JPWO2017098931A1 - 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム - Google Patents

超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム Download PDF

Info

Publication number
JPWO2017098931A1
JPWO2017098931A1 JP2017553282A JP2017553282A JPWO2017098931A1 JP WO2017098931 A1 JPWO2017098931 A1 JP WO2017098931A1 JP 2017553282 A JP2017553282 A JP 2017553282A JP 2017553282 A JP2017553282 A JP 2017553282A JP WO2017098931 A1 JPWO2017098931 A1 JP WO2017098931A1
Authority
JP
Japan
Prior art keywords
ultrasonic
unit
physical quantity
observation target
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017553282A
Other languages
English (en)
Other versions
JP6253869B2 (ja
Inventor
川島 知直
知直 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Application granted granted Critical
Publication of JP6253869B2 publication Critical patent/JP6253869B2/ja
Publication of JPWO2017098931A1 publication Critical patent/JPWO2017098931A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/587Calibration phantoms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

本発明にかかる超音波診断装置は、観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置であって、観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出部と、含有する散乱体の物理量が既知の対照物体の物理量、および該対象物体から得られた特徴量に基づき導出された関係と、特徴量算出部が算出した観測対象の特徴量とを用いて、観測対象が含む散乱体の物理量を推定する推定部と、推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成部と、を備えた。

Description

本発明は、超音波を用いて観測対象の組織を観測する超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムに関する。
従来、超音波を用いた検体等の観測対象の組織性状を観測する技術として、観測対象で後方散乱された超音波エコーを超音波振動子で受信した超音波信号の周波数スペクトルの特徴量を画像化する技術が知られている(例えば、特許文献1を参照)。なお、散乱とは、音波が媒体中で粒子と衝突あるいは相互作用して方向を変えられることである。さらに、後方散乱とは、このうち音源の方向に戻ってくることである。この現象は一般に反射とも言われるが、本願では以下、後方散乱を用いる。このときの音源は超音波振動子である。この技術では、観測対象の組織性状を表す解析値として周波数スペクトルの特徴量を抽出した後、この特徴量に対応する視覚的な情報、例えば色情報を付与した特徴量画像を生成して表示する。医師等の術者は、表示された特徴量画像を見ることによって検体の組織性状を診断する。
国際公開第2012/011414号
ところで、組織性状を鑑別するにあたり、観測対象が有する散乱体の大きさや数密度を把握することが重要である。しかしながら、特許文献1に記載の技術は、周波数スペクトルの特徴量と、観測対象が有する散乱体の直径や数密度といった物理量が対応付いておらず、特徴量に応じて付与される色情報から組織性状を鑑別するには熟練が必要であった。このため、熟練を要さずに、容易に組織性状を鑑別することができる技術が望まれていた。
本発明は、上記に鑑みてなされたものであって、特徴量に基づく組織性状の鑑別を容易かつ正確に行うことができる超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る超音波診断装置は、観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置であって、前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出部と、含有する散乱体の物理量が既知の対照物体の前記物理量、および該対象物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定部と、前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成部と、を備えたことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記対照物体が含有する物理量は、前記散乱体の数密度、前記散乱体の大きさ、および前記散乱体の散乱強度の少なくとも1つを含む、ことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記物理量は、前記対照物体が含有する散乱体の散乱強度を含み、前記散乱強度は、前記散乱体と媒体の振幅反射率、エネルギー反射率、および/または、それらの関数であることを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記推定部は、前記特徴量算出部が算出した前記特徴量を、前記関係としての関係式に代入することにより前記観測対象が含む散乱体の物理量を推定することを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記関係式、該関係式の係数、該関係式の定数項、および前記関係を記述したテーブルのうちの少なくとも一つを記憶する関係情報記憶部をさらに備え、前記推定部は、前記関係情報記憶部を参照して前記観測対象が含む散乱体の物理量を推定することを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記関係式は、前記物理量および前記特徴量のうち少なくとも一部を重回帰分析することにより導出されることを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記既知の散乱体の物理量のうち、前記散乱体の数密度、および前記散乱体の大きさを含む場合、前記散乱体の数密度、および前記散乱体を非線形変換して前記重回帰分析を行うことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記特徴量は、前記超音波信号をもとに算出される周波数特徴量を含むことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記特徴量は、前記超音波信号をもとに算出される減衰率を含むことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記特徴量は、前記超音波信号をもとに算出される音速を含むことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記物理量情報生成部は、前記推定部が推定した前記物理量に応じて視覚情報を付与した画像データを生成することを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記推定部が互いに異なる複数の物理量を推定した場合、前記物理量情報生成部は、前記複数の物理量を同時、順次または異なるタイミングで前記表示部に表示される前記情報を生成することを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記非線形変換が施された前記散乱体の数密度、および/または前記散乱体の大きさに対してさらに非線形変換を施す変数変換部をさらに備えたことを特徴とする。
本発明に係る超音波診断装置は、上記発明において、前記観測対象から受信した超音波信号に基づき算出した特徴量において減衰の影響を補正する減衰補正部をさらに備え、前記推定部が、前記含有する散乱体の物理量が既知の前記対照物体の前記物理量と、前記対照物体から得られた特徴量において減衰の影響を補正した値とに基づき導出された関係と、前記減衰補正部が補正した前記観測対象の前記特徴量の値とを用いて、前記観測対象が含む散乱体の物理量を推定することを特徴とする。
本発明に係る超音波診断装置の作動方法は、観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動方法であって、特徴量算出部が、前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出ステップと、推定部が、含有する散乱体の物理量が既知の対照物体の前記物理量、および該対照物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定ステップと、物理量情報生成部が、前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成ステップと、を含むことを特徴とする。
本発明に係る超音波診断装置の作動プログラムは、観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動プログラムであって、特徴量算出部が、前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出手順と、推定部が、含有する散乱体の物理量が既知の対象物体の前記物理量、および該対照物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定手順と、物理量情報生成部が、前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成手順と、を前記超音波診断装置に実行させることを特徴とする。
本発明によれば、特徴量に基づく組織性状の鑑別を容易かつ正確に行うことができるという効果を奏する。
図1は、本発明の実施の形態1に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。 図2は、本発明の実施の形態1に係る超音波診断装置の信号増幅部が行う増幅処理における受信深度と増幅率との関係を示す図である。 図3は、超音波振動子の走査領域とBモード用受信データとを模式的に示す図である。 図4は、超音波信号の1つの音線におけるデータ配列を模式的に示す図である。 図5は、本発明の実施の形態1に係る超音波診断装置の周波数解析部により算出されたスペクトルデータの例を示す図である。 図6は、本発明の実施の形態1に係る超音波診断装置の減衰補正部が補正した補正後特徴量をパラメータとして有する直線を示す図である。 図7は、ミッドバンドフィットと、散乱体の直径と、数密度との関係を示す図であって、回帰平面を説明する図である。 図8は、本発明の実施の形態1に係る超音波診断装置が行う処理の概要を示すフローチャートである。 図9は、本発明の実施の形態1に係る超音波診断装置の周波数解析部が実行する処理の概要を示すフローチャートである。 図10は、本発明の実施の形態1に係る超音波診断装置の表示装置における特徴量画像の表示例を模式的に示す図である。 図11は、本発明の実施の形態1の変形例に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。 図12は、本発明の実施の形態1の変形例に係る超音波診断装置の表示装置における特徴量画像の表示例を模式的に示す図である。 図13は、本発明の実施の形態3に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。 図14は、本発明の実施の形態4に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。 図15は、本発明の実施の形態4に係る超音波診断装置が記憶するルックアップテーブルを説明するための図である。
以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る超音波診断装置3を備えた超音波診断システム1の構成を示すブロック図である。同図に示す超音波診断システム1は、観測対象である観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波内視鏡2と、超音波内視鏡2が取得した超音波信号に基づいて超音波画像を生成する超音波診断装置3と、超音波診断装置3が生成した超音波画像を表示する表示装置4と、を備える。超音波診断装置3は、超音波内視鏡2を一つ、または超音波内視鏡2の同種、異種に関わらず複数を同時に接続することができる。本実施の形態では、超音波内視鏡2が、超音波プローブとして作用する。なお、図1では、実線の矢印が画像にかかる電気信号の伝送を示し、破線の矢印が制御にかかる電気信号の伝送を示している。
超音波内視鏡2は、その先端部に、超音波診断装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して観測対象へ照射するとともに、観測対象で後方散乱された超音波エコーを電圧変化で表現する電気的なエコー信号に変換する超音波振動子21を有する。
超音波内視鏡2は、通常はその先端部に、さらに、撮像光学系および撮像素子を有しており、観測対象の消化管(食道、胃、十二指腸、大腸)、または呼吸器(気管、気管支)へ挿入され、消化管や呼吸器、その周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を撮像することが可能である。超音波内視鏡2は、観測対象への長尺の挿入部を有している。そして、挿入部は、通常は撮像時に観測対象へ照射する照明光を導くライトガイドを有する。このライトガイドは、その先端部が挿入部の先端まで達している一方、基端部が照明光を発生する光源装置に接続されている。
超音波診断装置3は、超音波内視鏡2と電気的に接続され、所定の波形および送信タイミングに基づいて高電圧パルスからなる送信信号(パルス信号)を超音波振動子21へ送信するとともに、超音波振動子21から電気的な受信信号であるエコー信号を受信して高周波(RF:Radio Frequency)信号のデジタルデータ(以下、RFデータという)を生成、出力する送受信部31と、送受信部31から受信したRFデータをもとにデジタルのBモード用受信データを生成する信号処理部32と、送受信部31から受信したRFデータに対して所定の演算を施す演算部33と、各種画像データを生成する画像処理部34と、キーボード、マウス、タッチパネル等のユーザインタフェースを用いて実現され、各種情報の入力を受け付ける入力部35と、超音波診断システム1全体を制御する制御部36と、超音波診断装置3の動作に必要な各種情報を記憶する記憶部37と、を備える。
送受信部31は、エコー信号を増幅する信号増幅部311を有する。信号増幅部311は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC(Sensitivity Time Control)補正を行う。図2は、信号増幅部311が行う増幅処理における受信深度と増幅率との関係を示す図である。図2に示す受信深度zは、超音波の受信開始時点からの経過時間に基づいて算出される量である。図2に示すように、増幅率β(dB)は、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴ってβからβth(>β0)へ線型に増加する。また、増幅率β(dB)は、受信深度zが閾値zth以上である場合、一定値βthをとる。閾値zthの値は、観測対象から受信する超音波信号がほとんど減衰してしまい、ノイズが支配的になるような値である。より一般に、増幅率βは、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴って単調増加すればよい。なお、図2に示す関係は、予め記憶部37に記憶されている。
送受信部31は、信号増幅部311によって増幅されたエコー信号と、増幅されない元のエコー信号との双方に対してフィルタリング等の処理を施した後、適当なサンプリング周波数(例えば50MHz)でサンプリングして離散化(いわゆるA/D変換処理)する。こうして、送受信部31は、増幅されないエコー信号から離散化されたRFデータA、増幅されないエコー信号から離散化されたRFデータNの2つのRFデータを生成し、信号処理部32および演算部33へ出力する。ここで、Aは、“Amplified”の略、Nは、“Normal”の略である。なお、超音波内視鏡2が複数の素子をアレイ状に設けた超音波振動子21を電子的に走査させる構成を有する場合、送受信部31は、複数の素子に対応したビーム合成用の多チャンネル回路を有する。
送受信部31が送信するパルス信号の周波数帯域は、超音波振動子21がパルス信号を超音波パルスへ電気音響変換をする際の線型応答周波数帯域をほぼカバーする広帯域にする。また、信号増幅部311におけるエコー信号の各種処理周波数帯域は、超音波振動子21が超音波エコーをエコー信号へ音響電気変換する際の線型応答周波数帯域をほぼカバーする広帯域にする。これらにより、後述する周波数スペクトルの近似処理を実行する際、精度のよい近似を行うことが可能となる。
送受信部31は、制御部36が出力する各種制御信号を超音波内視鏡2に対して送信するとともに、超音波内視鏡2から識別用のIDなどを含む各種情報を受信して制御部36へ送信する機能も有する。
信号処理部32は、RFデータAに対してバンドパスフィルタ、包絡線検波、対数変換など公知の処理を施し、デジタルのBモード用受信データを生成する。対数変換では、RFデータAを基準電圧Vcで除した量の常用対数をとってデシベル値で表現する。このBモード用受信データでは、超音波パルスの後方散乱の強さを示す受信信号の振幅または強度が、超音波パルスの送受信方向(深度方向)に沿って並んでいる。図3は、超音波振動子21の走査領域(以下、単に走査領域ということもある)とBモード用受信データとを模式的に示す図である。図3に示す走査領域Sは扇形をなしている。なお、図3では、超音波振動子21が、超音波が往復する経路(音線)を直線で、Bモード用受信データを各音線上に並んだ点で表現している。図3では、後の説明の都合上、各音線に、走査開始(図3右)から順に、1、2、3・・・と番号を付している。そして、1番目の音線をSR1、2番目の音線をSR2、3番目の音線をSR3、・・・、k番目の音線をSRkと定義する。図3は、超音波振動子21がコンベックス振動子である場合に相当している。また、図3では、Bモード用受信データの受信深度をzとして記載している。超音波振動子21の表面から照射された超音波パルスが受信深度zにある物体内で後方散乱し、超音波エコーとして超音波振動子21へ戻ってきた場合、その往復距離Lと受信深度zとの間には、z=L/2の関係がある。信号処理部32は、生成したBモード用受信データを、画像処理部34のBモード画像データ生成部341へ出力する。信号処理部32は、CPU(Central Processing Unit)等の汎用プロセッサ、またはASIC(Application Specific Integrated Circuit)もしくはFPGA(Field Programmable Gate Array)等の特定の機能を実行する専用の集積回路等を用いて実現される。
演算部33は、送受信部31が生成したRFデータNに高速フーリエ変換(FFT:Fast Fourier Transform)を施して周波数解析を行うことによりスペクトルデータを算出する周波数解析部331と、周波数解析部331により算出されたスペクトルデータを用いて、単回帰分析によりスペクトルデータの特徴量を算出する単回帰分析部332(特徴量算出部)と、単回帰分析部332が算出した特徴量、および記憶部37に記憶されている関係式であって、散乱体の数密度(以下、数密度をnとする)および直径(以下、散乱体の直径をdとする)から導かれる関係式を用いて、数密度nの対数(logn)および直径dの対数(logd)を推定する推定部333と、を有する。演算部33は、CPU(Central Processing Unit)や各種演算回路等を用いて実現される。なお、散乱体の数密度とは、単位体積あたりに含まれる散乱体の個数を意味し、本実施の形態での単位は[個/cm3]である。また、直径dの本実施の形態での単位は[μm]である。また、散乱体の数密度と直径の対数は常用対数とし、底を10とする。従って、lognやlogdは、nやdの10進表現の桁数−1を表現することになる。
周波数解析部331は、送受信部31が生成した各音線のRFデータN(ラインデータ)を所定の時間間隔で再びサンプリングし、サンプルデータを生成する。周波数解析部331は、サンプルデータ群にFFT処理を施すことにより、RFデータ上の多数の箇所(データ位置)における周波数スペクトルを算出する。ここでいう「周波数スペクトル」とは、サンプルデータ群をFFT処理を施すことによって得られた「ある受信深度zにおける強度の周波数分布」を意味する。また、ここでいう「強度」とは、例えばエコー信号の電圧、エコー信号の電力、超音波エコーの音圧、超音波エコーの音響エネルギー等のパラメータ、これらパラメータの振幅や時間積分値やその組み合わせのいずれかを指す。
本実施の形態では、強度としてエコー信号の電圧を採用し、周波数解析部331が、電圧振幅の周波数成分V(f,L)をもとに周波数スペクトルのデータ(以下、スペクトルデータともいう)を生成するものとして説明する。fは、周波数である。周波数解析部331は、電圧振幅の周波数成分V(f,L)を基準電圧Vcで除し、常用対数(log)をとってデシベル単位で表現する対数変換処理を施した後、適当な正の定数Aを乗ずることにより、次式(1)で与えられるスペクトルデータF(f,L)を生成する。
F(f,L)=A・log{V(f,L)/Vc} ・・・(1)
ここで、logは常用対数である(以下、同じ)。
以下、周波数解析部331での周波数解析により電圧振幅の周波数成分V(f,L)を求める方法について説明する。一般に、エコー信号の周波数スペクトルは、観測対象が生体組織である場合、超音波が走査された生体組織の性状によって異なる傾向を示す。これは、周波数スペクトルが、超音波を散乱する散乱体の大きさ、数密度、音響インピーダンス等と相関を有しているためである。ここでいう「生体組織の性状」とは、例えば悪性腫瘍(癌)、良性腫瘍、内分泌腫瘍、粘液性腫瘍、正常組織、嚢胞、脈管などのことである。
図4は、超音波信号の1つの音線SRkにおけるデータ配列を模式的に示す図である。音線SRkにおける白または黒の長方形は、1つのサンプル点におけるデータを意味している。また、音線SRkにおいて、右側に位置するデータほど、超音波振動子21から音線SRkに沿って計った場合の深い箇所からのサンプルデータである(図4の矢印を参照)。音線SRkは、前述の通り、送受信部31でのA/D変換処理によりエコー信号からサンプリングされ、離散化されたRFデータを、さらに、周波数解析部331によりサンプリングされたサンプルデータである。図4では、番号kの音線SRkの8番目のデータ位置を受信深度zの方向の初期値Z(k) 0として設定した場合を示しているが、初期値の位置は任意に設定することができる。周波数解析部331による算出結果は複素数で得られ、記憶部37に格納される。
図4に示すデータ群Fj(j=1、2、・・・、K)は、FFT処理の対象となるサンプルデータ群である。一般に、FFT処理を行うためには、サンプルデータ群が2のべき乗のデータ数を有している必要がある。この意味で、サンプルデータ群Fj(j=1、2、・・・、K−1)はデータ数が16(=24)で正常なデータ群である一方、サンプルデータ群FKは、データ数が12であるため異常なデータ群である。異常なデータ群に対してFFT処理を行う際には、不足分だけゼロデータを挿入することにより、正常なサンプルデータ群を生成する処理を行う。この点については、周波数解析部331の処理を説明する際に詳述する(図9を参照)。この後、周波数解析部331は、前述の通り、FFT処理を実行し、電圧振幅の周波数成分V(f,L)を算出し、前述の式(1)に基づいてスペクトルデータF(f,L)を算出し、単回帰分析部332へ出力する。
図5は、周波数解析部331により算出されたスペクトルデータの例を示す図である。図5では、横軸が周波数fである。また、図5では、縦軸が、上式(1)で与えられるスペクトルデータF(f,L)である。図5に示す直線L10については後述する。なお、本実施の形態において、曲線および直線は、離散的な点の集合からなる。
図5に示すスペクトルデータC1において、以後の演算に使用する周波数帯域の下限周波数fLおよび上限周波数fHは、超音波振動子21の周波数帯域、送受信部31が送信するパルス信号の周波数帯域などをもとに決定されるパラメータである。以下、図5において、下限周波数fLおよび上限周波数fHによって定まる周波数帯域を「周波数帯域U」という。
単回帰分析部332は、周波数解析部331から出力された複数のスペクトルデータを直線で近似することによってスペクトルデータの特徴量(以下、補正前特徴量という)を算出する近似部332aと、近似部332aが算出した補正前特徴量に対して周波数に依存した減衰を補正することによって特徴量を算出する減衰補正部332bと、を有する。
近似部332aは、所定周波数帯域におけるスペクトルデータの単回帰分析を行ってスペクトルデータを一次式(回帰直線)で近似することにより、この近似した一次式を特徴付ける補正前特徴量を算出する。単回帰分析とは、独立変数が1種類のみの場合の回帰分析である。本実施の形態での単回帰分析の独立変数は周波数fにあたる。例えば、スペクトルデータが図5に示すC1の状態である場合、近似部332aは、周波数帯域Uで単回帰分析を行いスペクトルデータC1の回帰直線である直線L10を得る。次に、近似部332aは、直線L10の傾きa0、切片b0、および周波数帯域Uの中心周波数(すなわち、「ミッドバンド」)fM=(fL+fH)/2の回帰直線上の値であるミッドバンドフィット(Mid-band fit)c0=a0M+b0を補正前特徴量として算出する。このように直線L10を特徴付ける一次式のパラメータ(傾きa0、切片b0、ミッドバンドフィットc0)でスペクトルデータC1を表現することで、スペクトルデータC1を一次式に近似したことになる。
3つの補正前特徴量のうち、傾きa0、切片b0は、超音波を散乱する散乱体の大きさ、散乱体の散乱強度、散乱体の数密度(濃度)等と相関を有していると考えられる。ミッドバンドフィットc0は、有効な周波数帯域内の中心におけるスペクトルの強度を与える。このため、ミッドバンドフィットc0は、散乱体の大きさ、散乱体の散乱強度、散乱体の数密度に加えて、Bモード画像の輝度とある程度の相関を有していると考えられる。この後、近似部332aは、これら補正前特徴量a0、b0、c0を減衰補正部332bへ出力する。なお、近似部332aは、回帰分析によって二次以上の多項式でスペクトルデータを近似するようにしてもよい。
減衰補正部332bが行う補正について説明する。一般に、超音波の振幅は指数的に減衰する。従って、振幅を対数変換し、デシベル表現にした場合、超音波が受信深度0と受信深度zとの間を往復する間に生じる減衰量A(f,z)は、往復する前後の線形の変化(デシベル表現での差)として表現できる。この振幅の減衰量A(f,z)は、観測対象が生体である場合には周波数に依存し、高周波では減衰が大きく、低周波では減衰が小さいことが知られている。特に、一様な組織内では周波数に比例することが経験的に知られており、以下の式(2)で表現される。
A(f,z)=2ζzf ・・・(2)
ここで、比例定数ζは減衰率と呼ばれる量である。また、zは超音波の受信深度であり、fは周波数である。減衰率ζの具体的な値は、観測対象が生体である場合、生体の部位や組織に応じて定まる。正常肝では概ね、0.55dB/cm/MHzである。なお、本実施の形態において、減衰率ζの値は記憶部37に予め記憶されており、減衰補正部332bは適宜、記憶部37から減衰率ζの値を読み出して用いる。入力部35が、超音波内視鏡2による超音波の送信の前に、予め、観測対象の部位名や組織名の入力を術者から受けた場合には、減衰補正部332bは、部位名や組織名に対応した減衰率ζの適当な値を読み出し、以下の減衰補正に用いる。さらに、入力部35が、減衰率ζの値を術者から直接受けた場合には、減衰補正部332bは、その値を以下の減衰補正に用いる。入力部35が、一切の入力を術者から受けなかった場合には、減衰補正部332bは、上記0.55dB/cm/MHzを以下の減衰補正に用いる。
減衰補正部332bは、近似部332aが抽出した補正前特徴量(傾きa0、切片b0、ミッドバンドフィットc0)に対し、以下に示す式(3)〜(5)にしたがって減衰補正を行うことにより、補正後特徴量a、b、c(以下、単に特徴量と呼ぶ)を算出する。
a=a0+2ζz ・・・(3)
b=b0 ・・・(4)
c=c0+A(fM,z)=c0+2ζzfM(=afM+b) ・・・(5)
式(3)、(5)からも明らかなように、減衰補正部332bは、超音波の受信深度zが大きいほど、補正量が大きい補正を行う。また、式(4)によれば、切片に関する補正は恒等変換である。これは、切片が周波数0(Hz)に対応する周波数成分であって減衰の影響を受けないためである。
図6は、減衰補正部332bが算出した特徴量a、b、cをパラメータとして有する直線を示す図である。Iを、図6の縦軸の値とすると、直線L1の式は、
I=af+b=(a0+2ζz)f+b0 ・・・(6)
で表される。この式(6)からも明らかなように、直線L1は、減衰補正前の直線L10と比較して、傾きが大きく(a>a0)、かつ切片が同じ(b=b0)である。この後、単回帰分析部332は、これら減衰補正された特徴量a、b、cを推定部333へ出力する。
推定部333は、単回帰分析部333が減衰補正を行った特徴量aおよび特徴量cと、記憶部37に記憶されている定数α、β、γ、α´、β´、γ´とを用いて、数密度nおよび直径d、実際にはそれらのオーダーである常用対数lognおよびlogdを推定する。具体的には、特徴量a(傾き)および特徴量c(ミッドバンドフィット)が、散乱体の数密度nや、散乱体の直径dのおよその値であるオーダー(桁数−1)、即ち、lognおよびlogdと線形関係を有するものと仮定し、推定部333は、以下の回帰平面の方程式(7)、(8)から導いた式(10)をもとに、lognおよびlogdを推定する。推定部333は、推定したlognおよび/またはlogdを物理量として画像処理部34に出力する。
以下、推定部333が観測対象から未知のlognおよびlogdを推定するための準備を説明する。まず、対照物体を用意する。本実施の形態では、人工的に作成した複数の基準ファントムを対照物体の例として説明する。基準ファントムは、散乱体として多数個の粒子を一様な媒体に混ぜ、固化させることによって形成される。散乱体は、予め、質量密度と音速と音響インピーダンスとが散乱体同士で等しくなるよう材質を同じに揃えられる。直径も等しくなるようふるいにかけられ、選別される。さらに、偏りがでないよう媒体に均一に混ぜられ、基準ファントム内において数密度も一様である。このように、基準ファントムにおける散乱体の材質、質量密度、音速、音響インピーダンス、直径、数密度は既知の値であり、基準ファントム内で一様である。一方、媒体の材質、質量密度、音速、音響インピーダンスもやはり既知の値であり、基準ファントム内で一様である。このように、基準ファントムにおいては、散乱体、媒体が均一、一様であるため、減衰率[dB/cm/MHz]も一様である。そして、これらのパラメータを変えて、複数の基準ファントムを作成する。
次に、散乱体の数密度と散乱体の直径とが異なる組み合わせ(n1,d1)、(n2,d2)、(n3,d3)、・・・、(nN,dN)であることがわかっているN個の基準ファントムに超音波を送信して得られた超音波エコーに基づき特徴量c1,c2,c3,・・・,cN(ミッドバンドフィット)を得る。以下の説明では、N個のファントムのうち、i番目の基準ファントムの散乱体の数密度をni、直径をdi、減衰率ζiとし、このi番目の基準ファントムから得られた特徴量(ミッドバンドフィット)をciとする(1≦i≦N)。この際、特徴量ciは、i番目の基準ファントムの減衰率ζiを基に、i番目の基準ファントムのスペクトルデータが算出された深度および式(5)を用いて減衰の影響が排除され、深度に依存しない。こうして、これら散乱体の数密度、散乱体の直径、特徴量からなるN個のデータセット(c1,n1,d1)、(c2,n2,d2)、(c3,n3,d3)、・・・、(cN,nN,dN)を得る。
次に、N個のデータセットから、散乱体の数密度と、散乱体の直径と、特徴量との関係を求める。図7は、ミッドバンドフィット(特徴量c)と、散乱体の数密度の常用対数(logn)と、散乱体の直径の常用対数(logd)とを互いに直交する各軸にとった直交座標系を示している。本実施の形態1では、予め、1番目の基準ファントムに対応するプロットP1(logn1,logd1,c1)、2番目の基準ファントムに対応するプロットP2(logn2,logd2,c2)、3番目の基準ファントムに対応するプロットP3(logn3,logd3,c3)、・・・、N番目の基準ファントムに対応するプロットPN(lognN,logdN,cN)の回帰平面PLを、最小二乗法を用いて求める。特徴量cに対するプロットP1、P2、P3、・・・、PNの回帰平面PLとは、プロットP1、P2、P3、・・・、PNとの差分(誤差)、すなわち、線分P11^、P22^、P33^、・・・、PNN^の距離の二乗和が最小となる平面である。ここで、Pi^は、プロットPiを通り、関心のある軸(ここでは、特徴量cの座標軸)に平行な直線とこの平面との交点である。このように、最小二乗法を用いて回帰平面PLを求め、これに基づき分析することは重回帰分析に該当する。重回帰分析とは、独立変数が2種類以上の場合の回帰分析である。本実施の形態での重回帰分析の独立変数は散乱体の直径dと散乱体の数密度nにあたる。
以下、回帰平面PLを具体的に求める方法を述べる。一般的に、平面の方程式は一次方程式で書くことができる。図7に示した特徴量cに対する回帰平面PLは、三次元空間内にあるため、特徴量cを2変数(logn,logd)の一次結合で表現した方程式(式(7))として書くことができる。ここで、α、β、γは平面を決定する実数の定数である。特徴量cに対する回帰平面PLを求めることと、α、β、γの値を求めることとは等価である。特徴量aについても、特徴量cと同様にして、回帰平面PLを考えることができ、特徴量aを2変数(logn,logd)の一次結合で表現した方程式(式(8))として書くことができる。ここで、α´、β´、γ´は平面を決定する実数の定数である。特徴量aに対する回帰平面PLを求めることと、α´、β´、γ´の値を求めることとは等価である。
Figure 2017098931
上式(7)、(8)から、下式(9)が得られる。
Figure 2017098931
式(9)より下式(10)が得られる。
Figure 2017098931
ここで、定数α、β、γ、α´、β´、γ´の求め方について説明する。以下では、一例として定数α、β、γの求め方について説明する。N個の基準ファントムから特徴量ciをそれぞれ取得後、散乱体の数密度ni、直径di、特徴量ciの全基準ファントムにわたる平均をそれぞれ求める。その後、下式(11)、(12)に示す行列Gおよび列ベクトルYを定義する。回帰平面の方程式の係数αとβとは、下式(11)、下式(12)で定義される下式(13)によって得ることができる。
Figure 2017098931
Figure 2017098931
ここで、左肩のtは転置行列を示し、右肩の−1は逆行列を示している。
また、回帰平面PLが、散乱体の数密度ni、直径di、特徴量ciの各平均を座標とする点(P1、P2、・・・、PNの重心)を通過することから、式(7)より下式(14)を得る。上式(13)で得たα、βを下式(14)へ代入して定数γを求めることができる。
Figure 2017098931
上述したようにして、N個の基準ファントムに関するデータセット(c1,n1,d1)、(c2,n2,d2)、(c3,n3,d3)、・・・、(cN,nN,dN)を用いて、上式(7)の定数α、β、γを求めることができる。上式(8)の定数α´、β´、γ´についても同様に、N個の基準ファントムに関するデータセット(a1,n1,d1)、(a2,n2,d2)、(a3,n3,d3)、・・・、(aN,nN,dN)を用いて、定数α´、β´、γ´を求めることができる。
以上、定数α、β、γ、α´、β´、γ´が求められたことにより、推定部333が観測対象から未知のlognおよびlogdを推定するための準備を説明できた。ここで、超音波内視鏡2を介して得られた観測対象の特徴量c、特徴量a、および、観測対象内の散乱体の直径dの桁数−1であるlogd、散乱体の数密度nの桁数−1であるlognも、基準ファントムから得られた物理的な傾向に従うと考えられる。そのため、観測対象からのデータセット(n,d,c)を図7にプロットすると、回帰平面PL上のどこかに推定されるはずである。よって、このデータセット(n,d,c)は、回帰平面PLの方程式(7)を満足する。同様に、観測対象からのデータセット(n,d,a)も式(8)を満足する。観測対象のn,d,c,aは、式(7)と式(8)とを満足するので、式(10)を満足する。よって、推定部333は、このように観測対象からの特徴量c、特徴量aを式(10)へ代入し、lognおよびlogdを推定する。
なお、本実施の形態では、上述した基準ファントムからの超音波エコーに基づいたエコー信号の受信、特徴量c、特徴量aの算出、N個のデータセットの算出、定数α、β、γ、α´、β´、γ´の算出は、超音波診断装置3の外部で実施される。そして、取得した定数α、β、γ、α´、β´、γ´は、工場出荷前に、入力部35を介して記憶部37に内蔵された関係情報記憶部371に記憶される。本実施の形態で重要な点は、推定部333が、物理量が既知である対照物体からのエコー信号に基づく特徴量を利用して、重回帰分析の手法に基づき、lognおよびlogdを推定したことである。
図1に戻り、画像処理部34は、エコー信号の振幅を輝度で表現するBモード画像データを生成するBモード画像データ生成部341と、Bモード画像データ生成部341が生成したBモード画像データと、推定部333が推定した物理量(lognおよび/またはlogd)を視覚情報と関連づけてBモード画像とともに表示する物理量画像データを生成する物理量画像データ生成部342(物理量情報生成部)と、を有する。
Bモード画像データ生成部341は、信号処理部32から受信したBモード用受信データに対してゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示装置4における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。Bモード画像は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。
Bモード画像データ生成部341は、信号処理部32からのBモード用受信データに走査範囲を空間的に正しく表現できるよう並べ直す座標変換を施した後、Bモード用受信データ間の補間処理を施すことによってBモード用受信データ間の空隙を埋め、Bモード画像データを生成する。Bモード画像データ生成部341は、生成したBモード画像データを物理量画像データ生成部342へ出力する。
物理量画像データ生成部342は、推定部333が推定した物理量に関連する視覚情報をBモード画像データにおける画像の各画素に対して重畳することによって物理量画像データを生成する。物理量画像データ生成部342は、例えば図4に示す1つのサンプルデータ群Fj(j=1、2、・・・、K)のデータ量に対応する画素領域に対し、そのサンプルデータ群Fjから算出される周波数スペクトルの特徴量に対応する物理量に関連する視覚情報を割り当てる。物理量画像データ生成部342は、lognおよびlogdのいずれか一つに視覚情報としての色相を対応付けることによって物理量画像データを生成する。なお、物理量画像データ生成部342が、lognおよび/またはlogdの一方に色相を対応付けるとともに、他方に明暗を対応付けることによって物理量画像データを生成するようにしてもよい。物理量に関連する視覚情報としては、例えば色相、彩度、明度、輝度値、R(赤)、G(緑)、B(青)などの所定の表色系を構成する色空間の変数を挙げることができる。
ここで、物理量画像データ生成部342が生成する物理量画像データは、図3に示す走査領域Sにおいて、特定の深度幅および音線幅などで区切られる関心領域(Region of Interest:ROI)に応じた領域の物理量画像が表示装置4に表示されるような物理量画像データを生成する。
制御部36は、演算および制御機能を有するCPU等の汎用プロセッサ、またはASICもしくはFPGA等の専用の集積回路等を用いて実現される。制御部36は、記憶部37が記憶、格納する情報を記憶部37から読み出し、超音波診断装置3の作動方法に関連した各種演算処理を実行することによって超音波診断装置3を統括して制御する。なお、制御部36を信号処理部32および演算部33と共通の汎用プロセッサまたは専用の集積回路等を用いて構成することも可能である。
記憶部37は、減衰補正部332bが周波数スペクトルごとに算出した複数の特徴量や、画像処理部34が生成した画像データを記憶する。また、記憶部37は、推定部333が推定処理を行なう際の関係式(定数α、β、γ、α´、β´、γ´)を記憶する関係情報記憶部371を有する。
記憶部37は、上記以外にも、例えば増幅処理に必要な情報(図2に示す増幅率と受信深度との関係)、対数変換処理に必要な情報(式(1)参照、例えばA、Vcの値)、周波数解析処理に必要な窓関数(Hamming、Hanning、Blackman等)の情報等を記憶する。
また、記憶部37は、超音波診断装置3の作動方法を実行するための作動プログラムを含む各種プログラムを記憶する。作動プログラムは、ハードディスク、フラッシュメモリ、CD−ROM、DVD−ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを介してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。
以上の構成を有する記憶部37は、各種プログラム等が予めインストールされたROM(Read Only Memory)、および各処理の演算パラメータやデータ等を記憶するRAM(Random Access Memory)やハードディスク等を用いて実現される。
図8は、以上の構成を有する超音波診断装置3が行う処理の概要を示すフローチャートである。まず、超音波診断装置3は、超音波内視鏡2から超音波振動子21による観測対象の測定結果としてのエコー信号を受信する(ステップS1)。
超音波振動子21からエコー信号を受信した信号増幅部311は、そのエコー信号の増幅を行う(ステップS2)。ここで、信号増幅部311は、例えば図2に示す増幅率と受信深度との関係に基づいてエコー信号の増幅(STC補正)を行う。次に、送受信部31は、適当なサンプリング周波数(例えば50MHz)で増幅されたエコー信号と増幅されない元のエコー信号との双方をサンプリングして離散化し、それぞれからRFデータA、RFデータNを生成して、前者をBモード画像データ生成部341へ、後者を周波数解析部331へ出力する。
続いて、Bモード画像データ生成部341は、送受信部31から出力されたRFデータAを用いてBモード画像データを生成し、物理量画像データ生成部342へ出力する(ステップS3)。物理量画像データ生成部342はBモード画像データには処理を施さず、そのまま、表示装置4へ出力する。Bモード画像データを受信した表示装置4は、そのBモード画像データに対応するBモード画像を表示する(ステップS4)。
この後、制御部36は、術者等のユーザから入力部35の図示しないボタンもしくはメニューを介して、物理量画像の「表示」もしくは「非表示」のどちらが選択されているのか確認する(ステップS5)。制御部36は、「表示」の選択を確認した場合には演算部33を構成する各部へ物理量画像作成開始命令を出力する(ステップS5:Yes)。「非表示」の選択を確認した場合は物理量画像作成開始命令を出さない(ステップS5:No)。演算部33の各部は、物理量画像作成開始命令を受信すると、後述のステップS6以降の処理を実行する。なお、物理量画像作成開始命令の有無に関わらず、超音波診断装置3の送受信部31、信号増幅部311、信号処理部32、Bモード画像データ生成部341、物理量画像データ生成部342は上記ステップS1からS4までの処理を繰り返す。そのため、ユーザが入力部35へ物理量画像の「非表示」を指示している間は、Bモード画像が超音波振動子21による観測対象内の走査のたびに繰り返し表示装置4に表示される。
演算部33の各部が物理量画像作成開始命令を受信した場合、まず、周波数解析部331は、RFデータNにFFT処理による周波数解析を行うことによって全てのサンプルデータ群に対するスペクトルデータを算出する(ステップS6:周波数解析ステップ)。図9は、ステップS6において周波数解析部331が実行する処理の概要を示すフローチャートである。以下、図9に示すフローチャートを参照して、周波数解析処理を詳細に説明する。
まず、周波数解析部331は、解析対象の音線を識別するカウンタkをk0とする(ステップS21)。この初期値k0は、図3中、解析範囲の最右の音線の番号である。
続いて、周波数解析部331は、FFT処理用に取得する一連のデータ群(サンプルデータ群)を代表するデータ位置(受信深度に相当)Z(k)の初期値Z(k) 0を設定する(ステップS22)。例えば、図4では、上述したように、音線SRkの8番目のデータ位置を初期値Z(k) 0として設定した場合を示している。この初期値Z(k) 0は、音線SRk上での解析範囲の最浅の受信深度である。
その後、周波数解析部331は、サンプルデータ群を取得し(ステップS23)、取得したサンプルデータ群に対し、記憶部37が記憶する窓関数を作用させる(ステップS24)。このようにサンプルデータ群に対して窓関数を作用させることにより、サンプルデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。
続いて、周波数解析部331は、データ位置Z(k)のサンプルデータ群が正常なデータ群であるか否かを判定する(ステップS25)。図4を参照した際に説明したように、サンプルデータ群は、2のべき乗のデータ数を有している必要がある。以下、正常なサンプルデータ群のデータ数を2n(nは正の整数)とする。本実施の形態では、データ位置Z(k)が、できるだけZ(k)が属するサンプルデータ群の中心になるよう設定される。具体的には、サンプルデータ群のデータ数は2nであるので、Z(k)はそのサンプルデータ群の中心に近い2n/2(=2n-1)番目の位置に設定される。この場合、サンプルデータ群が正常であるとは、データ位置Z(k)より浅い側に2n-1−1(=Nとする)個のデータがあり、データ位置Z(k)より深い側に2n-1(=Mとする)個のデータがあることを意味する。図4に示す場合、サンプルデータ群F1、F2、F3、・・・、FK-1はともに正常である。なお、図4ではn=4(N=7,M=8)の場合を例示している。
ステップS25における判定の結果、データ位置Z(k)のサンプルデータ群が正常である場合(ステップS25:Yes)、周波数解析部331は、後述するステップS27へ移行する。
ステップS25における判定の結果、データ位置Z(k)のサンプルデータ群が正常でない場合(ステップS25:No)、周波数解析部331は、不足分だけゼロデータを挿入することによって正常なサンプルデータ群を生成する(ステップS26)。ステップS25において正常でないと判定されたサンプルデータ群(例えば図4のサンプルデータ群FK)は、ゼロデータを追加する前に窓関数が作用されている。このため、サンプルデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS26の後、周波数解析部331は、後述するステップS27へ移行する。
ステップS27において、周波数解析部331は、サンプルデータ群を用いてFFT演算を行うことにより、振幅の周波数成分であるV(f,L)を算出する。その後、周波数解析部331は、V(f,L)に対数変換処理を施して、スペクトルデータF(f,L)を得る(ステップS27)。
続いて、周波数解析部331は、データ位置Z(k)をステップ幅Dで変化させる(ステップS28)。ステップ幅Dについて、入力部35を経由した術者の入力値を記憶部37が予め記憶しているものとする。図4では、D=15の場合を例示している。ステップ幅Dは、できるだけ小さく、特に、Bモード画像データ生成部341がBモード画像データを生成する際に利用するデータステップ幅と一致させることが望ましいが、周波数解析部331における演算量を削減したい場合には、ステップ幅Dとしてデータステップ幅より大きい値を設定してもよい。
その後、周波数解析部331は、データ位置Z(k)が音線SRkにおける最大値Z(k) maxより大きいか否かを判定する(ステップS29)。この最大値Z(k) maxは、音線SRk上での解析範囲の最深の受信深度である。データ位置Z(k)が最大値Z(k) maxより大きい場合(ステップS29:Yes)、周波数解析部331はカウンタkを1増加させる(ステップS30)。これは、処理をとなりの音線へ移すことを意味する。一方、データ位置Z(k)が最大値Z(k) max以下である場合(ステップS29:No)、周波数解析部331はステップS23へ戻る。
ステップS30の後、周波数解析部331は、カウンタkが最大値kmaxより大きいか否かを判定する(ステップS31)。カウンタkがkmaxより大きい場合(ステップS31:Yes)、周波数解析部331は一連の周波数解析処理を終了する。一方、カウンタkがkmax以下である場合(ステップS31:No)、周波数解析部331はステップS22に戻る。この最大値kmaxは、図3中、解析範囲の最左の音線の番号である。
このようにして、周波数解析部331は、解析対象領域内の(kmax−k0+1)本の音線の各々について深度別に複数回のFFT演算を行う。FFT演算の結果は、受信深度および受信方向とともに記憶部37に格納される。
なお、これら4種の値k0、kmax、Z(k) 0、Z(k) maxについては、図3の全走査範囲を含むようなデフォルト値が記憶部37にあらかじめ記憶されており、周波数解析部331は適宜これらの値を読み取って、図9の処理を行う。デフォルト値を読み取った場合、周波数解析部331は全走査範囲に対して周波数解析処理を行う。しかし、この4種の値k0、kmax、Z(k) 0、Z(k) maxは、入力部35を通じた術者等のユーザによる関心領域の指示入力によって変更可能である。変更されていた場合、周波数解析部331は指示入力された関心領域においてのみ周波数解析処理を行う。
以上説明したステップS6の周波数解析処理に続いて、単回帰分析部332は、周波数解析部331が取得した複数のスペクトルデータの補正前特徴量をそれぞれ算出し、各スペクトルデータの補正前特徴量に対して超音波の減衰の影響を排除する減衰補正を行って各スペクトルデータの特徴量を算出する(ステップS7〜S8)。
ステップS7において、近似部332aは、周波数解析部331が生成した解析範囲内の位置に応じた複数のスペクトルデータをそれぞれ単回帰分析することにより、各スペクトルデータに対応する補正前特徴量を算出する(ステップS7)。具体的には、近似部332aは、各スペクトルデータを単回帰分析することによって一次式で近似し、補正前特徴量として傾きa0、切片b0、ミッドバンドフィットc0を算出する。例えば、図5に示す直線L10は、近似部332aが周波数帯域UのスペクトルデータC1に対し単回帰分析によって近似した回帰直線である。
続いて、減衰補正部332bは、近似部332aが各スペクトルデータに対して近似して得た補正前特徴量に対し、減衰率ζを用いて減衰補正を行うことにより、減衰補正後の特徴量を算出し、記憶部37に格納する(ステップS8)。図6に示す直線L1は、減衰補正部332bが減衰補正処理を行うことによって得られる直線の例である。
ステップS8において、減衰補正部332bは、上述した式(3)、(5)における受信深度zに、超音波信号の音線のデータ配列を用いて得られるデータ位置Z=vS/(2・fsp)・D・nS+Z0を代入することによって算出する。ここで、fspはデータのサンプリング周波数、vsは音速、Dはデータステップ幅、nSは処理対象のサンプルデータ群のデータ位置までの音線の1番目のデータからのデータステップ数、Z0は解析範囲の最浅の受信深度である。例えば、データのサンプリング周波数fspを50MHzとし、音速vsを1530m/secとし、図5に示すデータ配列を採用してデータステップ幅Dを15とすると、z=0.2295nS+Z0(mm)となる。
その後、推定部333は、単回帰分析部332が減衰補正を行った特徴量aおよび特徴量cと、関係情報記憶部371に記憶されている定数α、β、γ、α´、β´、γ´とを用いて、数密度nおよび直径dの対数をとったlognおよび/またはlogdを推定する(ステップS9:推定ステップ)。推定部333は、推定したlognおよび/またはlogdを物理量として物理量画像データ生成部342に出力する。
物理量画像データ生成部342は、Bモード画像データ生成部341が生成したBモード画像データにおける各画素に対し、ステップS9で推定された物理量に関連づけた視覚情報(例えば色相)を重畳することによって物理量画像データを生成する(ステップS10:物理量情報生成ステップ)。
この後、表示装置4は、制御部36の制御のもと、物理量画像データ生成部342が生成した物理量画像データに対応する物理量画像を表示する(ステップS11)。図10は、表示装置4における特徴量画像の表示例を模式的に示す図である。同図に示す特徴量画像201は、Bモード画像に物理量に関する視覚情報が重畳された画像を表示する重畳画像表示部202と、観測対象の識別情報などを表示する情報表示部203とを有する。なお、情報表示部203に、物理量または特徴量の情報、近似式の情報、ゲインやコントラスト等の情報等をさらに表示するようにしてもよい。また、物理量画像に対応するBモード画像を物理量画像と並べて表示してもよい。
以上説明してきた一連の処理(ステップS1〜S11)において、ステップS2〜S4の処理とステップS5〜S10の処理とを並行して行うようにしてもよい。
以上説明してきた一連の処理において、観測対象の物理量として散乱体の直径と散乱体の数密度を、変数変換として対数変換を例に説明した。しかし、これはこの組み合わせによらず、他の物理量でもよく、他の変数変換でもよい。本来望んでいた物理量を、特徴量がそれに対し線形に変化する、もしくは、ゆるやかに変化する変数に変換できれば、変換後の変数を線形の重回帰分析に帰着、もしくは、近似して推定し、本来望んでいた物理量をある程度推定することができる。本実施の形態1では、観測対象の散乱体の直径と散乱体の数密度のオーダー(桁数−1)を推定することができた。
以上説明した本発明の実施の形態1によれば、単回帰分析部332により算出された特徴量と、基準ファントムを用いて算出された関係式(定数α、β、γ、α´、β´、γ´)とを用いて、推定部333が数密度nおよび直径dの対数をとったlognおよび/またはlogdを推定するようにしたので、散乱体の数密度および/または大きさ(直径)を直接推定することを可能にした。これにより、熟練を要さずとも、特徴量として算出された値が、どういう病理に対応した組織性状であるかという病理解釈を容易、かつ確実に行うことができる。
また、本発明の実施の形態1によれば、基準ファントムからの減衰補正された特徴量を基に定数α、β、γ、α´、β´、γ´を求めるようにしたので、観測対象と基準ファントムとの間の減衰率の相違によらず、より正確に上記推定をすることができる。
なお、入力部35を通じた術者等のユーザによる関心領域の指示入力によって、音線幅を決定するk0、kmax、および、深度幅を決定するZ(k) 0、Z(k) maxを、周波数解析部331が変更することで、指示入力された特定の深度幅および音線幅で区切られる関心領域に対してのみスペクトルデータを算出できるよう構成した。そのため、算出に関わる演算量を下げ、フレームレートを上げることができる。なお、ここでは、関心領域を深度幅と音線幅とで扇形に区切ったが、この例に限らず長方形、楕円であってもよく、他の形状でもよい。この場合、単回帰分析部332が、設定された関心領域内とその関心領域外とで個別に最適な減衰率を設定するようにしてもよい。
(実施の形態1の変形例)
続いて、本発明の実施の形態1の変形例について説明する。上述した実施の形態1では、推定部333が数密度nおよび直径dの対数をとったlognおよび/またはlogdを推定し、物理量画像データ生成部342が、lognおよび/またはlogdに対応する視覚情報をBモード画像に重畳するものとして説明したが、本変形例では、演算部33が、推定部333が推定したlognおよび/またはlogdを、さらに、nおよび/またはdに変換する。図11は、本発明の実施の形態1の変形例に係る超音波診断装置を備えた超音波診断システム1aの構成を示すブロック図である。
本変形例に係る超音波診断システム1aは、上述した実施の形態1に係る超音波診断システム1の構成に対して、超音波診断装置3の演算部33が、変数変換部334をさらに備える。変数変換部334は、推定部333が推定したlognおよび/またはlogdをnおよび/またはdに変換する。具体的には、lognおよび/またはlogdの推定値を10の指数に代入してnおよび/またはdとする。変数変換部334は、変換後の数密度nおよび/または直径dを、物理量画像データ生成部342に出力する。
物理量画像データ生成部342は、変数変換部334が変換した物理量(数密度nおよび/または直径d)に関連する視覚情報をBモード画像データにおける画像の各画素に対して重畳することによって物理量画像データを生成する。物理量画像データ生成部342は、例えば図4に示す1つのサンプルデータ群Fj(j=1、2、・・・、K)のデータ量に対応する画素領域に対し、そのサンプルデータ群Fjから算出される周波数スペクトルの特徴量に対応する物理量に関連する視覚情報を割り当てる。
表示装置4は、制御部36の制御のもと、物理量画像データ生成部342が生成した物理量画像データに対応する物理量画像を表示する。図12は、表示装置4における特徴量画像の表示例を模式的に示す図である。同図に示す特徴量画像201は、物理量に関する視覚情報が重畳された画像をBモード画像に表示する重畳画像表示部202と、観測対象の識別情報などを表示する情報表示部203とを有する。本変形例では、情報表示部203に、物理量の情報として、変数変換部334により変換された散乱体の数密度nおよび/または直径dを表示する。
本変形例によれば、推定部333が推定したlognおよび/またはlogdを変数変換して散乱体の数密度nおよび直径dを物理量として表示するようにしたので、散乱体の数密度および/または大きさ(直径)に直接関連した視覚情報を用いて推定することを可能にした。これにより、熟練を要さずとも、特徴量として算出された値が、どういう病理に対応した組織性状であるかという病理解釈を容易、かつ確実に行うことができる。
また、本変形例によれば、観測対象や基準ファントムの散乱体の数密度n、散乱体の直径dが直接には特徴量c、特徴量aと線形の関係ではなくとも、特徴量c、特徴量aとほぼ線形の関係になるlogn、logaを用いることができる。そして、logn、logaを変数変換することで本来望んでいた物理量である散乱体の数密度n、散乱体の直径dについて、そのオーダー(桁数−1)だけではなく、値自身を線形の重回帰分析に帰着して推定することができる。
(実施の形態2)
続いて、本発明の実施の形態2について説明する。本実施の形態2は、上述した実施の形態1に係る超音波診断装置を備えた超音波診断システムの構成と同様の構成を備える。図1は共通である。上述した実施の形態1では、単回帰分析部332が単回帰分析により特徴量a、b、cを算出するものとして説明したが、本実施の形態では単回帰分析部332が観測対象の特徴量として、これら3特徴量に加えて減衰率ζを算出する。減衰率ζは、例えば上述したスペクトルデータF(f,L)を用いて算出することができる。具体的には、回帰分析によりスペクトルデータF(f,L)の周波数fに対する回帰直線の傾きである特徴量aを求め、次にその傾きの往復距離Lに対するさらなる傾きを求め、さらに−1を乗ずることで求められる。また、上述した実施の形態1では、推定部333が数密度nおよび直径dの対数をとったlognおよび/またはlogdを推定するものとして説明したが、本実施の形態2では、推定部333が、数密度nおよび直径dの対数をとったlognおよび/またはlogdに加えて、散乱強度(以下、散乱強度をrとする)を推定する。ここでいう散乱強度とは、散乱体と媒体の振幅反射率、エネルギー反射率、および/または、それらの関数である。ここで、散乱強度は、以下のように定義される振幅反射率またはエネルギー反射率である。Zは、音響インピーダンスを示す。
振幅反射率 = |Z散乱体−Z媒体|/|Z散乱体+Z媒体
エネルギー反射率 = |Z散乱体−Z媒体2/|Z散乱体+Z媒体2
本実施の形態2において、推定部333は、単回帰分析部332が減衰補正を行った特徴量aおよび特徴量cおよび特徴量としての減衰率ζと、記憶部37に記憶されている定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´とを用いて、数密度nおよび直径dの対数をとったlognおよびlogd、ならびに散乱強度rを推定する。具体的に、特徴量a(傾き)、特徴量c(ミッドバンドフィット)および減衰率ζが、logn、logdおよび散乱強度rと線形関係を有するものと仮定し、推定部333は、後述する4次元空間内における回帰平面(つまり3次元立体)の方程式(15)〜(17)から導いた下式(19)をもとに、logn、logdおよび散乱強度rを推定する。推定部333は、推定したlogn、logdおよび/または散乱強度rを物理量として画像処理部34に出力する。
Figure 2017098931
上式(15)〜(17)から、下式(18)が得られる。
Figure 2017098931
式(18)より下式(19)が得られる。
Figure 2017098931
ここで、定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´の求め方について説明する。以下では、一例として定数α、β、γ、δの求め方について説明する。定数α、β、γ、δは、散乱体の大きさ(直径)、数密度および散乱強度を調整した材料を均一に混ぜて分布させて固化することによって形成され、散乱体の大きさ(直径)および数密度が予めわかっているとともに、減衰率[dB/cm/MHz]も均一であることが予めわかっている基準ファントムに超音波を送信し、得られた超音波エコーに基づいて算出された特徴量c(ミッドバンドフィット)を算出してそれぞれ得ることができる。本実施の形態2では、上述した実施の形態1と同様に、散乱体の直径および数密度および散乱強度の組み合わせが異なるN個の基準ファントムを用いて、特徴量cをそれぞれ算出する。以下の説明では、N個のファントムのうち、i番目の基準ファントムの散乱体の数密度をni、直径をdi、散乱強度をri、減衰率をζiとし、このi番目の基準ファントムにより得られた特徴量(ミッドバンドフィット)をciとする(1≦i≦N)。この際、特徴量ciは、i番目の基準ファントムの減衰率ζiを基に、i番目の基準ファントムのスペクトルデータが算出された深度および式(5)を用いて減衰の影響が排除され、深度に依存しない。
N個の基準ファントムから特徴量ciをそれぞれ取得後、散乱体の数密度ni、直径di、散乱強度riおよび特徴量ciの全基準ファントムにわたる平均をそれぞれ求める。その後、下式(20)、(21)に示す行列Gおよび列ベクトルYを定義する。4次元平面内の回帰平面の方程式の定数αとβとγとは、式(20)、(21)で定義される下式(22)によって得ることができる。
Figure 2017098931
Figure 2017098931
ここで、左肩のtは転置行列を示し、右肩の−1は逆行列を示している。
また、回帰平面が、散乱体の数密度ni、直径di、散乱強度riおよび特徴量ciの各平均を座標とする点(重心)を通過することから、式(15)より下式(23)を得る。上式(22)で得た定数α、β、γを下式(23)へ代入して定数δを求めることができる。
Figure 2017098931
上述したようにして、N個の基準ファントムを用いて、上式(15)の定数α、β、γ、δを求めることができる。上式(16)の定数α´、β´、γ´、δ´についても同様に、N個の基準ファントムを用いて、特徴量aiを算出して、定数α´、β´、γ´、δ´を求めることができる。また、上式(17)の定数α´´、β´´、γ´´、δ´´についても同様に、N個の基準ファントムを用いて、改めて測定した減衰率ζiもしくは既知の減衰率ζiを用いて、定数α´´、β´´、γ´´、δ´´を求めることができる。この取得した定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´は、記憶部37に記憶される。
この後、超音波内視鏡2を介して得られた観測対象の特徴量c、特徴量a、減衰率ζ、および、観測対象内の散乱体の直径dの桁数−1であるlogd、散乱体の数密度nの桁数−1であるlogn、散乱体の散乱強度rも、基準ファントムから得られた物理的な傾向に従うと考えられる。そのため、データセット(n,d,r,c)は、回帰平面の方程式(15)を満足する。同様に、観測対象からのデータセット(n,d,r,a)は式(16)を満足し、観測対象からのデータセット(n,d,r,ζ)は式(17)を満足する。観測対象のn,d,r,c,a,ζは、式(15)と式(16)と式(17)とを満足するので、式(19)を満足する。よって、推定部333は、このように観測対象からの特徴量c、特徴量a、特徴量としての観測対象の減衰率ζを式(19)へ代入し、lognおよびlogdおよび散乱強度rを推定する。
なお、本実施の形態2では、上述した基準ファントムからの超音波エコーに基づいたエコー信号の受信、特徴量c、特徴量a、減衰率ζの算出、N個のデータセットの算出、定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´の算出は、超音波診断装置3の外部で実施される。そして、取得した定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´は、工場出荷前に、入力部35を介して記憶部37に内蔵された関係情報記憶部371に記憶される。
物理量画像データ生成部342は、推定部333が変換した物理量(logn、logdおよび/またはr)に関連する視覚情報をBモード画像データにおける画像の各画素に対して重畳することによって物理量画像データを生成する。物理量画像データ生成部342は、例えば図4に示す1つのサンプルデータ群Fj(j=1、2、・・・、K)のデータ量に対応する画素領域に対し、そのサンプルデータ群Fjから算出される周波数スペクトルの特徴量に対応する物理量に関連する視覚情報を割り当てる。
以上説明した本発明の実施の形態2によれば、単回帰分析部332により算出された特徴量と、減衰率と、基準ファントムを用いて算出された関係式(定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´)とを用いて、推定部333が数密度nおよび直径dの対数をとったlogn、logdおよび/または散乱強度rを推定するようにしたので、散乱体の数密度、大きさ(直径)および/または散乱強度を直接推定することを可能にした。これにより、熟練を要さずとも、特徴量として算出された値が、どういう病理に対応した組織性状であるかという病理解釈を容易、かつ確実に行うことができる。
また、本発明の実施の形態2によれば、基準ファントムからの減衰補正された特徴量を基に定数α、β、γ、δ、α´、β´、γ´、δ´、α´´、β´´、γ´´、δ´´を求めるようにしたので、観測対象と基準ファントムとの間の減衰率の相違によらず、より正確に散乱体の数密度nの桁数−1であるlogn、および、散乱体の直径dの桁数−1であるlogdおよび/または散乱強度rを推定することができる。
なお、上述した実施の形態2では、物理量として減衰率ζを用いるものとして説明したが、これに限らず、特徴量a、cの分散や、スペクトルデータにより重み付けした平均周波数、音速を用いるものであってもよい。ここで、音速は、複数の素子をアレイ状に設けた超音波振動子21を電子的に走査させる構成を有し、送受信部31が複数の素子に対応したビーム合成用の多チャンネル回路を有する場合であって、超音波振動子21からのエコー信号のフォーカスの条件が最も良い場合の各素子に対する受信電圧の遅延時間から推定される。また、平均周波数は、以下の式(24)により与えられる(1≦q≦Nf:Nfは1より大きい整数)。
Figure 2017098931
ここで、Σqq・F(fq,L)はスペクトル強度の重み付け加算を示している。
以上説明してきた一連の処理において、観測対象の物理量として散乱体の散乱強度のほか、散乱体の直径と散乱体の数密度を、変数変換として対数変換を例に説明した。しかし、これはこの組み合わせによらず、他の物理量でもよく、他の変数変換でもよい。本来望んでいた物理量を、特徴量がそれに対し線形に変化する、もしくは、ゆるやかに変化する変数に変換できれば、変換後の変数を線形の重回帰分析に帰着、もしくは、近似して推定し、本来望んでいた物理量をある程度推定することができる。本実施の形態2では、観測対象の散乱体の直径と散乱体の数密度のオーダー(桁数−1)を推定することができた。
(実施の形態3)
続いて、本発明の実施の形態3について説明する。上述した実施の形態1では、基準ファントムからの超音波エコーに基づいた定数α、β、γ、α´、β´、γ´が超音波診断装置ではなくその外部で算出され、関係情報記憶部371に予め記憶されているものとして説明したが、本実施の形態3では、超音波診断システム1bが、定数α、β、γ、α´、β´、γ´を算出可能な構成をなす。図13は、本発明の実施の形態3に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。
本実施の形態3に係る超音波診断システム1bは、上述した実施の形態1に係る超音波診断システム1の構成に対して、超音波診断装置3が、変数変換部38および重回帰分析部39をさらに備える。
次に、変数変換部38は、入力部35または記憶部37を介してN個の基準ファントムの散乱体の数密度niおよび直径diおよび減衰率ζiを取得する(1≦i≦N)。変数変換部38は、取得した数密度niおよび直径diを対数に変換してlogniおよびlogdiを得る。変数変換部38は、logniおよびlogdiおよび減衰率ζiを記憶部37に出力する。これらの処理をN個全ての基準ファントムについて実施する。
次に、超音波振動子21がN個の基準ファントムのうちi番目の基準ファントムへ超音波を送信する。その後、送受信部31、周波数解析部331、単回帰分析部332は、実施の形態1で観測対象からのエコー信号に施した処理と同様の処理をi番目の基準ファントムからのエコー信号に施す。このようにして、超音波診断システム1bは、i番目の基準ファントムからの超音波エコーに基づいた特徴量ci、特徴量aiを算出する(1≦i≦N)。この際、減衰補正部332bは、i番目の基準ファントムの減衰率ζiを記憶部37から取得し、i番目の基準ファントムのスペクトルデータが算出された深度および式(3)と、式(5)とを用い、減衰を補正することによって特徴量ci、特徴量aiから減衰の影響を排除しておく。基準ファントムにおいて減衰は一様であるから、これらの特徴量ci、特徴量aiは、深度に依存しない。そして、単回帰分析部332は、i番目の基準ファントムの散乱体の特徴量ci、特徴量aiを記憶部37へ出力する。超音波診断システム1bは、これらの処理をN個全ての基準ファントムについて実施する。
重回帰分析部39は、記憶部37からN個の基準ファントムのlogni、logdi、特徴量ci、特徴量aiを全て取得する(1≦i≦N)。そして、重回帰分析部39は、N個の基準ファントムの散乱体の数密度ni、直径di、特徴量ci、特徴量aiの全基準ファントムにわたる平均をそれぞれ求める。その後、重回帰分析部39は、実施の形態1と同様の演算方法で、上式(11)〜(14)を用いて上式(7)、(8)の定数α、β、γ、α´、β´、γ´を求める。重回帰分析部39は、求めた定数α、β、γ、α´、β´、γ´または関係式を関係情報記憶部371に出力する。関係情報記憶部371は、受信した定数α、β、γ、α´、β´、γ´または関係式を記憶する。以上、定数α、β、γ、α´、β´、γ´または関係式を関係情報記憶部371に記憶するまでの処理は、観測対象への超音波の送信の前、望ましくは、工場出荷時に実施しておく。その後、観測対象への超音波の送信を行う。
入力部35が観測対象の走査を指示する指示入力を術者から受け付けると、観測対象への超音波の送信が開始され、送受信部31は超音波振動子21からエコー信号を受信する。その後、送受信部31、周波数解析部331、単回帰分析部332は、観測対象からのエコー信号に、実施の形態1と同様の処理を施す。こうして、単回帰解析部332は、観測対象からの超音波エコーを基に、減衰補正部332bにより適切に減衰を補正した観測対象の特徴量c、特徴量aを算出し、推定部333へ出力する。推定部333や物理量画像データ生成部342などの処理は、上述した実施の形態1と同様である。
以上説明した本発明の実施の形態3によれば、上述した実施の形態1の効果を得ることができるとともに、超音波診断装置3において、定数α、β、γ、α´、β´、γ´を求めるようにしたので、新たな超音波振動子を有する超音波内視鏡が追加されたり、基準ファントムが追加されたりした場合など、装置単位でアップデートを行うことができる。
また、本発明の実施の形態3によれば、超音波診断装置3において、定数α、β、γ、α´、β´、γ´を求めるようにした。そのため、超音波振動子ごとに送受信感度等の特性がばらつく場合でも超音波振動子の機体ごとに定数α、β、γ、α´、β´、γ´を算出することが容易になり、各超音波振動子に対応して、ばらつきによらず、より正確かつ容易に、散乱体の数密度nやその対数logn、および散乱体の直径dやその対数logdを推定することができる。
また、超音波振動子の特性が経時的に変化しても、定期的に定数α、β、γ、α´、β´、γ´を算出することが容易になり、経時的変化によらず、より正確に、上記推定をすることができる。
また、本発明の実施の形態3によれば、基準ファントムからの減衰補正された特徴量を基に定数α、β、γ、α´、β´、γ´を求めるようしたので、観測対象と基準ファントムとの間の減衰率の相違によらず、より正確にlogn、logdを推定することができる。
また、本発明の実施の形態3によれば、基準ファントムの散乱体の数密度ni、散乱体の直径diが直接には特徴量ci、aiには線形の関係がなくとも、特徴量ci、aiとほぼ線形の関係になるlogni、logdiを用いることができる。そして、本来望んでいた物理量である観測対象の散乱体の数密度n、散乱体の直径dの情報の画像化を線形の重回帰分析に帰着して実現することができる。
なお、本実施の形態3に係る変数変換部38および重回帰分析部39を、上述した実施の形態1の変形例や、実施の形態2に適用することも可能である。
(実施の形態4)
続いて、本発明の実施の形態4について説明する。上述した実施の形態1では、関係情報記憶部371が、定数α、β、γ、α´、β´、γ´または関係式を予め記憶しているものとして説明したが、本実施の形態4では、関係情報記憶部371が、特徴量の値に応じて物理量を出力可能なルックアップテーブル(Lookup table:LUT)を記憶している。図14は、本発明の実施の形態4に係る超音波診断装置を備えた超音波診断システムの構成を示すブロック図である。
本実施の形態4に係る超音波診断システム1cは、上述した実施の形態1に係る超音波診断システム1の構成に対して、関係情報記憶部371が、LUT371aを記憶する。図15は、本発明の実施の形態4に係る超音波診断装置が記憶するルックアップテーブルを説明するための図である。図15では、一例として、特徴量a、cの入力により物理量として散乱体の数密度nの対数であるlognを出力するためのルックアップテーブルを示している。
LUT371aは、例えばlognを出力するためのルックアップテーブルの場合、上述した重回帰分析によって得られた定数α、β、γ、α´、β´、γ´と、所定の間隔で抽出される複数の仮の特徴量a、cとをもとに、上式(10)よりlognおよびlogdをそれぞれ算出し、縦軸を仮の特徴量c、横軸を仮の特徴量aとして、各セルにlognの値を代入することで生成される。logdについても同様にして、定数α、β、γ、α´、β´、γ´と仮の特徴量a、cとをもとに、lognを出力するためのルックアップテーブルを生成することができる。LUT371aは、超音波診断装置3で作成するものであってもよいし、外部の演算装置によって生成されたものを取得してもよいし、ネットワークを介して取得してもよい。なお、ルックアップテーブルを生成する際、N個の基準ファントムの特徴量ciと特徴量aiと減衰率ζiとを用いる(1≦i≦N)。これら特徴量は減衰率、基準ファントムのスペクトルデータが算出された深度、および式(5)、式(3)を用いて減衰の影響が排除され、深度に依存しないようにした上でルックアップテーブルを生成する。
関係情報記憶部371は、LUT371aとして、lognを出力するためのルックアップテーブルと、logdを出力するためのルックアップテーブルとを記憶する。推定部333は、単回帰分析部332から特徴量a、cを受信すると、例えば特徴量aの小数点以下第1桁、特徴量cの小数点以下第2桁を丸める。その後、推定部333は、lognを出力する場合は、関係情報記憶部371からlognを出力するためのルックアップテーブルを読出して参照し、lognを推定する。また、推定部333は、logdを出力する場合は、関係情報記憶部371からlogdを出力するためのルックアップテーブルを読出して参照し、logdを推定する。
以上説明した本発明の実施の形態4によれば、上述した実施の形態1の効果を得ることができるとともに、物理量を算出するために要する処理時間を短縮することができる。
また、本発明の実施の形態4によれば、ルックアップテーブルを生成する際、基準ファントムの特徴量から減衰の影響が排除され、深度に依存しないようにした上でルックアップテーブルを生成したため、深度別にルックアップテーブルを用意する必要がなく、データ量は小さく、処理も簡便である。
なお、上述した実施の形態1の変形例や、実施の形態2において、本実施の形態4に係るLUT371aを記憶するようにすることも可能である。
ここまで、本発明を実施するための形態を説明してきたが、本発明は、上述した実施の形態によってのみ限定されるべきものではない。例えば、超音波診断装置において、各機能を有する回路同士をバスで接続することによって構成してもよいし、一部の機能が他の機能の回路構造に内蔵されるように構成してもよい。
また、上述した実施の形態1〜4では、散乱体の大きさが直径であるものとして説明したが、半径であってもよいし、体積であってもよい。
また、上述した実施の形態1〜4では、対照物体として、材質、質量密度、音速、音響インピーダンスが既知である媒体に、材質、質量密度、音速、音響インピーダンス、直径、数密度がやはり既知である散乱体を一様に混入させた基準ファントムを例に挙げて説明した。しかし、散乱体の直径、散乱体の散乱強度、散乱体の数密度等の物理量が既知で、かつ、分布が一様な対象であれば基準ファントムをこれに代えることができる。例えば、物理量が既知ないし正確に測定できれば動物の肝臓等、特定組織を用いてもよい。
また、上述した実施の形態1〜4では、物理量として、散乱体の数密度n、散乱体の直径d、散乱体の散乱強度rを例に挙げて説明した。さらに、特徴量として、スペクトルの傾きa、スペクトルの切片b、スペクトルのミッドバンドフィットc、減衰率ζを例に挙げて説明した。しかし、この中の一部であってもよいし、全部であってもよい。また、このほかの物理量や特徴量でもよい。例えば物理量として散乱体の形状を示す量、例えば異型性を示すフラクタル次元を用いてもよい。また、例えば物理量として散乱体の直径の分布の分散を用いてもよい。特徴量として音速や質量密度を用いてもよい。
また、上述した実施の形態1〜4において、推定部333が推定した物理量が複数存在する場合、表示装置4には、複数の物理量を同時に表示するものであってもよいし、入力部35への指示入力により順次切り替えて表示してもよいし、異なるタイミング(フレーム)で表示するものであってもよい。
また、本実施の形態1〜4では、超音波プローブとしてライトガイド等の光学系を有する超音波内視鏡2を用いて説明したが、超音波内視鏡2に限らず、撮像光学系および撮像素子を有しない超音波プローブであってもよい。さらに、超音波プローブとして、光学系のない細径の超音波ミニチュアプローブを適用してもよい。超音波ミニチュアプローブは、通常、胆道、胆管、膵管、気管、気管支、尿道、尿管へ挿入され、その周囲臓器(膵臓、肺、前立腺、膀胱、リンパ節等)を観察する際に用いられる。
また、超音波プローブとして、観測対象の体表から超音波を照射する体外式超音波プローブを適用してもよい。体外式超音波プローブは、通常、腹部臓器(肝臓、胆嚢、膀胱)、乳房(特に乳腺)、甲状腺を観察する際に体表に直接接触させて用いられる。
また、超音波振動子は、リニア振動子でもラジアル振動子でもコンベックス振動子でも構わない。超音波振動子がリニア振動子である場合、その走査領域は矩形(長方形、正方形)をなし、超音波振動子がラジアル振動子やコンベックス振動子である場合、その走査領域は扇形や円環状をなす。また、超音波内視鏡は、超音波振動子をメカ的に走査させるものであってもよいし、超音波振動子として複数の素子をアレイ状に設け、送受信にかかわる素子を電子的に切り替えたり、各素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。
このように、本発明は、請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
以上のように、本発明にかかる超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムは、特徴量に基づく組織性状の鑑別を容易かつ正確に行うのに有用である。
1、1a、1b、1c 超音波診断システム
2 超音波内視鏡
3 超音波診断装置
4 表示装置
21 超音波振動子
31 送受信部
32 信号処理部
33 演算部
34 画像処理部
35 入力部
36 制御部
37 記憶部
38、334 変数変換部
39 重回帰分析部
201 特徴量画像
202 重畳画像表示部
203 情報表示部
331 周波数解析部
332 単回帰分析部
332a 近似部
332b 減衰補正部
333 推定部
341 Bモード画像データ生成部
342 物理量画像データ生成部
371 関係情報記憶部

Claims (16)

  1. 観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置であって、
    前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出部と、
    含有する散乱体の物理量が既知の対照物体の前記物理量、および該対象物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定部と、
    前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成部と、
    を備えたことを特徴とする超音波診断装置。
  2. 前記物理量は、前記対照物体が含有する散乱体の数密度、前記散乱体の大きさ、および前記散乱体の散乱強度の少なくとも1つを含む、
    ことを特徴とする請求項1に記載の超音波診断装置。
  3. 前記物理量は、前記対照物体が含有する散乱体の散乱強度を含み、
    前記散乱強度は、前記散乱体と媒体の振幅反射率、エネルギー反射率、および/または、それらの関数である
    ことを特徴とする請求項1に記載の超音波診断装置。
  4. 前記推定部は、前記特徴量算出部が算出した前記特徴量を、前記関係としての関係式に代入することにより前記観測対象が含む散乱体の物理量を推定する
    ことを特徴とする請求項1に記載の超音波診断装置。
  5. 前記関係式、該関係式の係数、該関係式の定数項、および前記関係を記述したテーブルのうちの少なくとも一つを記憶する関係情報記憶部をさらに備え、
    前記推定部は、前記関係情報記憶部を参照して前記観測対象が含む散乱体の物理量を推定する
    ことを特徴とする請求項4に記載の超音波診断装置。
  6. 前記関係式は、前記物理量および前記特徴量のうち少なくとも一部を重回帰分析することにより導出される
    ことを特徴とする請求項1に記載の超音波診断装置。
  7. 前記既知の散乱体の物理量のうち、前記散乱体の数密度、および前記散乱体の大きさを含む場合、
    前記散乱体の数密度、および前記散乱体を非線形変換して前記重回帰分析を行う
    ことを特徴とする請求項6に記載の超音波診断装置。
  8. 前記特徴量は、前記超音波信号をもとに算出される周波数特徴量を含む
    ことを特徴とする請求項1に記載の超音波診断装置。
  9. 前記特徴量は、前記超音波信号をもとに算出される減衰率を含む
    ことを特徴とする請求項1に記載の超音波診断装置。
  10. 前記特徴量は、前記超音波信号をもとに算出される音速を含む
    ことを特徴とする請求項1に記載の超音波診断装置。
  11. 前記物理量情報生成部は、前記推定部が推定した前記物理量に応じて視覚情報を付与した画像データを生成する
    ことを特徴とする請求項1に記載の超音波診断装置。
  12. 前記推定部が互いに異なる複数の物理量を推定した場合、
    前記物理量情報生成部は、前記複数の物理量を同時、順次または異なるタイミングで前記表示部に表示される前記情報を生成する
    ことを特徴とする請求項1に記載の超音波診断装置。
  13. 前記非線形変換が施された前記散乱体の数密度、および/または前記散乱体の大きさに対してさらに非線形変換を施す変数変換部
    をさらに備えたことを特徴とする請求項6に記載の超音波診断装置。
  14. 前記観測対象から受信した超音波信号に基づき算出した特徴量において減衰の影響を補正する減衰補正部をさらに備え、
    前記推定部が、前記含有する散乱体の物理量が既知の前記対照物体の前記物理量と、前記対照物体から得られた特徴量において減衰の影響を補正した値とに基づき導出された関係と、前記減衰補正部が補正した前記観測対象の前記特徴量の値とを用いて、前記観測対象が含む散乱体の物理量を推定する
    ことを特徴とする請求項1に記載の超音波診断装置。
  15. 観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動方法であって、
    特徴量算出部が、前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出ステップと、
    推定部が、含有する散乱体の物理量が既知の対照物体の前記物理量、および該対象物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定ステップと、
    物理量情報生成部が、前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成ステップと、
    を含むことを特徴とする超音波診断装置の作動方法。
  16. 観測対象へ超音波を送信し、該観測対象で後方散乱された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動プログラムであって、
    特徴量算出部が、前記観測対象から受信した超音波信号に基づき、特徴量を算出する特徴量算出手順と、
    推定部が、含有する散乱体の物理量が既知の対照物体の前記物理量、および該対象物体から得られた特徴量に基づき導出された関係と、前記特徴量算出部が算出した前記観測対象の前記特徴量とを用いて、前記観測対象が含む散乱体の物理量を推定する推定手順と、
    物理量情報生成部が、前記推定部による推定結果を含み、表示部に表示させるための情報を生成する物理量情報生成手順と、
    を前記超音波診断装置に実行させることを特徴とする超音波診断装置の作動プログラム。
JP2017553282A 2015-12-08 2016-11-24 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム Active JP6253869B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015239433 2015-12-08
JP2015239433 2015-12-08
PCT/JP2016/084797 WO2017098931A1 (ja) 2015-12-08 2016-11-24 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム

Publications (2)

Publication Number Publication Date
JP6253869B2 JP6253869B2 (ja) 2017-12-27
JPWO2017098931A1 true JPWO2017098931A1 (ja) 2018-02-15

Family

ID=59014078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553282A Active JP6253869B2 (ja) 2015-12-08 2016-11-24 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム

Country Status (5)

Country Link
US (1) US20180279999A1 (ja)
EP (1) EP3387998A4 (ja)
JP (1) JP6253869B2 (ja)
CN (1) CN108366782B (ja)
WO (1) WO2017098931A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329696A (zh) * 2019-01-30 2021-08-31 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
CN116849701B (zh) * 2023-09-05 2023-12-26 深圳英美达医疗技术有限公司 多频超声探头的抗干扰方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111484A (ja) * 1991-10-24 1993-05-07 Matsushita Electric Ind Co Ltd 医用超音波画像評価装置
WO2012063976A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP2013166059A (ja) * 2010-11-11 2013-08-29 Olympus Medical Systems Corp 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2013179859A1 (ja) * 2012-05-30 2013-12-05 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5659324B1 (ja) * 2013-05-29 2015-01-28 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526816A (en) * 1994-09-22 1996-06-18 Bracco Research S.A. Ultrasonic spectral contrast imaging
WO2003098522A1 (en) * 2002-05-17 2003-11-27 Pfizer Products Inc. Apparatus and method for statistical image analysis
JP5394372B2 (ja) * 2008-04-25 2014-01-22 株式会社日立メディコ 超音波診断装置
JPWO2012011414A1 (ja) 2010-07-20 2013-09-09 オリンパスメディカルシステムズ株式会社 超音波診断装置
CN103153195B (zh) * 2010-11-11 2016-08-03 奥林巴斯株式会社 超声波观测装置、超声波观测装置的动作方法
EP2842498A1 (en) * 2011-03-31 2015-03-04 Olympus Medical Systems Corp. Ultrasonic observation apparatus, operation method of the ultrasonic observation apparatus, and operation program for the ultrasonic observation apparatus
CN102198009A (zh) * 2011-06-14 2011-09-28 复旦大学 基于超声背散射信号参量的松质骨诊断系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111484A (ja) * 1991-10-24 1993-05-07 Matsushita Electric Ind Co Ltd 医用超音波画像評価装置
WO2012063976A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP2013166059A (ja) * 2010-11-11 2013-08-29 Olympus Medical Systems Corp 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2013179859A1 (ja) * 2012-05-30 2013-12-05 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5659324B1 (ja) * 2013-05-29 2015-01-28 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Also Published As

Publication number Publication date
CN108366782A (zh) 2018-08-03
CN108366782B (zh) 2021-06-18
WO2017098931A1 (ja) 2017-06-15
EP3387998A1 (en) 2018-10-17
JP6253869B2 (ja) 2017-12-27
EP3387998A4 (en) 2019-07-31
US20180279999A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5948527B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5974210B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2018142937A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US20180271478A1 (en) Ultrasound observation device, method of operating ultrasound observation device, and computer-readable recording medium
JP6253869B2 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP7100160B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6892320B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016181869A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US10617389B2 (en) Ultrasound observation apparatus, method of operating ultrasound observation apparatus, and computer-readable recording medium
JP6022135B1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP2017113145A (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6886851B2 (ja) 超音波観測装置の作動方法、超音波観測装置および超音波観測装置の作動プログラム
JP5981072B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6010274B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6138402B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016181856A1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP6253572B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN113365560A (zh) 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
JP2017217313A (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171011

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171011

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R151 Written notification of patent or utility model registration

Ref document number: 6253869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250