JPWO2017043573A1 - 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 - Google Patents

標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 Download PDF

Info

Publication number
JPWO2017043573A1
JPWO2017043573A1 JP2017539215A JP2017539215A JPWO2017043573A1 JP WO2017043573 A1 JPWO2017043573 A1 JP WO2017043573A1 JP 2017539215 A JP2017539215 A JP 2017539215A JP 2017539215 A JP2017539215 A JP 2017539215A JP WO2017043573 A1 JPWO2017043573 A1 JP WO2017043573A1
Authority
JP
Japan
Prior art keywords
dna
sequence
complex
double
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017539215A
Other languages
English (en)
Other versions
JP6780860B2 (ja
Inventor
敬二 西田
敬二 西田
聡美 小嶋
聡美 小嶋
近藤 昭彦
昭彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Publication of JPWO2017043573A1 publication Critical patent/JPWO2017043573A1/ja
Application granted granted Critical
Publication of JP6780860B2 publication Critical patent/JP6780860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1024In vivo mutagenesis using high mutation rate "mutator" host strains by inserting genetic material, e.g. encoding an error prone polymerase, disrupting a gene for mismatch repair
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04005Cytidine deaminase (3.5.4.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、宿主細胞内の二本鎖DNAの標的化された部位を改変する方法であって、(a) 選択された二本鎖DNA中の標的ヌクレオチド配列の標的鎖に相補的な配列を含むcrRNAをコードするDNAと、(b) Cascadeを構成するタンパク質群と核酸塩基変換酵素とをコードするDNAであって、該核酸塩基変換酵素が該タンパク質群のいずれかのタンパク質と複合体を形成し得る形態で構成されたDNAとを、該宿主細胞に導入することにより、該標的化された部位において該二本鎖DNA鎖を切断することなく、該標的化された部位の1以上のヌクレオチドを他の1以上のヌクレオチドに変換する又は欠失させる、あるいは該標的化された部位に1以上のヌクレオチドを挿入する工程を含む、方法を提供する。

Description

本発明は、DNAの二重鎖切断を伴わず、また外来DNA断片の挿入を行わずにゲノムの特定領域内の核酸塩基の改変を可能とする、ゲノム配列の改変方法及びそれに用いる、核酸配列認識モジュールと核酸塩基変換酵素との複合体に関する。
近年、様々な生物種において目的の遺伝子・ゲノム領域を改変する技術として、ゲノム編集が注目されている。従来、ゲノム編集の手法としては、配列非依存的なDNA切断能を有する分子と配列認識能を有する分子とを組み合わせた人工ヌクレアーゼを利用する方法が提案されている(非特許文献1)。
例えば、ジンクフィンガーDNA結合ドメインと非特異的なDNA切断ドメインとを連結した、ジンクフィンガーヌクレアーゼ(ZFN)を用い、宿主の植物細胞または昆虫細胞にDNA中の標的遺伝子座において組換えを行う方法(特許文献1)、植物病原菌キサントモナス属が有するDNA結合モジュールである転写活性化因子様(TAL)エフェクターと、DNAエンドヌクレアーゼとを連結したTALENを用いて、特定のヌクレオチド配列内又はそれに隣接する部位で、標的遺伝子を切断・修飾する方法(特許文献2)、あるいは、真正細菌や古細菌が持つ獲得免疫システムで機能するDNA配列CRISPR(Clustered Regularly interspaced short palindromic repeats)と、CRISPRとともに重要な働きを持つヌクレアーゼCas(CRISPR-associated)タンパク質ファミリーとを組み合わせたCRISPR-Cas9システムを利用する方法(特許文献3)などが報告されている。さらには、35個のアミノ酸からなり1個の核酸塩基を認識するPPRモチーフの連続によって、特定のヌクレオチド配列を認識するように構成されたPPRタンパク質と、ヌクレアーゼとを連結した人工ヌクレアーゼを用い、該特定配列の近傍で標的遺伝子を切断する方法(特許文献4)も報告されている。
これまで提案されてきたゲノム編集技術は、基本的にDNA二重鎖切断(double-stranded DNA breaks : DSB)を前提としているが、想定外のゲノム改変を伴うため、強い細胞毒性や染色体の転位などの副作用があり、遺伝子治療における信頼性を損なったり、ヌクレオチド改変による生存細胞数が極めて少なかったり、霊長類卵細胞や単細胞微生物では遺伝子改変自体が困難であるといった共通の課題があった。
DSBを伴わないゲノム編集技術として、ジンクフィンガー(ZF)モチーフ等の配列認識能を有する分子と、核酸塩基のアミノ基をカルボニル基に変換するデアミナーゼとを組み合わせた人工酵素が提案されてはいるが(特許文献5)、実験的証拠は一切なく、変異導入効率はおろか、そもそも遺伝子改変が可能であるかすら明らかではない。実際、同じくゲノム切断を伴わない系として、DNA鎖上の脱塩基反応を触媒するDNAグリコシラーゼを用いた方法では、DNA修復機構を弱めた変異酵母を宿主に用いた場合ですら、変異導入効率は極めて低く(非特許文献2)、遺伝子治療や有用生物の分子育種等への実用化には程遠いのが現状である。
特許第4968498号公報 特表2013-513389号公報 特表2010-519929号公報 特開2013-128413号公報 米国特許出願公開第2011/0104787号明細書
Kelvin M Esvelt, Harris H Wang (2013) Genome-scale engineering for systems and synthetic biology, Molecular Systems Biology 9: 641 Prashant Mali, Kevin M Esvelt, George M Church (2013) Nucleic Acids Res. 41: e99
従って、本発明の目的は、DSBないし外来DNA断片の挿入を伴わずに、遺伝子の特定配列の核酸塩基を改変する、新規なゲノム編集の手法、並びにそのための核酸配列認識モジュール及び核酸塩基変換酵素の複合体を提供することである。
本発明者らは既に、二本鎖DNAのいずれか一方もしくは両方の鎖の切断能を失活した変異Cas9を有するType II CRISPR-Casシステムを核酸配列認識モジュールとして用い、核酸塩基変換酵素としてデアミナーゼを用いることにより、DSBを伴うことなく、特定のDNA配列を含む領域においてゲノム配列を効率よく改変することに成功している(WO2015/133554)。しかし、Casタンパク質はprotospacer adjacent motif(PAM)と呼ばれるDNA鎖上の配列を認識して結合するため、変異導入部位はPAMの存否により制限される。現在、ゲノム編集に頻用されているType II CRISPR-Casシステムのストレプトコッカス・ピオゲネス(Streptococcus pyogenes)由来のCas9(SpCas9)は、PAMとしてNGG(Nは任意の塩基)を認識する。また、Type II CRISPRにおいて標的とされるヌクレオチド配列(即ち、ガイドRNAに相補的なDNA鎖上のヌクレオチド配列)はPAMの5’上流18〜25ヌクレオチドの長さであり、その長さにかかわらず、標的ヌクレオチド配列の5’端から2〜5ヌクレオチドの位置で塩基変換が起こる頻度が最も高いことが、本発明者らの研究により明らかになっている。
一方、大腸菌などが有するType I-E CRISPR-Casシステムでは、32〜33ヌクレオチド長の標的ヌクレオチド配列の5’側に隣接するATG、AAG、AGG又はGAGを、PAM配列として認識することが知られており(図1参照;図1D及びEでは、PAM配列がAAGの場合を例示している)、他のType I CRISPR-Casシステムもそれぞれ特異的な2又は3塩基のPAM配列を認識する。従って、Type I CRISPR-Casシステムを核酸配列認識モジュールとして用いることができれば、Cas9ではPAM配列や変異導入位置の制約により変異導入が困難な部位での塩基変換が可能となる。
しかしながら、Type II CRISPR-Casシステムでは、標的ヌクレオチド配列に相補的なcrRNAとCas9をリクルートするためのtrans-acting crRNA(tracrRNA)とのキメラRNAと、Cas9とのみから核酸配列認識モジュールを構成することができたが、例えば、大腸菌が有するType I-E CRISPR-Casシステムでは、標的ヌクレオチド配列とPAM配列の認識を、CRISPR-associated complex for antiviral defence(Cascade)と呼ばれる、crRNAを提示した5種類のCasタンパク質(CasA、CasB、CasC、CasD及びCasE)とからなる複雑なリボヌクレオプロテイン複合体が担っており、これにヌクレアーゼ及びヘリカーゼ活性を有するCas3が加わって、Type II CRISPR-CasシステムにおけるCas9と同様のDNA認識・切断機能を発揮している(図1参照)。このような複雑な構成のため、Type I CRISPR-Casシステムは、人工ヌクレアーゼとしてのゲノム編集技術にさえも、未だほとんど利用されていない。
本発明者らは、大腸菌の必須遺伝子であるrpoB遺伝子の標的ヌクレオチド配列の標的鎖に相補的な配列の両端に、Cascadeに正しく提示されるのに必要な5’handle及び3’handleを連結したゲノム特異的CRISPR-RNA(crRNA)をコードするDNAを作製し、他方で、大腸菌のCasオペロンから、Cascadeの構成に必要なcasA〜casE遺伝子群を単離し、これにデアミナーゼ遺伝子を連結したDNAを作製して、これらのDNAを、改変しようとする遺伝子を含む宿主大腸菌に導入した。その結果、目的遺伝子の標的ヌクレオチド配列及びその近傍に、ゲノムDNAの切断を伴うことなく変異を導入することに成功した。また、Cas9を用いた場合と異なり、標的ヌクレオチド配列の長さを32ヌクレオチドとすると、PAM配列から32〜44塩基下流のシトシンが主に編集されることがわかった。
本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成するに至った。
即ち、本発明は以下の通りである。
[1]宿主細胞内の二本鎖DNAの標的化された部位を改変する方法であって、
(a) 選択された二本鎖DNA中の標的ヌクレオチド配列の標的鎖に相補的な配列を含むcrRNAをコードするDNAと、
(b) Cascadeを構成するタンパク質群と核酸塩基変換酵素とをコードするDNAであって、該核酸塩基変換酵素が該タンパク質群のいずれかのタンパク質と複合体を形成し得る形態で構成されたDNAとを、
該宿主細胞に導入することにより、該標的化された部位において該二本鎖DNA鎖を切断することなく、該標的化された部位の1以上のヌクレオチドを他の1以上のヌクレオチドに変換する又は欠失させる、あるいは該標的化された部位に1以上のヌクレオチドを挿入する工程を含む、方法。
[2]前記Cascadeを構成するタンパク質群がCasA、CasB、CasC、CasD及びCasEである、上記[1]記載の方法。
[3]前記Cascadeが大腸菌由来である、上記[2]記載の方法。
[4]前記核酸塩基変換酵素と複合体を形成するタンパク質がCasEである、上記[2]又は[3]記載の方法。
[5]前記核酸塩基変換酵素がデアミナーゼである、上記[1]〜[4]のいずれかに記載の方法。
[6]前記デアミナーゼがシチジンデアミナーゼである、上記[5]記載の方法。
[7]前記宿主細胞が原核生物細胞である、上記[1]〜[6]のいずれかに記載の方法。
[8]前記(a)及び(b)のDNAを、発現期間を制御可能な形態で含む発現ベクターを、前記宿主細胞に導入し、二本鎖DNAの標的化された部位の改変が固定されるのに必要な期間、該DNAの発現を誘導する工程、
を含む、上記[1]〜[7]のいずれかに記載の方法。
[9]二本鎖DNA中の標的ヌクレオチド配列が、宿主細胞にとって必須の遺伝子内にあることを特徴とする、上記[8]記載の方法。
[10]宿主細胞内の二本鎖DNAの標的化された部位を改変するための核酸改変酵素複合体であって、
(a) 選択された二本鎖DNA中の標的ヌクレオチド配列の標的鎖に相補的な配列を含むcrRNAと、
(b) Cascadeを構成するタンパク質群と、該タンパク質群のいずれかのタンパク質と複合体を形成した核酸塩基変換酵素とを、
含有してなる、核酸改変酵素複合体。
[11]上記[10]記載の核酸改変酵素複合体をコードするDNA。
本発明のゲノム編集技術によれば、外来DNAの挿入もDNA二重鎖切断も伴わないため、安全性に優れており、従来法において遺伝子組換えであるとして、生物学的あるいは法律的に議論があったケースにおいても、解決策となる可能性が少なからずある。また、核酸配列認識モジュールとしてCascadeを用いることにより、Cas9とは異なるPAM配列を利用することができ、高頻度に変異が導入される位置も異なるため、目的遺伝子内の変異導入できる部位の選択肢が拡がる。
大腸菌ゲノム上のcasオペロン及びCRISPR遺伝子座(A)、crRNAの構造(B)、Cascadeの構造(C)、標的ヌクレオチド配列をCascadeが認識して結合した際に生じるR-loop構造(D)、並びにCas9とCascadeの標的ヌクレオチド配列とPAM配列の比較(E)を表す模式図である。 Type I CRISPR-Casシステムの各サブタイプ(I-A〜I-F)のcas遺伝子群の構成を示す図である。 本発明で用いられる代表的ベクターの主要部の構造(上)、並びに該ベクターから産生する本発明の核酸改変酵素複合体による遺伝子改変の様子(下)を示す模式図である。 実施例で用いたベクターの物理的地図と、詳細な配列情報に関する図である。 Cascade-デアミナーゼ複合体を用いたrpoB遺伝子の改変により得られたリファンピシン耐性コロニーにおける標的ヌクレオチド配列及びその近傍のシークエンス結果を示す図である。target 3r及びtarget 5rを用いた場合を示す。 Cascade-デアミナーゼ複合体を用いたrpoB遺伝子の改変により得られたリファンピシン耐性コロニーにおける標的ヌクレオチド配列及びその近傍のシークエンス結果を示す図である。target 4rを用いた場合を示す。
本発明は、宿主細胞内の改変しようとする二本鎖DNA鎖を切断することなく、該二本鎖DNA中の標的ヌクレオチド配列及びその近傍のヌクレオチドを他のヌクレオチドに変換等することにより、該二本鎖DNAの該標的化された部位を改変する方法(以下、「本発明の方法」ともいう)を提供する。当該方法は、該二本鎖DNA中の標的ヌクレオチド配列と特異的に結合する核酸配列認識モジュールと、核酸塩基変換酵素とが結合した複合体を、宿主細胞内で該二本鎖DNAと接触させることにより、該標的化された部位、即ち、標的ヌクレオチド配列及びその近傍のヌクレオチドを、他のヌクレオチドに変換等する工程を含むことを特徴とする。
本発明において、二本鎖DNAの「改変」とは、DNA鎖上のあるヌクレオチド(例えば、dC)が、他のヌクレオチド(例えば、dT、dA又はdG)に変換されるか、欠失すること、あるいはDNA鎖上のあるヌクレオチド間にヌクレオチドもしくはヌクレオチド配列が挿入されることを意味する。ここで、改変される二本鎖DNAは、宿主細胞内に存在する二本鎖DNAであれば特に制限されないが、好ましくはゲノムDNAである。また、二本鎖DNAの「標的化された部位」とは、核酸配列認識モジュールが特異的に認識して結合する「標的ヌクレオチド配列」の全部もしくは一部、又はそれと該標的ヌクレオチド配列の近傍(5’上流及び3’下流のいずれか一方又は両方)を意味する。
本発明において「核酸配列認識モジュール」とは、DNA鎖上の特定のヌクレオチド配列(即ち、標的ヌクレオチド配列)を特異的に認識して結合する能力を有する分子又は分子複合体を意味する。核酸配列認識モジュールが標的ヌクレオチド配列に結合することにより、該モジュールに連結された核酸塩基変換酵素が二本鎖DNAの標的化された部位に特異的に作用することを可能にする。
本発明において「核酸塩基変換酵素」とは、DNA塩基のプリン又はピリミジン環上の置換基を他の基又は原子に変換する反応を触媒することにより、DNA鎖を切断することなく、標的のヌクレオチドを他のヌクレオチドに変換し得る酵素を意味する。
本発明において「核酸改変酵素複合体」とは、上記核酸配列認識モジュールと核酸塩基変換酵素とが連結された複合体を含んでなる、特定のヌクレオチド配列認識能が付与された核酸塩基変換酵素活性を有する分子複合体を意味する。ここで「複合体」は複数の分子で構成されるものだけでなく、融合タンパク質のように、核酸配列認識モジュールと核酸塩基変換酵素とを単一の分子内に有するものも包含される。
本発明に用いられる核酸塩基変換酵素は、上記反応を触媒し得るものであれば特に制限はなく、例えば、アミノ基をカルボニル基に変換する脱アミノ化反応を触媒する、核酸/ヌクレオチドデアミナーゼスーパーファミリーに属するデアミナーゼが挙げられる。好ましくは、シトシン又は5-メチルシトシンをそれぞれウラシル又はチミンに変換し得るシチジンデアミナーゼ、アデニンをヒポキサンチンに変換し得るアデノシンデアミナーゼ、グアニンをキサンチンに変換し得るグアノシンデアミナーゼ等が挙げられる。シチジンデアミナーゼとして、より好ましくは、脊椎動物の獲得免疫においてイムノグロブリン遺伝子に変異を導入する酵素である活性化誘導シチジンデアミナーゼ(以下、AIDともいう)などが挙げられる。
核酸塩基変換酵素の由来は特に制限されないが、例えば、ヤツメウナギ由来のPmCDA1(Petromyzon marinus cytosine deaminase 1)、脊椎動物(例、ヒト、ブタ、ウシ、イヌ、チンパンジー等の哺乳動物、ニワトリ等の鳥類、アフリカツメガエル等の両生類、ゼブラフィッシュ、アユ、ブチナマズ等の魚類)由来のAID(Activation-induced cytidine deaminase; AICDA)を用いることができる。PmCDA1のCDSの塩基配列及びアミノ酸配列を配列番号1及び2に示す。
本発明の核酸改変酵素複合体の核酸配列認識モジュールとしては、具体的には、Type I CRISPR-Casシステムが用いられる。
核酸配列認識能を有する分子としては、ジンクフィンガー(ZF)モチーフ、TALエフェクター、PPRモチーフ等が知られているが、ZFモチーフは標的ヌクレオチド配列に特異的に結合するZFの作製効率が高くなく、また、結合特異性の高いZFの選別が煩雑なため、実際に機能するZFモチーフを多数作製するのは容易ではない。一方、TALエフェクターやPPRモチーフは、ZFに比べて標的核酸配列認識の自由度は高いが、標的ヌクレオチド配列に応じて巨大なタンパク質をその都度設計し、構築する必要があるので、効率面で問題がある。これに対し、真正細菌や古細菌に広く分布する獲得免疫機構であるCRISPR-Casシステムは、標的ヌクレオチド配列に対して相補的なCRISPR-RNA(crRNA)により目的の二本鎖DNAの配列を認識するので、標的ヌクレオチド配列と特異的にハイブリッド形成し得るオリゴDNAを合成するだけで、任意の配列を標的化することができる。
尚、本明細書において「標的ヌクレオチド配列」とは、核酸配列認識モジュール(具体的には、Type I CRISPR-Cas)が結合する二本鎖DNA配列を意味し、crRNAとハイブリッド形成する鎖を「標的鎖(targeted strand)」、その反対鎖で標的鎖とcrRNAとのハイブリッド形成により一本鎖状になる鎖を「非標的鎖(non-targeted strand)」と呼ぶこととする。また、核酸塩基変換反応は通常、一本鎖状になった非標的鎖上で起こる場合が多いので、標的ヌクレオチド配列を一本鎖で表現する場合(例えばPAM配列を表記する場合や、標的ヌクレオチド配列とPAMとの位置関係を表す場合等)、非標的鎖の配列で代表させるものとする。
CRISPR-Casシステムは3つのタイプに大別され、現在ゲノム編集に頻用されているのは、Cas9がDNA配列認識能とヌクレアーゼ活性との両方を担っているType II CRISPR-Casシステムである。一方、Type I CRISPR-Casシステムでは、標的ヌクレオチド配列に相補的な配列を含むcrRNAを提示して標的ヌクレオチド配列を認識するCasタンパク質複合体Cascadeと、ヌクレアーゼ及びヘリカーゼ活性を有するCas3とに、機能が分担されている。そのため、Cas9のように二本鎖DNAの少なくとも一方の鎖の切断能を失活した変異体を使用しなくとも、単にCasオペロンからCas3を除くことにより細胞毒性の強いDSBを回避することができる。即ち、(a) 標的ヌクレオチド配列の標的鎖に相補的な配列(ターゲッティング配列)に、crRNAの5’handle及び3’handleを連結したキメラcrRNAをコードするDNAと、(b) Cascade複合体を構成するタンパク質群と核酸塩基変換酵素とをコードするDNAとを、改変しようとする二本鎖DNAを有する宿主細胞に導入し、発現させることにより、該宿主細胞内で、ターゲッティング配列を含むcrRNAと該タンパク質群とからなるCascade複合体を形成させて、二本鎖DNA上の標的ヌクレオチド配列を識別させることができる。ここで核酸塩基変換酵素は、Cascadeを構成するタンパク質群のいずれかのタンパク質と複合体を形成し得る形態で発現するように、該核酸塩基変換酵素をコードするDNAは上記(b)のDNA中に配置される。そうすることで、該核酸塩基変換酵素は、Cascade複合体が認識して結合した標的ヌクレオチド配列及びその近傍の核酸塩基を、他の塩基に変換することができる。
Type I CRISPR-CasシステムにはA〜Fまでの6つのサブタイプが知られているが、いずれのサブタイプのCascadeも、本発明の核酸配列認識モジュールとして使用することができる。図2にI-A〜I-FサブタイプのCasオペロンの模式図を示す。各サブタイプのオペロン中、ヌクレアーゼ/ヘリカーゼであるCas3、免疫獲得の際の外来遺伝子切断に関与するCas1、Cas2及びCas4を除くタンパク質群が、Cascade複合体を構成する。I-EサブタイプにおけるCse1、Cse2、Cas7、Cas5及びCas6eは、それぞれCasA、CasB、CasC、CasD及びCasEとも呼ばれる(図1参照;本明細書では後者の命名を用いる)。I-Eサブタイプでは、1分子のcrRNAに対して、CasA、CasB、CasC、CasD及びCasEがそれぞれ1:2:6:1:1分子でCascade複合体を形成する(図1参照)。I-Eサブタイプにおいては、CasAがPAM配列(ATG、AAG、AGG又はGAG)の識別に重要な役割を担っていると考えられている。
I-A、I-B及びI-Dサブタイプは古細菌、I-C、I-E及びI-Fサブタイプは真正細菌に相対的に多く分布しており、I-AサブタイプはS. solfataricus、T. tenax等、I-BサブタイプはHaloferax volcanii等、I-CサブタイプはB. halodurans等、I-Eサブタイプは大腸菌等、I-FサブタイプはP. aeruginosa、大腸菌、P. atospeticum等で解析がなされている。
従って、Cascade複合体を構成するタンパク質群をコードするDNAは、例えば、上記の菌種由来のゲノムDNAを鋳型にして、casオペロンからゲノムPCRにより、I-Aサブタイプであればcsa5からcas5のORFを含む領域、I-Bサブタイプであればcas6からcas5のORFを含む領域、I-Cサブタイプであればcas5からcas7のORFを含む領域、I-Eサブタイプであれば、casAからcasEのORFを含む領域、I-Fサブタイプであればcsy1からcas6fのORFを含む領域をそれぞれ単離することにより、取得することができる。好ましくは、Cascade複合体を構成するタンパク質群は、I-EサブタイプのCascade複合体を構成するCasA、CasB、CasC、CasD及びCasEであり、より好ましくは大腸菌由来のCasA、CasB、CasC、CasD及びCasEである。大腸菌由来のcasA、casB、casC、casD及びcasEのORF配列は、それぞれ配列番号4に示されるヌクレオチド配列の5933-7441番目、5458-5940番目、4341-5432番目、3664-4338番目及び3081-3677番目(いずれも逆鎖)の配列である。
あるいは、Cascade複合体を構成するタンパク質群をコードするDNAは、化学的にDNA鎖を合成するか、もしくは合成した一部オーバーラップするオリゴDNA短鎖を、PCR法やGibson Assembly法を利用して接続することにより、その全長をコードするDNAを構築することも可能である。化学合成又はPCR法もしくはGibson Assembly法との組み合わせで全長DNAを構築することの利点は、該DNAを導入する宿主に合わせて使用コドンをCDS全長にわたり設計できる点にある。異種DNAの発現に際し、そのDNA配列を宿主生物において使用頻度の高いコドンに変換することで、タンパク質発現量の増大が期待できる。使用する宿主におけるコドン使用頻度のデータは、例えば(公財)かずさDNA研究所のホームページに公開されている遺伝暗号使用頻度データベース(http://www.kazusa.or.jp/codon/index.html)を用いることができ、または各宿主におけるコドン使用頻度を記した文献を参照してもよい。入手したデータと導入しようとするDNA配列を参照し、該DNA配列に用いられているコドンの中で宿主において使用頻度の低いものを、同一のアミノ酸をコードし使用頻度の高いコドンに変換すればよい。
核酸塩基変換酵素をコードするDNAも、同様に該酵素を産生する細胞からクローニングすることができる。例えば、ヤツメウナギのPmCDA1をコードするDNAは、NCBIデータベースに登録されているcDNA配列(accession No. EF094822)をもとに、CDSの上流及び下流に対して適当なプライマーを設計し、ヤツメウナギ由来mRNAからRT-PCR法によりクローニングできる。また、ヒトAIDをコードするDNAは、NCBIデータベースに登録されているcDNA配列(accession No. AB040431)をもとに、CDSの上流及び下流に対して適当なプライマーを設計し、例えばヒトリンパ節由来mRNAからRT-PCR法によりクローニングできる。他の脊椎動物由来のAIDホモログも、公知のcDNA配列情報(例えば、ブタ(accession No. CU582981)、ウシ(accession No. NM_110138682)、イヌ(accession No. NM_001003380)、チンパンジー(accession No. NM_001071809)、ニワトリ(accession No. NM_001243222)、アフリカツメガエル(accession No. NM_001095712)、ゼブラフィッシュ(accession No. AAI62573)、アユ(accession No. AB619797)、ブチナマズ(accession No. NM_001200185)等)をもとに、上記と同様にしてクローニングすることができる。
あるいは、上記と同様に、化学合成又はPCR法もしくはGibson Assembly法との組み合わせで、用いる宿主細胞での発現に適したコドン使用を有するDNAとして構築することもできる。
クローン化もしくは合成された核酸塩基変換酵素をコードするDNAは、そのまま、または所望により制限酵素で消化するか、適当なリンカー及び/又は核移行シグナル(目的の二本鎖DNAがミトコンドリアや葉緑体DNAの場合は、各オルガネラ移行シグナル)を付加した後に、Cascade複合体を構成するタンパク質群から選ばれる1以上のタンパク質をコードするDNAとライゲーションして、融合タンパク質をコードするDNAを調製することができる。用いられるリンカーは特に限定されないが、例えばFlag-tag、GSリンカー、Strep-tag等が挙げられ、これらのタンデムリピートも包含される。
あるいは、Cascade複合体の構成タンパク質をコードするDNAと、核酸塩基変換酵素をコードするDNAに、それぞれ結合ドメイン(例えば、SH3ドメイン、PDZドメイン、GKドメイン、GBドメイン等)もしくはその結合パートナーをコードするDNAを融合させるか、両DNAに分離インテインをコードするDNAを融合させることにより、Cascade構成タンパク質と核酸塩基変換酵素とが宿主細胞内で翻訳された後に複合体を形成できるようにしてもよい。
さらには、核酸塩基変換酵素とCascade構成タンパク質とを、RNA aptamerであるMS2F6、PP7等とそれらとの結合タンパク質によるRNA scaffoldを利用して結合させることもできる。これらの場合も、所望により一方もしくは両方のDNAの適当な位置に、リンカー及び/又は核移行シグナルを連結することができる。
核酸塩基変換酵素と複合体を形成するCascade構成タンパク質は特に制限はないが、融合タンパク質として発現させる場合は、オペロンの末端(I-Eサブタイプの場合、C末端側のCasEの下流(図3参照)や、N末端側のCasAの上流)に連結するのが遺伝子操作上簡単である。しかし、Casタンパク質-核酸塩基変換酵素複合体が正しいCascade複合体を形成 (crRNAが標的ヌクレオチド配列の標的鎖とハイブリッド形成できるように、crRNAを提示し得るようにCasタンパク質群が会合すること)し得る限り、オペロン内部に核酸塩基変換酵素をコードするDNAを挿入し、いずれかのCasタンパク質(I-EサブタイプであればCasB、CasC又はCasD)をコードするDNAに連結してもよい。例えば、I-Eサブタイプの場合、CasBは1分子のcrRNAに対して2分子、CasCは6分子でCascade複合体を形成するので、核酸塩基変換酵素同士が立体的な障害を生じない限りにおいて、複数分子の核酸塩基変換酵素を導入できることは、変異導入効率の改善をもたらす可能性がある。
結合ドメイン等を用いて核酸塩基変換酵素とCascade構成タンパク質との複合体を形成させる場合も、同様に、オペロンの末端もしくは内部に結合ドメインもしくはその結合パートナーをコードするDNAを連結し、核酸塩基変換酵素をコードするDNAに結合パートナーもしくは結合ドメインを連結することにより行うことができる。
一方、標的ヌクレオチド配列の標的鎖に相補的な配列(ターゲッティング配列)に、crRNAの5’handle及び3’handleを連結したキメラcrRNAをコードするDNAは、ターゲッティング配列の5’上流及び3’下流に、それぞれ既知の5’handle及び3’handle(例えば、Cascade複合体として大腸菌由来のI-Eサブタイプを用いる場合、5’handleとしてataaaccg、及び3’handleとしてgagttccccgcgccagcgggg(配列番号3)を連結したオリゴDNA配列を設計し、DNA/RNA合成機を用いて、化学的に合成することができる。S. solfataricus由来のI-Aサブタイプを用いる場合は、J. Biol. Chem. 286(24): 21643-21656 (2011)、H. volcanii由来のI-Bサブタイプを用いる場合はJ. Biol. Chem. 287(40): 33351-33365 (2012)、B. halodurans由来のI-Cサブタイプを用いる場合はStructure 20: 1574-1584 (2012)、P. aeruginosa由来のI-Fサブタイプを用いる場合はPNAS 108(25): 10092-10097 (2011)に、それぞれ記載される5’handle及び3’handleを用いることができる。
ターゲッティング配列の長さは、Cascade複合体に正しく提示されて、標的ヌクレオチド配列の標的鎖に対して特異的に結合し得る限り特に制限はないが、例えば30〜45ヌクレオチドが挙げられ、I-C、I-E及びI-Fサブタイプの場合は、好ましくは32〜33ヌクレオチド、I-A及びI-Bサブタイプの場合は、好ましくは34-44ヌクレオチドである。
Type I CRISPR-Casシステムにおける標的ヌクレオチド配列は、サブタイプに固有のPAM配列により制約を受ける。I-Eサブタイプの場合、標的ヌクレオチド配列の非標的鎖の5’上流側に、5’→3’の方向でAAG、ATG、AGG、GAGのいずれかが隣接している必要がある。例えば、I-Eサブタイプにおいて、32ヌクレオチド長のターゲッティング配列を、デアミナーゼと組み合わせて用いた場合、後述の実施例に示すとおり、PAM配列の下流32〜44塩基に存在するシトシンで塩基変換が起こり、変異が導入される頻度が高い。
Type I CRISPR-Casシステムと核酸塩基変換酵素とを組み合わせた本発明の核酸改変酵素複合体は、DNA二重鎖切断(DSB)を伴わないため、毒性の低いゲノム編集が可能であり、本発明の遺伝子改変方法は幅広い生物材料に適用することができる。従って、(a)ターゲッティング配列にcrRNAの5’handle及び3’handleを連結したキメラcrRNAをコードするDNAと、(b) Cascade複合体を構成するタンパク質群と核酸塩基変換酵素とをコードするDNAとが導入される細胞は、原核生物である大腸菌などの細菌や下等真核生物である酵母などの微生物の細胞から、ヒト等の哺乳動物を含む脊椎動物、昆虫、植物など高等真核生物の細胞にいたるまで、あらゆる生物種の細胞をも包含し得る。
上記(a)及び(b)のDNAを含む発現ベクターは、例えば、該DNAを適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。(a)及び(b)のDNAは、同一ベクター上に組み込んでもよいし、別個のベクター上に組み込んでもよい。
発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR325,pUC12,pUC13);枯草菌由来のプラスミド(例、pUB110,pTP5,pC194);酵母由来プラスミド(例、pSH19,pSH15);昆虫細胞発現プラスミド(例:pFast-Bac);動物細胞発現プラスミド(例:pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo);λファージなどのバクテリオファージ;バキュロウイルスなどの昆虫ウイルスベクター(例:BmNPV、AcNPV);レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクターなどが用いられる。
プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。DSBを伴う従来法では毒性のために宿主細胞の生存率が著しく低下する場合があるので、誘導プロモーターを使用して誘導開始までに細胞数を増やしておくことが望ましいが、本発明の核酸改変酵素複合体を発現させても十分な細胞増殖が得られるので、構成プロモーターも制限なく使用することができる。
宿主が大腸菌である場合、trpプロモーター、lacプロモーター、recAプロモーター、λpLプロモーター、λpRプロモーター、lppプロモーター、T7プロモーターなどが好ましい。
宿主がバチルス属菌である場合、SPO1プロモーター、SPO2プロモーター、penPプロモーターなどが好ましい。
宿主が酵母である場合、Gal1/10プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。
宿主が昆虫細胞である場合、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。
例えば、宿主が動物細胞である場合、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、CMVプロモーター、SRαプロモーターなどが好ましい。
宿主が植物細胞である場合、CaMV35Sプロモーター、CaMV19Sプロモーター、NOSプロモーターなどが好ましい。
尚、キメラcrRNAをコードするDNAは、プロモーターとして、pol III系のプロモーター(例、SNR6、SNR52、SCR1、RPR1、U6、H1プロモーター等)及びターミネーター(例、T6配列)を用いることもできる。
原核細胞や酵母等の下等真核細胞を宿主とする場合、Cascade構成タンパク質群をコードするDNAは、オペロンとしてポリシストロニックに発現させることができるが(図3参照)、動物細胞等の高等真核細胞を宿主とする場合は、各Casタンパク質をコードするDNAの間にポリシストロニックな発現を可能にする介在配列(例えば、IRES配列、口蹄疫ウイルス由来2A配列など)を挿入することができる。あるいは、各DNAの5’上流にプロモーターを挿入し、モノシストロニックに発現させてもよい。
キメラcrRNAをコードするDNAは、1つのプロモーターの下流にタンデムに挿入することもできる(図3参照)。この場合、各キメラcrRNAに搭載されるターゲッティング配列は同一配列であっても異なる配列であってもよい。異なる配列の場合、それらの配列は、同一遺伝子内の異なる領域を標的ヌクレオチド配列としてもよいし、異なる遺伝子の領域を標的ヌクレオチド配列としてもよい。各キメラcrRNAユニット間の連結部位は3’handle-5’handleのcrRNAのリピート部分の配列となり、特徴的なヘアピン構造の部分的二次構造をとるので、宿主細胞に内在の非特異的RNaseによって切断されると考えられており、内在のType I CRISPR-Casシステムを持たない宿主細胞でも細胞内で各キメラcrRNAユニットに切断され得る。もちろん各キメラcrRNAの上流にプロモーターを挿入して個々に発現させてもよい。
発現ベクターとしては、上記の他に、所望によりエンハンサー、スプライシングシグナル、ターミネーター、ポリA付加シグナル、薬剤耐性遺伝子、栄養要求性相補遺伝子等の選択マーカー、複製起点などを含有しているものを用いることができる。
(a) キメラcrRNAをコードするDNAと、(b) Cascade構成タンパク質群と核酸塩基変換酵素とをコードするDNAとを含む発現ベクターを宿主細胞に導入し、当該宿主細胞を培養することによって、本発明の核酸改変酵素複合体を細胞内で発現させることができる。
宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。
エシェリヒア属菌としては、例えば、エシェリヒア・コリ(Escherichia coli)K12・DH1〔Proc. Natl. Acad. Sci. USA,60,160 (1968)〕,エシェリヒア・コリJM103〔Nucleic Acids Research,9,309 (1981)〕,エシェリヒア・コリJA221〔Journal of Molecular Biology,120,517 (1978)〕,エシェリヒア・コリHB101〔Journal of Molecular Biology,41,459 (1969)〕,エシェリヒア・コリC600〔Genetics,39,440 (1954)〕などが用いられる。
バチルス属菌としては、例えば、バチルス・サブチルス(Bacillus subtilis)MI114〔Gene,24,255 (1983)〕,バチルス・サブチルス207-21〔Journal of Biochemistry,95,87 (1984)〕などが用いられる。
尚、内在性のType I CRISPR-Casシステムを有する細菌については、内在性のCas3が欠損した変異株を用いることが望ましい。
酵母としては、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)AH22,AH22R-,NA87-11A,DKD-5D,20B-12、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)NCYC1913,NCYC2036,ピキア・パストリス(Pichia pastoris)KM71などが用いられる。
昆虫細胞としては、例えば、ウイルスがAcNPVの場合、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell;Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞、Estigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合、昆虫細胞としては、蚕由来株化細胞(Bombyx mori N 細胞;BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞〔以上、In Vivo, 13, 213-217 (1977)〕などが用いられる。
昆虫としては、例えば、カイコの幼虫、ショウジョウバエ、コオロギなどが用いられる〔Nature,315,592 (1985)〕。
動物細胞としては、例えば、サルCOS-7細胞、サルVero細胞、チャイニーズハムスター卵巣(CHO)細胞、dhfr遺伝子欠損CHO細胞、マウスL細胞、マウスAtT-20細胞、マウスミエローマ細胞、ラットGH3細胞、ヒトFL細胞などの細胞株、ヒト及び他の哺乳動物のiPS細胞やES細胞などの多能性幹細胞、種々の組織から調製した初代培養細胞が用いられる。さらには、ゼブラフィッシュ胚、アフリカツメガエル卵母細胞なども用いることができる。
植物細胞としては、種々の植物(例えば、イネ、コムギ、トウモロコシ等の穀物、トマト、キュウリ、ナス等の商品作物、カーネーション、トルコギキョウ等の園芸植物、タバコ、シロイヌナズナ等の実験植物など)から調製した懸濁培養細胞、カルス、プロトプラスト、葉切片、根切片などが用いられる。
上記いずれの宿主細胞も、半数体(一倍体)であってもよいし、倍数体(例、二倍体、三倍体、四倍体など)であってもよい。従来の変異導入手法では、原則として相同染色体の一本にのみしか変異が導入されず、ヘテロな遺伝子型になるため、優性変異でなければ所望の形質は発現せず、ホモ化するには手間と時間がかかり、不都合が多かった。これに対し、本発明によれば、ゲノム内の相同染色体上の対立遺伝子すべてに変異を導入することが可能であるので、劣性変異であっても当代で所望の形質を発現させることができる可能性があり、従来法の問題点を克服し得る。
発現ベクターの導入は、宿主の種類に応じ、公知の方法(例えば、リゾチーム法、コンピテント法、PEG法、CaCl2共沈殿法、エレクトロポレーション法、マイクロインジェクション法、パーティクルガン法、リポフェクション法、アグロバクテリウム法など)に従って実施することができる。
大腸菌は、例えば、Proc. Natl. Acad. Sci. USA,69,2110 (1972)やGene,17,107 (1982)などに記載の方法に従って形質転換することができる。
バチルス属菌は、例えば、Molecular & General Genetics,168,111 (1979)などに記載の方法に従ってベクター導入することができる。
酵母は、例えば、Methods in Enzymology,194,182-187 (1991)、Proc. Natl. Acad. Sci. USA,75,1929 (1978)などに記載の方法に従ってベクター導入することができる。
昆虫細胞および昆虫は、例えば、Bio/Technology,6,47-55 (1988)などに記載の方法に従ってベクター導入することができる。
動物細胞は、例えば、細胞工学別冊8 新細胞工学実験プロトコール,263-267 (1995)(秀潤社発行)、Virology,52,456 (1973)に記載の方法に従ってベクター導入することができる。
ベクターを導入した細胞の培養は、宿主の種類に応じ、公知の方法に従って実施することができる。
例えば、大腸菌またはバチルス属菌を培養する場合、培養に使用される培地としては液体培地が好ましい。また、培地は、形質転換体の生育に必要な炭素源、窒素源、無機物などを含有することが好ましい。ここで、炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。また、培地には、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは、好ましくは約5〜約8である。
大腸菌を培養する場合の培地としては、例えば、グルコース、カザミノ酸を含むM9培地〔Journal of Experiments in Molecular Genetics, 431-433, Cold Spring Harbor Laboratory, New York 1972〕が好ましい。必要により、プロモーターを効率よく働かせるために、例えば、3β-インドリルアクリル酸のような薬剤を培地に添加してもよい。大腸菌の培養は、通常約15〜約43℃で行なわれる。必要により、通気や撹拌を行ってもよい。
バチルス属菌の培養は、通常約30〜約40℃で行なわれる。必要により、通気や撹拌を行ってもよい。
酵母を培養する場合の培地としては、例えば、バークホールダー(Burkholder)最小培地〔Proc. Natl. Acad. Sci. USA,77,4505 (1980)〕や0.5%カザミノ酸を含有するSD培地〔Proc. Natl. Acad. Sci. USA,81,5330 (1984)〕などが挙げられる。培地のpHは、好ましくは約5〜約8である。培養は、通常約20℃〜約35℃で行なわれる。必要に応じて、通気や撹拌を行ってもよい。
昆虫細胞または昆虫を培養する場合の培地としては、例えばGrace's Insect Medium〔Nature,195,788 (1962)〕に非働化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは、好ましくは約6.2〜約6.4である。培養は、通常約27℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
動物細胞を培養する場合の培地としては、例えば、約5〜約20%の胎児ウシ血清を含む最小必須培地(MEM)〔Science,122,501 (1952)〕、ダルベッコ改変イーグル培地(DMEM)〔Virology,8,396 (1959)〕、RPMI 1640培地〔The Journal of the American Medical Association,199,519 (1967)〕、199培地〔Proceeding of the Society for the Biological Medicine,73,1 (1950)〕などが用いられる。培地のpHは、好ましくは約6〜約8である。培養は、通常約30℃〜約40℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
植物細胞を培養する培地としては、MS培地、LS培地、B5培地などが用いられる。培地のpHは好ましくは約5〜約8である。培養は、通常約20℃〜約30℃で行なわれる。必要に応じて通気や撹拌を行ってもよい。
以上のようにして、核酸配列認識モジュール(Type I CRISPR-Cas)と核酸塩基変換酵素との複合体、即ち核酸改変酵素複合体を細胞内で発現させることができる。
細胞内に導入された発現ベクターから(a) キメラcrRNAと、(b) Cascade構成タンパク質群と核酸塩基変換酵素との複合体とが発現すると、該タンパク質群はCascade複合体を形成して該キメラcrRNAを提示する。Cascade複合体が目的の二本鎖DNA(例、ゲノムDNA)内の標的ヌクレオチド配列を特異的に認識して結合すると、Cascade構成タンパク質群に連結された核酸塩基変換酵素の作用により、標的化された部位(標的ヌクレオチド配列の全部もしくは一部又はそれらの近傍)のセンス鎖もしくはアンチセンス鎖で塩基変換が起こり、二本鎖DNA内にミスマッチが生じる(例えば、PmCDA1やAIDなどのシチジンデアミナーゼを核酸塩基変換酵素として用いた場合、標的化された部位のセンス鎖もしくはアンチセンス鎖上のシトシンがウラシルに変換され、U:GもしくはG:Uミスマッチを生じる)。このミスマッチが正しく修復されずに、反対鎖の塩基が、変換した鎖の塩基と対形成するように修復されたり(上記の例では、T-AもしくはA-T)、修復の際にさらに他のヌクレオチドに置換(例えば、U→A、G)、あるいは1ないし数十塩基の欠失もしくは挿入を生じることにより、種々の変異が導入される。
従来型の人工ヌクレアーゼでは、DNA二重鎖切断(DSB)を伴うため、ゲノム内の配列を標的とすると染色体の無秩序な切断(off-target切断)によると思われる増殖阻害と細胞死とが引き起こされる。この影響は多くの微生物・原核生物において特に致命的であり、応用性を阻んでいる。本発明では、変異導入をDNA切断ではなくDNA塩基上の置換基の変換反応(特に脱アミノ化反応)によって行うため、毒性の大幅な軽減が実現できる。
尚、本発明の二本鎖DNAの改変では、標的化された部位以外で、該二本鎖DNAの切断が生じることを妨げない。しかしながら、本発明の最大の利点の1つが、off-target切断による毒性を回避することであり、原則的にいかなる生物種においても適用可能であることを考慮すれば、好ましい一実施態様においては、本発明の二本鎖DNAの改変は、選択された二本鎖DNAの標的化された部位のみならず、それ以外の部位でのDNA鎖切断も伴わない。
核酸配列認識モジュールとしてType II CRIPR-Casシステムを用い、核酸塩基変換酵素としてAIDを用いる場合、変異を導入したいC(もしくはその反対鎖のG)が標的ヌクレオチド配列の5’端から2〜5ヌクレオチドの位置になるように、標的ヌクレオチド配列を設計することが好ましいことを、本発明者らは既に見出している。Type II CRISPR-Casシステムの場合、ターゲッティング配列の長さは、15〜30ヌクレオチド、好ましくは18〜25ヌクレオチドの間で適宜設定することができる。ターゲッティング配列は標的ヌクレオチド配列の標的鎖に相補的な配列であるので、ターゲッティング配列長を変化させることで、標的ヌクレオチド配列長も変化するが、ヌクレオチド長にかかわらず、5’端から2〜5ヌクレオチドの位置にあるC又はGに変異が導入され易いという規則性は保持される。従って、標的ヌクレオチド配列(その相補鎖であるターゲッティング配列)の長さを適宜選択することにより、変異を導入できる塩基の部位をシフトさせることができる。これにより、PAM(SpCas9の場合、NGG)による制約を部分的に解除することはできるが、完全ではない。
一方、核酸配列認識モジュールとしてType I-E CRISPR-Casシステム(ターゲッティング配列32ヌクレオチド)を用い、核酸塩基変換酵素としてAIDを用いた場合、PAM(大腸菌由来I-Eサブタイプの場合、AAG、ATG、AGG、GAG)の下流32〜44塩基の範囲内に主として変異が導入された。上述のように、PAM配列はType Iサブタイプに応じて異なるが、いずれも2〜3ヌクレオチド(例えば、I-AサブタイプではCCN、I-FサブタイプではCC)で自由度が高い。また、高頻度に変異導入がみられる範囲もType II CRISPR-Casシステムを用いる場合よりも広い。ターゲッティング配列の長さの許容性については検討の余地があるものの、I-AまたはI-Bサブタイプを用いれば、より長く標的ヌクレオチド配列を設定することができる。
このように、Type I CRISPR-Casシステムを核酸配列認識モジュールとして利用することにより、Type II CRISPR-Casシステムでは変異を導入することが困難であった部位にも変異導入が可能となるので、相互補完的に利用することができる。
図3に示すとおり、複数のターゲッティング配列を含むキメラcrRNAを宿主細胞に導入することができる。Type II CRISPR-Casシステムを用いた場合、近接する複数の標的ヌクレオチド配列に対して配列認識モジュールを作製し、同時に用いることにより、単独のヌクレオチド配列を標的とするよりも、変異導入効率が大幅に上昇することを、本発明者らは見出している。その効果は、両標的ヌクレオチド配列の一部が重複するような場合から、両者が600bp程度離れている場合でも同様に変異誘導が実現する。また、標的ヌクレオチド配列が同じ方向(同一鎖上に標的鎖が存在する)である場合と、対向する(二本鎖DNAのそれぞれの鎖上に標的鎖が存在する)場合のどちらでも変異導入は起こり得る。
従って、Type I CRISPR-Casシステムを用いる本発明においても、複数のヌクレオチド配列を標的とすることにより、さらなる変異誘導効率の改善が期待できる。
本発明の核酸改変酵素複合体を宿主細胞内で発現させるためには、上述のように該核酸改変酵素複合体をコードするDNAを含む発現ベクターを宿主細胞に導入するが、効率よく変異を導入するためには、一定期間以上、一定レベル以上の核酸改変酵素複合体の発現が維持されるのが望ましい。かかる観点からは、宿主細胞内で自律複製可能な発現ベクター(プラスミド等)を導入することが確実であるが、該プラスミド等は外来DNAであるため、首尾よく変異導入が達成された後は、速やかに除去されることが好ましい。従って、宿主細胞の種類等によって変動するが、例えば、発現ベクター導入から6時間〜2日間経過後に、当該技術分野で周知の種々のプラスミド除去法を用いて、宿主細胞から導入したプラスミドを除去することが望ましい。
あるいは、変異導入に十分な核酸改変酵素複合体の発現が得られる限り、宿主細胞内での自律複製能を有しない発現ベクター(例えば、宿主細胞で機能する複製起点及び/又は複製に必要なタンパク質をコードする遺伝子を欠くベクター等)を用いて、一過的発現により目的の二本鎖DNAに変異を導入することもまた好ましい。
本発明の核酸改変酵素複合体を宿主細胞内で発現させて、核酸塩基変換反応を行っている間、標的遺伝子の発現は抑制されているため、宿主細胞の生存に必須の遺伝子を標的遺伝子として、直接編集するのはこれまで難しかった(宿主の生育障害・変異導入効率の不安定化・ターゲットとは異なる部位への変異等の副作用を生じる)。本発明では、所望の時期に、核酸塩基変換反応が起こり、標的化された部位の改変が固定されるのに必要な期間だけ、一過的に本発明の核酸改変酵素複合体を宿主細胞内で発現させることにより、必須遺伝子の直接編集を実現することに成功した。核酸塩基変換反応が起こり、標的化された部位の改変が固定されるのに必要な期間は、宿主細胞の種類や培養条件等によっても異なるが、通常2〜20世代は必要であると考えられる。例えば、宿主細胞が酵母や細菌(例、大腸菌)である場合には、5〜10世代の間、核酸改変酵素複合体の発現を誘導する必要がある。当業者は、使用する培養条件下での宿主細胞の倍加時間に基づいて、好適な発現誘導期間を適宜決定することができる。本発明の核酸改変酵素複合体をコードする核酸の発現誘導期間は、宿主細胞に副作用を生じさせない範囲で、上記「標的された部位の改変が固定されるのに必要な期間」を超えて延長されてもよい。
本発明の核酸改変酵素複合体を、所望の時期に所望の期間、一過的に発現させる手段としては、該核酸改変酵素複合体をコードするDNAを、発現期間を制御可能な形態で含むコンストラクト(発現ベクター)を作製し、宿主細胞内に導入する方法が挙げられる。「発現期間を制御可能な形態」としては、具体的には、本発明の核酸改変酵素複合体をコードするDNAを、誘導性の調節領域の制御下においたものが挙げられる。「誘導性の調節領域」は特に制限されないが、例えば、細菌(例、大腸菌)や酵母などの微生物細胞では、温度感受性(ts)変異リプレッサーとこれに制御されるオペレーターとのオペロンが挙げられる(図4参照)。ts変異リプレッサーとしては、例えばλファージ由来のcIリプレッサーのts変異体が挙げられるが、これに限定されない。λファージcIリプレッサー(ts)の場合、30℃以下(例、28℃)ではオペレーターに結合して下流の遺伝子発現を抑制しているが、37℃以上(例、42℃)の高温ではオペレーターから解離するために、遺伝子発現が誘導される。従って、核酸改変酵素複合体をコードするDNAを導入した宿主細胞を、通常は30℃以下で培養し、適切な時期に温度を37℃以上に上げて一定期間培養して、核酸塩基変換反応を行わせ、標的遺伝子に変異が導入された後は、速やかに30℃以下に戻すことにより、標的遺伝子の発現が抑制される期間を最短にすることができ、宿主細胞にとって必須遺伝子を標的化する場合でも、副作用を押さえつつ効率よく編集することができる。
温度感受性変異を利用する場合、例えば、ベクターの自律複製に必要なタンパク質の温度感受性変異体を、本発明の核酸改変酵素複合体をコードするDNAを含むベクターに搭載することにより、該核酸改変酵素複合体の発現後、速やかに自律複製が出来なくなり、細胞分裂に伴って該ベクターは自然に脱落する。このような温度感受性変異タンパク質としては、pSC101 oriの複製に必要なRep101 oriの温度感受性変異体が挙げられるが(図4参照)、これに限定されない。Rep101 ori (ts)は30℃以下(例、28℃)では、pSC101 oriに作用してプラスミドの自律複製を可能にするが、37℃以上(例、42℃)になると機能を失い、プラスミドは自律複製できなくなる。従って、上記λファージのcIリプレッサー(ts)と併用することで、本発明の核酸改変酵素複合体の一過的発現と、プラスミド除去とを、同時に行うことができる。
一方、動物細胞、昆虫細胞、植物細胞等の高等真核細胞を宿主細胞とする場合には、本発明の核酸改変酵素複合体をコードするDNAを、誘導プロモーター(例、メタロチオネインプロモーター(重金属イオンで誘導)、ヒートショックタンパク質プロモーター(ヒートショックで誘導)、Tet-ON/Tet-OFF系プロモーター(テトラサイクリン又はその誘導体の添加又は除去で誘導)、ステロイド応答性プロモーター(ステロイドホルモン又はその誘導体で誘導)等)の制御下において宿主細胞内に導入し、適切な時期に培地に誘導物質を添加(又は培地から除去)して該核酸改変酵素複合体の発現を誘導し、一定期間培養して、核酸塩基変換反応を行わせ、標的遺伝子に変異が導入された後、誘導物質を除去(又は再添加)することにより、核酸改変酵素複合体の一過的発現を実現することができる。
尚、大腸菌などの原核細胞でも、誘導プロモーターを利用することができる。そのような誘導プロモーターとしては、例えば、lacプロモーター(IPTGで誘導)、cspAプロモーター(コールドショックで誘導)、araBADプロモーター(アラビノースで誘導)等が挙げられるが、これらに限定されない。
あるいは、上記の誘導プロモーターを、動物細胞、昆虫細胞、植物細胞等の高等真核細胞を宿主細胞とする場合の、ベクター除去機構として利用することもできる。即ち、ベクターに宿主細胞で機能する複製起点とその複製に必要なタンパク質をコードする核酸(例えば、動物細胞であれば、SV40 oriとラージT抗原、oriPとEBNA-1等)を搭載させ、該タンパク質のコードする核酸の発現を上記誘導プロモーターにより制御することにより、誘導物質存在下ではベクターは自律複製可能であるが、誘導物質を除去すると自律複製できなくなり、細胞分裂に伴って、ベクターは自然に脱落する(Tet-OFF系ベクターでは、逆にテトラサイクリンやドキシサイクリンの添加により自律複製できなくなる)。
以下に、本発明を実施例により説明する。ただし、本発明はこれらの実施例に限定されるものではない。
(1)CRISPR/Cascade-PmCDA1発現ベクターの作製
大腸菌DL21(DE3)株ゲノム由来のCascade領域のうち、CasAからCasEのORFを含むオペロンをPCRにより単離し、CasEの下流にPmCDA1遺伝子を、3xFlagタグをリンカーとして融合させた複合遺伝子断片を、温度誘導型ベクターのpRプロモーター下流に導入した。crRNA領域としてはプロモーターとしてpLを用い、その下流に5’handle配列および3’handle配列の間に32bpのターゲッティング配列(図5参照)を組み込んだものを導入した。得られた発現ベクターの全長DNA配列を配列番号4に示し、該ベクターの模式図と配列情報とを図4に示した。配列番号4中のn32の部分にターゲッティング配列が挿入される。
(2)CRISPR/Cascade-PmCDA1を用いたrpoB遺伝子の改変
ゲノム編集試験にはヌクレアーゼcas3欠損大腸菌株(JW2731)を用いた。常法により大腸菌コンピテントセルを作製し、上記(1)で作製した発現ベクターで形質転換した。SOC培地(500μl)による回復培養(約2.5時間)の後、薬剤選抜培地(LB+10μg/ml クロラムフェニコール(Cm))2.5mlで希釈し、非誘導温度である28℃でおよそ一晩培養した。その後、同じ培地で20倍希釈して、37℃で約4時間振とう培養し、発現誘導を行った。該培養液の10倍希釈系列を作製し、Cm含有もしくは不含変異選抜プレート培地(LB+25μg/ml リファンピシン(Rif))にて選抜、Rif耐性コロニーを獲得した。
得られたコロニーをPCRにてrpoB遺伝子内の標的領域を増幅し、サンガーシーケンスにより変異を同定した。結果を図5−1及び5−2に示す。標的ヌクレオチド配列を32ヌクレオチドに設定すると、PAM配列から32〜44塩基下流に存在するシトシンが主に変換されていた。
ここで述べられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
本発明により、外来DNAの挿入もDNA二重鎖切断も伴わずに、安全に任意の生物種に部位特異的変異を導入することが可能となるので、有用微生物の分子育種や遺伝子治療への応用に有用である。
本出願は、日本で出願された特許出願特願2015−178023(出願日:2015年9月9日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (11)

  1. 宿主細胞内の二本鎖DNAの標的化された部位を改変する方法であって、
    (a) 選択された二本鎖DNA中の標的ヌクレオチド配列の標的鎖に相補的な配列を含むcrRNAをコードするDNAと、
    (b) Cascadeを構成するタンパク質群と核酸塩基変換酵素とをコードするDNAであって、該核酸塩基変換酵素が該タンパク質群のいずれかのタンパク質と複合体を形成し得る形態で構成されたDNAとを、
    該宿主細胞に導入することにより、該標的化された部位において該二本鎖DNA鎖を切断することなく、該標的化された部位の1以上のヌクレオチドを他の1以上のヌクレオチドに変換する又は欠失させる、あるいは該標的化された部位に1以上のヌクレオチドを挿入する工程を含む、方法。
  2. 前記Cascadeを構成するタンパク質群がCasA、CasB、CasC、CasD及びCasEである、請求項1記載の方法。
  3. 前記Cascadeが大腸菌由来である、請求項2記載の方法。
  4. 前記核酸塩基変換酵素と複合体を形成するタンパク質がCasEである、請求項2又は3記載の方法。
  5. 前記核酸塩基変換酵素がデアミナーゼである、請求項1〜4のいずれか1項に記載の方法。
  6. 前記デアミナーゼがシチジンデアミナーゼである、請求項5記載の方法。
  7. 前記宿主細胞が原核生物細胞である、請求項1〜6のいずれか1項に記載の方法。
  8. 前記(a)及び(b)のDNAを、発現期間を制御可能な形態で含む発現ベクターを、前記宿主細胞に導入し、二本鎖DNAの標的化された部位の改変が固定されるのに必要な期間、該DNAの発現を誘導する工程、
    を含む、請求項1〜7のいずれか1項に記載の方法。
  9. 二本鎖DNA中の標的ヌクレオチド配列が、宿主細胞にとって必須の遺伝子内にあることを特徴とする、請求項8記載の方法。
  10. 宿主細胞内の二本鎖DNAの標的化された部位を改変するための核酸改変酵素複合体であって、
    (a) 選択された二本鎖DNA中の標的ヌクレオチド配列の標的鎖に相補的な配列を含むcrRNAと、
    (b) Cascadeを構成するタンパク質群と、該タンパク質群のいずれかのタンパク質と複合体を形成した核酸塩基変換酵素とを、
    含有してなる、核酸改変酵素複合体。
  11. 請求項10記載の核酸改変酵素複合体をコードするDNA。
JP2017539215A 2015-09-09 2016-09-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 Active JP6780860B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015178023 2015-09-09
JP2015178023 2015-09-09
PCT/JP2016/076448 WO2017043573A1 (ja) 2015-09-09 2016-09-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020170600A Division JP2021019615A (ja) 2015-09-09 2020-10-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体

Publications (2)

Publication Number Publication Date
JPWO2017043573A1 true JPWO2017043573A1 (ja) 2018-06-21
JP6780860B2 JP6780860B2 (ja) 2020-11-04

Family

ID=58239796

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017539215A Active JP6780860B2 (ja) 2015-09-09 2016-09-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP2020170600A Pending JP2021019615A (ja) 2015-09-09 2020-10-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP2022090304A Pending JP2022123889A (ja) 2015-09-09 2022-06-02 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP2024109766A Pending JP2024133660A (ja) 2015-09-09 2024-07-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020170600A Pending JP2021019615A (ja) 2015-09-09 2020-10-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP2022090304A Pending JP2022123889A (ja) 2015-09-09 2022-06-02 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP2024109766A Pending JP2024133660A (ja) 2015-09-09 2024-07-08 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体

Country Status (10)

Country Link
US (1) US20190024098A1 (ja)
EP (1) EP3348636B1 (ja)
JP (4) JP6780860B2 (ja)
CN (1) CN108271385A (ja)
CA (1) CA2998087A1 (ja)
DK (1) DK3348636T3 (ja)
ES (1) ES2902338T3 (ja)
HK (1) HK1253540A1 (ja)
SG (1) SG11201801809VA (ja)
WO (1) WO2017043573A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2853829C (en) 2011-07-22 2023-09-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
CN111471675A (zh) 2014-03-05 2020-07-31 国立大学法人神户大学 特异性转变靶向dna序列的核酸碱基的基因组序列的修饰方法、及其使用的分子复合体
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
JP6664693B2 (ja) 2015-09-09 2020-03-13 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換する、グラム陽性菌のゲノム配列の変換方法、及びそれに用いる分子複合体
IL294014B2 (en) 2015-10-23 2024-07-01 Harvard College Nucleobase editors and their uses
DK3382019T3 (da) 2015-11-27 2022-05-30 Univ Kobe Nat Univ Corp Fremgangsmåde til omdannelse af enkimet plantegenomsekvens, hvori nukleinsyrebase i målrettet DNA-sekvens specifikt omdannes, og molekylært kompleks anvendt deri
DK3447139T3 (da) * 2016-04-21 2022-07-04 Univ Kobe Nat Univ Corp Fremgangsmåde til øgning af mutationsindføringseffektivitet i genomsekvensmodificeringsteknik, og molekylært kompleks til anvendelse dertil
IL308426A (en) 2016-08-03 2024-01-01 Harvard College Adenosine nuclear base editors and their uses
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
JP7191388B2 (ja) 2017-03-23 2022-12-19 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸によってプログラム可能なdna結合蛋白質を含む核酸塩基編集因子
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11807869B2 (en) * 2017-06-08 2023-11-07 Osaka University Method for producing DNA-edited eukaryotic cell, and kit used in the same
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
MX2020001998A (es) 2017-08-21 2020-10-05 Univ Tokushima Tecnología de alteración específica de secuencia objetivo utilizando reconocimiento de objetivos del nucleotído.
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN111757937A (zh) 2017-10-16 2020-10-09 布罗德研究所股份有限公司 腺苷碱基编辑器的用途
SG11202009319YA (en) 2018-03-26 2020-10-29 Univ Kobe Nat Univ Corp Method for modifying target site in double-stranded dna in cell
BR112021001904A2 (pt) * 2018-08-03 2021-05-04 Beam Therapeutics Inc. editores de nucleobase multiefetores e métodos de usar os mesmos para modificar uma sequência alvo de ácido nucleico
WO2020191243A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
US20220333133A1 (en) 2019-09-03 2022-10-20 Voyager Therapeutics, Inc. Vectorized editing of nucleic acids to correct overt mutations
CN115461441A (zh) * 2020-03-16 2022-12-09 杜克大学 用于改善基于i-e型crispr的基因沉默的方法和组合物
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503535A (ja) * 2011-12-30 2015-02-02 ヴァーヘニンヘン ウニフェルジテイト 改変されたcascadeリボ核タンパク質およびそれらの用途
WO2015035136A2 (en) * 2013-09-06 2015-03-12 President And Fellows Of Harvard College Delivery system for functional nucleases
WO2015089406A1 (en) * 2013-12-12 2015-06-18 President And Fellows Of Harvard College Cas variants for gene editing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104787A1 (en) * 2009-11-05 2011-05-05 President And Fellows Of Harvard College Fusion Peptides That Bind to and Modify Target Nucleic Acid Sequences
US20150315576A1 (en) * 2012-11-01 2015-11-05 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503535A (ja) * 2011-12-30 2015-02-02 ヴァーヘニンヘン ウニフェルジテイト 改変されたcascadeリボ核タンパク質およびそれらの用途
WO2015035136A2 (en) * 2013-09-06 2015-03-12 President And Fellows Of Harvard College Delivery system for functional nucleases
WO2015089406A1 (en) * 2013-12-12 2015-06-18 President And Fellows Of Harvard College Cas variants for gene editing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SZYF MOSHE ET AL.: "Maternal care, the epigenome and phenotypeic differences in behavior", REPRODUCTIVE TOXICOLOGY, vol. 24, JPN6016046096, 2007, pages 9 - 19, ISSN: 0004289306 *

Also Published As

Publication number Publication date
US20190024098A1 (en) 2019-01-24
EP3348636A4 (en) 2019-03-13
EP3348636A1 (en) 2018-07-18
WO2017043573A1 (ja) 2017-03-16
HK1253540A1 (zh) 2019-06-21
JP6780860B2 (ja) 2020-11-04
EP3348636B1 (en) 2021-12-01
DK3348636T3 (da) 2022-02-28
SG11201801809VA (en) 2018-04-27
CA2998087A1 (en) 2017-03-16
ES2902338T3 (es) 2022-03-28
JP2024133660A (ja) 2024-10-02
JP2021019615A (ja) 2021-02-18
CN108271385A (zh) 2018-07-10
JP2022123889A (ja) 2022-08-24

Similar Documents

Publication Publication Date Title
JP6780860B2 (ja) 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JP6462069B2 (ja) 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
US20210171935A1 (en) Method for modifying genome sequence to introduce specific mutation to targeted dna sequence by base-removal reaction, and molecular complex used therein
KR102116200B1 (ko) 게놈 서열 변형 기법의 돌연변이 도입 효율을 증가시키는 방법 및 이에 사용되는 분자 복합체
US20240117384A1 (en) Method for converting nucleic acid sequence of cell specifically converting nucleic acid base of targeted dna using cell endogenous dna modifying enzyme, and molecular complex used therein
JP2020191879A (ja) 細胞の有する二本鎖dnaの標的部位を改変する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6780860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250