 or a positive number. Among these, d1 is preferably 1 to 50, d2 is preferably 1 to 50, d3 is preferably 0 to 10, d4 is preferably 0 to 5, and d5 is preferably 1 to 30.

上記付加反応硬化性シリコーン樹脂組成物におけるヒドロシリル基含有ポリシロキサンとしては、ヒドロシリル基含有ポリオルガノシロキサンのみを使用することもできるし、ヒドロシリル基含有ポリオルガノシロキシシルアルキレンのみを使用することもできるし、また、ヒドロシリル基含有ポリオルガノシロキサンとヒドロシリル基含有ポリオルガノシロキシシルアルキレンとを併用することもできる。ヒドロシリル基含有ポリオルガノシロキサンとヒドロシリル基含有ポリオルガノシロキシシルアルキレンとを併用する場合、これらの割合は特に限定されず、適宜設定可能である。   As the hydrosilyl group-containing polysiloxane in the addition reaction curable silicone resin composition, only the hydrosilyl group-containing polyorganosiloxane can be used, or only the hydrosilyl group-containing polyorganosiloxysil alkylene can be used, Moreover, hydrosilyl group-containing polyorganosiloxane and hydrosilyl group-containing polyorganosiloxysilalkylene can be used in combination. When the hydrosilyl group-containing polyorganosiloxane and the hydrosilyl group-containing polyorganosiloxysilalkylene are used in combination, these ratios are not particularly limited and can be set as appropriate.

上記付加反応硬化性シリコーン樹脂組成物は、特に限定されないが、硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、アルケニル基が0.2〜4モルとなるような組成(配合組成)であることが好ましく、より好ましくは0.5〜1.5モル、さらに好ましくは0.8〜1.2モルである。ヒドロシリル基とアルケニル基との割合を上記範囲に制御することにより、硬化物の耐熱性、透明性、耐熱衝撃性及び耐リフロー性、並びに腐食性ガス(例えば、SOxガス等)に対するバリア性がより向上する傾向がある。   Although the said addition reaction curable silicone resin composition is not specifically limited, The composition (formulation composition) that an alkenyl group will be 0.2-4 mol with respect to 1 mol of hydrosilyl groups which exist in curable resin composition. ), More preferably 0.5 to 1.5 mol, still more preferably 0.8 to 1.2 mol. By controlling the ratio of hydrosilyl group and alkenyl group within the above range, the cured product has more heat resistance, transparency, thermal shock resistance, reflow resistance, and barrier property against corrosive gas (for example, SOx gas). There is a tendency to improve.

上記付加反応硬化性シリコーン樹脂組成物は、上述のように、金属硬化触媒を含んでいてもよい。金属硬化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示され、具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金−カルボニルビニルメチル錯体等の白金のカルボニル錯体、白金−ジビニルテトラメチルジシロキサン錯体や白金−シクロビニルメチルシロキサン錯体等の白金ビニルメチルシロキサン錯体、白金−ホスフィン錯体、白金−ホスファイト錯体等の白金系触媒、並びに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。中でも、ヒドロシリル化触媒としては、白金ビニルメチルシロキサン錯体や白金−カルボニルビニルメチル錯体や塩化白金酸とアルコール、アルデヒドとの錯体が、反応速度が良好であるため好ましい。   The addition reaction curable silicone resin composition may include a metal curing catalyst as described above. Examples of metal curing catalysts include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported catalyst Activated carbon, chloroplatinic acid, complexes of chloroplatinic acid with alcohols, aldehydes, ketones, platinum olefin complexes, platinum carbonyl complexes such as platinum-carbonylvinylmethyl complexes, platinum-divinyltetramethyldisiloxane complexes and platinum-cyclo Platinum-based catalyst such as platinum-vinylmethylsiloxane complex such as vinylmethylsiloxane complex, platinum-phosphine complex, platinum-phosphite complex, etc., and palladium-based catalyst containing palladium atom or rhodium atom instead of platinum atom in the platinum-based catalyst Or a rhodium-type catalyst is mentioned. Among these, as the hydrosilylation catalyst, a platinum vinylmethylsiloxane complex, a platinum-carbonylvinylmethyl complex, or a complex of chloroplatinic acid, an alcohol, and an aldehyde is preferable because the reaction rate is good.

なお、上記付加反応硬化性シリコーン樹脂組成物において金属硬化触媒(ヒドロシリル化触媒)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。   In addition, in the said addition reaction curable silicone resin composition, a metal curing catalyst (hydrosilylation catalyst) can also be used individually by 1 type, and can also be used in combination of 2 or more type.

上記付加反応硬化性シリコーン樹脂組成物における金属硬化触媒(ヒドロシリル化触媒)の含有量(配合量)は、特に限定されないが、付加反応硬化性シリコーン樹脂組成物に含まれるアルケニル基の全量1モルに対して、1×10-8〜1×10-2モルが好ましく、より好ましくは1.0×10-6〜1.0×10-3モルである。含有量を1×10-8モル以上とすることにより、より効率的に硬化物を形成させることができる傾向がある。一方、含有量を1×10-2モル以下とすることにより、より色相に優れた(着色の少ない)硬化物を得ることができる傾向がある。The content (blending amount) of the metal curing catalyst (hydrosilylation catalyst) in the addition reaction curable silicone resin composition is not particularly limited, but the total amount of alkenyl groups contained in the addition reaction curable silicone resin composition is 1 mol. On the other hand, it is preferably 1 × 10 −8 to 1 × 10 −2 mol, more preferably 1.0 × 10 −6 to 1.0 × 10 −3 mol. By setting the content to 1 × 10 −8 mol or more, there is a tendency that a cured product can be formed more efficiently. On the other hand, when the content is 1 × 10 −2 mol or less, there is a tendency that a cured product having a more excellent hue (less coloring) can be obtained.

上記付加反応硬化性シリコーン樹脂組成物は、上記以外の成分を含んでいてもよい。   The addition reaction curable silicone resin composition may contain components other than those described above.

2−2.縮合反応硬化性シリコーン樹脂組成物
上記縮合反応硬化性シリコーン樹脂組成物としては、例えば、シリコーン樹脂(B)として分子内に2個以上のシラノール基(Si−OH)又はシルアルコキシ基(Si−OR)を有するポリシロキサン(B2)を含有し、さらに必要に応じて金属硬化触媒等を含む硬化性シリコーン樹脂組成物が挙げられる。なお、ポリシロキサン(B2)は、シラノール基とシルアルコキシ基のいずれか一方のみを有するものであってもよいし、シラノール基とシルアルコキシ基の両方を有するものであってもよい。シラノール基とシルアルコキシ基の両方を有する場合、これらの合計数が分子内に2個以上であればよい。
2-2. Condensation reaction curable silicone resin composition The condensation reaction curable silicone resin composition includes, for example, two or more silanol groups (Si-OH) or silalkoxy groups (Si-OR) in the molecule as the silicone resin (B). And a curable silicone resin composition containing a metal curing catalyst and the like, if necessary. The polysiloxane (B2) may have only one of a silanol group and a silalkoxy group, or may have both a silanol group and a silalkoxy group. When it has both a silanol group and a silalkoxy group, the total number of these should just be 2 or more in a molecule | numerator.

ポリシロキサン(B2)としては、例えば、下記平均組成式で表されるポリオルガノシロキサンが挙げられる。
11 eSi(OR12f(OH)g(4-e-f-g)/2
[上記平均組成式中、R11は、同一又は異なって、炭素数1〜20の1価の有機基を示す。R12は、同一又は異なって、炭素数1〜4の1価の有機基を示す。eは0.8〜1.5の数、fは0〜0.3の数、gは0〜0.5の数を示す。f+gは0.001以上1.2未満の数である。また、e+f+gは、0.801以上2未満の数である。]
As polysiloxane (B2), the polyorganosiloxane represented by the following average compositional formula is mentioned, for example.
R 11 e Si (OR 12 ) f (OH) g O (4-efg) / 2
[In the above average composition formula, R 11 is the same or different and represents a monovalent organic group having 1 to 20 carbon atoms. R 12 is the same or different and represents a monovalent organic group having 1 to 4 carbon atoms. e is a number from 0.8 to 1.5, f is a number from 0 to 0.3, and g is a number from 0 to 0.5. f + g is a number from 0.001 to less than 1.2. E + f + g is a number of 0.801 or more and less than 2. ]

上記平均組成式中のR11としての1価の有機基としては、例えば、1価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);1価の芳香族炭化水素基(例えば、アリール基等);1価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された1価の基等が挙げられる。なお、これらの1価の有機基は置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等の置換基)を有するものであってもよい。中でも、R11としては、炭素数1〜20のアルキル基、炭素数1〜20のアルケニル基、炭素数6〜20のアリール基が好ましい。また、上記平均組成式中のR12としての1価の有機基としては、例えば、置換基を有していてもよい1価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等)等が挙げられる。中でも、R12としては、炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基が好ましい。Examples of the monovalent organic group as R 11 in the average composition formula include, for example, a monovalent aliphatic hydrocarbon group (for example, an alkyl group, an alkenyl group, etc.); a monovalent aromatic hydrocarbon group (for example, Aryl groups, etc.); monovalent heterocyclic groups; monovalent groups formed by combining two or more of aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, and aromatic hydrocarbon groups, and the like. . These monovalent organic groups may have a substituent (for example, a substituent such as a hydroxy group, a carboxy group, or a halogen atom). Among them, as R 11, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms preferably. Examples of the monovalent organic group as R 12 in the average composition formula include, for example, a monovalent aliphatic hydrocarbon group (for example, an alkyl group, an alkenyl group, etc.) that may have a substituent. Is mentioned. Especially, as R < 12 >, a C1-C4 alkyl group and a C2-C4 alkenyl group are preferable.

上記縮合反応硬化性シリコーン樹脂組成物においてポリシロキサン(B2)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。   In the condensation reaction curable silicone resin composition, polysiloxane (B2) can be used alone or in combination of two or more.

上記縮合反応硬化性シリコーン樹脂組成物は、上述のように、金属硬化触媒を含んでいてもよい。このような金属硬化触媒としては、公知乃至慣用の縮合反応触媒が挙げられ、例えば、有機チタン酸エステル、有機チタンキレート化合物、有機アルミニウム化合物、有機ジルコニウム化合物、有機錫化合物、有機カルボン酸の金属塩、アミン化合物又はその塩、第四級アンモニウム塩、アルカリ金属の低級脂肪酸塩、ジアルキルヒドロキシルアミン、グアニジル基含有有機ケイ素化合物等が挙げられる。中でも、反応性の観点で、有機ジルコニウム化合物が好ましい。これらは1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。上記縮合反応硬化性シリコーン樹脂組成物における金属硬化触媒(縮合反応触媒)の含有量(配合量)は、特に限定されないが、例えば、ポリシロキサン(B2)の全量100重量部に対して、0.01〜20重量部の範囲で適宜選択することができる。   The condensation reaction curable silicone resin composition may include a metal curing catalyst as described above. Examples of such metal curing catalysts include known or conventional condensation reaction catalysts, such as organic titanate esters, organic titanium chelate compounds, organic aluminum compounds, organic zirconium compounds, organic tin compounds, and metal salts of organic carboxylic acids. Amine compounds or salts thereof, quaternary ammonium salts, lower fatty acid salts of alkali metals, dialkylhydroxylamines, guanidyl group-containing organosilicon compounds, and the like. Among these, an organic zirconium compound is preferable from the viewpoint of reactivity. These can also be used individually by 1 type and can also be used in combination of 2 or more type. The content (blending amount) of the metal curing catalyst (condensation reaction catalyst) in the condensation reaction curable silicone resin composition is not particularly limited, but is, for example, about 0.1 part by weight relative to 100 parts by weight of the total amount of polysiloxane (B2). It can select suitably in the range of 01-20 weight part.

上記縮合反応硬化性シリコーン樹脂組成物は、上記以外の成分を含んでいてもよい。   The condensation reaction curable silicone resin composition may contain components other than those described above.

本発明の硬化性シリコーン樹脂組成物(例えば、上述の付加反応硬化性シリコーン樹脂組成物、縮合反応硬化性シリコーン樹脂組成物等)は、その他の成分を含んでいてもよい。その他の成分としては、例えば、本発明の硬化性エポキシ樹脂組成物が含んでいてもよい成分として例示したもの等が挙げられる。その含有量も特に限定されず、適宜選択することができる。例えば、本発明の硬化性シリコーン樹脂組成物が光半導体封止用樹脂組成物である場合は、上述の蛍光体を含むことが好ましい。本発明の硬化性シリコーン樹脂組成物における蛍光体の含有量(配合量)は、特に限定されず、硬化性シリコーン樹脂組成物の全量(100重量%)に対して、0.5〜20重量%の範囲で適宜選択することができる。   The curable silicone resin composition of the present invention (for example, the above-described addition reaction curable silicone resin composition, condensation reaction curable silicone resin composition, etc.) may contain other components. As another component, what was illustrated as a component which the curable epoxy resin composition of this invention may contain, etc. are mentioned, for example. The content is not particularly limited, and can be appropriately selected. For example, when the curable silicone resin composition of the present invention is a resin composition for encapsulating an optical semiconductor, it is preferable that the phosphor described above is included. The phosphor content (blending amount) in the curable silicone resin composition of the present invention is not particularly limited, and is 0.5 to 20% by weight relative to the total amount (100% by weight) of the curable silicone resin composition. It can select suitably in the range of.

本発明の硬化性シリコーン樹脂組成物は、特に限定されないが、例えば、上述の各成分を、必要に応じて加熱した状態で撹拌、混合することによって調製することができる。なお、本発明の硬化性シリコーン樹脂組成物は、各成分の全てがあらかじめ混合されたものをそのまま使用する1液系の組成物であってもよいし、例えば、2以上に分割された成分を使用の直前で所定の割合で混合して使用する多液系(例えば、2液系)の組成物であってもよい。撹拌、混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。また、本発明の硬化性シリコーン樹脂組成物又はその構成成分としては、市販品をそのまま使用することも可能である。   Although the curable silicone resin composition of this invention is not specifically limited, For example, it can prepare by stirring and mixing each above-mentioned component in the state heated as needed. In addition, the curable silicone resin composition of the present invention may be a one-component composition that uses a mixture of all the components in advance, or, for example, a component divided into two or more. It may be a multi-liquid composition (for example, a two-liquid system) used by mixing at a predetermined ratio immediately before use. The method of stirring and mixing is not particularly limited, and for example, known or conventional stirring and mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under reduced pressure or under vacuum. Moreover, as a curable silicone resin composition of this invention or its component, a commercial item can also be used as it is.

3.硬化性アクリル樹脂組成物
上記硬化性アクリル樹脂組成物(「本発明の硬化性アクリル樹脂組成物」と称する場合がある)は、硬化性化合物としてアクリル樹脂(C)を必須成分として含む硬化性組成物である。本発明の硬化性アクリル樹脂組成物は、アクリル樹脂(C)以外の成分を含んでいてもよい。
3. Curable Acrylic Resin Composition The curable acrylic resin composition (sometimes referred to as “the curable acrylic resin composition of the present invention”) includes a curable composition containing an acrylic resin (C) as an essential component. It is a thing. The curable acrylic resin composition of the present invention may contain components other than the acrylic resin (C).

アクリル樹脂(C)としては、例えば、(メタ)アクリロイル基(アクリロイル基及びメタクリロイル基からなる群より選択される少なくとも1種の基)を分子内に1個以上有する化合物が挙げられる。アクリル樹脂(C)としては、(メタ)アクリロイル基を分子内に1個のみ有する(メタ)アクリロイル化合物;(メタ)アクリロイル基を分子内に2個以上有する多官能(メタ)アクリロイル化合物等が挙げられる。なお、上述の(メタ)アクリロイル基を分子内に1個のみ有する(メタ)アクリロイル化合物には、(メタ)アクリロイル基以外の重合性官能基を有しない単官能(メタ)アクリロイル化合物と、(メタ)アクリロイル基に加えて、さらにエポキシ基、オキセタニル基、ビニル基、ビニルオキシ基等のその他の重合性官能基を1個以上有する多官能(メタ)アクリロイル化合物とが含まれる。アクリル樹脂(C)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。なお、本発明の硬化性アクリル樹脂組成物におけるアクリル樹脂(C)の含有量は特に限定されず、適宜選択することが可能である。   Examples of the acrylic resin (C) include compounds having at least one (meth) acryloyl group (at least one group selected from the group consisting of an acryloyl group and a methacryloyl group) in the molecule. Examples of the acrylic resin (C) include (meth) acryloyl compounds having only one (meth) acryloyl group in the molecule; polyfunctional (meth) acryloyl compounds having two or more (meth) acryloyl groups in the molecule. It is done. The (meth) acryloyl compound having only one (meth) acryloyl group in the molecule includes a monofunctional (meth) acryloyl compound having no polymerizable functional group other than the (meth) acryloyl group, In addition to the acryloyl group, a polyfunctional (meth) acryloyl compound having one or more other polymerizable functional groups such as an epoxy group, an oxetanyl group, a vinyl group, and a vinyloxy group. Acrylic resin (C) can also be used individually by 1 type, and can also be used in combination of 2 or more type. In addition, content of the acrylic resin (C) in the curable acrylic resin composition of this invention is not specifically limited, It can select suitably.

本発明の硬化性アクリル樹脂組成物は、例えば、アクリル樹脂(C)の重合反応を進行させるための開始剤を含んでいてもよい。開始剤としては、熱重合開始剤等の公知乃至慣用の重合開始剤が挙げられる。これらは1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、開始剤の含有量は特に限定されず、適宜選択することが可能である。   The curable acrylic resin composition of this invention may contain the initiator for advancing the polymerization reaction of an acrylic resin (C), for example. Examples of the initiator include known or conventional polymerization initiators such as a thermal polymerization initiator. These can also be used individually by 1 type and can also be used in combination of 2 or more type. Further, the content of the initiator is not particularly limited, and can be appropriately selected.

本発明の硬化性アクリル樹脂組成物は、その他の成分を含んでいてもよい。その他の成分としては、例えば、本発明の硬化性エポキシ樹脂組成物が含んでいてもよい成分として例示したもの等が挙げられる。その含有量も特に限定されず、適宜選択することができる。例えば、本発明の硬化性アクリル樹脂組成物が光半導体封止用樹脂組成物である場合は、上述の蛍光体を含むことが好ましい。本発明の硬化性アクリル樹脂組成物における蛍光体の含有量(配合量)は、特に限定されず、硬化性アクリル樹脂組成物の全量(100重量%)に対して、0.5〜20重量%の範囲で適宜選択することができる。   The curable acrylic resin composition of the present invention may contain other components. As another component, what was illustrated as a component which the curable epoxy resin composition of this invention may contain, etc. are mentioned, for example. The content is not particularly limited, and can be appropriately selected. For example, when the curable acrylic resin composition of the present invention is a resin composition for encapsulating an optical semiconductor, it is preferable that the phosphor described above is included. The phosphor content (blending amount) in the curable acrylic resin composition of the present invention is not particularly limited, and is 0.5 to 20% by weight with respect to the total amount (100% by weight) of the curable acrylic resin composition. It can select suitably in the range of.

本発明の硬化性アクリル樹脂組成物は、特に限定されないが、例えば、上述の各成分を、必要に応じて加熱した状態で撹拌、混合することによって調製することができる。なお、本発明の硬化性アクリル樹脂組成物は、各成分の全てがあらかじめ混合されたものをそのまま使用する1液系の組成物であってもよいし、例えば、2以上に分割された成分を使用の直前で所定の割合で混合して使用する多液系(例えば、2液系)の組成物であってもよい。撹拌、混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。また、本発明の硬化性アクリル樹脂組成物又はその構成成分としては、市販品をそのまま使用することも可能である。   Although the curable acrylic resin composition of this invention is not specifically limited, For example, it can prepare by stirring and mixing each above-mentioned component in the state heated as needed. The curable acrylic resin composition of the present invention may be a one-component composition that uses a mixture of all the components in advance, or, for example, a component divided into two or more. It may be a multi-liquid composition (for example, a two-liquid system) used by mixing at a predetermined ratio immediately before use. The method of stirring and mixing is not particularly limited, and for example, known or conventional stirring and mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under reduced pressure or under vacuum. Moreover, as a curable acrylic resin composition of this invention, or its structural component, it is also possible to use a commercial item as it is.

[凹凸形状]
本発明の反射防止材は、上記多孔質フィラーが上記樹脂層全体に行き渡っており、分散状態が安定した結果、樹脂層の表面に存在する多孔質フィラーが凹凸形状を形成して、入射光を散乱させることにより反射防止機能を発揮する。また、多孔質フィラー表面の多孔質構造も入射光を散乱させることができ、さらに反射防止機能が向上する。
上記多孔質フィラーを上記樹脂層全体に行き渡らせる方法は、特に限定させず、例えば、樹脂層を構成する樹脂組成物に多孔質フィラーを均一に分散させる方法等が挙げられる。本発明の反射防止材を効率的に製造するためには、多孔質フィラーを均一に分散させる方法が好ましい。
以下に、本発明の反射防止材の製造方法の一態様を説明するが、本発明はこれに限定されるものではない。
[Uneven shape]
In the antireflection material of the present invention, the porous filler spreads over the entire resin layer, and as a result of stable dispersion, the porous filler present on the surface of the resin layer forms an uneven shape, and incident light is transmitted. Anti-reflection function is exhibited by scattering. Moreover, the porous structure on the surface of the porous filler can also scatter incident light, and the antireflection function is further improved.
The method for spreading the porous filler throughout the resin layer is not particularly limited, and examples thereof include a method of uniformly dispersing the porous filler in the resin composition constituting the resin layer. In order to efficiently produce the antireflection material of the present invention, a method of uniformly dispersing the porous filler is preferred.
Hereinafter, one embodiment of the method for producing an antireflection material of the present invention will be described, but the present invention is not limited thereto.

樹脂層に多孔質フィラーを添加して、混合・撹拌することにより均一に分散させることができる。混合・撹拌の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の公知乃至慣用の撹拌、混合手段を使用できる。また、撹拌、混合後、減圧下又は真空下にて脱泡してもよい。   A porous filler can be added to the resin layer and mixed and stirred to be uniformly dispersed. The mixing / stirring method is not particularly limited. For example, known or conventional stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under reduced pressure or under vacuum.

本発明の硬化前の反射防止材の性状は、特に限定されないが、液状であることが好ましい。本発明の反射防止材を形成する硬化前の樹脂組成物は、多孔性フィラーを用いることで少量の添加で反射防止機能を発現することができるため、トルエン等の溶剤を使用しなくとも液状になりやすく、好ましい。   The properties of the antireflection material before curing of the present invention are not particularly limited, but are preferably liquid. The resin composition before curing that forms the antireflective material of the present invention can exhibit an antireflective function with a small amount of addition by using a porous filler, so that it can be made liquid without using a solvent such as toluene. It is easy to become and is preferable.

[硬化工程]
多孔質フィラーが均一に分散した樹脂層を硬化させて硬化物(以下、「本発明の硬化物」と称する場合がある)とすることにより、本発明の反射防止材を得ることができる。
硬化前の反射防止材の全量(100重量%)に対する、硬化中に揮発する成分の量は、特に限定されないが、好ましくは10重量%以下であり、より好ましくは8重量%以下であり、さらに好ましくは5重量%以下である。硬化中に揮発する成分の量が10重量%以下であることにより、硬化物の寸法安定性が高くなり、好ましい。本発明の硬化前の反射防止材は、多孔性フィラーを用いることで少量の添加で反射防止機能を発現することができるため、溶剤(トルエン等)の揮発成分を使用しなくとも液状になりやすく、硬化中に揮発する成分の量を少なくすることができる。
[Curing process]
The antireflection material of the present invention can be obtained by curing the resin layer in which the porous filler is uniformly dispersed to obtain a cured product (hereinafter sometimes referred to as “cured product of the present invention”).
The amount of the component that volatilizes during curing relative to the total amount (100% by weight) of the antireflection material before curing is not particularly limited, but is preferably 10% by weight or less, more preferably 8% by weight or less, Preferably it is 5 weight% or less. When the amount of the component that volatilizes during curing is 10% by weight or less, the dimensional stability of the cured product is increased, which is preferable. The anti-reflective material before curing of the present invention can exhibit an anti-reflective function with a small amount of addition by using a porous filler, and thus easily becomes liquid without using a volatile component of a solvent (toluene or the like). The amount of components that volatilize during curing can be reduced.

硬化の手段としては、加熱処理や光照射処理等の公知乃至慣用の手段を利用できる。加熱により硬化させる際の温度(硬化温度)は、特に限定されないが、45〜200℃が好ましく、より好ましくは50〜190℃、さらに好ましくは55〜180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30〜600分が好ましく、より好ましくは45〜540分、さらに好ましくは60〜480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は、樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化は、一段階で行うこともできるし、二段階以上の多段階で行うこともできる。
また、光照射により硬化させる場合は、例えば、i−線(365nm)、h−線(405nm)、g−線(436nm)等を含む光(放射線)を、照度10〜1200mW/cm2、照射光量20〜2500mJ/cm2で照射することにより本発明の反射防止材を得ることができる。放射線による樹脂層の劣化を抑える観点と、生産性の観点から、好ましくは放射線の照射光量20〜600mJ/cm2、より好ましくは照射光量20〜300mJ/cm2が望ましい。照射には、高圧水銀ランプ、キセノンランプ、カーボンアークランプ、メタルハライドランプ、レーザー光等を照射源として使用することができる。
As the curing means, known or conventional means such as heat treatment or light irradiation treatment can be used. Although the temperature (curing temperature) at the time of making it harden | cure by heating is not specifically limited, 45-200 degreeC is preferable, More preferably, it is 50-190 degreeC, More preferably, it is 55-180 degreeC. In addition, the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and still more preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient. On the contrary, when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed. Although the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased. Moreover, hardening can also be performed in one step and can also be performed in two or more steps.
In the case of curing by light irradiation, for example, light (radiation) including i-line (365 nm), h-line (405 nm), g-line (436 nm), etc. is irradiated at an illuminance of 10 to 1200 mW / cm 2 . The antireflection material of the present invention can be obtained by irradiating with a light amount of 20 to 2500 mJ / cm 2 . From the viewpoint of suppressing deterioration of the resin layer due to radiation and from the viewpoint of productivity, the irradiation light amount is preferably 20 to 600 mJ / cm 2 , more preferably 20 to 300 mJ / cm 2 . For irradiation, a high-pressure mercury lamp, xenon lamp, carbon arc lamp, metal halide lamp, laser light, or the like can be used as an irradiation source.

[反射防止材]
本発明の反射防止材は、上述の通り、高い透明性と優れた反射防止機能を兼ね備えるため、光学材料用の(光学材料を形成する用途に用いられる)樹脂として好適に使用することができる。光学材料とは、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する材料である。本発明の反射防止材を使用することで、本発明の硬化物(光学材料)を少なくとも含む光学部材が得られる。なお、当該光学部材は、本発明の反射防止材のみから構成されたものであってもよいし、本発明の反射防止材が一部のみに使用されたものであってもよい。光学部材としては、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する部材や、上記光学的機能を利用した装置や機器を構成する部材等が挙げられ、特に限定されず、例えば、光半導体装置、有機EL装置、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ、光ピックアップセンサー等の各種用途において使用される公知乃至慣用の光学部材が例示される。
[Anti-reflective material]
Since the antireflection material of the present invention has both high transparency and an excellent antireflection function as described above, it can be suitably used as a resin for optical materials (used for forming optical materials). An optical material is a material that exhibits various optical functions such as light diffusibility, light transmission, and light reflectivity. By using the antireflection material of the present invention, an optical member containing at least the cured product (optical material) of the present invention can be obtained. In addition, the said optical member may be comprised only from the reflection preventing material of this invention, and the reflection preventing material of this invention may be used for only one part. Examples of the optical member include a member that expresses various optical functions such as light diffusibility, light transmittance, and light reflectivity, and a member that constitutes a device or an apparatus using the optical function. For example, optical semiconductor devices, organic EL devices, adhesives, electrical insulating materials, laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optics Examples thereof include known or conventional optical members used in various applications such as lenses, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and optical pickup sensors.

本発明の反射防止材は、多孔質フィラーが樹脂層全体に行き渡って分散する結果、その表面に多孔質フィラーにより形成された微細で均一な凹凸形状を有し、当該凹凸形状で入射光が散乱して全反射が起こらないので、光沢が抑えられて視認性を向上させることができる。本発明の反射防止材に形成された凹凸形状の算術平均表面粗さRaは、0.1〜1.0μmの範囲が好ましく、0.2〜0.8μmの範囲がより好ましい。凹凸形状の算術平均表面粗さRaがこの範囲にあれば、全光束を顕著に損なうことなく、十分な反射防止機能が発揮できる傾向がある。
なお、本発明において算術平均表面粗さRaは、JIS B 0601−2001により定義される数値であり、後述の実施例に記載の方法により測定、算出されたものを意味するものとする。
The antireflection material of the present invention has a fine and uniform uneven shape formed by the porous filler on the surface as a result of the porous filler being dispersed throughout the resin layer, and incident light is scattered by the uneven shape. Since total reflection does not occur, gloss can be suppressed and visibility can be improved. The concavo-convex arithmetic average surface roughness Ra formed on the antireflection material of the present invention is preferably in the range of 0.1 to 1.0 μm, and more preferably in the range of 0.2 to 0.8 μm. If the arithmetic average surface roughness Ra of the concavo-convex shape is in this range, there is a tendency that a sufficient antireflection function can be exhibited without significantly impairing the total luminous flux.
In the present invention, the arithmetic average surface roughness Ra is a numerical value defined by JIS B 0601-2001, and means a value measured and calculated by a method described in Examples described later.

本発明の反射防止材は、例えば、光半導体封止用樹脂組成物として好ましく使用できる。即ち、本発明の反射防止材は、光半導体装置における光半導体素子を封止するための組成物(光半導体装置における光半導体素子の封止材)として好ましく使用できる。本発明の反射防止材(光半導体封止用樹脂組成物)を用いて、該反射防止材により光半導体素子が封止された光半導体装置(例えば、図1における104が本発明の反射防止材で構成された光半導体装置)が得られる。光半導体素子の封止は、例えば、多孔質フィラーが均一に分散した樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化又は光硬化して行うことができる。硬化温度、硬化時間や光硬化の条件等は、上記反射防止材の調製時と同様の範囲で適宜設定することができる。上述の本発明の光半導体装置は、特に、全光束を低下させることなく、優れた反射防止機能を発揮することができる。なお、本明細書において「本発明の光半導体装置」とは、光半導体装置の構成部材(例えば、封止材、ダイボンディング材等)の少なくとも一部に本発明の反射防止材が使用された光半導体装置を意味する。   The antireflection material of the present invention can be preferably used, for example, as a resin composition for optical semiconductor encapsulation. That is, the antireflection material of the present invention can be preferably used as a composition for sealing an optical semiconductor element in an optical semiconductor device (an optical semiconductor element sealing material in an optical semiconductor device). An optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material (for example, 104 in FIG. 1 is the antireflection material of the present invention) using the antireflection material (resin composition for optical semiconductor encapsulation) of the present invention. An optical semiconductor device comprised of: The optical semiconductor element can be sealed by, for example, injecting a resin composition in which a porous filler is uniformly dispersed into a predetermined mold and heat-curing or photocuring under predetermined conditions. The curing temperature, curing time, photocuring conditions, and the like can be set as appropriate within the same range as in the preparation of the antireflection material. The above-described optical semiconductor device of the present invention can particularly exhibit an excellent antireflection function without reducing the total luminous flux. In the present specification, the “optical semiconductor device of the present invention” means that the antireflective material of the present invention is used for at least a part of constituent members (for example, a sealing material, a die bonding material, etc.) of the optical semiconductor device. An optical semiconductor device is meant.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1〜4に示す樹脂組成物を構成する成分の単位は、重量部である。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the unit of the component which comprises the resin composition shown to Tables 1-4 is a weight part.

製造例1
硬化剤(商品名「リカシッドMH−700」、新日本理化(株)製)100重量部、硬化促進剤(商品名「U−CAT 18X」、サンアプロ(株)製)0.5重量部、及びエチレングリコール(和光純薬工業(株)製)1重量部を、自公転式撹拌装置(商品名「あわとり練太郎 AR−250」、(株)シンキー製、以下同じ)を用いて混合し、エポキシ硬化剤(K剤)を製造した。
Production Example 1
100 parts by weight of a curing agent (trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.), 0.5 part by weight of a curing accelerator (trade name “U-CAT 18X”, manufactured by Sun Apro Co., Ltd.), and 1 part by weight of ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) is mixed using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinkey Co., Ltd., the same shall apply hereinafter), An epoxy curing agent (K agent) was produced.

実施例1
脂環式エポキシ化合物(商品名「セロキサイド2021P」、(株)ダイセル製)100重量部、製造例1で得られたエポキシ硬化剤101.5重量部を自公転式撹拌装置を用いて混合し、脱泡して、硬化性エポキシ樹脂組成物を製造した。
上記で得られた硬化性エポキシ樹脂組成物100重量部、及び多孔質フィラー(商品名「サイリシア430」、富士シリシア化学(株)製)20重量部を自公転式撹拌装置を用いて混合し、脱泡して得られた硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、150℃の樹脂硬化オーブンで5時間加熱することで、本発明の反射防止材により光半導体素子が封止された光半導体装置を製造した。なお、図1において、100はリフレクター、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は封止材(反射防止材)を示し、104の全体に渡り多孔質フィラーが均一に分散しており、そのうちの上部表面に存在する多孔質フィラーにより均一で微細な凹凸形状が形成されている(凹凸形状は図示略)。
Example 1
100 parts by weight of an alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation) and 101.5 parts by weight of the epoxy curing agent obtained in Production Example 1 were mixed using a self-revolving stirrer, Defoaming was carried out to produce a curable epoxy resin composition.
100 parts by weight of the curable epoxy resin composition obtained above and 20 parts by weight of a porous filler (trade name “Silicia 430”, manufactured by Fuji Silysia Chemical Ltd.) are mixed using a self-revolving stirrer, The curable epoxy resin composition obtained by defoaming is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then in a resin curing oven at 150 ° C. for 5 hours. By heating, an optical semiconductor device in which the optical semiconductor element was sealed with the antireflection material of the present invention was produced. In FIG. 1, 100 is a reflector, 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, 104 is a sealing material (antireflection material), and the porous filler is uniformly distributed throughout 104. The fine and uneven | corrugated shape is formed by the porous filler which exists in the upper surface among them (the uneven | corrugated shape is not shown in figure).

実施例2〜20、比較例1〜6
硬化性エポキシ樹脂組成物、多孔質フィラーの組成を表1〜3に示すように変更したこと以外は実施例1と同様にして、光半導体装置を製造した。
Examples 2-20, Comparative Examples 1-6
An optical semiconductor device was manufactured in the same manner as in Example 1 except that the compositions of the curable epoxy resin composition and the porous filler were changed as shown in Tables 1 to 3.

実施例21
硬化性シリコーン樹脂組成物(商品名「OE−6630A/B」(硬化性シリコーン樹脂、東レ・ダウコーニング(株)製)100重量部、及び多孔質フィラー(商品名「サイリシア430」、富士シリシア化学(株)製)20重量部を自公転式撹拌装置を用いて混合し、脱泡して得られた硬化性シリコーン樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、150℃の樹脂硬化オーブンで1時間加熱することで、本発明の反射防止材により光半導体素子が封止された光半導体装置を製造した。
Example 21
Curable silicone resin composition (trade name “OE-6630A / B” (curable silicone resin, manufactured by Toray Dow Corning Co., Ltd.) 100 parts by weight, and porous filler (trade name “Silicia 430”, Fuji Silysia Chemical) A lead frame (InGaN element, 3.5 mm) of an optical semiconductor shown in FIG. 1 is prepared by mixing 20 parts by weight using a revolving stirrer and defoaming the curable silicone resin composition. × 2.8 mm), and then heated in a resin curing oven at 150 ° C. for 1 hour to produce an optical semiconductor device in which the optical semiconductor element was sealed with the antireflection material of the present invention.

実施例22〜27
硬化性シリコーン樹脂組成物の組成を表4に示すように変更したこと以外は実施例21と同様にして、光半導体装置を製造した。
Examples 22-27
An optical semiconductor device was manufactured in the same manner as in Example 21 except that the composition of the curable silicone resin composition was changed as shown in Table 4.

実施例28
硬化性アクリル樹脂組成物(商品名「TB3030」、硬化性アクリル樹脂、(株)スリーボンド製)100重量部、及び多孔質フィラー(商品名「サイリシア430」、富士シリシア化学(株)製)20重量部を自公転式撹拌装置を用いて混合し、脱泡して得られた硬化性アクリル樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、24時間、室温で静置し、更に高圧水銀ランプ(UVC-02516S1AA02:ウシオ電機社製、照度120mW/cm2、照射光量199mJ/cm2)で光照射し、本発明の反射防止材により光半導体素子が封止された光半導体装置(光半導体素子が反射防止材により封止された光半導体装置)を製造した。
Example 28
100 parts by weight of curable acrylic resin composition (trade name “TB3030”, curable acrylic resin, manufactured by ThreeBond Co., Ltd.), and 20 weight of porous filler (trade name “Silicia 430”, manufactured by Fuji Silysia Chemical Co., Ltd.) The curable acrylic resin composition obtained by mixing and defoaming the parts using a self-revolving stirrer was poured into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. after the mold for 24 hours, allowed to stand at room temperature, a high pressure mercury lamp (UVC-02516S1AA02: manufactured by Ushio Inc., illuminance 120 mW / cm 2, irradiation amount 199mJ / cm 2) was irradiated with light antireflection of the present invention An optical semiconductor device in which an optical semiconductor element was sealed with a material (an optical semiconductor device in which an optical semiconductor element was sealed with an antireflection material) was manufactured.

[評価]
上記で製造した光半導体装置について、下記の評価を行った。結果を表1〜4のそれぞれに示す。
[Evaluation]
The optical semiconductor device manufactured above was evaluated as follows. The results are shown in Tables 1 to 4, respectively.

(1)蛍光灯の映り込み
実施例、比較例で得られた光半導体装置の上面(図1の封止材104の上面)に点灯した蛍光灯を当てて反射を見た際に、反射防止材に映る蛍光灯の鮮明さを目視で3段階評価した。
蛍光灯の輪郭が認識できない場合を○、輪郭が不鮮明ながら認識できる場合を△、輪郭が鮮明に認識できる場合を×とした。
(2)算術平均表面粗さRa
実施例、比較例で得られた光半導体装置の上面(図1の封止材104の上面)を、レーザー顕微鏡(商品名「形状測定レーザマイクロスコープ VK−8710」、キーエンス社製)を用いて測定した。
(1) Reflection of fluorescent lamp When reflection is applied to the top surface of the optical semiconductor device (upper surface of the sealing material 104 in FIG. 1) obtained in the examples and comparative examples, reflection is prevented. The clearness of the fluorescent lamp reflected on the material was visually evaluated in three stages.
The case where the outline of the fluorescent lamp could not be recognized was indicated by ◯, the case where the outline could be recognized while being unclear, and the case where the outline could be clearly recognized was indicated by x.
(2) Arithmetic average surface roughness Ra
The upper surface of the optical semiconductor device obtained in Examples and Comparative Examples (the upper surface of the sealing material 104 in FIG. 1) was used using a laser microscope (trade name “Shape Measurement Laser Microscope VK-8710”, manufactured by Keyence Corporation). It was measured.

(3)全光束
実施例、比較例で得られた各光半導体装置について、5V、20mAの条件で通電した際の全光束を、全光束測定機(商品名「マルチ分光放射測定システム OL771」、オプトロニックラボラトリーズ社製)を用いて測定した。
(3) Total luminous flux About each optical semiconductor device obtained by the Example and the comparative example, the total luminous flux when energized under the conditions of 5 V and 20 mA is converted into a total luminous flux measuring machine (trade name “Multispectral Radiation Measurement System OL771”, Measured using Optronic Laboratories).

(4)総合判定
実施例、比較例で得られた各光半導体装置について、下記(a)〜(c)を全て満足する場合を○(良好である)、下記(a)〜(c)のいずれかを満足しない場合を×(不良である)と判定した。
(a)上記(1)において測定された蛍光灯の映り込みが、○又は△である。
(b)上記(2)において測定された算術平均表面粗さRaが0.10〜1.0μmである。
(c)上記(3)において測定された全光束が0.60lm以上である。
(4) Comprehensive judgment About each optical semiconductor device obtained by the Example and the comparative example, the case of satisfying all of the following (a) to (c): ○ (good), the following (a) to (c) The case where any of them was not satisfied was determined as x (defective).
(A) The reflection of the fluorescent lamp measured in the above (1) is ◯ or Δ.
(B) The arithmetic average surface roughness Ra measured in (2) above is 0.10 to 1.0 μm.
(C) The total luminous flux measured in the above (3) is 0.60 lm or more.

Figure 2017122691
Figure 2017122691

Figure 2017122691
Figure 2017122691

Figure 2017122691
Figure 2017122691

Figure 2017122691
Figure 2017122691

表1〜4に示す反射防止材を構成する各成分について、以下に説明する。
(多孔質フィラー)
サイリシア430:商品名「サイリシア430」、富士シリシア化学(株)製、体積平均粒子径:4.1μm;比表面積:350m2/g;平均細孔径:17nm;細孔容積:1.25mL/g;吸油量:230mL/100g
サイロスフェアC−1504:商品名「サイロスフェアC−1504」、富士シリシア化学(株)製、体積平均粒子径:4.5μm;比表面積:520m2/g;平均細孔径:12nm;細孔容積:1.5mL/g;吸油量:290mL/100g
サンスフェアH−52:商品名「サンスフェアH−52」、AGCエスアイテック(株)製、体積平均粒子径:5μm;比表面積:700m2/g;平均細孔径:10nm;細孔容積:2mL/g;吸油量:300mL/100g
Each component which comprises the antireflection material shown to Tables 1-4 is demonstrated below.
(Porous filler)
Silicia 430: trade name “Cylicia 430”, manufactured by Fuji Silysia Chemical Ltd., volume average particle size: 4.1 μm; specific surface area: 350 m 2 / g; average pore size: 17 nm; pore volume: 1.25 mL / g Oil absorption: 230 mL / 100 g
Cyrossphere C-1504: trade name “Cyrossphere C-1504”, manufactured by Fuji Silysia Chemical Ltd., volume average particle size: 4.5 μm; specific surface area: 520 m 2 / g; average pore size: 12 nm; pore volume : 1.5 mL / g; Oil absorption: 290 mL / 100 g
Sunsphere H-52: trade name “Sunsphere H-52”, manufactured by AGC S-Tech Co., Ltd., volume average particle diameter: 5 μm; specific surface area: 700 m 2 / g; average pore diameter: 10 nm; pore volume: 2 mL / G; Oil absorption: 300 mL / 100 g

(無機フィラー)
溶融破砕状シリカ:(株)龍森製、体積平均粒径:6〜7μm
溶融球状シリカ:(株)龍森製、体積平均粒径:5μm
結晶性破砕状シリカ:(株)龍森製、体積平均粒径:5μm
(Inorganic filler)
Fused crushed silica: manufactured by Tatsumori Co., Ltd., volume average particle size: 6-7 μm
Fused spherical silica: manufactured by Tatsumori Co., Ltd., volume average particle size: 5 μm
Crystalline crushed silica: manufactured by Tatsumori Co., Ltd., volume average particle size: 5 μm

(エポキシ樹脂)
セロキサイド2021P:商品名「セロキサイド2021P」[3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート]、(株)ダイセル製
YD−128:商品名「YD−128」[ビスフェノールA型エポキシ樹脂]、新日鐡住金化学(株)製
TEPIC−VL:商品名「TEPIC−VL」[トリグリシジルイソシアヌレート]、日産化学工業(株)製
152:商品名「152」[フェノールノボラック型エポキシ樹脂]、三菱化学(株)製
YL7410:商品名「YL7410」[脂肪族エポキシ化合物]、三菱化学(株)製
X−22−169AS:商品名「X−22−169AS」[変性シリコーンオイル(両末端にシクロヘキセンオキシド基を有するポリジメチルシロキサン)]、信越化学工業(株)製
X−40−2670:商品名「X−40−2670」[シクロヘキセンオキシド基を有する環状シロキサン]、信越化学工業(株)製
(Epoxy resin)
Celoxide 2021P: Trade name “Celoxide 2021P” [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate], manufactured by Daicel Corporation YD-128: Trade name “YD-128” [bisphenol A type epoxy Resin], manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. TEPIC-VL: trade name “TEPIC-VL” [triglycidyl isocyanurate], manufactured by Nissan Chemical Industries, Ltd. 152: trade name “152” [phenol novolac epoxy resin ], Manufactured by Mitsubishi Chemical Corporation YL7410: trade name "YL7410" [aliphatic epoxy compound], manufactured by Mitsubishi Chemical Corporation X-22-169AS: trade name "X-22-169AS" [modified silicone oil (both ends) Polydimethylsiloxane having a cyclohexene oxide group)], Shin Chemical Industry Co., Ltd. X-40-2670: trade name "X-40-2670" [cyclic siloxanes having a cyclohexene oxide group], manufactured by Shin-Etsu Chemical Co., Ltd.

(エポキシ硬化剤)
MH−700:商品名「リカシッドMH−700」[4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30]、新日本理化(株)製
U−CAT 18X:商品名「U−CAT 18X」[硬化促進剤]、サンアプロ(株)製
エチレングリコール:和光純薬工業(株)製
SI−100L:商品名「サンエイド SI−100L」、サンアプロ(株)製
(Epoxy curing agent)
MH-700: Trade name “Licacid MH-700” [4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30], manufactured by Shin Nippon Rika Co., Ltd. U-CAT 18X: Trade name “U-CAT 18X "[curing accelerator], manufactured by San Apro Co., Ltd. Ethylene glycol: manufactured by Wako Pure Chemical Industries, Ltd. SI-100L: trade name" Sun Aid SI-100L ", manufactured by San Apro Co., Ltd.

(シリコーン樹脂)
OE−6630A/B:商品名「OE−6630A/B」[付加反応硬化性シリコーン樹脂]、東レ・ダウコーニング(株)製
KER−2500A/B:商品名「KER−2500A/B」[付加反応硬化性シリコーン樹脂(メチルゴム)]、信越化学工業(株)製
SCR−1012A/B:商品名「SCR−1012A/B」[付加反応硬化性シリコーン樹脂(変性シリコーン)]、信越化学工業(株)製
ETERLED GD1012A/B:商品名「ETERLED GD1012A/B」[付加反応硬化性シリコーン樹脂(ポリオルガノシロキシシルアルキレンを含む)]、長興化学工業製
ETERLED GD1130A/B:商品名「ETERLED GD1130A/B」[付加反応硬化性シリコーン樹脂(ポリオルガノシロキシシルアルキレンを含む)]、長興化学工業製
X−21−5841:商品名「X−21−5841」[縮合反応硬化性シリコーン樹脂(シリコーン二液型RTVゴム)]、信越化学工業(株)製
KF−9701:商品名「KF−9701」[縮合反応硬化性シリコーン樹脂(変性シリコーンオイル)]、信越化学工業(株)製
(Silicone resin)
OE-6630A / B: trade name “OE-6630A / B” [addition reaction curable silicone resin], manufactured by Toray Dow Corning Co., Ltd. KER-2500A / B: trade name “KER-2500A / B” [addition reaction Curable silicone resin (methyl rubber)], manufactured by Shin-Etsu Chemical Co., Ltd. SCR-1012A / B: trade name "SCR-1012A / B" [addition reaction curable silicone resin (modified silicone)], Shin-Etsu Chemical Co., Ltd. ETERLED GD1012A / B: Product name “ETERLED GD1012A / B” [addition reaction curable silicone resin (including polyorganosiloxysilalkylene)], ETERLED GD1130A / B: “ETERLED GD1130A / B” [ Addition reaction curable silicone resin (polyorganosiloxane) X-21-5841: trade name “X-21-5841” [condensation reaction curable silicone resin (silicone two-component RTV rubber)], manufactured by Shin-Etsu Chemical Co., Ltd. KF-9701: Trade name “KF-9701” [Condensation reaction curable silicone resin (modified silicone oil)], manufactured by Shin-Etsu Chemical Co., Ltd.

(アクリル樹脂)
TB3030:商品名「TB3030」[硬化性アクリル樹脂]、(株)スリーボンド製)
(acrylic resin)
TB3030: Trade name “TB3030” [curable acrylic resin], manufactured by ThreeBond Co., Ltd.)

表1、3、4に示されるように、多孔質フィラーが本発明の所定量添加された実施例に係る反射防止材を備える光半導体装置によると、蛍光灯の映り込みはいずれも○又は△の評価であり、優れた反射防止機能を備えることが確認された。
また、蛍光灯の映り込みが○又は△の評価であった本発明の実施例の光半導体装置の算術平均表面粗さRaは、いずれも0.10〜1.0μmの範囲にあり、適度な凹凸形状が形成されていることが確認された。
さらに、本発明の実施例の光半導体装置の全光束は、いずれも0.60lm以上であり、良好な照度を示した。
一方、表2に示されるように、本発明の所定範囲より少ない配合量で多孔質フィラーを配合した比較例2、及び多孔質でないシリカフィラーが添加された比較例4〜6の光半導体装置は、蛍光灯の映り込みが×(不良)と評価され、算術平均表面粗さRaの値も低く(0.1μm未満)、フィラーが添加されていない比較例1程度の反射防止機能しか示さなかった。比較例2では多孔質フィラーの配合量が十分ではなく、また、比較例4〜6ではシリカフィラーが沈降した結果、表面に均一で微細な凹凸形状が形成されていないと考えられた。一方、本発明の所定範囲より多い配合量で多孔質フィラーを配合した比較例3では、良好な反射防止機能を示す一方、全光束が0.46lm以上であり、照度が著しく低下した。多孔質フィラーの配合量が多いため、光が吸収されたと考えられる。
As shown in Tables 1, 3, and 4, according to the optical semiconductor device provided with the antireflection material according to the example in which a predetermined amount of the porous filler is added according to the present invention, the reflection of the fluorescent lamp is either ◯ or Δ. It was confirmed that it has an excellent antireflection function.
In addition, the arithmetic average surface roughness Ra of the optical semiconductor device of the example of the present invention in which the reflection of the fluorescent lamp was evaluated as ◯ or Δ was in the range of 0.10 to 1.0 μm, and was appropriate. It was confirmed that an uneven shape was formed.
Furthermore, the total luminous flux of the optical semiconductor device according to the example of the present invention was 0.60 lm or more, indicating a good illuminance.
On the other hand, as shown in Table 2, the optical semiconductor devices of Comparative Example 2 in which the porous filler was blended in a blending amount smaller than the predetermined range of the present invention, and Comparative Examples 4 to 6 in which the silica filler that was not porous were added. The reflection of the fluorescent lamp was evaluated as x (defective), the value of the arithmetic average surface roughness Ra was low (less than 0.1 μm), and only the antireflection function of Comparative Example 1 to which no filler was added was shown. . In Comparative Example 2, the amount of the porous filler was not sufficient, and in Comparative Examples 4 to 6, it was considered that the surface was not formed with a uniform and fine uneven shape as a result of the silica filler being settled. On the other hand, in Comparative Example 3 in which the porous filler was blended in a blending amount larger than the predetermined range of the present invention, while showing a good antireflection function, the total luminous flux was 0.46 lm or more, and the illuminance was significantly reduced. It is considered that light was absorbed because the amount of the porous filler was large.

本発明の反射防止材は、高い透明性と優れた反射防止機能を兼ね備えるため、光学材料用の(光学材料を形成する用途に用いられる)樹脂として好適に使用することができる。光学部材としては、光拡散性、光透過性、光反射性等の各種の光学的機能を発現する部材や、上記光学的機能を利用した装置や機器を構成する部材等が挙げられ、特に限定されず、例えば、光半導体装置、有機EL装置、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ、光ピックアップセンサー等の各種用途において使用される公知乃至慣用の光学部材が例示される。   Since the antireflection material of the present invention has both high transparency and an excellent antireflection function, the antireflection material can be suitably used as a resin for optical materials (used for forming optical materials). Examples of the optical member include a member that expresses various optical functions such as light diffusibility, light transmittance, and light reflectivity, and a member that constitutes a device or an apparatus using the optical function. For example, optical semiconductor devices, organic EL devices, adhesives, electrical insulating materials, laminates, coatings, inks, paints, sealants, resists, composite materials, transparent substrates, transparent sheets, transparent films, optical elements, optics Examples thereof include known or conventional optical members used in various applications such as lenses, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and optical pickup sensors.

100:リフレクター(光反射用樹脂組成物)
101:金属配線(電極)
102:光半導体素子
103:ボンディングワイヤ
104:封止材(反射防止材)
100: Reflector (resin composition for light reflection)
101: Metal wiring (electrode)
102: Optical semiconductor element 103: Bonding wire 104: Sealing material (antireflection material)

Claims (8)

多孔質フィラーが分散された樹脂層からなる反射防止材であって、当該多孔質フィラーは当該樹脂層の表面に反射を抑える凹凸を形成し、反射防止材全量(100重量%)に対する多孔質フィラーの含有量が4〜40重量%であることを特徴とする、反射防止材。   An antireflection material comprising a resin layer in which a porous filler is dispersed, the porous filler forming irregularities to suppress reflection on the surface of the resin layer, and the porous filler relative to the total amount (100% by weight) of the antireflection material An antireflection material, wherein the content of is 4 to 40% by weight. 多孔質フィラーは、無機多孔質フィラーである、請求項1に記載の反射防止材。   The antireflection material according to claim 1, wherein the porous filler is an inorganic porous filler. 硬化前の反射防止材は、液状である、請求項1または2に記載の反射防止材。   The antireflection material according to claim 1 or 2, wherein the antireflection material before curing is liquid. 硬化前の反射防止材の全量(100重量%)に対する硬化中に揮発する成分の量は、10重量%以下である、請求項1〜3のいずれか1項に記載の反射防止材。   The amount of the component which volatilizes during hardening with respect to the whole quantity (100 weight%) of the antireflection material before hardening is 10 weight% or less, The antireflection material of any one of Claims 1-3. 前記樹脂層は、透明な硬化性樹脂組成物からなる、請求項1〜4のいずれか1項に記載の反射防止材。   The antireflection material according to any one of claims 1 to 4, wherein the resin layer is made of a transparent curable resin composition. 前記硬化性樹脂組成物は、エポキシ樹脂、シリコーン樹脂、及びアクリル樹脂からなる群より選択される少なくとも1種の硬化性化合物を含む組成物からなる、請求項1〜5のいずれか1項に記載の反射防止材。   The said curable resin composition consists of a composition containing the at least 1 sort (s) of curable compound selected from the group which consists of an epoxy resin, a silicone resin, and an acrylic resin, The any one of Claims 1-5. Anti-reflective material. 光半導体封止用樹脂組成物である、請求項1〜6のいずれか1項に記載の反射防止材。   The antireflective material of any one of Claims 1-6 which is a resin composition for optical semiconductor sealing. 請求項7に記載の反射防止材により光半導体素子が封止された光半導体装置。   An optical semiconductor device in which an optical semiconductor element is sealed with the antireflection material according to claim 7.
JP2017561141A 2016-01-15 2017-01-11 Antireflection material Active JP7127989B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016006638 2016-01-15
JP2016006638 2016-01-15
JP2016173980 2016-09-06
JP2016173980 2016-09-06
PCT/JP2017/000666 WO2017122691A1 (en) 2016-01-15 2017-01-11 Anti-reflection material

Publications (2)

Publication Number Publication Date
JPWO2017122691A1 true JPWO2017122691A1 (en) 2018-11-01
JP7127989B2 JP7127989B2 (en) 2022-08-30

Family

ID=59310940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017561141A Active JP7127989B2 (en) 2016-01-15 2017-01-11 Antireflection material

Country Status (5)

Country Link
JP (1) JP7127989B2 (en)
KR (1) KR20180103862A (en)
CN (1) CN108369985B (en)
TW (1) TWI739790B (en)
WO (1) WO2017122691A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070300A1 (en) * 2016-10-11 2018-04-19 株式会社ダイセル Anti-reflective material
EP3743466B1 (en) * 2018-01-23 2021-11-17 Worlée-Chemie GmbH Binder composition and use thereof
CN114262530A (en) * 2022-01-06 2022-04-01 山西日盛达太阳能科技股份有限公司 Antireflection coating solution, preparation method, photovoltaic glass and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080803A1 (en) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device
JP4010299B2 (en) * 2001-06-20 2007-11-21 日亜化学工業株式会社 Semiconductor light emitting device and method for forming the same
JP2009037046A (en) * 2007-08-02 2009-02-19 Nof Corp Antiglare film for liquid crystal display and liquid crystal display including the same
JP2011068811A (en) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device
JP2012151466A (en) * 2010-12-28 2012-08-09 Nichia Chem Ind Ltd Light emitting device
WO2012133432A1 (en) * 2011-03-30 2012-10-04 旭化成ケミカルズ株式会社 Organopolysiloxane, method for producing same, and curable resin composition containing organopolysiloxane
WO2013099193A1 (en) * 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119031B2 (en) * 2004-06-28 2006-10-10 Micron Technology, Inc. Methods of forming patterned photoresist layers over semiconductor substrates
CN100394215C (en) * 2005-05-26 2008-06-11 财团法人工业技术研究院 Three-D nano-porous film and its manufacturing method
JP5154773B2 (en) * 2006-07-19 2013-02-27 リンテック株式会社 Antireflection film
KR20120129643A (en) * 2011-05-20 2012-11-28 동우 화인켐 주식회사 Coating composition for anti-glare and anti-reflection, film using the same, polarizing plate, and display device
TWI474917B (en) * 2012-06-15 2015-03-01 Mitsubishi Rayon Co Article, active energy ray curable resin composition, light-transmissive article active energy ray curable resin composition and anti-reflective article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010299B2 (en) * 2001-06-20 2007-11-21 日亜化学工業株式会社 Semiconductor light emitting device and method for forming the same
WO2007080803A1 (en) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device
JP2009037046A (en) * 2007-08-02 2009-02-19 Nof Corp Antiglare film for liquid crystal display and liquid crystal display including the same
JP2011068811A (en) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device
JP2012151466A (en) * 2010-12-28 2012-08-09 Nichia Chem Ind Ltd Light emitting device
WO2012133432A1 (en) * 2011-03-30 2012-10-04 旭化成ケミカルズ株式会社 Organopolysiloxane, method for producing same, and curable resin composition containing organopolysiloxane
WO2013099193A1 (en) * 2011-12-26 2013-07-04 コニカミノルタ株式会社 Sealant for led device, led device, and method for producing led device

Also Published As

Publication number Publication date
KR20180103862A (en) 2018-09-19
TWI739790B (en) 2021-09-21
CN108369985A (en) 2018-08-03
TW201731986A (en) 2017-09-16
WO2017122691A1 (en) 2017-07-20
JP7127989B2 (en) 2022-08-30
CN108369985B (en) 2022-04-29

Similar Documents

Publication Publication Date Title
KR101746890B1 (en) Curable epoxy resin composition
JP5764432B2 (en) Curable epoxy resin composition
JP2019023316A (en) Curable epoxy resin composition
JP7128112B2 (en) Antireflection material
JP7127989B2 (en) Antireflection material
JP2016224338A (en) Antireflection material and method for producing the same
JP2016212269A (en) Antireflection material
WO2018070300A1 (en) Anti-reflective material
WO2017138491A1 (en) Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device
JP2017126045A (en) Antireflection material
JP6571923B2 (en) Method for producing cured product by laser light irradiation
JP7329320B2 (en) Curable epoxy resin composition
JP7241653B2 (en) Antireflection material
JP2020070392A (en) Curable epoxy resin composition
JP7329319B2 (en) Curable epoxy resin composition
JP2017155145A (en) Curable epoxy resin composition for optical material
JP5977794B2 (en) Curable epoxy resin composition
TW201402635A (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7127989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150